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Let G = (V (G), E(G)) be a finite simple undirected graph with vertex set V (G), edge set E(G) and vertex subset

S ⊆ V (G). S is termed open-dominating if every vertex of G has at least one neighbor in S, and open-independent,

open-locating-dominating (an OLDoind-set for short) if no two vertices in G have the same set of neighbors in S, and

each vertex in S is open-dominated exactly once by S. The problem of deciding whether or not G has an OLDoind-set

has important applications that have been reported elsewhere. As the problem is known to be NP-complete, it appears

to be notoriously difficult as we show that its complexity remains the same even for just planar bipartite graphs of

maximum degree five and girth six, and also for planar subcubic graphs of girth nine. Also, we present characterizations

of both P4-tidy graphs and the complementary prisms of cographs that have an OLDoind-set.

Keywords: open-independent, open-locating-dominating, complementary prism, planar, bipartite, P4-tidy, complexity.

1 Introduction

Consider the situation where a graph G models a facility or a multiprocessor network with limited-range

detection devices (sensing for example, movement, heat or size) that are placed at chosen vertices of G.

The purpose of these devices is to detect and precisely identify the location of an intruder such as a thief,

saboteur, vandal, fire or faulty processor that may suddenly be present at any vertex.

As it is costly to install and maintain such devices it is logical to determine the locations of the minimum

number of devices that can, between them, precisely determine an intruder at any location. This challenge

is often called a location-detection or an identification problem and has been well-studied [21, 25, 29]. This

objective is adopted throughout the present article. Sometimes such a device can determine if an intruder

is in its neighborhood but cannot detect if the intruder is at its own location. In this case, it is required to

find a so-called, open-locating-dominating vertex subset S (an OLD-set for short), which is a dominating

set of G, such that every vertex in G has at least one neighbor in S, and no two vertices in G have the same

set of neighbors in S. When a device may be prevented from detecting an intruder at its own location, it is

necessary to install another device in its neighborhood. A natural way to analyze such situations is to make

use of open neighborhood sets which may have useful additional properties, such as being open-independent,

dominating, open-dominating or open-locating-dominating. A set S is open-independent if every member

of S has at most one neighbor in S. The other terms and those in the next paragraph are made more precise

later in this section.
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An alternative case arises when a device can determine if the intruder is either at its own location or is

in the neighborhood of its location, but which actual location cannot be detected, and furthermore, each

detector cannot be located in the range of any other due to possible signal interference. Such situations can

potentially be analyzed via independent, locating-dominating sets [34].

Finding an OLD-set in a given graph, if it exists, is similar to the well-studied identifying code problem

[22]. An identifying code C ⊆ V (G) is a dominating set where for all u, v ∈ V (G), u 6= v, one has

N [u] ∩ C 6= N [v] ∩ C. The minimum cardinality of an identifying code of a graph G is denoted by

IC(G). AlthoughOLD-sets and identifying codes are similar notions, the parameters OLD(G) and IC(G)
are incomparable. The concept of an open-locating-dominating set was first considered by Seo and Slater

[31, 32]. The authors showed that to decide if a graph G has such a set is an NP-complete decision problem

and they provided some useful results for OLD-sets in trees and grid graphs. Foucaud et al. [11] presented

a linear time algorithm that can be used to construct an open-locating dominating set of minimum size for

a given cograph, based on parsing its cotree structure. Kincaid et al. [24] established the optimal density of

an OLD-set for infinite triangular grids. Savic et al. [30] presented results on OLD-sets for some convex

polytopes. The reader is referred to [26] for an on-line bibliography on this topic and related notions. In this

paper we consider the following more restrictive problem:

OLD-OIND (existence of an open-independent, open locating dominating set)

Instance: A graph G.

Question: Does G have an open-independent, open locating dominating set?

To the best of our knowledge, Seo and Slater [33] were the first to study open-independent, open-locating-

dominating sets (OLDoind-sets for short). They presented some results on OLDoind-sets in paths, trees and

infinite grid graphs, and characterized OLDoind-sets in graphs with girth at least five. The authors also

demonstrated that OLD-OIND is NP-complete. This complexity result was extended for complementary

prisms by Cappelle et al. [5] who presented various properties and bounds on the sizes of minimalOLDoind-

sets in complementary prism graphs and showed that, if the girth of G is at least four, the OLDoind-set of

its complementary prism, if it exists, can be found in polynomial time.

In this paper we analyze the existence of OLDoind-sets in P4-tidy graphs and in cographs, a subclass of

the P4-tidy class. The class of P4-tidy graphs contains several other graph families having relatively few

P4’s, such as the P4-sparse, P4-lite, P4-extendable and P4-reducible graph families. The P4-tidy graph

class generalizes all of the just-mentioned graph families. It is well known that the P4-tidy graph class is

self-complementary and hereditary [12].

Haynes et al. [17] investigated several graph theoretic properties of complementary prisms, such as inde-

pendence, distance and domination. For further study on domination parameters in complementary prisms,

see [14, 7, 8, 19, 20] and for certain other parameters see [1, 6, 28, 35]. Cappelle et al. [2] described

a polynomial-time recognition algorithm for complementary prisms. Although complementary prisms are

a class of apparently well-behaved graphs, many NP-complete problems for general graphs remain NP-

complete for this class, for example, finding an independent or a dominating set, or establishingP3-convexity

[9].

Our contributions. It appears that OLD-OIND is notoriously difficult as we show that it remains NP-

complete even for just planar bipartite graphs of maximum degree five and girth six, and also for planar

subcubic graphs of girth nine. However, we study some graph classes for which the problem can be solved

in polynomial time and also present characterizations of both P4-tidy graphs and complementary prisms of

cographs that have an OLDoind-set.

Notation and terminology. Throughout this paper G = (V (G), E(G)) is assumed to be a nontrivial finite
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simple undirected connected graph with vertex set V (G) and edge set E(G). A subgraph of G with n
vertices that is a path (a cycle) is termed an n-path (an n-cycle), and is denoted by Pn (Cn). A subcubic

graph is a graph in which each vertex has degree at most three, i.e. no vertex is incident with more than three

edges. The open neighborhood of a vertex v ∈ V (G) is denoted by NG(v) = {u ∈ V (G) | uv ∈ E(G)},

and its closed neighborhood is denoted by NG[v] = NG(v) ∪ {v}. Let S ⊆ V (G), S 6= ∅. The subgraph of

G induced by S is denoted by G[S]. S is termed dominating if every vertex not in S is adjacent to at least

one member of S, i.e., NG[S] = ∪v∈SN [v] = V (G). S is locating-dominating if it is dominating and no

two distinct vertices of V (G) \ S have the same set of neighbors in S, i.e., ∀u, v ∈ V (G) \ S, u 6= v, we

have that N(u) ∩ S 6= N(v) ∩ S. Clearly, V (G) is a locating-dominating set for any graph G.

S is open-dominating (or total-dominating) if every vertex v ∈ V (G) has a neighbor in S, i.e.,

∪u∈SN(u) = V (G). In this case v is said to be open-dominated by S. S is independent if no two ver-

tices in S are adjacent and is open-independent (an OIND-set for short) if every member of S is open-

dominated by S at most once, i.e., ∀ v ∈ S, |N(v) ∩ S| ≤ 1. Obviously, an open-dominating set cannot

be independent. S is open-locating-dominating (an OLD-set for short) if it is open-dominating and no two

distinct members of V (G) have the same open neighborhood in S, i.e., for all u, v ∈ V (G), u 6= v, one

has N(u) ∩ S 6= N(v) ∩ S. In this case, u and v are said to be distinguished by S. G has an OLD-set

if no two of its vertices have the same open neighborhood. The minimum cardinality of an OLD-set is

denoted by OLD(G), the open-locating-dominating number of G. If G has an OLD-set S, then S is called

an OLD(G)-set if |S| = OLD(G). We note that if S exists, then the fact that every leaf and its support of

G must be in S is helpful in the proofs of some of the theorems stated later in the present paper.

Let G1 and G2 be two graphs such that V (G1)∩ V (G2) = ∅. We denote the disjoint union (resp. join) of

G1 and G2 by G1 ⊕G2 (resp. G1 ⊲⊳ G2), and the complement graph of a graph G by G. An anticomponent

of a graph G is the subgraph of G induced by the vertex set of a connected component of G. More precisely,

an induced subgraph H of G is an anticomponent if H is a connected component of G. Notice that if

G1, G2, . . . , Gk are the anticomponents of G, then G = G1 ⊲⊳ G2 ⊲⊳ · · · ⊲⊳ Gk. A graph G is termed

co-connected if G is connected. If X ⊆ V (G), the subgraph of G obtained by removing both the vertices

in X and the edges incident with them in G is denoted by G \ X . For a graph H and a natural number

p, the graph obtained by the disjoint union of p copies of H is denoted by pH . For integer k ≥ 1, the set

{1, . . . , k} is denoted by [k].
If an open-independent, open-locating-dominating set (an OLDoind-set for short) exists in a given graph

G, it is often of interest to establish a set of minimum size among such sets in G, which is denoted by

OLDoind(G). If S is an OLDoind-set for G, each component of G[S] is isomorphic to K2 (the complete

graph on two vertices). See, for example, the graphs in Figures 1(a) and 1(b), where an OLDoind-set of

each graph is represented by the black vertices.

(a) G. (b) G.

V (Ḡ)

V (G)

(c) GG.

Fig. 1: Example of a graph, its complement and the resulting complementary prism.

Haynes et al. [17] introduced the so-called complementary product of two graphs as a generalization
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of the well-known Cartesian product of the graphs. As a particular case of complementary products, the

authors define the complementary prism of a graph G, denoted by GG, as the graph formed from the disjoint

union of G and its complement G by adding the edges of the perfect matching between the corresponding

vertices of G and G, where V (GG) = V (G) ∪ V (G). For the purposes of illustration, a graph G, its

complement G and the complementary prism GG are depicted respectively, in Figures 1(a), 1(b) and 1(c).

To simplify matters, G and G are used to denote the subgraph copies of G and G, respectively, in GG. For

a set X ⊆ V (G), let X denote the corresponding vertices of X in V (G).

2 Complexity results

Open-independent, open-locating-dominating sets were first studied by Seo and Slater [33] who stated nec-

essary and sufficient conditions for the existence of an OLDoind-set in a graph G that has girth g(G) ≥ 5.

For general graphs (with arbitrary girth), the conditions stated in Theorem 2.1 are necessary but not suffi-

cient, as is stated in Theorem 2.2. We frequently use Theorem 2.2 in our proofs below, sometimes without

mentioning the fact.

Theorem 2.1 ([33]). If a graph G has girth satisfying g(G) ≥ 5 and S ⊆ V (G), then S is an OLDoind-set

iff (i) each v ∈ S is open-dominated by S exactly once and (ii) each v /∈ S is open-dominated by S at least

twice.

Theorem 2.2 ([4]). If S ⊆ V (G) is an OLDoind-set of a graph G, then (i) each v ∈ S is open-dominated

exactly by S once, and (ii) each v ∈ V (G) \ S is open-dominated by S at least twice.

Seo and Slater [33] presented some results about OLDoind-sets in trees. The authors showed that every

leaf and its neighbor are contained in any OLDoind-set of any tree T , if T has such a set. Furthermore, they

recursively defined the collection of trees that have unique OLDoind-sets. On the other hand, they showed

that OLD-OIND is an NP-complete problem for general graphs. They present a reduction from the 3-SAT

problem. Indeed, by reducing from the NP-complete problem Planar 3-SAT, it is possible to prove NP-

completeness for planar graphs by using their construction. Recently, it was proved that OLD-OIND is

NP-complete for the complementary prisms of a given graph G [5]. We use similar ideas to those in [27]

for efficient edge domination, showing that OLD-OIND is NP-complete even for the special cases when

G is either a planar bipartite graph of maximum degree five and girth six or a planar subcubic graph of girth

nine, by polynomial reduction from the following decision problem.

RESTRICTED X3C (exact cover by 3-sets)

Instance: A finite set X with |X | = 3n and a collection S of 3-element subsets of X such that each

element of X is in at most 3 subsets, with |S| = m, where n and m are positive integers.

Question: Does S contain an exact cover of X , i.e. a pairwise disjoint subcollection S ′ ⊆ S such that

every element of X occurs in exactly one member of S ′?

It is well known that RESTRICTED X3C is NP-complete [16]. Each instance of RESTRICTED X3C,

say X = {x1, x2, . . . , x3n} and S = {S1, S2, . . . , Sm}, can be associated with a bipartite graph GA =
(VA, EA), where VA = X ∪ S and EA = {(xi, Sj) : 1 ≤ i ≤ 3n, 1 ≤ j ≤ m, and xi ∈ Sj}. If the

associated bipartite graph GA is planar, the problem is termed the planar restricted exact cover by 3-sets

problem (PLANAR RESTRICTED X3C), which is also NP-complete [10].

Theorem 2.3. Deciding, for a given planar bipartite graph G of maximum degree five and girth six, if G
has an OLDoind-set is an NP-complete problem.
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x1

x2

x3

x4

x5

x6

y11

y21

y41

y22

y42

y62

y33

y53

y63

S1

a1 b1
c1

d1
e1

S2

a2 b2
c2

d2
e2

S3

a3 b3
c3

d3
e3

Fig. 2: Graph G that is an instance of OLD-OIND for planar bipartite graphs of maximum degree five and

girth six as in the proof of Theorem 2.3). S = {S1, S2, S3} = {{x1, x2, x4}, {x2, x4, x6}, {x3, x5, x6}}.

Proof: It is possible to verify in polynomial time if a given set D ⊆ V (G) is an OLDoind-set of G.

So, OLD-OIND is in NP . We now show that PLANAR RESTRICTED X3C is reducible in polynomial

time to the problem OLD-OIND for planar bipartite graphs of maximum degree five and girth six. Let

X = {x1, x2, . . . , x3n} and S = {S1, S2, . . . , Sm} be an instance of PLANAR RESTRICTED X3C. We now

construct a graph G = (V (G), E(G)), as illustrated in Figure 2, where V (G) = {xi : 1 ≤ i ≤ 3n} ∪
{yij : 1 ≤ i ≤ 3n, 1 ≤ j ≤ m and xi ∈ Sj} ∪ {Sj , aj, bj , cj , dj , ej : 1 ≤ j ≤ m}, and V (E) =
{xiyij , yijSj : 1 ≤ i ≤ 3n, 1 ≤ j ≤ m,xi ∈ Sj} ∪ {Sjaj , ajbj, bjcj , cjdj , djej , ejSj : 1 ≤ j ≤ m}. The

resulting graph G has 3n+ 9m vertices, and can be constructed in polynomial time.

Clearly, G is planar because (X,S) is an instance of PLANAR RESTRICTED X3C. Furthermore, G is

bipartite as V (G) can be partitioned into the subsets: {xi : 1 ≤ i ≤ 3n} ∪ {Sj , bj, dj : 1 ≤ j ≤ m} and

{yij : 1 ≤ i ≤ 3n, 1 ≤ j ≤ m and xi ∈ Sj} ∪ {aj, cj , ej : 1 ≤ j ≤ m}. It may also be noted that G has

maximum degree five, since each element of X is in at most 3 subsets, and also it is easy to verify that G
has girth six. We are now going to prove that (i) G has an OLDoind-set if and only if (ii) there is a subset

S ′ ⊆ S that is an exact cover of X .

To prove that (i) is necessary for (ii), assume that S has an exact cover S ′. Let D =
{xi, yij , aj, bj , dj , ej : Sj ∈ S ′ and xi ∈ Sj} ∪ {Sj, aj , cj , dj : Sj ∈ S \ S ′}. Then D contains 6n+ 4m
vertices, which induce 3n + 2m independent edges. Note that every vertex yij that is not in D has its two

neighbors in D, and the 6-cycle has four vertices in D. So it can be concluded that D is an OLDoind-set of

G.

To prove that (ii) is necessary for (i), assume that G has an OLDoind-set D. Observe that D does

not contain both Sj and yij , else aj , ej /∈ D, which is impossible since by the open-independence of D,

at most two of the vertices in the set {bj, cj, dj} are in D and then there are two vertices of the 6-cycle

〈Sj , aj , bj, cj , dj , ej〉 which are dominated exactly once by D. So D is not an OLDoind-set of G. The fact

that {Sj, yij} is not a subset of D for all j ∈ [m]; implies that every xi ∈ D and it has a neighbor yij for

some j ∈ [m] such that yij ∈ D. Note that altogether, these results imply that for every Sj , the three vertices

yij are either (a) all in D, or (b) none are in D. If (a) then Sj /∈ D and {aj , bj, dj , ej} ⊆ D. If (b) then

Sj ∈ D and exactly one of the two symmetric subsets {aj, cj , dj} and {bj, cj , ej} are contained in D. Let

S ′ = {Sj : 1 ≤ j ≤ m and Sj /∈ D}. Clearly, S ′ is an exact cover of S.

On the other hand, if odd cycles are allowed, i.e., the graph can be non-bipartite, we can modify the

construction in the proof of Theorem 2.3 to add the restriction that the planar graph is subcubic. In this case,

the instances have girth nine.
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Theorem 2.4. Deciding, for a given planar subcubic graph G of girth nine, if G has an OLDoind-set is an

NP-complete problem.

Proof: It is possible to verify in polynomial time if a given set D ⊆ V (G) is an OLDoind-set of G.

So, OLD-OIND is in NP . We now show that, for planar subcubic graphs of girth nine, PLANAR RE-

STRICTED X3C is reducible in polynomial time to the problem OLD-OIND. Let X = {x1, x2, . . . , x3n}
and S = {S1, S2, . . . , Sm} be an instance of PLANAR RESTRICTED X3C. We now construct a graph

G = (V (G), E(G)), as illustrated in Figure 3. Let X = {x1, . . . , x3n}, Y = {yij : 1 ≤ i ≤ 3n, 1 ≤
j ≤ m and xi ∈ Sj}, and let Cj = {aj, bj , cj, dj , ej , fj, gj , hj , kj}, for every j ∈ [m]. Let V (G)
be the set containing X ∪ Y and the set Cj , for every j ∈ [m]. Add the edges that form a 9-cycle

among the vertices in Cj , for every j ∈ [m]; add the edges of a perfect matching between the three ver-

tices yij and the vertices in the set D∗

j = {cj , kj , fj}, for every j ∈ [m]; and finally, add the edges in

{xiyij : 1 ≤ i ≤ 3n, 1 ≤ j ≤ m and xi ∈ Sj}. The resulting graph G has 3n+ 12m vertices.

Clearly, G is planar because (X,S) is an instance of PLANAR RESTRICTED X3C. Furthermore, G has

maximum vertex degree at most 3, since each vertex xi has at most three neighbors in Y , and it is easy to

verify that G has girth nine. We are now going to prove that (i) G has an OLDoind-set if and only if (ii)
there is a subset S ′ ⊆ S that is an exact cover of X .

For every j ∈ [m], consider the sets D1
j = {aj, bj, dj , ej, gj , hj}, D2

j = {bj, ej, hj} and D3
j =

{aj, dj , gj}. To prove that (i) is necessary for (ii), assume that S has an exact cover S ′. Let D be the

set containing, the vertices in D1
j ∪ {xi, yij : xi ∈ Sj}, for every j such that Sj ∈ S ′; and, additionally, the

vertices in D∗

j ∪D
2
j , for every j such that Sj /∈ S ′. ThenD contains 6n+6m vertices, which induce 3n+3m

independent edges. Note that every vertex in every cycle induced by Cj has two neighbors in Cj ∩ D and

every vertex yij such that Sj /∈ S ′ is not in D has its two neighbors in D. So, it can be concluded that D is

an OLDoind-set of G.

To prove that (ii) is necessary for (i), assume that G has an OLDoind-set D. First, we prove some claims.

Claim 1. In every cycle induced by Cj , either a) vertices kj , cj and fj are all in D, or b) none are in D.

Proof of Claim 1: By inspection, we can verify that exactly six vertices of Cj are in any OLDoind-set of

G. So the result follows by symmetry. ✷

Claim 2. The set D does not contain both yij and a vertex in D∗

j , for all j ∈ [m].

Proof of Claim 2: By contradiction, suppose that D contains, for some j ∈ [m], a vertex yij and its neighbor

in D∗

j . This implies, by Claim 1, that D∗

j is a subset of D. Since D is open-independent,D∩Cj has exactly

three vertices, and there are six vertices of Cj which are dominated by D exactly once. So D is not an

OLDoind-set of G. ✷

By Claim 2, D does not contain both yij and a vertex in D∗

j . This implies that X ⊆ D and every xi has a

unique neighbor yij for some j ∈ [m] such that yij ∈ D. By Claim 1, for every j ∈ [m], the three vertices

kj , cj and fj are either (a) all in D, or (b) none are in D. If (a) then exactly one of the two symmetric subsets

D2
j and D3

j are contained in D. If (b) then D1
j ⊆ D. Let S ′ = {Sj : 1 ≤ j ≤ m and D∗

j ∩D = ∅}. Clearly,

S ′ is an exact cover of S.

3 P4-tidy graphs

In this section, we study OLDoind-sets in P4-tidy graphs. A graph G = (V,E) is termed P4-tidy if, for

every vertex set A inducing a P4 in G, there is at most one vertex v ∈ V \A such that G[A ∪ {v}] contains

at least two induced P4’s. This class includes spider and quasi-spider graphs, which we now define.
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x1

x2

x3

x4

x5

x6

y11

y21

y41

y22

y42

y62

y33

y53

y63

k1

a1 b1 c1 d1

e1f1g1h1

k2

a2 b2 c2 d2

e2f2g2h2

k3

a3 b3 c3 d3

e3f3g3h3

Fig. 3: Graph G that is an instance of OLD-OIND for planar subcubic graphs of girth nine as in the proof

of Theorem 2.4. S = {S1, S2, S3} = {{x1, x2, x4}, {x2, x4, x6}, {x3, x5, x6}}.

A spider is a graph whose vertex set has a partition (C,X,H), where C = {c1, . . . , ck} and X =
{x1, . . . , xk} for a given integer k ≥ 2 are respectively, a clique and an independent set; xi is adjacent to cj
iff i = j (a thin spider), or xi is adjacent to cj if and only if i 6= j (a thick spider); and every vertex of H is

adjacent to each vertex of C and is not adjacent to any vertex of X . The size k of both C and X is called the

weight of the spider and the set H in the partition is called its head. Notice that if k = 2, then the thick and

thin spider graphs are isomorphic. A quasi-spider is a graph obtained from a spider that has vertex partition

(C,X,H) by replacing at most one vertex of C ∪ X by a K2 or a K2 (where each vertex of the K2 or the

K2 has the same adjacency structure as the vertex it replaced).

(a) A thin spider of

weight three with a

nonempty head.

(b) A thick quasi-spider

of weight three.

(c) A thin quasi-spider

of weight three.

Z

(d) The Z graph: a thick and

thin quasi-spider of weight

two.

Fig. 4: Examples of spider and quasi-spider graphs.

The following is a structural theorem for P4-tidy graphs in terms of spider and quasi-spider graphs. Spi-

ders and quasi-spiders are co-connected graphs.

Theorem 3.1 ([12]). G is a P4-tidy graph iff if exactly one of the following statements holds:

1. G is the union or the join of two P4-tidy graphs;

2. G is a spider or a quasi-spider graph with partition (C,X,H) such that either H induces a P4-tidy

graph or is empty;
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3. G is isomorphic to C5, P5, P5, or K1.

The following two theorems settle which spiders and quasi-spiders have an OLDoind-set. Let the graph

in Figure 4(d) be denoted by Z .

Theorem 3.2. No spider has an OLDoind-set.

Proof: Let G = (V (G), E(G)) be a spider with vertex set V (G) partitioned into (C,X,H), where |C| =
|X | = k ≥ 2. For a proof by contradiction, suppose that G has an OLDoind-set S ⊆ V (G). We consider the

subgraphG[C∪X ] and show that either S is not an open-independent set or S is not an open-dominating set.

As the cases H 6= ∅ and H = ∅ are analogous, they are not considered further in the following proof. If G
is thin it contains at least two pendant vertices in X say, xi and xj . If both xi, xj ∈ S, then both ci, cj ∈ S.

As C is a clique, ci and cj are adjacent in C and thus, ci(cj) is open-dominated by both xi and cj(xj and

ci). By Theorem 2.2(i), S cannot be an OLDoind-set. If at least one of xi, xj /∈ S, then that vertex cannot

be open-dominated by S at least twice. By Theorem 2.2(ii), S cannot be an OLDoind-set. Suppose instead

that G is thick. If k = 2, then G is isomorphic to a thin spider and the result follows. So, assume that k ≥ 3.

As C is a clique, |C ∩ S| ≤ 2, and the following three subcases demonstrate that S is not open-dominating.

1. If C ∩ S = ∅, each xi ∈ X must belong to S, but no xi is open-dominated by any vertex in S.

2. If |C ∩ S| = 1, say ci ∈ S for a unique i ∈ [k] then, as G is thick, xi is not open-dominated by ci.
Whether or not xi ∈ S, xi is not open-dominated by any member of S.

3. If |C ∩ S| = 2, say ci, cj ∈ S, where i, j ∈ [k], then xi (resp. xj ) is not a member of S and is

open-dominated by only cj (resp. cj). Hence, both xi and xj are open-dominated exactly once each

by S, and thus S is not an OLDoind-set.

Theorem 3.3. Any quasi-spider that has an OLDoind-set is isomorphic to the thick and thin quasi-spider

Z depicted in Fig. 4(d).

Proof: Let G = (V (G), E(G)) be a quasi-spider obtained from a given spider Gs that has a vertex partition

(C,X,H), where once again, |C| = |X | = k ≥ 2. Suppose G is produced by applying the vertex replace-

ment operation to a vertex v ∈ C ∪X in Gs and that G has an OLDoind-set S ⊆ V (G). Again, we consider

the subgraph G[C ∪ X ] and show that unless k = 2, either S is not an open-locating-dominating set or is

not an open-independent set of G and thus cannot be an OLDoind-set.

First we consider k = 2. If H = ∅, since headless thick and thin spiders of size two are isomorphic,

then Gs is a 4-path, and there are four possibilities for G. In the first possibility, where either vertex in X
is replaced by a K2, G is isomorphic to Z and thus G has an OLDoind-set. In the other three possibilities,

where a vertex in X is replaced by a K2, or a vertex in C is replaced by a K2 or a K2; it is easy to establish

by inspection that G does not have an OLDoind-set. If H 6= ∅, then G can possibly have an OLDoind-set

only if H has a dominating subset. If this is so there are eight cases - where Gs is either thick or thin and a

vertex in either C or X is replaced by either a K2 or a K2. It is straightforward to establish by inspection

that none of the cases has an an OLDoind-set.

Now, we consider k ≥ 3. Whether Gs is thick or thin, there are four cases, depending on which of the

following vertex replacement operations is applied: either v ∈ C or v ∈ X is replaced by either a K2 or a

K2. Let cℓi (resp. xℓ
i ), ℓ = 1, 2, be the two vertices that replace vertex v in C (resp. X). When no index ℓ

is indicated, ci (resp. xi) can be either of the two vertices c1i and c2i (resp. x1
i and x2

i ). Replacing a vertex

in C induces in G either a clique or a clique with one edge missing, denoted in either case by C. As S must

be open-independent to be an OLDoind-set, it follows that |C ∩ S| ≤ 2. Instead, replacing a vertex in X
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induces in G either an independent set or an independent set with one additional edge, denoted in either case

by X .

If Gs is thin, after any of the four types of replacement, the pair of vertices in G that replace v cannot be

distinguished and thus, in this case, G does not have an an OLDoind-set. If Gs is thick, similar arguments

to those used in the proof of Theorem 3.2 for thick spiders can be applied to establish that, once again, G
does not have an OLDoind-set, as follows:

1. If C ∩ S = ∅ then, unless a vertex xi ∈ X is replaced by a K2, no vertex in X is open-dominated by

any vertex in S. If indeed, xi is replaced by a K2, there are still at least two vertices in X that are not

open-dominated by any vertex in S.

2. If |C ∩ S| = 1, say ci ∈ S for a unique i ∈ [k] then, as G is thick, xi is not open-dominated by ci.
Whether or not xi ∈ S, xi is not open-dominated by any member of S.

3. If |C∩S| = 2, say ci, cj ∈ S, where i, j ∈ [k] (with i = j when c1i , c
2
i ∈ S), then xi (resp. xj ) is not a

member of S and is open-dominated by only cj (resp. cj). Hence, both xi and xj are open-dominated

exactly once each by S, and thus S is not an OLDoind-set.

We now consider the existence of an OLDoind-set in a P4-tidy graph. If G is a disconnected P4-tidy

graph having an OLDoind-set, then each component of G has an OLDoind-set. Thus we may consider only

connected P4-tidy graphs.

Theorem 3.4. Let G be a co-connected P4-tidy graph. G has an OLDoind-set iff G is isomorphic to either

P5 or to the graph Z shown in Figure 4(d).

Proof: It can be verified by inspection that P5 and Z are co-connectedP4-tidy graphs having OLDoind-sets.

Let G be a co-connected P4-tidy graph. By Theorem 3.1, G is either a spider, a quasi-spider or one of the

graphs C5, P5 and P5. Suppose that G has an OLDoind-set. Clearly, G is not isomorphic to either C5 or

P5. By Theorems 3.2 and 3.3 G is isomorphic to the graph Z .

Theorem 3.5. Let G be a connected P4-tidy graph of order n ≥ 2. G has an OLDoind-set iff either G is

isomorphic to one of the graphs K2, K3, P5, P5 ⊲⊳ K1, Z , and Z ⊲⊳ K1 or it can be obtained from them

recursively by applying the following operation. Let t ≥ 2 and G1, . . . , Gt be connected P4-tidy graphs

each having an OLDoind-set. Set G := (G1 ⊕ · · · ⊕Gt) ⊲⊳ K1.

Proof: Clearly, K2, K3, P5, P5 ⊲⊳ K1, Z , and Z ⊲⊳ K1 are connected P4-tidy graphs, each having an

OLDoind-set. Suppose instead that G /∈ {K2,K3, P5, P5 ⊲⊳ K1, Z, Z ⊲⊳ K1}. Let G1, . . . , Gt be graphs

such that Gi has an OLDoind-set Si, for each i ∈ [t] and let G be a graph obtained by the described

operation. Let S =
⋃

i∈[t] Si and V (K1) = {v}. It is easy to see that every vertex in V (G) \ {v} is both

distinguished and open-dominated by S, and that v is the only vertex of G that is adjacent to all of the

vertices of S. Hence S is also an OLDoind-set of G.

Conversely, suppose that G is a connected P4-tidy graph distinct from K2 and K3 such that G has an

OLDoind-set S. Hence n ≥ 4. If G is connected, G is co-connected and by Theorem 3.4, G is isomorphic

to one of P5 and Z . If G is disconnected, G can be obtained by the join of two graphs, say H1 and H2.

Firstly, we claim that one of H1 and H2 has exactly one vertex v say, and v /∈ S. To the contrary, suppose

S1 = S ∩ V (H1) 6= ∅ and S2 = S ∩ V (H2) 6= ∅. In order to be open-independent |S1| = |S2| = 1, and

|S| = 2, which implies that G has at most three vertices. Thus, one of H1 and H2 has an empty intersection

with S. Without loss of generality, we may assume that V (H2) ∩ S = ∅. If H2 has at least two vertices u
and v say, then NG(u) ∩ S = NG(v) ∩ S which contradicts the fact that S is an OLD-set of G. So H2 is

isomorphic to K1 and, S = S1 is an OLDoind-set of H1.
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We now analyze the possibilities for H1. First suppose that H1 is connected. If |S| = 2, G has at most

three vertices. Since n ≥ 4, |S| ≥ 4. Observe that, if H1 is the join of two graphs, the vertices of S
must all belong to the same subgraph and any vertex of any other subgraph is adjacent to every vertex of S.

Altogether, these facts imply that there exists a vertex in H1, y say, such that S ⊆ NH1
(y). In this case,

v and y are not distinguished by S in G. Thus we may assume that H1 is co-connected. By Theorem 3.4,

H1 is isomorphic either to P5 (G = P5 ⊲⊳ K1) or Z (G = Z ⊲⊳ K1). Now instead, assume that H1 is

disconnected. In this case H1 = G1, . . . , Gt is a collection of t ≥ 2 connected P4-tidy graphs. As every

vertex in V (Gi) has exactly one additional neighbor in G (i.e. vertex v /∈ S), if there exists i ∈ [t] such

that Gi does not have an OLDoind-set, it is easy to see that S is not an OLDoind-set of G. Thus, we can

conclude that every Gi with i ∈ [t] has an OLDoind-set and that G is the graph H1 ⊲⊳ K1.

A cograph is a graph that can be constructed from a given solitary vertex using the repeated application

of the disjoint union and join operations. Another standard characterization of cographs is that they are

those graphs that do not contain a four-vertex path as an induced subgraph. All complete graphs, complete

bipartite graphs, cluster graphs and threshold graphs are cographs. Since any cographG has the property that

either G or G is disconnected, we can conclude that any cograph having an OLDoind-set can be obtained

from either K2 or K3 by the operations described in Theorem 3.5. Hence, Corollary 3.6 follows.

Corollary 3.6. Let G be a connected cograph of order n ≥ 2. G has an OLDoind-set iff G is either (i)

isomorphic to either K2 or K3 or (ii) it can be obtained from them recursively by applying the following

operation. Let t ≥ 2 and G1, . . . , Gt be connected cographs each having an OLDoind-set. Set G :=
(G1 ⊕ · · · ⊕Gt) ⊲⊳ K1.

4 Complementary prisms of cographs

Corollary 3.6 provides a characterization of the class of cographs that have an OLDoind-set. We now

consider OLDoind-sets in the complementary prisms of cographs. If G is a cograph then G and G⊕G are

also cographs. However, if G is a nontrivial cograph, GG is is a P7-free and is not a cograph.

If G is a connected cograph, then G is disconnected. Henceforth it is assumed that G is a connected

cograph and we denote the connected components of G by G1, G2, . . . , Gt; and the anticomponents of G
by G1, G2, . . . , Gt. The number of vertices of the subgraph Gi (resp. Gi) is denoted by |Gi| (resp. |Gi|).
There are infinite families of cographs that have complementary prisms with OLDoind-sets, for example,

the family described in Theorem 4.1 below.

Theorem 4.1. [4] If G is a nontrivial graph with a unique universal vertex, then GG has an OLDoind-set

iff G = K1 ⊲⊳ mK2, where m ≥ 1.

Cappelle et al. [4] reported some properties of an OLDoind-set in a complementary prism GG. For

instance, they proved that in any OLDoind-set in this class of graphs there is at most one edge that directly

connects a vertex in V (G) with a vertex in V (G). The authors also proved that, given a general graph G,

deciding whether or not GG has an OLDoind-set is an NP-complete problem [5]. However, the special

case where G has girth of at least four can be decided in polynomial time. Here, we show that the connected

cographs having an OLDoind-set S such that |S ∩ V (G)| = 1 are exactly those described in Theorem 4.1.

By Theorem 4.1, if G is a nontrivial cograph with a unique universal vertex, then GG has an OLDoind-set

iff either (i) |Gi| = 1, for a unique i, where 1 ≤ i ≤ t, or (ii) |Gi| = 2. If a cograph G does not have a

universal vertex, then |Gi| ≥ 2, i ∈ [t]. In this case, we show that if GG has an OLDoind-set S, then at least

one, and at most three, components of G have at least three vertices. Let S = S0 ∪ S1 with S0 ⊆ V (G) and

S1 ⊆ V (G). We consider the case |S0| = 2 in Theorem 4.5 and the general case in Theorem 4.6. For each
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component Gi of G, let Di = Gi \ S1 and D =
⋃

i∈[t] Di. Let Di (resp. D) be the corresponding vertices

of Di (resp. D) in Gi (resp. G), with S0 ⊆ D. Let ni = |V (Gi)|.

Theorem 4.2. Let G be a nontrivial connected cograph such that GG has an OLDoind-set S = S0 ∪ S1

with S0 ⊆ V (G) and S1 ⊆ V (G). Then |S0| = 1 iff G = K1 ⊲⊳ mK2, where m ≥ 1.

Proof: If G = K1 ⊲⊳ mK2, where m ≥ 1, it is easy to see that GG has an OLDoind-set S0 ∪S1 say, where

S1 = V (G) and S0 contains only a universal vertex of G and thus |S0| = 1. For the converse, suppose G
is such that GG has an OLDoind-set S0 ∪ S1 with |S0| = 1, where S0 = {v}, say. Since G is nontrivial

it has at least two vertices and every vertex in V (G) \ {v} has at most one neighbor in S1. In order to be

dominated at least twice, the neighbor must be in NG(v) and thus, v is a universal vertex of G. By Theorem

4.1, G = K1 ⊕ sK2, where s ≥ 1.

For each componentGi of G, let Di = Gi\S1 and D =
⋃

i∈[t] Di. Let Di (resp. D) be the corresponding

vertices of Di (resp. D) in Gi (resp. G), with S0 ⊆ D. Let ni = |V (Gi)|.

Lemma 4.3. If G is a connected cograph such that |Gi| ≥ 2, i ∈ [t], where t ≥ 2, and that GG has an

OLDoind-set S = S0 ∪ S1 with S0 ⊆ V (G) and S1 ⊆ V (G), then the following statements hold:

(i) S0 6= ∅ and S1 6= ∅.

(ii) For each i ∈ [t], V (Gi) ∩ S1 6= ∅.

(iii) If i ∈ [t], ni ≥ 3 and |S0 ∩ V (Gi)| ≤ 1, then Di is an independent set of G with 1 ≤ |Di| ≤ 2.

(iv) If |S0| = 2, then G has two anticomponents Gi and Gj say, having nonempty intersection with S0,

and ni, nj ≥ 3. Moreover, 2 ≤ |D| ≤ 3.

(v) There exists at most one i ∈ [t] such that ni ≥ 3 and S0 ∩ V (Gi) = ∅.

(vi) G has at least one and at most three components of size at least three.

Proof: We prove each item separately.

(i) For a proof by contradiction, suppose that S0 = ∅. Let v ∈ V (G). By Theorem 2.2, vertex v has to

be open-dominated at least twice. Since v has at most one neighbor in S1, we can conclude that S is

not an OLDoind-set in GG. The proof for S1 follows analogously.

(ii) For a proof by contradiction, suppose that there is an i ∈ [t] such that V (Gi)∩S1 = ∅. Let v ∈ V (Gi).
By Theorem 2.2, vertex v has to be open-dominated at least twice. Since v has at most one neighbor

in S0, we can conclude that S is not an OLDoind-set in GG.

(iii) If Di is empty, as G is connected, Gi is isomorphic to K2 and thus ni = 2. Suppose |Di| ≥ 3. Then

the vertices in Di have the same neighborhood as those in in G \ V (Gi). Since |V (Gi) ∩ S0| ≤ 1,

Di has at least two vertices that are not distinguished by S. Now, suppose that Di has two vertices

and they are adjacent in G. In this case the vertices in Di are not adjacent in Gi. If one of them is

a member of S0, the other vertex is dominated once, since S0 is open independent, it can possess at

most one vertex of another anticomponent Gj say, with i 6= j. If neither of the vertices is a member

of S0, they have the same neighborhood in S0 and they are not distinguished by S.

(iv) Suppose |S0| = 2. We first prove that G has two anticomponents Gi and Gj say, that have nonempty

intersection with S0, and that ni, nj ≥ 3. For a proof by contradiction, suppose that there is an unique

anticomponent Gi of G with |Gi ∩ S0| = 2. Let S0 = {u, v}. Since Gi is disconnected, there is

a vertex z ∈ V (Gi) that is adjacent to neither u nor v. Since z has at most one neighbor in S1, it

follows that S is not an OLDoind-set. Now, suppose that |V (Gi) ∩ S0| = 1 and that ni = 2. Let

V (Gi) = {u, v}. Without loss of generality, assume S0 = {u}. If u ∈ S1, then v /∈ S1 and v is
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dominated once by S, contradicting the fact that S is an OLDoind-set of GG. If u /∈ S1, since it has

to be dominated twice, v ∈ S1 and, since S0 is open independent, v ∈ S0. Thus u, v ∈ S0, which

contradicts the fact that there are two anticomponents in G with nonempty intersection with S0.

Next, we prove that 2 ≤ |D| ≤ 3. By (i) above, there are two anticomponents of G of size at least

three, Gi and Gj say, that have nonempty intersection with S0. Since |Di|, |Dj | ≥ 1, it follows that

|D| ≥ 2. For the upper bound, since |S0 ∩ V (Gk)| ≤ 1, for every k ∈ [t], by Lemma 4.3 (iii) the

vertices of Dk are independent in G. Also, as the vertices of the distinct components of G are not

adjacent, D is an independent set of G and D induces a complete graph in G. If |D| ≥ 4, since at

most two of these vertices are in S0, and they have no neighbors in S1, the remainder (at least two

vertices) are not distinguished by S.

(v) Suppose that there are two anticomponents of G of order at least 3, say Gi and Gj , that do not have

vertices in common with S0. By (iii), |Di ∪ Dj | ≥ 2. However, the vertices in Di ∪ Dj are not

distinguished by S0, since they have the same neighborhood in G \ (V (Gi) ∪ V (Gj)).

(vi) Firstly, suppose that each component of G is a K2. By (i), S0 6= ∅. Suppose that v ∈ V (Gi) with

v ∈ S0. If v ∈ S1, its unique neighbor in G, u say, does not belong to S1 and then, in order to

dominate u twice, u ∈ S0. This implies that u has another neighbor in S0 that is a member of an

anticomponent different from Gi. This contradicts the assumption that S is open-independent. If

v /∈ S1, the vertex u is in S1 and we have an analogous situation. Thus, it can be concluded that

S0 = ∅, which contradicts the premise of (i). Therefore, G has at least one component of size at least

three. Secondly, for a proof by contradiction, suppose that at least four components of G have size

at least three. Since the elements of S0 are open-independent, S0 contains vertices that are members

of at most two distinct anticomponents of G. Thus, there are at least two anticomponents of G with

order at least 3, say Gi and Gj , that do not have vertices in common with S0. By (v), S is not an

OLDoind-set.

For ℓ,m ≥ 1, the graph Kℓ ⊲⊳ mK2 that contains ℓ+2m vertices is denoted by Rℓ,m. Also, R∗

ℓ,m denotes

the graph obtained from Rℓ,m with one edge missing between one vertex of Kℓ and exactly one copy of K2.

Note that Rℓ,m is a cograph; R∗

ℓ,1 for ℓ = 1, 2, is also a cograph; R1,1 is isomorphic to K3; and R∗

1,1 is

isomorphic to P3.

Lemma 4.4. Let G be a connected cograph such that |Gi| ≥ 2, i ∈ [t], where t ≥ 2, and that GG has an

OLDoind-set S = S0 ∪ S1 with S0 ⊆ V (G) and S1 ⊆ V (G) and let i ∈ [t] such that ni ≥ 3.

(i) If V (Gi) ∩ S0 = ∅, then Gi
∼= R1,m.

(ii) If |V (Gi) ∩ S0| = 1, then Gi is isomorphic to one of R∗

ℓ,1 and Rℓ,m, for ℓ = 1, 2.

Proof:

To prove (i), suppose that ni ≥ 3 and V (Gi ∩ S0 = ∅). By Lemma 4.3 (ii), V (Gi) ∩ S1 6= ∅. Let

Ai = V (Gi) ∩ S1. By Lemma 4.3 (iii), Di induces an independent set with 1 ≤ |Di| ≤ 2. The set Ai

induces m = |Ai|/2 independent edges. Since Gi is connected, at least one vertex of every edge induced by

Ai has a neighbor in Di. If |Di| = 2, the two vertices of Di are not distinguished by S, since they have the

same neighborhood in G \ V (Gi). Thus, we may assume |Di| = 1. Let Di = {u}. If m = 1, since u has at

least two neighbors in S1, it follows that G ∼= R1,1. If m ≥ 2, we claim that u is adjacent to every vertex in

Ai. Suppose that this is not true and consider an edge ab induced by vertices in Ai such that ua /∈ E(Gi).
In this case, abuc is an induced 4-path in Gi, where c is an vertex of some other edge induced by Ai. So, Gi

is not a cograph. Therefore, Gi
∼= R1,m.
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Now, we prove (ii). By Lemma 4.3 (ii), V (Gi)∩ S1 6= ∅. Let Ai = V (Gi)∩ S1. By Lemma 4.3 (iii), Di

induces an independent set with 1 ≤ |Di| ≤ 2. The set Ai induces m = |Ai|/2 independent edges. Since Gi

is connected, at least one vertex incident with every edge induced by Ai has a neighbor in Di. If m = 1, we

have four possible cographs, R∗

ℓ,1, Rℓ,1, for ℓ = 1, 2. If m ≥ 2, we claim that every vertex in Di is adjacent

to every vertex in Ai. For a proof by contradiction, suppose that this is not true and consider two edges ab
and cd, induced by vertices in Ai. Let u ∈ Di. Without loss of generality, suppose that ua /∈ E(Gi), for an

edge ab induced by vertices in Ai. In this case, abuc is an induced 4-path in Gi, where c is an vertex of some

other edge induced by Ai. So, Gi is not a cograph. Therefore, Gi is isomorphic to Rℓ,m, for ℓ = 1, 2.

Next, we present in Theorems 4.5 and 4.6 a general recursive characterization of the class C of connected

cographs such that if G is a member of C then GG has an OLDoind-set. Theorem 4.5 (4.6) is illustrated in

Figure 5(a) (5(b)).

Theorem 4.5. Let G be a connected cograph such that |Gi| ≥ 2, i ∈ [t] with t ≥ 2. GG has an OLDoind-

set S = S0 ∪ S1 with S0 ⊆ V (G) and S1 ⊆ V (G) such that |S0| = 2 iff there are at least two, and at most

three, components Gi with ni ≥ 3 and each component of G is isomorphic to one of the graphs K2, R∗

ℓ,1 or

Rℓ,m, for ℓ = 1, 2 and m ≥ 1, with the following further conditions:

(i) at most one component of G is either R∗

2,1 or R2,m and if G has such a component, G has exactly two

components of size at least three; and

(ii) at most two components of G are isomorphic to R∗

1,1, R∗

2,1 or R2,m.

Proof: Suppose that G is as described and that GG has an OLDoind-set S = S0 ∪ S1 with S0 ⊆ V (G),
S1 ⊆ V (G), and |S0| = 2. Let t′ be the number of components of G of size at least three. By Lemma 4.3

(vi), t′ ≤ 3. By Lemma 4.3 (iv), two anticomponents of G have nonempty intersection with S0 and both

have size at least three, thus 2 ≤ t′ ≤ 3.

Since |V (Gi)∩S0| ≤ 1, for every componentGi of G with ni ≥ 3, by Lemma 4.4 (ii), the components of

G of size at least three are R∗

ℓ,1 or Rℓ,m, for ℓ = 1, 2. To prove (i), firstly suppose that there are at least two

components of G that are one of the graphs R∗

2,1 and R2,m, say Gi and Gj . By Lemma 4.3 (iii), Di (resp.

Dj) is independent with size at least one and at most two. If |Di| = 1 (resp. |Dj | = 1) the remaining vertices

of Gi (resp. Gj) cannot induce independent edges. Hence |Di| = |Dj | = 2 which implies that |D| ≥ 4. By

Lemma 4.3 (iv), |S0| 6= 2, contradicting the premise of the theorem. Hence we can conclude that at most

one component of G is either R∗

2,1 or R2,m. Secondly, suppose that G has exactly one component, say Gi,

which is isomorphic to either R∗

2,1 or R2,m. Thus |Di| = 2. Suppose that G has other two components, say

Gj and Gp, each one with size at least three. By Lemma 4.3 (iii), |Dj ∪Dp| ≥ 2. Since |Di| = 2, |D| ≥ 4.

Again, by Lemma 4.3 (iv), |S0| 6= 2, contradicting the premise of the theorem. This completes the proof of

(i). Now we prove (ii). If t′ = 3, since |S0| = 2 one of the components of G with size at least three, say Gj ,

is such that Gj has empty intersection with S0. Thus by Lemma 4.4 (i), Gj
∼= R1,m, which implies that at

most two components of G are isomorphic to the graphs R∗

1,1, R∗

2,1, and R2,m. The difference t − t′ is the

number of components of G of size two. Clearly, each of these components (if any) is isomorphic to K2.

Conversely, suppose GG is as described, with at least two, and at most three, components Gi with ni ≥ 3,

where the components of G are the graphs K2, R∗

ℓ,1, and Rℓ,m, for ℓ = 1, 2. Assume that conditions (i) and

(ii) hold. We show how to select the two vertices in S0 and the vertices in S1 such that S = S0 ∪ S1 is an

OLDoind-set of GG. For every component Gi of G there is a partition of this vertex set into sets Di and

Mi such that Di is an independent set with |Di| ∈ {0, 1, 2} and Mi contains the 2m vertices of the m ≥ 1
independent edges of Gi. Let Di and Mi be such sets. Let D =

⋃
i∈[t] Di. Then, S1 =

⋃
i∈[t] Mi = M .

Let Di, Mi, D, and M be the sets of corresponding vertices in G. Note that in G, every vertex in M
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has a different neighbor in M . Since we shall show that S0 has vertices in two distinct anticomponents,

every vertex of G has at least one neighbor in S0. Hence, the vertices in M ∪ M are distinguished and

open-dominated by S and we need to consider only the vertices in D ∪D.

We proceed by setting the vertices in S0. We first consider the case t′ = 2. Without loss of gen-

erality, assume |G1|, |G2| ≥ 3. Since conditions (i) and (ii) hold, by symmetry, we can assume that

G1 ∈ {R∗

1,1, R
∗

2,1, R1,m, R2,m} and G2 ∈ {R∗

1,1, R1,m}.

If |D1| = 1, let D1 = {v}. If |D1| = 2 and G1 is isomorphic to R∗

2,1, let D1 = {u, v}, with v being the

vertex of degree two in G1. If |D1| = 2 and G1 is isomorphic to R2,m, let D1 = {u, v}. Let u, v be the

corresponding vertices of u, v in G1. We set v ∈ S0, which gives rise to the following cases:

1. If G1 is isomorphic to R∗

1,1, then v has one neighbor in M1 and v ∈ NG(v).

2. If G1 is isomorphic to R∗

2,1, then u has two neighbors in M1 and v has exactly one neighbor in M1.

Since v ∈ S0, u and v are open-dominated twice and distinguished by S.

3. If G1 is isomorphic to R2,m, then u and v are both neighbors of every vertex in M1. Since v ∈ S0,

these two vertices are open-dominated and distinguished by S.

4. If G1 is isomorphic to R1,m, then v is the unique vertex that is the neighbor of all vertices of M1.

As G2 ∈ {R∗

1,1, R1,m}, |D2| = 1. Let D2 = {v}. We set v ∈ S0. We have two possibilities for G2 that are

analogous to the cases 1 and 4, described above. We can conclude that all vertices in G are distinguished

and open-dominated by S, and S is open-independent.

Now we consider the vertices in D. Since at most one component of G is isomorphic to either R∗

2,1 or

R2,m, it follows that 2 ≤ |D| ≤ 3. Two of the vertices in D are also in S0. So, there is at most one vertex of

G, z say, such that neither z nor z is in S. The choosing of S0 guarantees that z is the only vertex of G that

is dominated only by S0.

Finally, we consider the case t′ = 3. Without loss of generality, we assume that |Gj | ≥ 3, for every

j ∈ [3]. Since conditions (i) and (ii) hold, and by symmetry, we assume that G1, G2 ∈ {R∗

1,1, R1,m} and

G3 is isomorphic to R1,m. Thus, |D1| = |D2| = 1 and we set S0 = D1 ∪D2.

As G1, G2 ∈ {R∗

1,1, R1,m}, we can use similar arguments to those used in the case t′ = 2 in order

to conclude that each vertex in D1 ∪ D2 is both dominated at least twice and distinguished by S. Since

S0 = D1 ∪ D2, these vertices are distinguished by S. Again, the vertex in D3 is the only vertex of G that

is dominated only by S0. Therefore, S is an OLDoind-set of GG with |S0| = 2. See Fig. 5(a) for an

example.

Theorem 4.6. If G is a connected cograph then GG has an OLDoind-set iff either (i) G is isomorphic

to one of the graphs K1 ⊲⊳ mK2, m ≥ 1, and graph G is as described in Theorem 4.5, or (ii) G can be

obtained from them recursively by the following operation, where H is a connected cograph such that HH
has an OLDoind-set. Set G = H ⊲⊳ F ⊲⊳ (rK2), where F ∈ {R1,m,K2}, r ≥ 0, m ≥ 1.

Proof: Suppose that G is a connected cograph such that GG has an OLDoind-set S = S0 ∪ S1 where

S0 ⊆ V (G) and S1 ⊆ V (G). Assume that G has components G1 . . . , Gt, with t ≥ 2. By Lemma 4.3 (i),

S0 is nonempty. If |S0| = 1, then by Theorem 4.2, G is the graph K1 ⊲⊳ mK2, and if |S0| = 2, then G is

the graph described in Theorem 4.5. So, we may assume that |S0| ≥ 3. By Lemma 4.3 (vi), at least one,

and at most three, components of G have at least three vertices. Since |S0| ≥ 3, there exists exactly one

anticomponent Gi say, of G with nonempty intersection with S0. (If this were not so, since every vertex of

Gi is adjacent to every vertex of any other anticomponent Gp with p 6= i, then S would not be an open-

independent set.) By Lemma 4.3 (v), there exists at most one anticomponent Gi say, of G with size at least

three with empty intersection with S0. This implies that G has at most two anticomponents Gi, with size

at least three. If G has an anticomponent Gi of size at least three having empty intersection with S0, by
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V (G)

G1

G2 G3

V (G)

(a) The components of G are the graphs R2,2, R∗

1,1, and K2.

V (G)

G1

G2 G3

V (G)

(b) G can be obtained recursively from K1 ⊲⊳ 2K2. G = K1 ⊲⊳ 2K2 ⊲⊳ K2 ⊲⊳ K2 ⊲⊳ R1,1 ⊲⊳ R1,1 ⊲⊳

K2 = ((((K1 ⊲⊳ 2K2)⊕K2) ⊲⊳ K2)⊕R1,1) ⊲⊳ R1,1 ⊲⊳ K2.

Fig. 5: The complementary prisms of cographs having OLDoind-sets. 5(a) illustrates Theorem 4.5 and 5(b)

illustrates Theorem 4.6. An edge between two rectangles indicates adjacency between all pairs of vertices,

one in each rectangle.

Lemma 4.4 (i), this anticomponent is isomorphic to R1,m. Otherwise, if |Gi| = 2, then Gi is isomorphic to

K2. Without loss of generality, we assume that G1 is an anticomponent of G with S0 ⊆ V (G1) and that G2

is an anticomponent that is isomorphic to either R1,m or to K2. Note that each of the t− 2 anticomponents

of G (if any) is isomorphic to K2. So, until now, we have that G = G1 ⊲⊳ G2 ⊲⊳ (rK2), with r ≥ 0, for

some disconnected graph G1 (since G1 is connected). Now, suppose that G1G1 does not have an OLDoind-

set. Thus, S′ = S ∩ V (G1G1) is not an OLDoind-set of G1G1, and there is a vertex v say, of G1G1 that

is neither distinguished nor open-dominated by S′. Since S0 ⊆ V (G1), and there is no edge between G1

and any other component of G, we have that NGG(v) ∩ S ⊆ V (G1 ∪ G1). This implies that v is neither

distinguished nor dominated by S and hence, S is not an OLDoind-set of GG. Therefore, G can be obtained

by the described operation from a disconnected graph G1 such that G1G1 has an OLDoind-set.

Conversely, suppose that G is a connected cograph obtained as described in the statement of the theorem.

Since, by Theorem 4.2, K1 ⊲⊳ mK2 has an OLDoind-set, and is also the graph described in Theorem 4.5,

we assume that G is none of these graphs. Hence we assume that G = H ⊲⊳ F ⊲⊳ (rK2) and H is a

connected cograph such that HH has an OLDoind-set B = B0 ∪ B1 with B0 ⊆ V (H) and B1 ⊆ V (H).
We show how to select the vertices of a set S = S0 ∪ S1 where S0 ⊆ V (G) and S1 ⊆ V (G) such that S
is an OLDoind-set of GG. We begin setting S0 = B1 and S1 = B0. Hence, the vertices of H ∪ H are

all distinguished and open-dominated by S and we need to consider only the remainder of the vertices. We

analyze the two relevant cases. In the first case, assume that F is isomorphic to R1,m. Here, we must add to

S1 the vertices that induce the m independent edges in F = R1,m. Let v be the universal vertex in F . Then

v is dominated at least twice by the vertices incident with the m ≥ 1 edges of F and is the unique vertex

with this neighborhood in S. The vertices in F are adjacent to all the vertices in S0. Since H is disconnected

and hence, HH has an OLDoind-set, by Lemma 4.3 (ii), B1 has at least one vertex in each component of H .

Let v be the neighbor of v in F . Each vertex in V (F ) \ {v} has a distinct neighbor in S1 and v is the unique

vertex whose neighborhood in S is exactly S0. Observe that B1 has size at least three and recall that S0 was

set to it. In the second case, assume that F is isomorphic to K2. In this case we add the vertices of F = K2

to the set S1 and, by using similar arguments to those in the first case, it is easy to see that the vertices of F
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are open-dominated and distinguished by S. If t ≥ 3, each of the t − 2 other components of G (if any) is

isomorphic to K2 and we proceed in the same way as in the former case. Therefore, S is an OLDoind-set

of GG. See Fig. 5(b) for an example of a graph GG obtained by this operation from K1 ⊲⊳ 2K2.

5 Summary

The problem of deciding whether or not a graph G has an OLDoind-set has important applications and was

shown above to be NP-complete even for the special cases when G is either a planar bipartite graph of

maximum degree five and girth six, or a planar subcubic graph of girth nine. Characterizations of both the

P4-tidy graphs and the cographs that have OLDoind-sets have been presented. Also, necessary and sufficient

conditions for a complementary prism of a connected cograph to have an OLDoind-set are derived. For

future work, it might be fruitful to study the complexity of identifying OLDoind-sets in other families of

graphs, such as those that are Hamiltonian, Eulerian or n-partite when n ≥ 3.
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18 Márcia R. Cappelle, Erika Coelho, Les R. Foulds, Humberto J. Longo

[28] D. Meierling, F. Protti, D. Rautenbach, and A. R. de Almeida. Cycles in complementary prisms.

Discrete Appl Math, 193:180–186, 2015.

[29] S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi. Robust location detection with sensor

networks. IEEE J Sel Areas Commun, 22(6):1016–1025, 2004.
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