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Let asc and desc denote respectively the statistics recording the number of ascents or descents in a sequence having

non-negative integer entries. In a recent paper by Andrews and Chern, it was shown that the distribution of asc on the

inversion sequence avoidance class In(≥, 6=, >) is the same as that of n− 1− asc on the class In(>, 6=,≥), which

confirmed an earlier conjecture of Lin. In this paper, we consider some further enumerative aspects related to this

equivalence and, as a consequence, provide an alternative proof of the conjecture. In particular, we find recurrence

relations for the joint distribution on In(≥, 6=, >) of asc and desc along with two other parameters, and do the same

for n − 1 − asc and desc on In(>, 6=,≥). By employing a functional equation approach together with the kernel

method, we are able to compute explicitly the generating function for both of the aforementioned joint distributions,

which extends (and provides a new proof of) the recent result that the common cardinality of In(≥, 6=, >) and

In(>, 6=,≥) is the same as that of Sn(4231, 42513). In both cases, an algorithm is formulated for computing the

generating function of the asc distribution on members of each respective class having a fixed number of descents.

Keywords: pattern avoidance, combinatorial statistic, kernel method, inversion sequence

1 Introduction

Let Sn denote the set of permutations of [n] = {1, . . . , n}, written in one-line notation. An inversion

within π = π1 · · ·πn ∈ Sn is an ordered pair (a, b) where a, b ∈ [n] with a < b and πa > πb. The

inversion sequence of π is defined by x = x1 · · ·xn, where xi for each i ∈ [n] records the number of

inversions for which πa = i, that is, inversions caused by i when its position relative to the elements in

[i − 1] is decided. Note that such sequences x are characterized by the property 0 ≤ x ≤ i − 1 for all i.
For example, if π = 451632 ∈ S6, then x = 001332. Let In denote the set of all inversion sequences of

length n. The systematic study of patterns in members of In is a topic that has only recently been initiated

in [4, 13], starting with the avoidance of a single pattern of length three.
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Martinez and Savage [15] extended the notion of pattern avoidance by considering a fixed triple of

relations (ρ1, ρ2, ρ3) ∈ {<,>,≤,≥,=, 6=,−}, where − denotes the universal relation (i.e., x− y for all

x, y ∈ [n]). They studied the set In(ρ1, ρ2, ρ3) consisting of those e = e1 · · · en ∈ In for which there exist

no indices 1 ≤ i < j < k ≤ n such that eiρ1ej , ejρ2ek and eiρ3ek. Note that sequences in In(ρ1, ρ2, ρ3)
are synonymous with members of In({τ1, . . . , τr}) for some patterns τ1, . . . , τr of length three, where

In({τ1, . . . , τr}) denotes the subset of In whose members avoid each τi for i ∈ [r] in the classical sense.

For example, we have In(>,<,≥) = In({101, 201}) and In(<,−, <) = In({011, 012, 021}).
Since their introduction in [15], the problem of enumerating members of the class In(ρ1, ρ2, ρ3) is

one that has been investigated extensively, with many connections having been made to sequences in the

OEIS [16]. We refer the reader to [11] and references contained therein. Moreover, several equivalences

among the 343 possible sets In(ρ1, ρ2, ρ3) were conjectured in [15] and later proven in [2, 6, 8, 10, 11,

18]. Paralleling the study of pattern avoidance on permutations represented in the one-line notation (see,

e.g., [9]), analogous problems, such as avoidance of vincular [12] or multiple [17] patterns, have been

considered on inversion sequences.

A further direction in the study of inversion sequences avoiding a pattern of relation triples is obtained

by considering the distribution of a statistic on members of an avoidance class; see, e.g., [2, 8, 11, 14, 15].

In this paper, we consider the distribution of the number of ascents, descents and levels over certain

avoidance classes of In involving a pattern of relation triples. Recall that given a sequencew = w1 · · ·wn,

an ascent is an index i ∈ [n − 1] such that wi < wi+1, a descent is one with wi > wi+1 and a level one

with wi = wi+1. Let asc(w), desc(w) and lev(w) denote respectively the number of ascents, descents

and levels in the sequence w. Further, recall that within a descent wj > wj+1 for some j ∈ [n − 1],
the entries wj and wj+1 are referred to as a descent top and a descent bottom, respectively. Note that

desc(w) + lev(w) = n− 1− asc(w) for all w of length n.

Lin [11] conjectured the following equivalence involving the ascents statistic on the avoidance classes

In(≥, 6=, >) and In(>, 6=,≥):

∑

e∈In(≥, 6=,>)

qasc(e) =
∑

e∈In(>, 6=,≥)

qn−1−asc(e), n ≥ 1. (1)

This equivalence was shown originally by Andrews and Chern [1] using a functional equation approach.

For a combinatorial proof of (1), see [3]. Here, we consider some further combinatorial aspects of (1).

In particular, we consider a refinement of both sides of (1) by introducing a variable p which marks the

number of descents in members of each class. We compute an explicit formula for the generating function

of the joint distribution of desc and asc on In(≥, 6=, >), and also of desc and n− 1− asc on In(>, 6=,≥),
using the kernel method [7].

Comparing the p = 1 cases of our main results below (see Theorems 4 and 13), in addition to providing

a new proof of (1), yields a formula for the generating function of both sides of (1). Such a formula was

not given explicitly in [1]. Further, taking p = q = 1 yields a new proof of the fact first shown by Lin [11]

that

|In(≥, 6=, >)| = |In(>, 6=,≥)| = |Sn(4231, 42513)|, n ≥ 1, (2)

which confirmed a conjecture made originally in [15]. Note that the sequence of cardinalities

|Sn(4231, 42513)|
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for n ≥ 1 corresponding to the q = 1 case of (1) occurs as entry A098746 in [16]. To show (2), note that

Lin did not enumerate either In(≥, 6=, >) or In(>, 6=,≥) directly, but rather defined a bijection between

the two and enumerated instead the set In(>,−, >), which had been shown in [15] to be equinumerous

with In(≥, 6=, >) via a bijection. Thus, the method employed here allows for a unified proof of (1) and

(2), which were shown previously by seemingly unrelated approaches, and leads to a refinement of these

relations in terms of the descents statistic (and other parameters).

The organization of this paper is as follows. In the next section, we consider the joint distribution of desc

and asc on In(≥, 6=, >) and find its generating function. To do so, a recurrence is found for a refinement

of this distribution involving two additional parameters which is then converted to a system of functional

equations involving the corresponding generating functions. Further, an algorithm is devised for finding

the generating function for the distribution of asc on members of In(≥, 6=, >) having a prescribed number

of descents. In the third section, we consider the distribution of desc and n− 1− asc on In(>, 6=,≥) and

compute the generating function of this distribution. Comparable formulas are found and an algorithm is

given for determining explicitly the coefficient of pm for a fixed m in this generating function.

We remark further that in order to obtain recurrences for the joint distribution of (desc, asc) on the class

In(≥, 6=, >) and of (desc, n − 1 − asc) on In(>, 6=,≥), we must refine the cardinalities of these sets

according to a pair of new parameters on each. In particular, to study members e ∈ In(≥, 6=, >), it is

useful to consider a parameter which we call the height of e and is defined as the maximum letter that

starts either a descent or a level of e. On the other hand, for e ∈ In(>, 6=,≥), it is convenient to consider

the statistic which tracks the smallest letter serving as a descent top for the largest descent bottom in e.

These parameters (and variants thereof) may very well prove interesting to study in their own right on

other types of discrete structures that are often represented as sequences, such as finite set partitions or

functions between two finite sets of prescribed size.

2 The descents and ascents statistics on In(≥, 6=, >)
We first define two new concepts related to the relative sizes of the non-ascent entries within an inversion

sequence. Let the height of e = e1e2 · · · en ∈ In be given by

hgt(e) = max{ei : 1 ≤ i ≤ n− 1 and ei ≥ ei+1}.

If a = hgt(e) with j ∈ [n − 1] minimal such that ej = a, then let the depth of e be defined as dep(e) =
ej+1. Here, and in the subsequent section, we find it more convenient notationally to represent members

of In using positive instead of non-negative integers, which is achieved by adding one to each entry of the

standard representation.

Let An = In(≥, 6=, >) and suppose e ∈ An has height and depth values of a and b, respectively. If

a > b, then there exists a single descent ab and at most two runs of the letter a, the first of which has

length one. On the other hand, if a = b within e, there can exist only a single run of a. Within a (maximal)

subsequence of the form ab · · · b, any letter beyond the second will be referred to as a redundant bottom,

regardless of whether or not a and b are distinct. For example, if e = 123116333669 ∈ A12, then

hgt(e) = 6 and dep(e) = 3, with the last two 3’s redundant bottoms. If e = 1132267779 ∈ A10, then

hgt(e) = dep(e) = 7, with only the third 7 a redundant bottom.

We now decompose An into disjoint subsets as follows. Given 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, let

Bn(i, j) denote the subset of An whose members have height i and last letter j, where the last letter is not

a redundant bottom. Let Cn(i, j) be defined the same as Bn(i, j), but where the last letter is a redundant
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bottom. Note that Cn(i, j) can be nonempty only when n ≥ 3 and 1 ≤ j ≤ i ≤ n − 2. Define the

distribution polynomial bn(i, j) = bn(i, j; p, q) by

bn(i, j) =
∑

π∈Bn(i,j)

pdesc(π)qasc(π),

and likewise for cn(i, j) = cn(i, j; p, q). For example, we have

B5(3, 4) = {11314, 11324, 11334, 12314, 12324, 12334}

and C5(3, 2) = {11322, 12322}, which implies b5(3, 4) = q2+q3+2pq2+2pq3 and c5(3, 2) = pq+pq2.

Assume bn(i, j) or cn(i, j) to be zero if the subset of An corresponding to i and j is empty.

Let

bn =

n−1
∑

i=1

n
∑

j=1

bn(i, j), n ≥ 2,

and

cn =
n−2
∑

i=1

i
∑

j=1

cn(i, j), n ≥ 3,

and put b1 = 0 and c1 = c2 = 0. Note that bn and cn are polynomials in p and q. Then we seek a formula

for an = an(p, q) defined as

an = bn + cn + qn−1, n ≥ 1.

Note that an gives the joint distribution of desc and asc on An, where the qn−1 term accounts for the

sequence 12 · · ·n which belongs to no subset Bn(i, j) or Cn(i, j).
The arrays bn(i, j) and cn(i, j) satisfy the following system of recurrences.

Lemma 1. We have

bn(i, j) = δi,n−2 · qn−2 + qcn−1(i, i) + q

j−1
∑

ℓ=i+1

bn−1(i, ℓ) + q

i−1
∑

k=1

bn−2(k, i) + q

i−1
∑

ℓ=1

cn(i, ℓ)

+ q2
i−1
∑

ℓ=1

n−i−2
∑

s=1

cn−s(i, ℓ), 1 ≤ i ≤ n− 2 and i < j ≤ n, (3)

with bn(n− 1, n) = 0 for n ≥ 2,

bn(i, i) = δi,n−1 · qn−2 +

i−1
∑

k=1

bn−1(k, i) + q

i−1
∑

ℓ=1

n−i−1
∑

s=1

cn−s+1(i, ℓ), 1 ≤ i ≤ n− 1, (4)

bn(i, j) = δi,n−1 · pqn−2 + p

j
∑

k=1

bn−1(k, i) + p

i−1
∑

k=j+1

i−k−1
∑

s=0

(

i− k − 1

s

)

qs+1cn−s−1(k, j), (5)
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for 1 ≤ j < i ≤ n− 1,

cn(i, j) = bn−1(i, j) + cn−1(i, j), 1 ≤ j < i ≤ n− 2, (6)

cn(i, i) = δi,n−2 · qn−3 + cn−1(i, i) +

i−1
∑

k=1

bn−2(k, i), 1 ≤ i ≤ n− 2. (7)

Furthermore, we have the following alternative recurrences to (3) and (5) when i < j and i > j, respec-

tively:

bn(i, j) =

i
∑

ℓ=1

j−i−1
∑

t=0

(

j − i− 1

t

)

qt+1cn−t(i, ℓ)+

i−1
∑

ℓ=1

j−i−1
∑

t=0

n−i−t−2
∑

s=1

(

j − i− 1

t

)

qt+2cn−s−t(i, ℓ) (8)

and

1

pq
(bn(i, j)− q

i−1
∑

k=j+1

bn−1(k, j)) = δj,n−2 · qn−3 +

i−1
∑

k=j+1

cn−1(k, j) +

j
∑

k=1

k
∑

ℓ=1

cn−1(k, ℓ)

+

j
∑

ℓ=2

ℓ−1
∑

k=1

bn−2(k, ℓ) + q

j
∑

k=2

k−1
∑

ℓ=1

n−k−2
∑

r=1

cn−r−1(k, ℓ). (9)

Proof: To show (3), let π ∈ Bn(i, j) where j > i. Note that 1 ≤ i ≤ n − 2 is required since the height

cannot be achieved for the first time by the penultimate letter if j > i. Suppose that π has depth ℓ for

some ℓ ∈ [i]. Then it may be verified that π can be decomposed uniquely as

π = π′iℓrisα,

where s ≥ 0, α is a (strictly) increasing sequence in [i + 1, j] ending in j and π′ contains only letters in

[i − 1], with r ≥ 1 if ℓ < i and r = 1 if ℓ = i. To see this, note that π′ cannot contain any letters greater

than i, for otherwise i would fail to be the height of π. Further, if ℓ < i, then π′ cannot contain i either, for

then (≥, 6=, >) would be realized by iiℓ. On the other hand, if ℓ = i, one need only consider the leftmost

occurrence of i to obtain the stated decomposition.

If |α| > 1, then the weight of all possible such π is given by q
∑j−1

ℓ=i+1 bn−1(i, ℓ), upon delet-

ing j and considering the penultimate letter which belongs to [i + 1, j − 1] in this case. So assume

α consists of only the terminal j, i.e., π = π′iℓrisj, where ℓ, r and s are as before. We consider

then the following cases on s and ℓ: (i) s = 0, ℓ = i; (ii) s ≥ 1, ℓ = i; (iii) s = 0, ℓ < i; (iv)

s ≥ 1, ℓ < i. One may verify that the respective contributions towards bn(i, j) in the four cases are given

by (i) δi,n−2 · qn−2 + q
∑i−1

k=1 bn−2(k, i), (ii) qcn−1(i, i), (iii) q
∑ℓ−1

i=1 (bn−1(i, ℓ) + cn−1(i, ℓ)) and (iv)

q2
∑i−1

ℓ=1

∑n−i−2
s=1 (bn−s−1(i, ℓ) + cn−s−1(i, ℓ)). Note that in (iii), deletion of the final j results in an

arbitrary member of Bn−1(i, ℓ) ∪ Cn−1(i, ℓ) for some ℓ ∈ [i − 1], upon considering whether r = 1 or

r > 1 in the decomposition of π above, where the factor of q accounts for the ascent arising due to j. In

(iv), on the other hand, there are two extra ascents that arise since j > i > ℓ with s ≥ 1 so that deletion

of is along with the terminal j from π results in a sequence enumerated by bn−s−1(i, ℓ) + cn−s−1(i, ℓ).
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Now observe that (6) follows from the definitions, upon removing the final letter which must be equal to

its predecessor in this case. Formula (3) then follows from (6) and combining all the previous cases.

To show (4), let π ∈ Bn(i, i) where 1 ≤ i ≤ n − 1. First suppose that π ends in i, i with no other

i’s occurring in π. If i < n− 1, then deleting the final letter results in a member of Bn−1(k, i) for some

k ∈ [i − 1], whereas if i = n − 1, then in addition one can have π = 12 · · · (n − 1)(n − 1), which is

accounted for by the extra term δi,n−1 · qn−2. So assume it is not the case that π ends in i, i with no other

i’s occurring. Note that it is not possible for π to have a single run of i’s which occurs at the end and has

length three or more, for that would imply that the terminal i is a redundant bottom with such π not being

enumerated by bn(i, i). Then we must have π = π′iℓris, where π′ has letters only in [i− 1], r, s ≥ 1 and

ℓ ∈ [i− 1]. Note that the first i occurring in the j-th position for some j ≥ i, together with r ≥ 1, implies

s ≤ n − i − 1. Then deletion of is from π results in members of Bn(i, i) whose weight is given by the

second sum in (4), upon applying (6). Combining the previous cases now yields (4).

To show (5), let π ∈ Bn(i, j) where 2 ≤ i ≤ n − 1 and j ∈ [i − 1]. Then j not a redundant bottom

implies we must have π = π′ij where max(π′) < i. If i = n − 1, then π′ = 12 · · · (n − 2) is possible,

which is accounted for by δi,n−1 · pqn−2, so assume π′ has height k for some k ∈ [n − 2]. Note that

k ≥ i is impossible, for otherwise kij would correspond to an occurrence of (≥, 6=, >). If k ∈ [j], then

the terminal j may be deleted yielding p
∑j

k=1 bn−1(k, i) possibilities, where the factor of p accounts for

the descent between i and j. So assume k ∈ [j + 1, i − 1]. Then π must have the form π = αkjrβj,

where max(α) < k, r ≥ 1 and β is increasing on [k+1, i] with last letter i. If |β| = s+1, then there are
(

i−k−1
s

)

ways in which to choose the members of β. Deleting β from π (keeping the terminal j) yields

a member of Cn−s−1(k, j), as the resulting sequence would end in a redundant (descent) bottom in this

case. Considering all possible k and s then gives the weight of the remaining members of Bn(i, j) and

implies (5), where the pqs+1 factor in the final sum accounts for the ascents caused by the members of β
and the descent between the last two letters.

To show (7), first note that π ∈ Cn(i, i) must end in a run of i’s of length at least three with all other

letters outside of this run strictly less than i. Upon deleting the final i, there are cn−1(i, i) possibilities

if π ends in four or more i’s. Otherwise, π = π′ii, where π′ ∈ Bn−2(k, i) for some k < i or π′ =
12 · · · (n − 2), the latter applying only if i = n − 2, which implies (7). To show (8), consider the same

four cases (i)–(iv) used in the proof of (1) above, but where the single terminal j is replaced with an

increasing sequence β in [i + 1, j] whose last letter is j. Then the first sum on the right side of (8) gives

the contribution towards the overall weight of those members of Bn(i, j) in which cases (i)–(iii) apply.

This is seen upon deleting all letters in β where |β| = t + 1 and adding back an extra copy of the letter

ℓ to the end, which results in a member of Cn−t(i, ℓ). To find the weight of members of Bn(i, j) in case

(iv), first delete from π both β and is (which directly precedes β) and then add back a letter ℓ to the end.

Note that the resulting sequence belongs to Cn−s−t(i, ℓ) for some ℓ < i, with i ≤ n− s− t− 2 implying

s ∈ [n− i− t− 2]. Considering all possible ℓ, t and s then gives the second sum on the right side of (8).

To show (9), suppose π ∈ Bn(i, j) where i > j. Then we may write π = ρij, where max(ρ) < i,
and consider cases based on the last letter t of ρ. If t > j, then deleting i from π results in a member of

Bn−1(t, j) and considering all possible t yields a contribution of q
∑i−1

t=j+1 bn−1(t, j) towards the weight

in this case. Now suppose t = j. If ρ = 12 · · · (n − 2), then i = n − 1, j = n − 2 and π has weight

pqn−2. So assume ρ 6= 12 · · · (n − 2) and let hgt(ρ) = k. If k < j, then deleting i and the terminal j

implies a contribution of pq
∑j−1

k=1 bn−2(k, j) towards the weight. If k = j, then either ρ = ρ′jr+1 or

ρ = ρ′jℓsjr, where r, s ≥ 1, ℓ ∈ [j − 1] and max(ρ′) < j. Removing i from π in the first case and
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removing the terminal section jrij from π and adding back a copy of ℓ in the second (so that the resulting

sequence is ρ′jℓs+1) yields respective contributions of pqcn−1(j, j) and pq2
∑j−1

ℓ=1

∑n−j−2
r=1 cn−r−1(j, ℓ),

upon considering all possible ℓ and r in the latter case. Note that r, s ≥ 1 and ℓ < j implies two ascents

(and a descent) are lost with the removal of jrij from π. The remaining possibility when t = j is for

j + 1 ≤ k ≤ i − 1, in which case ρ = ρ′kjr, where max(ρ′) < k and r ≥ 1. Deleting i and considering

all k yields pq
∑i−1

k=j+1 cn−1(k, j), as the resulting sequence ends in kjr+1 where k > j.

Now assume t < j, and again let k = hgt(ρ). Note that k > j is not possible in this case, for otherwise

ktj is an occurrence of (≥, 6=, >). If k = j, then ρ = ρ′jℓr, where ℓ ∈ [j − 1] and r ≥ 1, and thus there

are pq
∑j−1

ℓ=1 cn−1(j, ℓ) possibilities, upon deleting i and the terminal j and putting back an ℓ. So assume

k < j. Considering whether t ≤ k or k < t < j implies ρ must have one of the following four forms: (a)

ρ = ρ′kℓskr, (b) ρ = ρ′kr+2, (c) ρ = ρ′kℓskrα or (d) ρ = ρ′kr+2α, where r ≥ 0, s ≥ 1, ℓ ∈ [k − 1],
max(ρ′) < k and α is a nonempty (strictly) increasing sequence in [k + 1, j − 1]. Deleting i and j from

π in (b) or in the r = 0 case of (a), and adding a copy of the current final letter, yields a contribution of

pq
∑j−1

k=1

∑k

ℓ=1 cn−1(k, ℓ), upon considering all possible k and ℓ. If r ≥ 1 in (a), then removal of the

final r + 2 letters of π, followed by adding an ℓ, yields pq2
∑j−1

k=2

∑k−1
ℓ=1

∑n−k−2
r=1 cn−r−1(k, ℓ), as the

resulting sequence is of the form ρ′kℓs+1 where s ≥ 1. Further, it is seen that cases (c) and (d) combine

to yield pq
∑j−2

k=1

∑j−1
t=k+1 bn−2(k, t), where t denotes the last letter of α.

Finally, combining the ten contributions towards the weight coming from all the cases above, and

observing the simplifications

cn−1(j, j) +

j−1
∑

ℓ=1

cn−1(j, ℓ) +

j−1
∑

k=1

k
∑

ℓ=1

cn−1(k, ℓ) =

j
∑

k=1

k
∑

ℓ=1

cn−1(k, ℓ),

j−1
∑

k=1

bn−2(k, j) +

j−2
∑

k=1

j−1
∑

ℓ=k+1

bn−2(k, ℓ) =

j−1
∑

k=1

bn−2(k, j) +

j−1
∑

ℓ=2

ℓ−1
∑

k=1

bn−2(k, ℓ) =

j
∑

ℓ=2

ℓ−1
∑

k=1

bn−2(k, ℓ)

and
j−1
∑

ℓ=1

n−j−2
∑

r=1

cn−r−1(j, ℓ) +

j−1
∑

k=2

k−1
∑

ℓ=1

n−k−2
∑

r=1

cn−r−1(k, ℓ) =

j
∑

k=2

k−1
∑

ℓ=1

n−k−2
∑

r=1

cn−r−1(k, ℓ),

yields (9) and completes the proof.

From the recurrences in the prior lemma, we have that the nonzero values of bn(i, j) and cn(i, j) are

given for n = 2 by b2(1, 1) = 1, for n = 3 by b3(1, 2) = b3(1, 3) = b3(2, 2) = q, b3(2, 1) = pq,

c3(1, 1) = 1 and for n = 4 by

b4(1, 2) = q b4(1, 3) = q + q2 b4(1, 4) = q + 2q2 b4(2, 1) = pq

b4(2, 2) = q + pq2 b4(2, 3) = q2 + pq2 b4(2, 4) = q2 + pq2 b4(3, 1) = pq + pq2

b4(3, 2) = pq + pq2 b4(3, 3) = q + q2 c4(1, 1) = 1 c4(2, 1) = pq

c4(2, 2) = q,

which may be verified directly using the definitions.
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Define now the following generating functions: A(x) =
∑

n≥1 anx
n, B(x) =

∑

n≥2 bnx
n and

C(x) =
∑

n≥3 cnx
n. Then clearly,

A(x) = B(x) + C(x) +
x

1− qx
.

Note that A(x) is the (ordinary) generating function for the joint distribution of the desc and asc statistics

on In(≥, 6=, >) for n ≥ 1. In order to study B(x) and C(x), we refine them as follows. Define

B0(x, v) =
∑

n≥2

n−1
∑

i=1

bn(i, i)v
ixn,

B+(x, v, w) =
∑

n≥2

n−1
∑

i=1

n
∑

j=i+1

bn(i, j)v
iwjxn,

B−(x, v, w) =
∑

n≥3

n−1
∑

i=2

i−1
∑

j=1

bn(i, j)v
iwjxn,

C0(x, v) =
∑

n≥3

n−2
∑

i=1

cn(i, i)v
ixn,

C−(x, v, w) =
∑

n≥4

n−2
∑

i=2

i−1
∑

j=1

cn(i, j)v
iwjxn.

Translating (3)–(9) above in terms of these generating functions yields the following system of func-

tional equations.

Lemma 2. We have B(x) = B0(x, 1) +B+(x, 1, 1)+B−(x, 1, 1) and C(x) = C0(x, 1)+C−(x, 1, 1),
where

B+(x, v, w) =
qvw2x3(w + 1)

1− qvwx
+

qwx

1− w
(C0(x, vw) − wC0(wx, v))

+
qwx

1− w
(B+(x, v, w) − wB+(wx, v, 1)) +

qwx2

1− w
(B+(x, 1, vw)− w2B+(wx, 1, v))

+
qw

1− w
(C−(x, vw, 1) − C−(wx, v, 1))

+
q2w

1− w

(

x

1− x
C−(x, vw, 1)− wx

1− wx
C−(wx, v, 1)

)

,

B0(x, v) =
vx2

1− qvx
+ xB+(x, 1, v) +

q

1− x
C−(x, v, 1),

B−(x, v, w) =
pqv2wx3

(1− qvx)(1 − qvwx)
+

px

1− w
(B+(x,w, v) −B+(x, 1, vw))

+
pqvx

1− v − qvx

(

C−(x, v, w) − C−(
vx

1 − qvx
, 1− qvx, w)

)

,
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C−(x, v, w) =
x

1− x
B−(x, v, w),

C0(x, v) =
vx3

(1− x)(1 − qvx)
+

x2

1− x
B+(x, 1, v),

B+(x, v, w) =
qw

1− w − qwx

(

C0(x, vw) − C0(
wx

1− qwx
, v(1− qwx))

)

+
qw

1− w − qwx

(

C−(x, vw, 1) − C−(
wx

1− qwx
, v(1 − qwx), 1)

)

+
q2wx

1− w − qwx

(

1

1− x
C−(x, vw, 1) − w

1− wx− qwx
C−(

wx

1− qwx
, v(1 − qwx), 1)

)

and

1

pq
B−(x, v, w)

=
vx

p(1 − v)
(B−(x, v, w) −B−(vx, 1, w)) +

v2wx3

1− qvwx
+

vx

1− v
(C−(x, v, w) − C−(vx, 1, w))

+
x

1− w

(

v

1− v
(C−(x, vw, 1) + C0(x, vw) − C−(vx, w, 1)− C0(vx, w))

− vw

1− vw
(C−(x, vw, 1) + C0(x, vw) − C−(vwx, 1, 1)− C0(vwx, 1))

)

+
x2

1− w

(

v

1− v
(B+(x, 1, vw)− vB+(vx, 1, w)) − vw

1− vw
(B+(x, 1, vw) − vwB+(vwx, 1, 1))

)

+ qx2

(

v

(1− v)(1 − vw)(1 − x)
C−(x, vw, 1)− v2w

(1 − v)(1− vw)(1 − vwx)
C−(vwx, 1, 1)

− v2

(1 − v)(1− w)(1 − vx)
C−(vx, w, 1) +

v2w

(1 − v)(1− w)(1 − vwx)
C−(vwx, 1, 1)

)

.

By use of the first, fourth and fifth equations in Lemma 2 with v = 1, we find a formula for B+(x, 1, w):

B+(x, 1, w) =
qwx(qx − x+ 1)

(qwx− wx+ w + x− 1)(1− x)
B−(x,w, 1)

+
qw2x(1− x)(qwx − wx + 1)

(qwx − wx + w + x− 1)(1− wx)2
B−(wx, 1, 1)

+
qw2x(1− x)

(qwx − wx + w + x− 1)(1− wx)
B+(wx, 1, 1)

+
qw2x3(1− w)(wx − w − 1)

(qwx − wx + w + x− 1)(1− qwx)(1 − wx)
.

Using this last expression twice (both for B+(x, 1, vw) and B+(vx, 1, w)), substituting into the final

equation in Lemma 2 and replacing x with x/v, we obtain the following result.
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Lemma 3. The generating function A(x) is given by

A(x) =
1

1− x
B+(x, 1, 1) +

1− x+ qx

(1− x)2
B−(x, 1, 1) +

x

(1 − x)(1 − qx)
,

where

K(x, v)B−(x/v, 1, v) = A1(x, v)B
−(x, 1, 1) +A2(x, v)B

+(x, 1, 1) +A3(x, v),

with

K(x, v) = (x− v)(qx + v − 1)(qvx+ v2 − vx− v + x)− qx2(qvx− qx+ v2 − vx− 2v + 2x)p,

A1(x, v) = (x− v)(qvx + v2 − vx− v + x)xq

+
(v − x)x2((qv − q − v + 2)x2 + (v2 − v − 2)x− v2 + 2v)qp

(1− x)2
,

A2(x, v) =
(x− v)(1 − v)(qx2 + vx− x2 − v + x)xp

1− x
,

A3(x, v) =
(x− v)(qx2 − qx+ vx− x2 − v + x+ 1)(1− v)pqx3

(1 − x)(1 − qx)
.

Note that the kernel equation K(x, v) = 0 (see prior lemma) has two power series solutions v1(x) and

v2(x), where

v1(x) = 1 + (
√
pq − q)x− q((2p+ 1)

√
pq − 2pq − p)

2
√
pq

x2

− q(4(5pq + 3p+ q + 1)
√
pq − 12p2q − 8pq2 − 16pq − 3p− q)

8
√
pq

x3 + · · · ,

v2(x) = 1− (
√
pq + q)x− q((2p+ 1)

√
pq + 2pq + p)

2
√
pq

x2

− q(4(5pq + 3p+ q + 1)
√
pq + 12p2q + 8pq2 + 16pq + 3p+ q)

8
√
pq

x3 + · · · .

Substituting v = v1(x) and v = v2(x) into

K(x, v)B−(x/v, 1, v) = A1(x, v)B
−(x, 1, 1) +A2(x, v)B

+(x, 1, 1) +A3(x, v),

and solving for B−(x, 1, 1) and B+(x, 1, 1), we obtain

B−(x, 1, 1) =
px(v1(x) − 1)(v2(x) − 1)

((q − 1)x2 − v1(x)v2(x) + xv1(x) + xv2(x))(p − q)
,

B+(x, 1, 1) = − qx(qx − x+ 1)(v1(x) − 1)(v2(x) − 1)

(1− x)((q − 1)x2 − v1(x)v2(x) + xv1(x) + xv2(x))(p − q)

+
q(q − 1)x3(v1(x)v2(x) + x2)

(1− x)(1 − qx)((q − 1)x2 − v1(x)v2(x) + xv1(x) + xv2(x))

+
qx2(x2 − x+ 1− qx)(v1(x) + v2(x)) + q(1− 2q)x4 + q(1 + 2q)x3 − 2qx2

(1− x)(1 − qx)((q − 1)x2 − v1(x)v2(x) + xv1(x) + xv2(x))
.
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Hence, by Lemma 3, we have the following result.

Theorem 4. The generating function A(x) is given by

A(x) = (1− v1(x)− v2(x)− (q − 1)x)x(q − 1)x2 − v1(x)v2(x) + x(v1(x) + v2(x)),

where v1(x) and v2(x) are the power series solutions to K(x, v) = 0 as defined above.

Remark: The equation K(x, v) = 0 actually has four roots, namely, v1(x), v2(x) and the two additional

roots given by

v3(x) = x+ q
√
px

√
x+

q(2p+ 1)

2
x2 +

q(4p2 + 8pq + 8p+ 1)

8
√
p

x2
√
x+ · · · ,

v4(x) = x− q
√
px

√
x+

q(2p+ 1)

2
x2 − q(4p2 + 8pq + 8p+ 1)

8
√
p

x2
√
x+ · · · ,

where it is assumed p, q, x > 0. To determine which of these roots are to be used in obtaining an explicit

formula for B−(x, 1, 1) as a Taylor series, we define

F (x, v, w) =
px(v − 1)(w − 1)

((q − 1)x2 − vw + xv + xw)(p − q)
.

Note that F (x, v, w) = F (x,w, v) and so it suffices to consider the first terms in the expansion of

F (x, vi(x), vj(x)) centered at x = 0 for 1 ≤ i < j ≤ 4:

F (x, v1(x), v2(x)) = pqx3 + (2q + 3)pqx4 + · · · , F (x, v1(x), v3(x)) = −
√
p(q −√

pq)

q(p− q)

√
x+ · · · ,

F (x, v1(x), v4(x)) =

√
p(q −√

pq)

q(p− q)

√
x+ · · · , F (x, v2(x), v3(x)) = −

√
p(q +

√
pq)

q(p− q)

√
x+ · · · ,

F (x, v2(x), v4(x)) =

√
p(q +

√
pq)

q(p− q)

√
x+ · · · , F (x, v3(x), v4(x)) =

p

q(p− q)

1

x
+ · · · .

Hence, we must take v1(x) and v2(x), as was done above.

2.1 Case p = q = 1

Letting p = q = 1 in Lemma 3 gives

K ′(x, v)B−(x/v, 1, v) = A′(x, v)B−(x, 1, 1) + (1− x)A′(x, v)B+(x, 1, 1) +A′′(x, v),

where

K ′(x, v) = v3 − v2 + 2vx− x2, A′(x, v) =
x(v − x)(vx − v + x)

(1 − x)2
,

A′′(x, v) =
x3(v − x)(vx − v + 1)

(1 − x)3
.
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Thus, by taking v = 1 or

v = v3(x) = 1+
16

9
sin4(

1

3
arcsin(

3
√
3x

2
))− 8

3
sin2(

1

3
arcsin(

3
√
3x

2
)) = 1− 2x− 3x2 − 10x3 + · · · ,

the latter being a root of K ′(x, v) = 0, we obtain

(2x− 1)(x− 1)B+(x, 1, 1)− (x2 − x+ 1)B−(x, 1, 1)− x3 = 0,

xv3(x)− v3(x) + x

(1− x)2
B−(x, 1, 1) +

xv3(x)− v3(x) + x)

1− x
B+(x, 1, 1) +

x2(xv3(x)− v3(x) + 1)

(1− x)3
= 0.

Theorem 5. Let y = cos(13 arcsin(
3
√
3x
2 )). Then the generating function

∑

n≥1 an(1, 1)x
n is given by

− (4y2 − 1)2 − 9x

2A

(

B + (64y6 − 96y4 + 36y2 + 27x− 4)(64y6 − 12y2 − 27x+ 2)
√
1− 4x

)

,

where A = (256y8 − 256y6 − 48y4 + 56y2 + 81x− 8)(x(4y2 − 1)4 + (x− 1)((4y2 − 1)2 − 9x)2) and

B = (4y2 − 1)6 − 9(32y4x+ 16y4 − 16y2x− 8y2 − 7x+ 1)((4y2 − 1)2 − 9x).

2.2 Coefficient of pm

Note that Lemma 2 implies the following formula.

Lemma 6. The generating function A(x) is given by

A(x) =
1

1− x
B+(x, 1, 1) +

1− x+ qx

(1− x)2
B−(x, 1, 1) +

x

(1 − x)(1 − qx)
,

where
(

1− pqvx2

(1− x)(1 − v − qvx)

)

B−(x, v, w)

=
pqv2wx3

(1− qvwx)(1 − qvx)
+

px(B+(x,w, v) −B+(x, 1, vw))

1− w

− pqv2x2

(1 − v − qvx)(1 − vx− qvx)
B−(

vx

1− qvx
, 1− qvx, w)

and

(1 − w − qwx)B+(x, v, w)

=
qvw2x3(1 + w − wx)(1 − w)

(1− x)(1 − wx)(1 − qvwx)
+

qwx2

1− x
B+(x, 1, vw)

− qw3x2

1− wx
B+(wx, 1, v) − qw2xB+(wx, v, 1) +

qwx(1 − x+ qx)

(1− x)2
B−(x, vw, 1)

− qw2x(1− wx + qwx)

(1− wx)2
B−(wx, v, 1),
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with

B+(x, v, 1) =
x

(1− qx)(1 − x− qx)
B+(

x

1− qx
, 1, v(1− qx))− x

1− x
B+(x, 1, v)

− 1− x+ qx

(1 − x)2
B−(x, v, 1) +

1− x

(1 − x− qx)2
B−(

x

1− qx
, v(1 − qx), 1)

− (qx+ x− 2)qvx3

(1− x− qx)(1 − qx)(1 − x)(1 − qvx)
.

Given a generating function f(x) = f(x, p), we denote its coefficient of pm by f(x|m). From Lemma

6, one obtains the following result.

Proposition 7. We have

A(x|m) =
1

1− x
B+(x, 1, 1|m) +

1− x+ qx

(1− x)2
B−(x, 1, 1|m) +

x

(1− x)(1 − qx)
δm,0,

where B+(x, v, w|m) and B−(x, v, w|m) satisfy

B−(x, v, w|m) =
qvx2

(1− x)(1 − v − qvx)
B−(x, v, w|m − 1) +

qv2wx3

(1− qvwx)(1 − qvx)
δm,1

+
x(B+(x,w, v|m − 1)−B+(x, 1, vw|m− 1))

1− w

− qv2x2

(1− v − qvx)(1 − vx− qvx)
B−(

vx

1− qvx
, 1− qvx, w|m − 1), (10)

(1 − w − qwx)B+(x, v, w|m) =
qvw2x3(1 + w − wx)(1 − w)

(1− x)(1 − wx)(1 − qvwx)
δm,0 +

qwx2

1− x
B+(x, 1, vw|m)

− qw3x2

1− wx
B+(wx, 1, v|m) − qw2xB+(wx, v, 1|m) +

qwx(1 − x+ qx)

(1 − x)2
B−(x, vw, 1|m)

− qw2x(1− wx + qwx)

(1− wx)2
B−(wx, v, 1|m) (11)

and

B+(x, v, 1|m) =
x

(1− qx)(1 − x− qx)
B+(

x

1− qx
, 1, v(1− qx)|m)− x

1− x
B+(x, 1, v|m)

− 1− x+ qx

(1 − x)2
B−(x, v, 1|m) +

1− x

(1 − x− qx)2
B−(

x

1− qx
, v(1 − qx), 1|m)

− (qx+ x− 2)qvx3

(1− x− qx)(1 − qx)(1 − x)(1 − qvx)
δm,0, (12)

with B−(x, v, w|m) = 0 for m < 0.
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2.2.1 Case m = 0

By Proposition 7, we see that B−(x, v, w|0) = 0 and thus

(1− w − qwx

w − x
)B+(x/w, 1, w|0) = qx3(1 + w − x)(1 − w)

(w − x)(1 − x)(1 − qx)
− qwx

1− x
B+(x, 1, 1|0).

Let w = w0(x) =
1
2 (1 + x− qx+

√

(1 + x− qx)2 − 4x). Then

B+(x, 1, 1|0) = (w0(x) + 1− x)(w0(x)− 1)x2

w0(x)(qx − 1)(w0(x) − x)

and

B+(x, 1, w|0) = (w0(wx) − w)(w + w0(wx) − wx)qw2x3

w0(wx)(w0(wx) − wx)(qwx − 1)(qwx + w − wx− 1 + x)
.

Thus, by Lemma 2, we have C−(x, v, w|0) = B−(x, v, w|0) = 0, and then by Proposition 7, we get

B+(x, v, w|0)

=
qvw2x2(vwx − vw − v + 1)

√

q2v2w2x2 − 2qv2w2x2 + v2w2x2 − 2qvwx− 2vwx+ 1

2(qvw2x2 − qvwx + qwx − vwx + wx+ v − 1)(qvwx − vwx + vw + x− 1)

+
qvw2x2(2qwx2 − qwx+ 2wx2 − 2wx− 2x+ 1)

2(qvwx − vwx+ vw + x− 1)(qwx− 1)(qvw2x2 − qvwx + qwx− vwx + wx + v − 1)

+
qv2w2x2(2x− 1− w(2qx2 + 2x2 − 4x+ 1) + xw2(q2x+ 2qx2 − 2qx+ q − 2x+ 2))

2(qvwx − vwx+ vw + x− 1)(qwx− 1)(qvw2x2 − qvwx + qwx− vwx + wx + v − 1)

+
qv3w3x3(wx − w − 1)(q − 1)(qwx − 1)

2(qvwx − vwx+ vw + x− 1)(qwx− 1)(qvw2x2 − qvwx + qwx− vwx + wx + v − 1)
.

Hence, Proposition 7 implies the following result.

Theorem 8. We have

A(x|0) = 2x

1− x− qx+
√

(1− x− qx)2 − 4qx2
.

2.2.2 Case m = 1

By the m = 0 case and Proposition 7, we have

B−(x, v, w|1)

=
qv2wx3

(1 − qvwx)(1 − qvx)
+

x(B+(x,w, v|0) −B+(x, 1, vw|0))
1− w

=
vwx(qvx − vx2 + vx+ x− 1)

√

(1− (1 + q)vwx)2 − 4qv2w2x2

2(qv2wx2 − qvwx + qvx − vwx+ vx+ w − 1)(qvwx − vwx+ vw + x− 1)

+
vwx((1 − x)(1 − vx)(1 − vwx) + qvx(vwx2 − wx − w + 2x− 1) + q2v2wx2)

2(qv2wx2 − qvwx + qvx− vwx + vx+ w − 1)(qvwx − vwx + vw + x− 1)
.
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So the generating function B+(x/w, 1, w|1) satisfies

(1− w − qwx

w − x
)B+(x/w, 1, w|1)

= − qwx

1− x
B+(x, 1, 1|1) + qwx(w − x+ qx)

(w − x)2
B−(x/w,w, 1|1) − qwx(1 − x+ qx)

(1− x)2
B−(x, 1, 1|1).

By substituting w = w0(x), we obtain

B+(x, 1, 1|1) = (w0(x) − x+ qx)(1 − x)

(w0(x)− x)2
B−(x/w0(x), w0(x), 1|1)−

1− x+ qx

1− x
B−(x, 1, 1|1),

which implies that the expression of B+(x, 1, w|1) can be found from

(1− w − qwx

1− x
)B+(x, 1, w|1)

= − qw2x

1− wx
B+(wx, 1, 1|1) + qwx(1 − x+ qx)

(1− x)2
B−(x,w, 1|1)

− qw2x(1 − wx+ qwx)

(1− wx)2
B−(wx, 1, 1|1).

Hence, by Proposition 7, one gets an explicit formula for B+(x, v, 1|1), and subsequently for

B+(x, v, w|1), which implies the following result.

Theorem 9. We have

A(x|1) = q3(q − 1)x4 − (4q3 + q2 + q + 1)x3 + (6q2 + 5q + 3)x2 − (4q + 3)x+ 1

2q2x4
√

(1− x− qx)2 − 4qx2

+
q3x3 − (3q2 + 2q + 1)x2 + (3q + 2)x− 1

2q2x4
.

2.2.3 General Case

Note that our calculation may be extended to any m > 1. More precisely, to find the generating function

A(x|m), we have the following algorithm:

• Letm > 1. Suppose we have found the generating functionsB+(x, v, w|m−1) andB−(x, v, w|m−
1).

• By (10), we have an explicit formula for the generating function B−(x, v, w|m).

• By (11), we have

(1− w − qwx

w − x
)B+(x/w, 1, w|m)

= − qwx

1− x
B+(x, 1, 1|m)

+
qwx(w − x+ qx)

(w − x)2
B−(x/w,w, 1|m) − qwx(1 − x+ qx)

(1− x)2
B−(x, 1, 1|m).
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Thus, by taking w = w0(x) and using the formula of B−(x/w,w, 1|m), we obtain an explicit

formula for the generating function B+(x, 1, 1|m).

• By (11) with v = 1, we obtain an explicit formula for B+(x, 1, w|m).

• By (12), we derive a formula for B+(x, v, 1|m).

• Thus, by (11) and the results of the previous steps, we obtain a formula for B+(x, v, w|m).

• Hence, by Proposition 7, namely,

A(x|m) =
1

1− x
B+(x, 1, 1|m) +

1− x+ qx

(1− x)2
B−(x, 1, 1|m),

we derive a formula for the generating function A(x|m).

Applying this algorithm for m = 2, 3 yields

A(x|m) =
am

2qm+1x3m+1(qx+ x− 1)2m−3
√

(1− x− qx)2 − 4qx2
2m−1

+
bm

2qm+1x3m+1(qx+ x− 1)2m−3
,

where

a2 = (x+ 1)(x− 1)7 + x(2x3
− 5x2

− 3x− 9)(x− 1)5q − 2x2(x4 + 6x3
− 13x2 + 9x− 18)(x− 1)3q2

− 2x3(x− 1)(3x4
− 30x3 + 53x2

− 63x+ 42)q3 − 2x4(3x4
− 36x3 + 80x2

− 105x+ 63)q4

+ x
5(2x5 + x

4
− 9x3 + 64x2

− 126x+ 126)q5 − 2x6(3x4 + 5x3 + 10x2
− 21x+ 42)q6

+ 2x7(3x3 + 4x2
− 3x+ 18)q7 − x

8(2x2 + 9)q8 + x
9
q
9
,

b2 = (x+ 1)(x− 1)4 + x(2x3
− 2x2 + 3x− 6)(x− 1)2q + x

2(x− 1)(4x3
− 11x2 + 15x− 15)q2

+ 2x3(3x3
− 10x2 + 15x− 10)q3 + x

4(8x2
− 15x + 15)q4 − x

5(2x2
− 3x+ 6)q5 + x

6
q
6
,

a3 = −(2x2 + 2x+ 1)(x− 1)12 − x(4x4
− 6x3

− 25x2
− 18x− 15)(x− 1)10q

− x
2(3x6

− 18x5
− 15x4

− 4x3 + 147x2 + 34x+ 105)(x− 1)8q2 + x
3(4x7 + 29x6

− 144x5

+ 74x4
− 404x3 + 692x2

− 286x + 455)(x− 1)6q3 + x
4(6x8

− 40x7
− 195x6 + 714x5

− 1325x4

+ 2944x3
− 3211x2 + 2262x − 1365)(x − 1)4q4 − x

5(12x8 + 15x7 + 89x6
− 1131x5 + 2715x4

− 5925x3 + 7381x2
− 5291x + 3003)(x − 1)3q5 + x

6(5x8 + 10x7
− 65x6 + 1320x5

− 4210x4

+ 9650x3
− 12837x2 + 9724x − 5005)(x − 1)2q6 − x

7(x− 1)(5x9
− 11x8

− 15x7 + 73x6
− 1422x5

+ 5370x4
− 13143x3 + 17853x2

− 14157x + 6435)q7 + x
8(22x9

− 25x8
− 28x7

− 112x6 + 1448x5

− 6076x4 + 15192x3
− 20526x2 + 16302x − 6435)q8 − x

9(35x8 + 26x6 + 214x5
− 1130x4 + 5170x3

− 9878x2 + 9724x − 5005))q9 + x
10(20x7

− 2x6 + 20x5
− 62x4 + 1132x3

− 3619x2 + 4290x

− 3003)q10 + x
11(5x6 + 20x5

− 4x4
− 114x3 + 1045x2

− 1352x + 1365)q11 − x
12(10x5 + 9x4

+ 12x3 + 245x2
− 286x + 455))q12 + x

13(3x4 + 4x3 + 43x2
− 36x + 105)q13 − x

14(4x2
− 2x+ 15)q14

+ x
15
q
15
,
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b3 = −(2x2 + 2x+ 1)(x− 1)7 − x(2x2 + x+ 2)(2x2 + x− 5)(x− 1)5q − x
2(3x6 + 2x5 + 5x4

− 49x3

+ 57x2
− 61x+ 45)(x− 1)3q2 − x

3(11x6
− 33x5 + 86x4

− 218x3 + 276x2
− 236x + 120)(x− 1)2q3

− x
4(x− 1)(19x6

− 97x5 + 287x4
− 588x3 + 707x2

− 532x+ 210)q4 − x
5(27x6

− 166x5 + 532x4

− 1007x3 + 1134x2
− 770x + 252)q5 − x

6(35x5
− 181x4 + 474x3

− 665x2 + 532x− 210)q6 + x
7(5x5

− 34x4 + 128x3
− 240x2 + 236x − 120)q7 + x

8(3x4
− 16x3 + 48x2

− 61x + 45)q8 − x
9(4x2

− 7x+ 10)q9 + x
10
q
10
.

3 The desc and n− 1− asc statistics on In(>, 6=,≥)
We start by decomposing the set Tn = In(>, 6=,≥) as follows. To do so, it is useful to consider the largest

descent bottom x of e = e1e2 · · · en ∈ Tn where e contains at least one descent; that is, x = max{ei+1 :
1 ≤ i ≤ n − 1 and ei > ei+1}. If w is the leftmost letter of e forming a descent with x, then w will

be referred to as the leftmost top of e. Let Un(i, j) for i < j denote the subset of Tn consisting of those

e having leftmost top i and largest letter j, where it is assumed further that e ends in a j. Let Vn(i, j)
for i < j be the same as Un(i, j) except that j is not the last letter of e. Let Wn(i, j) for i > j be the

subset of Tn whose members e have leftmost top i and are expressible as e = e′ijs for some s ≥ 1 where

max(e′) ≤ i. Finally, let Zn(i) be the subset of Tn whose members end in i and are weakly increasing

(i.e., contain no descents).

A few remarks are in order concerning these definitions. Note that the leftmost letter i forming a

descent with x within any member of Tn is also the smallest such letter, for otherwise a (>, 6=,≥) would

be present with ixz, where z is the smallest. Further, no element greater than i can occur anywhere to the

left of the first i due to avoidance of (>, 6=,≥), with all i’s occurring as a single run (directly preceding

the first x). Similarly, x is the only element less than i occurring somewhere to the right of the run of

i’s. Thus, members of Vn(i, j) must end in x, for otherwise there would be an occurrence of (>, 6=,≥)
involving the last letter or a descent bottom that exceeds x contradicting its maximality. Further, members

of Wn(i, j) are seen to have largest descent bottom j. Finally, a common interpretation for the parameter

j which applies to all three of the subsets Un(i, j), Vn(i, j) and Wn(i, j) is that it represents the largest

element occurring anywhere to the right of the run of the letter i.
Define the distribution polynomial un(i, j) = un(i, j; p, q) by

un(i, j) =
∑

π∈Un(i,j)

pdesc(π)qn−1−asc(π),

and likewise for vn(i, j), wn(i, j) and zn(i). For example, we have V5(2, 4) = {12141},

U5(2, 4) = {11214, 12114, 12134, 12144, 12214},

W5(3, 2) = {11132, 11232, 11322, 11332, 12232, 12322, 12332}
and

Z4(4) = {1114, 1124, 1134, 1224, 1234},
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which implies v5(2, 4) = p2q2, u5(2, 4) = pq+4pq2, w5(3, 2) = 4pq2 +3pq3 and z4(4) = 1+ 3q+ q2.

Put zero for any of these polynomial arrays if the subset of Tn corresponding to the parameters in question

is empty. Thus, these arrays may be nonzero only for the following parameter values: (i) un(i, j): n ≥ 4,

2 ≤ i ≤ n− 2 and i < j ≤ n, (ii) vn(i, j): n ≥ 5, 2 ≤ i ≤ n− 3 and i < j ≤ n− 1, (iii) wn(i, j): n ≥ 3
and 1 ≤ j < i ≤ n− 1 and (iv) zn(i): n ≥ 1 and 1 ≤ i ≤ n.

Define un =
∑n−2

i=2

∑n

j=i+1 un(i, j) for n ≥ 4, and likewise vn for n ≥ 5, wn for n ≥ 3 and zn for

n ≥ 1. Then we seek a formula for tn = tn(p, q) given by

tn = un + vn + wn + zn, n ≥ 1,

where we put zero for un, vn or wn if the corresponding subset of Tn is empty. Note that tn gives the joint

distribution of the desc and n−1−asc statistics on all of Tn. Recall that n−1−asc(π) = desc(π)+lev(π)
for all π ∈ In.

The arrays un(i, j), vn(i, j), wn(i, j) and zn(i) satisfy the following system of intertwined recurrences.

Lemma 10. We have

un(i, j) = qun−1(i, j) +

i−1
∑

ℓ=1

wn−1(i, ℓ) +

j−1
∑

ℓ=i+1

(un−1(i, ℓ) + vn−1(i, ℓ)), (13)

for 2 ≤ i ≤ n− 2 and i < j ≤ n,

vn(i, j) = q(pun−1(i, j) + vn−1(i, j)), (14)

for 2 ≤ i ≤ n− 3 and i < j ≤ n− 1,

wn(i, j) = pqzn−1(i) + q(2wn−1(i, j)− qwn−2(i, j)− pqzn−2(i)) + pq

j−1
∑

k=2

un−2(k, j)

+ pq

j−1
∑

k=2

(un−1(k, j)− qun−2(k, j)) +

i−1
∑

k=j+1

(wn−1(k, j)− qwn−2(k, j)− pqzn−2(k)),

(15)

for 1 ≤ j < i ≤ n− 1,

zn(i) = qzn−1(i) +

i−1
∑

j=1

zn−1(j), 1 ≤ i ≤ n− 1, (16)

zn(n) =

n−1
∑

j=1

zn−1(j), n ≥ 2, (17)

with the initial condition z1(1) = 1.

Proof: To show (13), first suppose π ∈ Un(i, j) where i and j are as given. If the penultimate letter of π
is also j, then there are clearly qun−1(i, j) possibilities, so assume that this is not the case. Let ℓ be the
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second largest letter of π occurring to the right of the last i, x be the maximum descent bottom and y be

the penultimate letter. Then y < x is not possible, for otherwise ixy would be an occurrence of (>, 6=,≥).
Further, x < y < ℓ is also not possible. To see this, suppose to the contrary that x < y < ℓ and let w
denote the rightmost letter in π that is distinct from both y and j. If w > y, then y would be a descent

bottom, contradicting that x is the maximum descent bottom. If w < y, then an occurrence of (>, 6=,≥)
would be witnessed by ℓwy. Thus, we must have y = ℓ or y = x. If y = ℓ and ℓ ∈ [i + 1, j − 1], then

there are un−1(i, ℓ) possibilities by definition, upon deleting j. If y = x and ℓ ∈ [i + 1, j − 1], then π
is expressible as π = π′ℓxrj for some r ≥ 1 where max(π′) ≤ ℓ. Note that the letter directly preceding

the run xr must be ℓ, for otherwise membership in Tn would be violated. Removing j from π then gives

vn−1(i, ℓ) for the contribution towards the weight in this case. Thus, the total weight of the members of

Un(i, j) in question for which i < ℓ < j is given by
∑j−1

ℓ=i+1(un−1(i, ℓ)+vn−1(i, ℓ)). On the other hand,

only ℓ = x is possible if it is assumed that ℓ ≤ i. In this case, all letters to the right of the last i (except

j) are x. Thus, removing j and considering all possible values of x yields the remaining sum on the right

side of (13), which finishes the proof of (13).

To show (15), suppose π ∈ Wn(i, j) where 1 ≤ j < i ≤ n − 1. If π ends in two or more j’s or

if it is of the form π = π′ij, where π′ has no descents, then there are contributions towards the weight

of qwn−1(i, j) and pqzn−1(i), respectively. Note that the extra q factor in the former case accounts for

the level between the last two letters of π which is lost when the final letter is deleted, whereas pq in

the latter case accounts for the descent between i and j which is lost. So assume henceforth π = π′ij,

where π′ contains at least one descent; note that max(π′) ≤ i. Let k denote the final letter of π′. If

k ∈ [j + 1, i − 1], then there are wn−1(k, j) − qwn−2(k, j) − pqzn−2(k) possibilities for each k by

subtraction, upon deleting i, and summing over all k gives the last summation expression on the right side

of (15). If k = i, then one gets q(wn−1(i, j)− qwn−2(i, j)− pqzn−2(i)), where the q factor accounts for

the extra level occurring between the last two letters i.

Suppose now k = j and let z and ℓ denote the largest descent bottom and leftmost top of π′, respec-

tively. Then ℓ = i is not possible, for otherwise (>, 6=,≥) is realized with iji, so we must have ℓ < i.
If j < ℓ < i and z 6= j, then ℓzj would not be allowed, whereas if z = j, then the resulting inversion

sequence would be of a form not even enumerated by wn(i, j) since ℓ, and not i, would be the leftmost

top of π. If ℓ = j, then jzj would occur with z < j, which is again not allowed. Thus, we must have

2 ≤ ℓ ≤ j − 1 and deleting ij from π yields a member of Un−2(ℓ, j). Considering all possible ℓ in this

case then gives a contribution towards the weight of pq
∑j−1

ℓ=2 un−2(ℓ, j). Finally, if k < j, then ℓ ≥ j
would imply ℓkj is not permissible, whence 2 ≤ ℓ ≤ j − 1. Then deleting i from π in this case results in

a member of Un−1(ℓ, j) in which the next-to-last letter is not j. By subtraction, there is a contribution of

pq(un−1(ℓ, j) − qun−2(ℓ, j)) for each ℓ, which we then sum over ℓ. Combining now all of the previous

cases implies (15).

The remaining formulas can be shown quickly. To realize (14), consider cases based on whether the

terminal run of the maximum descent bottom of π ∈ Vn(i, j) is of length one or greater than one. Note

that in the former case, the next-to-last letter must be j resulting in a descent involving the final two

letters. To show (16) and (17), we delete the final i from π ∈ Zn(i) and consider cases on whether the

next-to-last letter equals i or is less than i, noting that the first option is not possible in the case i = n
since π ∈ In.

From the recurrences, we have that the nonzero values of the arrays above are given for n = 2 by

z2(1) = q, z2(2) = 1, for n = 3 by w3(2, 1) = pq, z3(1) = q2, z3(2) = 2q, z3(3) = 1+ q and for n = 4
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by

u4(2, 3) = pq u4(2, 4) = pq w4(2, 1) = 3pq2

w4(3, 1) = pq + pq2 w4(3, 2) = pq + pq2 z4(1) = q3

z4(2) = 3q2 z4(3) = 3q + 2q2 z4(4) = 1 + 3q + q2,

which may be verified directly.

Now define

U(x, v, w) =
∑

n≥4

n−2
∑

i=2

n
∑

j=i+1

un(i, j)v
iwjxn,

V (x, v, w) =
∑

n≥5

n−3
∑

i=2

n−1
∑

j=i+1

vn(i, j)v
iwjxn,

W (x, v, w) =
∑

n≥3

n−1
∑

i=2

i−1
∑

j=1

wn(i, j)v
iwjxn,

Z(x, v) =
∑

n≥1

n
∑

i=1

zn(i)v
ixn.

By translating (13)–(17) above in terms of these generating functions, we obtain the following system of

functional equations.

Lemma 11. We have

U(x, v, w) = qxU(x, v, w) +
wx

1− w
(W (x, vw, 1) − wW (wx, v, 1))

+
wx

1− w
(U(x, v, w) + V (x, v, w) − wU(wx, v, 1) − wV (wx, v, 1)),

V (x, v, w) = pqxU(x, v, w) + qxV (x, v, w),

W (x, v, w) =
pqx

1− w
(wZ(x, v) − Z(x, vw)) + 2qxW (x, v, w) − q2x2W (x, v, w)

− pq2x2

1− w
(wZ(x, v) − Z(x, vw)) +

pqvx2

1− v
(U(x, 1, vw) − vU(vx, 1, w))

+
pqvx

1− v
(U(x, 1, vw)− U(vx, 1, w) − qxU(x, 1, vw) + qvxU(vx, 1, w))

+
v

1− v
(xW (x, v, w) − qx2W (x, v, w)) − pqvx2

(1− v)(1 − w)
(wZ(x, v) − Z(x, vw))

− vx

1− v
(W (vx, 1, w) − qvxW (vx, 1, w)) +

pqv2x2

(1− v)(1 − w)
(wZ(vx, 1) − Z(vx, w)),

Z(x, v) = vxZ(vx, 1) + vx+ qxZ(x, v) +
vx

1− v
(Z(x, v) − Z(vx, 1)).
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The last equation in Lemma 11 implies

(

1− qx

v
− x

1− v

)

Z(x/v, v) = x+ xZ(x, 1)− x

1− v
Z(x, 1).

By taking v = v0(x) =
1
2 (1− x+ qx+

√

(1 − x+ qx)2 − 4qx), we obtain

Z(x, 1) =
1− v0(x)

v0(x)
,

and hence

Z(x, v) =
vx(v0(vx)− v)

v0(vx)((1 − v)(1 − qx)− vx)
. (18)

Further, Lemma 11 gives

V (x, v, w) =
qpx

1− qx
U(x, v, w).

Thus Lemma 11 implies that the generating functions U(x, 1, v) and W (x, v, 1) satisfy

U(x, 1, v) = qxU(x, 1, v) +
xv

1− v
(W (x, v, 1)− vW (vx, 1, 1))

+
vx

1− v
(U(x, 1, v) +

pqx

1− qx
U(x, 1, v)− vU(vx, 1, 1)− pqvx

1− qx
U(vx, 1, 1)),

W (x, v, 1) = 2qxW (x, v, 1)− q2x2W (x, v, 1) +
pqvx2

1− v
(U(x, 1, v)− vU(vx, 1, 1))

+
pqvx

1− v
(U(x, 1, v)− U(vx, 1, 1)− qxU(x, 1, v) + qvxU(vx, 1, 1))

+
v

1− v
(xW (x, v, 1)− qx2W (x, v, 1))− vx

1− v
(W (vx, 1, 1)− qvxW (vx, 1, 1))

+ F (x, v),

where

F (x, v) = lim
w→1

(

pqx(1− qx)

1− w
(wZ(x, v) − Z(x, vw)) − pqvx2

(1− v)(1 − w)
(wZ(x, v) − Z(x, vw))

+
pqv2x2

(1− v)(1 − w)
(wZ(vx, 1) − Z(vx, w))

)

.

Hence, by finding U(x, 1, v) in the first equation and substituting it into the second with use of (18),

one obtains the following result.

Lemma 12. We have

K(x, v)W (x, v, 1) = A(x, v)W (vx, 1, 1) +B(x, v)U(vx, 1, 1) + F (x, v),
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where

K(x, v) =
(qx− 1)2((qx− 1)2 − (pqx2 + 2q2x2 − 2qx2 − 4qx+ 2x+ 2)v + (qx− x− 1)2v2)

(1− v)((qx− 1)2 − (pqx2 + q2x2 − qx2 − 2qx+ x+ 1)v)
,

A(x, v) = −
x(qx− 1)2v + x(q3x3 + q(p− q − 1)x2 − (q − 1)x+ 1)v2

(1− v)((qx− 1)2 − (pqx2 + q2x2 − qx2 − 2qx+ x+ 1)v)

−
qx2(q(pq + q − 1)x2 + (1− 2q)(p+ 1)x+ p+ 1)v3

(1− v)((qx− 1)2 − (pqx2 + q2x2 − qx2 − 2qx+ x+ 1)v)
,

B(x, v) = −
pqx(qx− 1)2v − pq2x2(q(2q − 1)x2 + (p− 4q + 1)x+ 2)v2

(1− qvx)((qx− 1)2 − (pqx2 + q2x2 − qx2 − 2qx+ x+ 1)v)

−
pq2x3(q2(q − 1)x2 − (1− 2q)(p− q)x− p+ q)v3

(1− qvx)((qx− 1)2 − (pqx2 + q2x2 − qx2 − 2qx+ x+ 1)v)
,

F (x, v) =
p(qv(q − 1)x2 − q(v + 1)x+ 1)

2((q − 1)vx− qx− v + 1)

√

(1− vx+ qvx)2 − 4qvx

+
(qv2(q − 1)2x3 − qv(qv − 2q + v)x2 + (2qv + q + v)x− 1)

2(qvx− qx− vx− v + 1)
.

For the kernel equation K(x/v, v) = 0, namely,

pqvx2 − ((qx− v)(v − 1)− vx)2 = 0,

we have two different power series solutions v(x) = f1(x), f2(x) such that v(0) = 1 that are given by

f1(x) = 1− (1−√
pq)x− q

2
√
pq

(
√
pq(p+ 2)− p(2q + 1))x2

− q

8
√
pq

(8
√
pq(2pq + q + p+ 1)− p(5pq + 8q2 + 24q + 3)x3 + · · · ,

f2(x) = 1− (1 +
√
pq)x− q

2
√
pq

(
√
pq(p+ 2) + p(2q + 1))x2

− q

8
(8
√
pq(2pq + p+ q + 1) + p(5pq + 8q2 + 24q + 3))x3 + · · · .

Replacing x by x/v in Lemma 12, we have

K(x/v, v)W (x/v, v, 1) = A(x/v, v)W (x, 1, 1) +B(x/v, v)U(x, 1, 1) + F (x/v, v).

By taking v = f1(x) and v = f2(x) in this last equation, we obtain the system

A(x/f1(x), f1(x))W (x, 1, 1) +B(x/f1(x), f1(x))U(x, 1, 1) + F (x/f1(x), f1(x)) = 0,

A(x/f2(x), f2(x))W (x, 1, 1) +B(x/f2(x), f2(x))U(x, 1, 1) + F (x/f2(x), f2(x)) = 0,

which leads to

U(x, 1, 1) = −A(x/f1(x), f1(x))F (x/f2(x), f2(x)) −A(x/f2(x), f2(x))F (x/f1(x), f1(x))

A(x/f1(x), f1(x))B(x/f2(x), f2(x)) −A(x/f2(x), f2(x))B(x/f1(x), f1(x))
, (19)

W (x, 1, 1) = −F (x/f1(x), f1(x))B(x/f2(x), f2(x)) − F (x/f2(x), f2(x))B(x/f1(x), f1(x))

A(x/f1(x), f1(x))B(x/f2(x), f2(x)) −A(x/f2(x), f2(x))B(x/f1(x), f1(x))
. (20)
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Moreover, we have V (x, 1, 1) = qpx

1−qx
U(x, 1, 1).

Combining the results above yields the following generating function formula.

Theorem 13. The generating function
∑

n≥1 tn(p, q)x
n is given by

1− qx+ qpx

1− qx
U(x, 1, 1) +W (x, 1, 1) + Z(x, 1),

where Z(x, 1), U(x, 1, 1) and W (x, 1, 1) are given by (18), (19) and (20), respectively.

Remark: The equation K(x/v, v) = 0 actually has six roots (counting multiplicities), namely, v1(x) =
f1(x), v2(x) = f2(x), v3(x) = v4(x) = qx and the following additional root of multiplicity two given

by

v5(x) = v6(x) = qx+ q
√
px

√
x+

q(p+ 2)

2
x2 +

√
pq(p+ 8q + 12)

8
x2√x+ · · · ,

assuming p, q, x > 0. We must decide which roots to use in obtaining an explicit formula for U(x, 1, 1)
as a series, and in accordance with (19), we define

G(x, v, w) = −A(x/v, v)F (x/w,w) −A(x/w,w)F (x/v, v)

A(x/v, v)B(x/w,w) −A(x/w,w)B(x/v, v)
.

Since G(x, v, w) = G(x,w, v), it suffices to consider the first few terms in the expansion of G(x, vi(x),
vj(x)) about x = 0 for (i, j) ∈ {(1, 2), (1, 3), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (5, 6)}. From this, it is

seen that G(x, vi(x), vj(x)) is a generating function in x whose coefficients are polynomials in p and q
only when (i, j) = (1, 2).

3.1 Case p = q = 1

Then the kernel equation K(x/v, v) = 0 in this case has for two of its roots

v = 1 and v = 1 +
16

9
sin4(

1

3
arcsin(

3
√
3x

2
))− 8

3
sin2(

1

3
arcsin(

3
√
3x

2
)).

Proceeding as in the proof of Theorem 13, we obtain the following result.

Theorem 14. Let y = cos(13 arcsin(
3
√
3x
2 )). Then the generating function

∑

n≥ tn(1, 1)x
n is given by

− (4y2 − 1)2 − 9x

2A

(

B + (64y6 − 96y4 + 36y2 + 27x− 4)(64y6 − 12y2 − 27x+ 2)
√
1− 4x

)

,

where A = (256y8 − 256y6 − 48y4 + 56y2 + 81x− 8)(x(4y2 − 1)4 + (x− 1)((4y2 − 1)2 − 9x)2) and

B = (4y2 − 1)6 − 9(32y4x+ 16y4 − 16y2x− 8y2 − 7x+ 1)((4y2 − 1)2 − 9x).

Remark: Comparing Theorems 5 and 14 implies (2), which was originally shown in [11] by a different

method.
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3.2 Case p = 1

Comparing the formulas from Theorems 4 and 13 when p = 1, one can show with the aid of mathematical

programming the following result which is equivalent to (1).

Corollary 15. We have an(1, q) = tn(1, q) for all n ≥ 1.

Remark: The joint distributions an(p, q) and tn(p, q) are seen however to differ for general p, where

p marks the number of descents (upon comparing the n = 5 terms of the corresponding generating

functions).

3.3 Coefficient of pm

Recall that we denote the coefficient of pm in a generating function f(x) by f(x|m). Note that by (18),

we get

Z(x, v|0) = vx(v0(vx) − v)

v0(vx)((1 − v)(1− qx) − vx)
,

with Z(x, v|m) = 0 for all m ≥ 1.

By Lemma 12, we get

K ′(x, v)W (x, v, 1) = A′(x, v)W (vx, 1, 1) +B′(x, v)U(vx, 1, 1) + F ′(x, v),

where

K
′(x, v) =

(qx− 1)2((q − 1)vx− qx− v + 1)2

1− v
−

(qx− 1)2vx2qp

1− v
,

A
′(x, v) =

vx(qx− 1)(1− qvx)((q − 1)vx− qx− v + 1)

1− v
−

v2x2q(q2vx2 + (1− 2q)vx+ v − x)

1− v
p,

B
′(x, v) = (qx− 1)(q(q − 1)vx2

− qvx− qx+ 1)qxvp+
q2x3v2((1− 2q)vx+ v + 1)

1− qvx
p
2
,

F
′(x, v)

= (q(q − 1)vx2
− qvx− qx+ 1)

(

1

2
(1− qx)p−

vx2q

2((q − 1)vx− qx− v + 1)
p
2

)

√

(1− vx+ qvx)2 − 4qvx

+ (vx(q(1− 2q)vx2 + qvx+ 1) − (1− qx)(1− qvx)2)

(

1

2
(1− qx)p−

vx2q

2((q − 1)vx− qx− v + 1)
p
2

)

.

Thus,

K ′(x/v, v|0)W (x/v, v, 1|m) +K ′(x/v, v|1)W (x/v, v, 1|m− 1)

= A′(x/v, v|0)W (x, 1, 1|m) +A′(x/v, v|1)W (x, 1, 1|m− 1) (21)

+B′(x/v, v|1)U(x, 1, 1|m− 1) +B′(x/v, v|2)U(x, 1, 1|m− 2)

+ F ′(x/v, v|1)δm,1 + F ′(x/v, v|2)δm,2.

This equation performs a procedure which computes the coefficient of pm for all m ≥ 0. Clearly,

V (x, v, w|m) = U(x, v, w|m) = W (x, v, w|m) = 0, m ≤ 0.

Hence, by Theorem 13, we have that the coefficient of p0 in the generating function
∑

n≥1 tnx
n is given

by Z(x, 1) = 1−v0(x)
v0(x)

.
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3.3.1 Case m = 1

Suppose m = 1. Clearly, Z(x, v|1) = 0. By Lemma 11, we have V (x, v, w|1) = 0. Then by (21), we get

((q − 1)vx− qx− v2 + v)2(qx− v)2

v2(1− v)
W (x/v, v, 1|1)

= − ((q − 1)vx− qx− v2 + v)x(qx − 1)(qx− v)

1− v
W (x, 1, 1)

− 1

2
(qx− v)(q(q − 1)x2 − qxv − qx+ v)

√

(q − 1)2x2 − 2(q + 1)x+ 1

+
1

2
(qx− v)(q(q − 1)2x3 − q(q − 1)vx2 − 2q2x2 + (2q + 1)vx+ qx− v).

Differentiating with respect to v and then substituting v = v0(x), we obtain

W (x, 1, 1|1) = q(q − 1)2x3 − q(3q − 1)x2 + (3q + 1)x− 1

2x(qx− 1)
√

(q − 1)2x2 − 2(q + 1)x+ 1
+

(qx − 1)2 − qx2

2x(qx− 1)
,

which leads to an explicit formula for W (x/v, v, 1) and hence for W (x, v, 1).

To find U(x, 1, 1|1), we use Lemma 11 to get

(1− qx

w
− x

1− w
)U(x/w, 1, w|1) = x

1− w
(W (x/w,w, 1|1)− wW (x, 1, 1|1))− xw

1− w
U(x, 1, 1|1).

By taking w = v0(x) and using the expressions for W (x/w,w, 1|1) and W (x, 1, 1|1) (from the previous

step), we obtain explicit formulas for U(x, 1, 1|1) and U(x/w, 1, w|1). In particular,

U(x, 1, 1|1)

=
q(q − 1)4x5 − q(q − 1)(5q2 − 3q − 1)x4 + (10q3 + 1)x3 − 2(5q2 + 4q + 2)x2 + (5q + 4)x− 1

2x(1− qx)
√

((q − 1)2x2 − (2q + 1)x+ 1)3

+
(q(q − 1)3x4 − q2(4q − 3)x3 + (6q2 + 3q + 1)x2 − (4q + 3)x+ 1)

2x(1− qx)((q − 1)2x2 − (2q + 1)x+ 1)
.

By Theorem 13, we have that the coefficient of p1 in the generating function
∑

n≥1 tnx
n is given by

U(x, 1, 1|1) +W (x, 1, 1|1).

3.3.2 Case m ≥ 2

Let m ≥ 2 and suppose we have determined the generating functionsW (x, v, 1|m−1) and U(x, 1, w|m−
1). Now let us describe an algorithm for finding W (x, v, 1|m) and U(x, 1, w|m).

• By Lemma 11, we have Z(x, v|m) = 0 and V (x, 1, w|m) = qx

1−qx
U(x, 1, w|m − 1). Hence, we

know V (x, 1, w|m).
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• By Lemma 11, and noting Z(x, v|m− 1) = 0, we have

(1 − qx/v)(1− qx

v
− x

1− v
)W (x/v, v, 1|m)

=
qx2

v(1− v)
(U(x/v, 1, v|m− 1)− vU(x, 1, 1|m− 1))

+
qx

1− v
((1− qx/v)U(x/v, 1, v|m− 1)− (1 − qx)U(x, 1, 1|m− 1))

− x(1− qx)

1− v
W (x, 1, 1|m).

Note that v = v0(x) is a solution to 1− qx

v
− x

1−v
= 0. Hence, by taking v = v0(x) and using the

prior established results for W (x, v, 1|m− 1) and U(x, 1, w|m− 1), we obtain an explicit formula

for W (x, 1, 1|m), which leads to a formula for W (x/v, v, 1|m) and thus W (x, v, 1|m).

• By Lemma 11, we have

(1− qx

w
− x

1− w
)U(x/w, 1, w|m)

=
x

1− w
(W (x/w,w, 1|m) − wW (x, 1, 1|m))

+
x

1− w
(V (x/w, 1, w|m)− wU(x, 1, 1|m)− wV (x, 1, 1|m)).

By taking w = v0(x) and using expressions of W (x, v, 1|m) (see second step of the algorithm)

and V (x, 1, w|m) (see first step), we obtain U(x, 1, 1|m), which leads to an explicit formula for

U(x, 1, w|m).

Hence, by applying the algorithm described above, one can find the generating functions W (x, v, 1|m)
and U(x, 1, w|m) from W (x, v, 1|m − 1) and U(x, 1, w|m − 1). Then the coefficient of pm in the

generating function
∑

n≥1 tnx
n is given by

U(x, 1, 1|m) + V (x, 1, 1|m) +W (x, 1, 1|m), m ≥ 2.

4 Concluding remarks

In this paper, we have discussed various computational aspects related to the joint distribution of desc

and asc on In(≥, 6=, >) as well as of desc and n − 1 − asc on In(>, 6=,≥). As a consequence of our

results, we obtained new proofs of (1) and (2) above in a unified way. As a first step in our proofs, we

established, by combinatorial arguments, Lemmas 1 and 10, which we then rewrote in terms of generat-

ing functions thereby obtaining systems of functional equations. Note that we proceeded in this manner

since the recurrences are intertwined and involve intricate relationships between multiple arrays and pa-

rameters. We leave it as a challenge for the reader to express the relations between the various generating

functions directly using the symbolic enumeration approach described in [5], which appears more difficult

to implement in this case than the method presented here in deriving these relations.

Let A(x, v, w) = A(x, v, w; p, q) be given by

A(x, v, w) = B+(x, v, w) +B−(x, v, w) +B0(x, vw) + C−(x, v, w) + C0(x, vw) +
wx

1− qwx
,
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where the B and C functions are defined just prior to Lemma 2. By the definitions, the coefficient of

xn in A(x, v, w) is the joint distribution of the height, last letter, desc and asc statistics on In(≥, 6=, >),
marked by v, w, p and q, respectively. Note that A(x, 1, 1) coincides with A(x) defined above. Let

B(x, v, w) = B(x, v, w; p, q) be given by

B(x, v, w) = U(x, v, w) + V (x, v, w) +W (x, v, w) + Z(x, v),

where the U , V , W and Z functions are defined just prior to Lemma 11. Note that the coefficient of xn

of B(x, v, w) gives the joint distribution of the following four parameters considered on In(>, 6=,≥): (i)

leftmost top, (ii) largest letter occurring to right of leftmost top, (iii) desc and (iv) n − 1 − asc. Here,

the leftmost top of an inversion sequence with no descents is defined as its last letter, with parameter (ii)

assuming a value of zero in this case.

Then we have the following table of univariate distributions when n = 6 obtained by setting all but

one of {v, w, p, q} equal to unity in A(x, v, w) or B(x, v, w). Note that the only distributions that the A

f(x; q) [x6](f(x; q))

A(x, q, 1; 1, 1) 102q5 + 142q4 + 131q3 + 88q2 + 31q + 1
A(x, 1, q; 1, 1) 102q6 + 102q5 + 102q4 + 85q3 + 62q2 + 42q
A(x, 1, 1; q, 1) 77q2 + 286q + 132
A(x, 1, 1; 1, q) q5 + 50q4 + 220q3 + 188q2 + 35q + 1
B(x, q, 1; 1, 1) 42q6 + 112q5 + 123q4 + 116q3 + 101q2 + q
B(x, 1, q; 1, 1) 60q6 + 69q5 + 67q4 + 59q3 + 49q2 + 59q + 132
B(x, 1, 1; q, 1) 51q2 + 312q + 132
B(x, 1, 1; 1, q) q5 + 50q4 + 220q3 + 188q2 + 35q + 1

Tab. 1: Distributions of different statistics on I6(≥, 6=, >) and I6(> 6=,≥).

and B groups have in common when n = 6 are the respective last ones, with these being equal due to

(1). In particular, the descents statistic distribution is different on In(≥, 6=, >) and In(>, 6=,≥). Consider

replacing Z(x, v) with Z(x, t), where t ∈ {1, w, vw}, in the definition of B(x, v, w) above keeping

all other terms the same. Such replacements would correspond to different definitions of the leftmost

top statistic in the case of a (weakly) increasing inversion sequence. Three other similar tables can be

obtained when n = 6, using Z(x, t) instead of Z(x, v) as described in the definition of B(x, v, w), and

in each case, there is no other commonality between the A and B groups of distributions outside of the

one correlating to (1). We thus leave as an open problem the question of finding other equally distributed,

naturally defined statistics on In(≥, 6=, >) and In(>, 6=,≥) and further, if possible, a generalization of

(1) in terms of joint distributions of two or more statistics defined on the respective classes.
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