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A graph G is weighted–k–list–antimagic if for any vertex weighting ω : V (G) → R and any list assignment
L : E(G)→ 2R with |L(e)| ≥ |E(G)|+ k there exists an edge labeling f such that f(e) ∈ L(e) for all e ∈ E(G),
labels of edges are pairwise distinct, and the sum of the labels on edges incident to a vertex plus the weight of that
vertex is distinct from the sum at every other vertex. In this paper we prove that every graph on n vertices having no
K1 or K2 component is weighted–

⌊
4n
3

⌋
–list–antimagic.
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1 Introduction
In this paper we consider simple, finite graphs. In an edge-labeling of a graph G, we define the vertex
sum at a vertex v to be the sum of labels of edges incident to v. A graph G is antimagic if there exists a
bijective edge labeling from E(G) to {1, . . . , |E(G)|} such that the vertex sums are pairwise distinct.

The concept of antimagic graphs was first introduced by Hartsfield and Ringel in [HR90]. Exclud-
ing K2, they proved that cycles, paths, complete graphs, and wheels are antimagic and they made the
following conjecture:

Conjecture 1.1 ([HR90]). Every simple connected graph other than K2 is antimagic.

More than 25 years later, this conjecture remains open. Progress has been made for various minimum,
maximum, and average degree conditions and for regular graphs. Alon et al. [AKL+04] proved that there
is a constant C such that every graph with n vertices and minimum degree at least C log n is antimagic.
They also proved that a graph G on n vertices is antimagic if n ≥ 4 and ∆(G) ≥ n − 2. Yilma [Yil13]
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improved this bound from n − 2 to n − 3 for n ≥ 9. Later, Eccles [Ecc16] proved the conjecture for
graphs with average degree at least 4182. Further developments have focused on regular graphs, Cranston
et al. [CLZ15] proved that k-regular graphs are antimagic, when k is odd k ≥ 3. This was followed by
Bérczi et al. [BBV15] and Chang et al. [CLPZ16] proving that k-regular graphs are antimagic, when k is
even and k ≥ 4. Following partial results of Deng and Li [DL19] and Lozano et al. [LMS19], Lozano et
al. [LMST21] proved that all caterpillars are antimagic.

Due to the elusiveness of the original conjecture, several notions have been considered as either a
measure of closeness to being antimagic or a variation thereof. We direct the interested reader to Gallian’s
dynamic survey of graph labeling [Gal98] for a more thorough discussion.

A graph G is called k–antimagic if there exists an injective edge labeling from E(G) into the set
{1, . . . , |E(G)|+ k} such that vertex sums are pairwise distinct. Note that antimagic is equivalent to 0–
antimagic. If for any vertex weighting ω : V (G)→ R, there exists a bijective edge labeling φ : E(G)→
{1, . . . , |E(G)|} such that ω(u) +

∑
ux∈E(G) φ(ux) 6= ω(v) +

∑
vx∈E(G) φ(vx) for all u, v ∈ V (G),

then G is called weighted–antimagic. We call ω(v) +
∑
vx∈E(G) φ(vx) the weighted vertex sum at vertex

v. When a graph is described using a combination of variations in this paper, it satisfies the conditions
of each variation mentioned in its description. For example, a graph G is called weighted–k–antimagic
if for any vertex weighting from V (G) into R, there exists an injective edge labeling from E(G) into
{1, . . . , |E(G)|+ k} such that weighted vertex sums are pairwise distinct.

The argument used in the previously mentioned result of Alon et al. [AKL+04] extends to show that
every graph G with minimum degree at least C log |V (G)| is weighted–0–antimagic. However, there are
connected graphs that are not weighted–0–antimagic; for example, K1,n. Further, Wong and Zhu [WZ12]
provided a family of connected graphs with even number of vertices that is not weighted–1–antimagic.
In investigating the natural question of finding the smallest integer k for which a graph is weighted–k–
antimagic, Wong and Zhu posed the following questions: Is it true that every connected graph other than
K2 is weighted–2–antimagic? Is there a connected graph G with an odd number of vertices which is
not weighted–1–antimagic? Improving upon a result of Hefetz in [Hef05] showing that every connected
graph other than K2 is weighted–(2|V (G)| − 4)–antimagic, Wong and Zhu also proved the following:

Theorem 1.2 ([WZ12]). Every connected graph on n vertices with n ≥ 3 is weighted–
(⌈

3n
2

⌉
− 2
)
–

antimagic.

The main result of this paper improves upon this result by lowering
(⌈

3n
2

⌉
− 2
)
, including disconnected

graphs in the result, and proving the results for list-coloring. To this end, a graph G is k–list–antimagic
if for any list assignment L : E(G) → 2R, where |L(e)| ≥ |E(G)| + k for all e ∈ E(G), there exists an
edge labeling that assigns each edge e a label from L(e) such that edge labels are pairwise distinct and
vertex sums are pairwise distinct.

Theorem 1.3. Every graph on n vertices with noK1 orK2 component is weighted–
⌊
4n
3

⌋
–list–antimagic.

We prove Theorem 1.3, our main result, in Section 2. With minor modifications, the proof can be used
for antimagic labelings of oriented graphs, a variant introduced by Hefetz, Mütze, and Schwartz [HMS10].
Oriented graphs are briefly discussed in Section 3.

Before proving our results in Section 2, we present some useful tools. The primary tool used in the
results is the Combinatorial Nullstellensatz.

Theorem 1.4 (Combinatorial Nullstellensatz, [Alo99]). Let F be an arbitrary field, and let
f = f(x1, . . . , xn) be a polynomial in F[x1, . . . , xn]. Suppose the degree d(f) of f is

∑n
i=1 ti, where
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each ti is a nonnegative integer, and suppose the coefficient of
∏n
i=1 x

ti
i in f is nonzero. Then, if

S1, . . . , Sn are subsets of F with |Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . ., sn ∈ Sn so that
f(s1, . . . , sn) 6= 0.

A useful lemma when applying the Combinatorial Nullstellensatz is Equation (5.16) from [DFGIL94],
which is stated below.

Lemma 1.5 ([DFGIL94]). The coefficient of the monomial
∏

1≤i≤N

x
s(N−1)+i−1
i in the polynomial

∏
1≤i<j≤N

(xi − xj)2s+1 has absolute value
(
(s+1)N

)
!

N !(s+1)!N
.

Note that the polynomial in the above lemma is the determinant of the (2s + 1)st power of the Vander-
monde matrix.

2 Antimagic Results
The main results of this paper rely on an inductive argument that has the potential to create isolated
vertices orK2 components. Since the creation of these components would preclude an antimagic labeling,
we define the following to account for this possibility. A graph G is k–quasi–antimagic if there exists an
injective edge labeling from E(G) into {1, . . . , |E(G)| + k} such that vertex sums are pairwise distinct
for pairs of non–isolated vertices that are not adjacent in aK2 component. Notice that if every component
of a graph has at least 3 vertices, k–quasi–antimagic is equivalent to k–antimagic.

Throughout the proof we denote a vertex of degree at least j in a graph G by a j+–vertex. An even
(odd) component in a graph is a component that has an even (odd) number of vertices. A vertex v is in
edge e, denoted v ∈ e, if e is incident to v. We use notation from [Wes96] unless otherwise specified.

The following lemma provides the basis step of our inductive argument:

Lemma 2.1. IfG is a graph on n vertices and ∆(G) ≤ 2, thenG is weighted–
⌊
4n
3

⌋
–list–quasi–antimagic.

Proof: It suffices to prove the lemma for graphs with δ(G) ≥ 1, since adding isolated vertices increases
n without adding any additional labeling requirements.

Let G have m edges. Given 1 ≤ δ(G) ≤ ∆(G) ≤ 2, every component of G is a path or cycle and has
at least 2 vertices. Let e1, . . . , eq be the q isolated edges of G, D1, . . . , Dr be the r even components of
G each having at least 4 vertices, and C1, . . . , Cs be the odd components of G. Let ω : V (G) → R be a
vertex weighting and L : E(G)→ 2R be a list function such that |L(e)| ≥ m+

⌊
4n
3

⌋
for all e ∈ E(G).

LetE′ = {e1, . . . , ek} be a matching inG of maximum size. Notice that e1, . . . , eq are inE′, so k ≥ q.
In fact, counting gives k = n−s

2 . Also define vi for each i ∈ {1, 2, . . . , s} to be the unique vertex in Ci
such that vi is not incident to any edge in E′. Let E′′ = E(G)− E′. Note that |E′′| = m− n−s

2 .
In the first stage of this proof, we iteratively label the edges of E′′ as follows. For edge e = yz ∈ E′′,

we label e from L(e) so that (1) the label assigned to e is not already assigned to an edge, (2) the weighted
vertex sum of u ∈ {y, z} is not equal to the weighted vertex sum of w ∈ N(u) \ {y, z}, and (3) if e is
incident to some vi, the weighted vertex sum at vi is distinct from the weighted vertex sum at vj for each
j 6= i. With these three restrictions, there are at most (|E′′| − 1) + 2 + (s− 1) values that are not allowed
when labeling each edge in E′′. Since s ≤ n

3 , we have

|E′′|+ s = m− n− s
2

+ s = m+
3s

2
− n

2
≤ m < m+

⌊
4n

3

⌋
.
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Fig. 1: Components (paths or cycles) of G with edges in a maximum matching E′ in bold.

Since |L(e)| ≥ m+
⌊
4n
3

⌋
for each e ∈ E′′, there are more labels on each edge than possible restrictions.

Therefore, such a labeling on E′′ is possible.
The second stage of this proof is to label the edges of the maximum matching E′ in G. Let f ′′ : E′′ →

R be the partial edge labeling described above and define ω′′ : V (G) → R to be ω′′(v) = ω(v) +∑
vx∈E′′ f ′′(vx). Note that ω′′(v1), . . . , ω′′(vs) are distinct and are not impacted by labeling edges in E′.

Also, if uv ∈ E′ is not an isolated edge, then ω′′(u) 6= ω′′(v) because of the labeling of E′′. We construct
a polynomial with variables x1, . . . , xk corresponding to the label of e1, . . . , ek, respectively. Equal edge
labels and equal vertex sums appear in G precisely at zeroes of the polynomial

g(x1, . . . , xk) =
∏

1≤i<j≤k

φ(i, j)×
∏

1≤i≤k

ψ(i), where

φ(i, j) = (xi − xj)
∏
u∈ei
u′∈ej

(xi + ω′′(u)− xj − ω′′(u′)), and

ψ(i) =
∏
e∈E′′

(xi − f ′′(e))
∏

1≤j≤s

∏
u∈ei

(xi + ω′′(u)− ω′′(vj)).

One can check that, for 1 ≤ i < j ≤ k, φ(i, j) = 0 if and only if either ei and ej have been given the
same labels or the final vertex sum of an endpoint of ei matches the final vertex sum of an endpoint of ej .
Also, for 1 ≤ i ≤ k, ψ(i) = 0 if and only if the label xi is already used in E′′ or one endpoint of ei has
the same final vertex sum as vj for any j ∈ {1, 2, . . . , s}. Note that the maximum degree in g is at most
5
(
k
2

)
+ k(2s+m− k); we will show this is the maximum degree in g below.

The monomials of g with maximum degree have the same coefficients as they do in polynomial

h(x1, . . . , xk) =
∏

1≤i<j≤k

(xi − xj)5
∏

1≤i≤k

x2s+m−ki .

By Lemma 1.5, the monomial

x
2(k−1)+(2s+m−k)
1 x

2(k−1)+1+(2s+m−k)
2 x

2(k−1)+2+(2s+m−k)
3 · · ·x3(k−1)+(2s+m−k)

k
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has nonzero coefficient in h and thus also in g. Recall that k = n−s
2 and s ≤ n

3 . Hence

3(k − 1) + (2s+m− k) = m+ n+ s− 3

≤ m+ n+
⌊n

3

⌋
− 3

< m+

⌊
4n

3

⌋
.

Since |L(ei)| ≥ m +
⌊
4n
3

⌋
for all ei, Theorem 1.4 implies that labels x1, . . . , xk can be chosen so

that g(x1, . . . , xk) 6= 0. By the construction of g, this implies that G has a weighted–
⌊
4n
3

⌋
–list–quasi–

antimagic labeling.

Lemma 2.2. Let G be an n-vertex graph that is not weighted–
⌊
4n
3

⌋
–list–quasi–antimagic. Suppose that

G has the fewest edges of any graph with this property. Then ∆(G) < 3.

Proof: Let G be an edge–minimal graph on m edges with ∆(G) ≥ 3 that is not weighted–
⌊
4n
3

⌋
–list–

quasi–antimagic. Let ω : V (G)→ R and L : E(G)→ 2R such that |L(e)| ≥ m+
⌊
4n
3

⌋
for all e ∈ E(G).

Suppose that v is a 3+–vertex with neighbors u1, u2, and u3. Let G′ = G − {vu1, vu2, vu3}. By
the choice of G, G′ is weighted–

⌊
4n
3

⌋
–list–quasi–antimagic. Thus there is a labeling f of E(G′) using

labels in the lists of its edges that is a weighted–
⌊
4n
3

⌋
–list–quasi–antimagic labeling of G′. We apply the

Combinatorial Nullstellensatz to extend f to an edge labeling of G which is weighted–
⌊
4n
3

⌋
–list–quasi–

antimagic.
Let x1, x2, and x3 correspond to the labels of edges vu1, vu2, and vu3, respectively. For each

w ∈ V (G′), let ω′′(w) denote the weighted vertex sum of w in G′. We define the following poly-
nomial in which respective factors ensure a distinct edge labeling for the edges vu1, vu2, vu3, distinct
weighted sums for any pair between V (G)− {v, u1, u2, u3} and {v, u1, u2, u3}, any pair between v and
{u1, u2, u3}, and any pair in {u1, u2, u3}:

g(x1, x2, x3) =
∏

1≤i<j≤3

(xi − xj)
∏

w/∈{v,u1,u2,u3}

(ω′′(v) + x1 + x2 + x3 − ω′′(w))

×
3∏
i=1

∏
w/∈{v,u1,u2,u3}

(xi + ω′′(ui)− ω′′(w))

×
3∏
i=1

(ω′′(v) + x1 + x2 + x3 − xi − ω′′(ui))

×
∏

1≤i<j≤3

(xi + ω′′(ui)− xj − ω′′(uj)).

By construction, g(x1, x2, x3) = 0 when xi ∈ L(vui)− {f(e) : e ∈ E(G′)} if and only if labels chosen
for x1, x2, and x3 do not create a weighted–

⌊
4n
3

⌋
–list–quasi–antimagic labeling. Note that

deg(g) =

(
3

2

)
+ (n− 4) + 3(n− 4) + 3 +

(
3

2

)
= 4n− 7.
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Therefore the coefficient of any monomial xa1x
b
2x
c
3 in g, where a + b + c = 4n − 7, is the same as its

coefficient in the polynomial

g′(x1, x2, x3) = xn−41 xn−42 xn−43 (x1 + x2 + x3)n−4
∏

1≤i<j≤3

(xi − xj)2(xi + xj).

To use Theorem 1.4, we would like a fairly balanced triple (a, b, c) with a+ b+ c = 4n− 7 such that the
coefficient of xa1x

b
2x
c
3 in g′ (and thus in g) is nonzero. It suffices to find (a′, b′, c′) with a′+b′+c′ = n+5

so that the coefficient of xa
′

1 x
b′

2 x
c′

3 is nonzero in the polynomial

h(x1, x2, x3) = (x1 + x2 + x3)n−4
∏

1≤i<j≤3

(xi − xj)2(xi + xj).

For some i ∈ {0, 1, 2}, we can write n + 5 = 3k + i. We use the notation
[
xa

′

1 x
b′

2 x
c′

3

]
h

to refer to the

coefficient of xa
′

1 x
b′

2 x
c′

3 in the polynomial h. Defining a′ = k + i+ 1, b′ = k, and c′ = k − 1,[
xa

′

1 x
b′

2 x
c′

3

]
h

=
∑

α+β+γ=9

(
n− 4

a′ − α, b′ − β, c′ − γ

)[
xα1x

β
2x

γ
3

]
ĥ
,

where ĥ is the polynomial

ĥ(x1, x2, x3) =
∏

1≤i<j≤3

(xi − xj)2(xi + xj).

We verify that this coefficient is nonzero for n ≥ 3 in Appendix A. Therefore the corresponding
coefficient

[
xa1x

b
2x
c
3

]
g

is also nonzero where max{a, b, c} = a = a′ + (n− 4) = 4n−4+2i
3 ≤

⌊
4n
3

⌋
.

Define L′(vui) = L(vui) − {f(e) : e ∈ E(G′)}. Since |L(vui)| ≥ m +
⌊
4n
3

⌋
, we have |L′(vui)| ≥⌊

4n
3

⌋
+ 3. Thus, by Theorem 1.4, there are labels f(vu1), f(vu2), and f(vu3) in L′(vu1), L′(vu2), and

L′(vu3), respectively, for which g(f(vu1), f(vu2), f(vu3)) is nonzero. Therefore we obtain a weighted–⌊
4n
3

⌋
–list–quasi–antimagic labeling of G, contradicting the choice of G.

Theorem 1.3 follows from the following result, which is a direct result of the contradiction between
Lemmas 2.1 and 2.2.

Theorem 2.3. Every graph on n vertices is weighted–
⌊
4n
3

⌋
–list–quasi–antimagic.

Remark: A generalized version of Lemma 2.2 might claim that ∆(G) < d when G is not weighted–⌊
(d+1)n

d

⌋
–list–quasi–antimagic. A modification to the computation in Appendix A confirms that this

general form holds for d = 4, 5. However, the technique of Lemma 2.1 does not extend beyond ∆(G) ≤ 2.
As such, improving Theorem 2.3 is left as an area for future investigation.

3 Remarks on Oriented Graphs
An oriented graph G is oriented–antimagic if there exists a bijective edge labeling from E(G) to
{1, . . . , |E(G)|} such that oriented vertex sums are pairwise distinct, where an oriented vertex sum at
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a vertex v is the sum of labels of all edges entering v minus the sum of labels of all edges leaving v. An
orientation of G is a directed graph with G as its underlying graph.

Hefetz, Mütze, and Schwartz [HMS10] proved that there is a constant C such that every orientation
of a graph on n vertices with minimum degree at least C log n is oriented–antimagic. They also showed
that every orientation of complete graphs, wheels, stars with at least 4 vertices, and regular graphs of odd
degree are oriented–antimagic. In addition, they showed that every regular graph on n vertices with even
degree and a matching of size

⌊
n
2

⌋
has an orientation that is oriented–antimagic. They made the following

conjecture and asked the subsequent question:

Conjecture 3.1 ([HMS10]). Every connected undirected graph admits an orientation that is oriented–
antimagic.

Question 3.2 ([HMS10]). Is every connected oriented graph on at least 4 vertices oriented–antimagic?

Recently, a variety of papers proved that various graph classes admit an antimagic orientation, see
[LSW+19, LMS19, SY17, SH19, SYZ21, Yan19].

Our approach to proving Theorem 1.3 can be modified slightly for showing that graphs admit a k–
antimagic orientation. An oriented edge labeled with a non-zero value contributes differently to the vertex
sums of its two incident vertices. Thus, an exception is no longer necessary for isolated edges. That
is, for weighted graphs, the only difference between quasi–antimagic and antimagic is that the former
allows multiple isolated vertices. Moreover, the freedom to choose the orientation of every edge doubles
the effectiveness of our use of Combinatorial Nullstellensatz in making progress toward Conjecture 3.1.
Essentially, the ability to change sign means that we can have

⌊
4n
3

⌋
elements in the sets Ti required by

Theorem 1.4 by only including
⌊
2n
3

⌋
extra values. Indeed, the natural modifications to the polynomials in

the proofs of Lemmas 2.1 and 2.2 give that every graph on n vertices (with at most one isolated vertex)
admits an orientation that is

⌊
2n
3

⌋
–oriented–antimagic.
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A Appendix

Notice that the polynomial ĥ from Lemma 2.2 expands to

ĥ(x1, x2, x3) = x61x
3
2 − x61x22x3 − x61x2x23 + x61x

3
3 − x51x42 + 2x51x

2
2x

2
3 − x51x43 − x41x52 + 2x41x

4
2x3

− x41x32x23 − x41x22x33 + 2x41x2x
4
3 − x41x53 + x31x

6
2 − x31x42x23 − x31x22x43 + x31x

6
3

− x21x62x3 + 2x21x
5
2x

2
3 − x21x42x33 − x21x32x43 + 2x21x

2
2x

5
3 − x21x2x63 − x1x62x23

+ 2x1x
4
2x

4
3 − x1x22x63 + x62x

3
3 − x52x43 − x42x53 + x32x

6
3.
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Thus

[xa
′

1 x
b′

2 x
c′

3 ]h =
∑

α+β+γ=9

(
n− 4

k + i+ 1− α, k − β, k − 1− γ

)
[xα1x

β
2x

γ
3 ]ĥ

=

(
n− 4

k + i+ 1− 6, k − 3, k − 1− 0

)
−
(

n− 4

k + i+ 1− 6, k − 2, k − 1− 1

)
−
(

n− 4

k + i+ 1− 6, k − 1, k − 1− 2

)
+

(
n− 4

k + i+ 1− 6, k − 0, k − 1− 3

)
−
(

n− 4

k + i+ 1− 5, k − 4, k − 1− 0

)
+ 2

(
n− 4

k + i+ 1− 5, k − 2, k − 1− 2

)
−
(

n− 4

k + i+ 1− 5, k − 0, k − 1− 4

)
−
(

n− 4

k + i+ 1− 4, k − 5, k − 1− 0

)
+ 2

(
n− 4

k + i+ 1− 4, k − 4, k − 1− 1

)
−
(

n− 4

k + i+ 1− 4, k − 3, k − 1− 2

)
−
(

n− 4

k + i+ 1− 4, k − 2, k − 1− 3

)
+ 2

(
n− 4

k + i+ 1− 4, k − 1, k − 1− 4

)
−
(

n− 4

k + i+ 1− 4, k − 0, k − 1− 5

)
+

(
n− 4

k + i+ 1− 3, k − 6, k − 1− 0

)
−
(

n− 4

k + i+ 1− 3, k − 4, k − 1− 2

)
−
(

n− 4

k + i+ 1− 3, k − 2, k − 1− 4

)
+

(
n− 4

k + i+ 1− 3, k − 0, k − 1− 6

)
−
(

n− 4

k + i+ 1− 2, k − 6, k − 1− 1

)
+ 2

(
n− 4

k + i+ 1− 2, k − 5, k − 1− 2

)
−
(

n− 4

k + i+ 1− 2, k − 4, k − 1− 3

)
−
(

n− 4

k + i+ 1− 2, k − 3, k − 1− 4

)
+ 2

(
n− 4

k + i+ 1− 2, k − 2, k − 1− 5

)
−
(

n− 4

k + i+ 1− 2, k − 1, k − 1− 6

)
−
(

n− 4

k + i+ 1− 1, k − 6, k − 1− 2

)
+ 2

(
n− 4

k + i+ 1− 1, k − 4, k − 1− 4

)
−
(

n− 4

k + i+ 1− 1, k − 2, k − 1− 6

)
+

(
n− 4

k + i+ 1− 0, k − 6, k − 1− 3

)
−
(

n− 4

k + i+ 1− 0, k − 5, k − 1− 4

)
−
(

n− 4

k + i+ 1− 0, k − 4, k − 1− 5

)
+

(
n− 4

k + i+ 1− 0, k − 3, k − 1− 6

)
.

For convenience, we refer to the above expression above as the Coefficient and aim to show that it is
nonzero. We aim to show the Coefficient is nonzero for all n ≥ 3 and proceed to consider the three cases
for n+ 5 = 3k + i, namely i = 0, 1, 2.
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Case i = 0: Setting i = 0 in the Coefficient and factoring
(

n−4
k−3,k−3,k−3

)
from each term gives

− 2
(k − 3)(k − 4)

(k − 2)(k − 2)
− 2

(k − 3)2

(k − 1)(k − 2)
+ 2

k − 3

k − 2
− 1− 2

(k − 3)(k − 4)(k − 5)

k(k − 1)(k − 2)

+ 2
(k − 3)(k − 4)

(k − 1)(k − 2)
+ 2

(k − 3)(k − 4)(k − 5)

(k − 1)(k − 2)2
− (k − 3)(k − 4)(k − 5)(k − 6)

(k − 1)2(k − 2)2

+ 2
(k − 3)2(k − 4)

k(k − 1)(k − 2)
− (k − 3)2(k − 4)2

(k + 1)k(k − 1)(k − 2)
+

(k − 3)(k − 4)(k − 5)(k − 6)

(k + 1)k(k − 1)(k − 2)
,

which simplifies to

−96k3 + 672k2 − 1344k + 528

(k + 1)k(k − 1)2(k − 2)2
.

To show the Coefficient is not zero, first note that the multinomial
(

n−4
k−3,k−3,k−3

)
and the common de-

nominator are positive integers for all k ≥ 3. It suffices to show that the numerator is not zero for
k ≥ 3. The derivative of the numerator with respect to k implies that the numerator is decreasing for
k > 7+

√
7

3 ≈ 3.22. Since the numerator is −48 and −240 when k = 3, 4 respectively, the numerator is
negative for k ≥ 3.

Case i = 1: Setting i = 1 in the Coefficient and factoring
(

n−4
k−2,k−3,k−3

)
from each term gives

− 2
k − 3

k − 1
+ 1 +

(k − 3)(k − 4)(k − 5)

(k − 1)2(k − 2)
− (k − 3)(k − 4)(k − 5)

(k + 1)k(k − 1)
+ 2

(k − 3)2(k − 4)

(k + 1)k(k − 1)

− (k − 3)(k − 4)(k − 5)(k − 6)

(k + 1)k(k − 1)(k − 2)
− (k − 3)2(k − 4)2

(k + 2)(k + 1)k(k − 1)
+

(k − 3)(k − 4)(k − 5)(k − 6)

(k + 2)(k + 1)k(k − 1)
,

which simplifies to

−96k3 + 864k2 − 2016k + 1104

(k + 2)(k + 1)k(k − 1)2(k − 2)

As before, the multinomial
(

n−4
k−2,k−3,k−3

)
and the common denominator are positive integers for all k ≥

3. It suffices to show that the numerator is not zero for k ≥ 3. The derivative of the numerator with
respect to k implies that the numerator is decreasing for k > 3 +

√
2 ≈ 4.41. Since the numerator is 240,

720, 624, and −624 for k = 3, 4, 5, 6 respectively, the numerator is negative for k ≥ 6 and the desired
outcome holds.
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Case i = 2: Setting i = 2 in the Coefficient and factoring
(

n−4
k−2,k−2,k−3

)
from each term gives

1− 2
(k − 3)(k − 4)

k(k − 1)
− k − 2

k − 1
+

(k − 3)(k − 4)

(k − 1)2
+

(k − 3)(k − 4)(k − 5)(k − 6)

k2(k − 1)2

+
(k − 2)(k − 3)(k − 4)

(k + 1)k(k − 1)
− (k − 2)(k − 3)2

(k + 1)k(k − 1)
+

(k − 3)(k − 4)(k − 5)

(k + 1)k(k − 1)

− (k − 3)(k − 4)(k − 5)(k − 6)

(k + 1)k(k − 1)2
− (k − 2)(k − 3)(k − 4)(k − 5)

(k + 2)(k + 1)k(k − 1)

+ 2
(k − 2)(k − 3)2(k − 4)

(k + 2)(k + 1)k(k − 1)
− (k − 3)(k − 4)(k − 5)(k − 6)

(k + 2)(k + 1)k(k − 1)

− (k − 2)(k − 3)2(k − 4)2

(k + 3)(k + 2)(k + 1)k(k − 1)
+

(k − 2)(k − 3)(k − 4)(k − 5)(k − 6)

(k + 3)(k + 2)(k + 1)k(k − 1)
,

which simplifies to
−96k4 + 1248k3 − 3456k2 + 1728k + 2160

(k + 3)(k + 2)(k + 1)k2(k − 1)2
.

Again, the multinomial
(

n−4
k−2,k−2,k−3

)
and the denominator are positive integers for all k ≥ 3. The

derivative of the numerator with respect to k implies that the numerator is decreasing for k ≥ 8. Since
the numerator is 240, 2160, 9072, 20400, 33264, 42480, 40560, 17712, and −38160 for k = 2, 3, . . . , 10
respectively, the numerator is negative for k ≥ 10 and the desired outcome holds.

As a result of these cases, the coefficient is nonzero for all k ≥ 3 when i = 0, 1 and for all k ≥ 2 when
i = 2. This covers all possible values of n ≥ 3 based on n+ 5 = 3k + i for some i = 0, 1, 2.
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