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Motivated by the study of pattern avoidance in the context of permutations and ordered partitions, we consider the

enumeration of weak-ordering chains obtained as leaves of certain restricted rooted trees. A tree of order n is gener-

ated by inserting a new variable into each node at every step. A node becomes a leaf either after n steps or when a

certain stopping condition is met. In this paper we focus on conditions of size 2 (x = y, x < y, or x ≤ y) and several

conditions of size 3. Some of the cases considered here lead to the study of descent statistics of certain ‘almost’

pattern-avoiding permutations.
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1 Introduction

A weak-ordering chain in the variables x1, x2, · · · , xn is an expression of the form

xi1 opxi2 op · · · opxin ,

where op is either < or =. We let WOC(n) denote the set of all weak-ordering chains in n variables.

Every w ∈ WOC(n) corresponds to an ordered partition of [n] = {1, . . . , n} obtained from the indices

of the variables in w, where the numbers i and j are in the same block of the partition whenever xi = xj .

For example,

x2 < x4 = x5 < x1 < x3 ←→ {{2}, {4, 5}, {1}, {3}}.
Therefore, ifWOC(0) consists of the empty chain, weak-ordering chains are enumerated by the sequence

(fn)n≥0 of Fubini numbers (ordered Bell numbers) 1, 1, 3, 13, 75, 541, 4683, 47293, . . . , [5, A000670],

which satisfy the recurrence

f0 = 1 and fn =
n
∑

i=1

(

n

i

)

fn−i for n ≥ 1.
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Every element w ∈ WOC(n) can be recursively generated starting with x1, and then inserting xi

(together with either < or =) into a previously constructed weak-ordering chain of length i − 1. This

process generates a rooted labeled tree whose nodes at level i are labeled by the elements of WOC(i).
For example, for n = 3, we get the tree

1

21

321 231 231 213 213

12

312 123 123

12

312 132 132 123 123

where ij is a shortcut for xi < xj and ij represents xi = xj .

Now, suppose that we wish to stop the above generating process as soon as we have a tie. In other

words, suppose that we do not allow nodes with xi = xj for some i > j to have descendants. Then, the

above tree would take the form

1

21

321 231 231 213 213

12 12

312 132 132 123 123

(1.1)

with only 11 leaves instead of 13. We call (1.1) a restricted generating tree of weak-ordering chains

subject to the stopping condition xi = xj .

As another example, consider the stopping condition xi < xj < xk with i < j < k. In this case, the

generating tree at level 3 looks like the tree forWOC(3):
1

21

321 231 231 213 213

12

312 123 123

12

312 132 132 123 123

but the node with label 123 will have no descendants as the generating tree grows.

The goal of this paper is to study the enumeration of weak-ordering chains subject to various stopping

conditions. This is equivalent to counting the number of leaves of the corresponding restricted generating

subtree ofWOC(n).
Our strategy relies on separating the leaves that avoid the stopping condition, call them active leaves,

from the leaves that contain the stopping condition, call them inactive leaves. Throughout this paper,

we will consistently use an to denote the total number of active leaves after n steps, and bn for the total

number of inactive leaves. We also let ∆n be the number of leaves that become inactive at level n, thus

∆1 = 0 and ∆n = bn − bn−1 for n ≥ 2. Note that the meaning of active/inactive depends on the given

stopping condition.

For example, for the stopping condition xi = xj , we have

a1 = 1, b1 = 0, a2 = 2, b2 = 1, a3 = 6, b3 = 5.
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The five inactive leaves at step 3, see (1.1), are the ones labelled in red.

This manuscript is organized as follows. In Section 2, we start with the simpler case when the stopping

condition involves only one operation (=, <, or ≤). In Sections 3–5, we consider stopping conditions

of the form xi1 opxi2 opxi3 where op is either < or ≤. Our approach leads to descent statistics of

certain ‘almost’ pattern-avoiding permutations. Finally, in Section 6, we consider the k-equal case and

other stopping conditions with restrictions in both the order and the sizes of the parts in the partitions

corresponding to the weak-ordering chains.

2 Trees with stopping condition of size 2

In this section, we will discuss the enumeration of weak-ordering chains subject to the stopping conditions

xi = xj , xi < xj , and xi ≤ xj , respectively.

Theorem 2.1 (Stopping condition xi = xj) If wn is the number of weak-ordering chains inWOC(n),
subject to the stopping condition xi = xj with i 6= j, then wn = 2n! − 1. This sequence starts with

1, 3, 11, 47, 239, 1439, 10079, 80639, . . . , cf. [5, A020543].

Proof: First, since an active leaf is a weak-ordering chain that avoids a tie, the number of active leaves in

WOC(n) is just the number of permutations on {x1, . . . , xn}, so an = n!.
On the other hand, every leaf that becomes inactive at level j is a descendant of an active node at level

j − 1. In fact, everyone of these active weak-ordering chains generates j − 1 inactive leafs, obtained by

replacing xk with xj = xk for k ∈ {1, . . . , j − 1}. Therefore,

∆j = (j − 1)aj−1 = (j − 1)(j − 1)!,

which implies that the total number of inactive leaves is given by

bn =

n
∑

j=1

∆j =

n
∑

j=1

(j − 1)(j − 1)! = n!− 1.

In conclusion, wn = an + bn = 2n!− 1. ✷

Theorem 2.2 (Stopping condition xi < xj) If wn is the number of weak-ordering chains inWOC(n),
subject to the stopping condition xi < xj with i < j, then wn = (n− 1)2n−1 +1. That is, 1, 3, 9, 25, 65,

161, 385, 897, . . . , cf. [5, A002064].

Proof: The stopping condition implies that the indices of any active weak-ordering chain in WOC(n)
must appear in decreasing order xn opxn−1 op · · · opx1, and we can choose op to be either < or =.

Hence an = 2n−1.

On the other hand, every active weak-ordering chain at level j−1 generates j−1 inactive leafs, obtained

by replacing xk with xk < xj for k ∈ {1, . . . , j − 1}. Therefore,

∆j = (j − 1)aj−1 = (j − 1)2j−2,

which implies bn =
n
∑

j=1

(j − 1)2j−2 = (n− 2)2n−1 + 1.

In conclusion, wn = an + bn = 2n−1 + (n− 2)2n−1 + 1 = (n− 1)2n−1 + 1. ✷
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Theorem 2.3 (Stopping condition xi ≤ xj) If wn is the number of weak-ordering chains inWOC(n),
subject to the stopping condition xi ≤ xj with i < j, then wn = n2 − n + 1. These are the central

polygonal numbers 1, 3, 7, 13, 21, 31, 43, 57, . . . , cf. [5, A002061].

Proof: The only active chain at level n is xn < xn−1 < · · · < x1, so an = 1. Moreover, the active

chain xj−1 < · · · < x1 generates 2(j − 1) inactive leaves at level j, obtained by replacing xk with either

xk < xj or xk = xj for k ∈ {1, . . . , j − 1}. Therefore, bn =
n
∑

j=1

2(j − 1) = n(n − 1), which implies

wn = an + bn = n2 − n+ 1. ✷

3 Stopping condition xi1 < xi2 < xi3 with i1< i2< i3

Before we proceed, let us review some of the basic objects in the study of patterns in permutations. We

refer to the book by Kitaev [3] for more details.

A permutation of size n is a one-to-one function σ : [n] → [n]. We use the common one-line notation

σ = σ(1) · · ·σ(n) and denote by Sn the set of all permutations of size n. The reverse of σ is the

permutation σr = σ(n) · · ·σ(1), and the complement is σc = σ′(1) · · ·σ′(n) where σ′(i) = n+1−σ(i).
A permutation σ is said to have an ascent at position i if σ(i) < σ(i + 1), and it has a descent at i if

σ(i) > σ(i + 1).
An occurrence of a pattern τ in a permutation σ is a subsequence in σ (of length |τ |) whose entries are

in the same relative order as those in τ . For example, the permutation 23154 has two occurrences of the

pattern 123 (namely 235 and 234), but the permutation 53214 avoids the pattern 123. We use the standard

notation Sn(τ) to denote the set of all permutations in Sn that avoid the pattern τ .

As mentioned in the introduction, WOC(n) is in one-to-one correspondence with the set of ordered

partitions of [n]. For such an ordered partition π, we let σπ be the underlined permutation obtained by

merging the parts of π and underlining the entries coming from the same block of π. In this section, we

adopt the convention of writing adjacent underlined entries in decreasing order. For example,

x2 < x4 = x5 < x1 < x3 ←→ π = 2 | 54 | 1 | 3 ←→ σπ = 2 5413,

x2 = x4 = x6 < x5 < x1 = x3 ←→ π = 642 | 5 | 31 ←→ σπ = 642 5 31.

Let Vn(σ) be the set of chains inWOC(n) projecting to σ. A descent σ(i) > σ(i+1) in the permutation

σ could come from xσ(i) < xσ(i+1) or xσ(i) = xσ(i+1) in the chain. Thus, if σ has d descents, then Vn(σ)
has 2d elements. Moreover, if a chain contains an increasing subsequence xi1 < xi2 < xi3 , then the

projected permutation must contain a 123-pattern. As a consequence, the set of active chains inWOC(n),
subject to the stopping condition xi1 < xi2 < xi3 with i1 < i2 < i3, is the union

⋃

σ∈Sn(123)

Vn(σ) =
n−1
⋃

d=0

⋃

σ∈Sd
n
(123)

Vn(σ),

where Sn(123) is the set of 123-avoiding permutations on [n], and Sd
n(123) denotes the subset of permu-

tations in Sn(123) having exactly d descents. Therefore, the number of active leaves at level n is given
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by

an =

n−1
∑

d=0

∑

σ∈Sd
n
(123)

|Vn(σ)| =
n−1
∑

d=0

2den,d, (3.1)

where en,d = |Sd
n(123)|. Let

E(x, y) =

∞
∑

n=1

n−1
∑

d=0

en,d x
nyd.

Barnabei et al. [1, Thm. 6] gave a closed form for 1 + E(x, y) from which we deduce

E(x, y) =
1− 2xy(1 + x− xy)−

√

1− 4xy(1 + x− xy)

2xy2(1 + x− xy)
. (3.2)

Therefore, the generating function A(x) =
∞
∑

n=1
anx

n satisfies

A(x) = E(x, 2) =
(1− 2x)2 −

√
1− 8x+ 8x2

8x(1− x)
.

This result is consistent with Chen et al. [2, Cor. 2.3]. Moreover, since A(x) can be expressed in terms of

the Catalan generating function, namely A(x) = 1
2C(2x(1 − x)), we have

an =
n
∑

j=0

(−1)j2n−j−1

(

n− j

j

)

Cn−j for n ≥ 1, (3.3)

where Cm denotes the m-th Catalan number. This sequence starts with 1, 3, 12, 56, 284, 1516, 8384,

47600, . . . , cf. [5, A226316].

Using a version of Krattenthaler’s bijection between Dyck paths and 123-avoiding permutations (cf.

[3, 4]), it can be checked that the set of active chains inWOC(n) with stopping condition xi1 < xi2 < xi3

is in one-to-one correspondence with the set of Dyck paths of semilength n where valleys and triple down-

steps come in 2 colors.(i)

Our connection between weak-ordering chains and permutations makes it clear that a leaf is inactive if

the associated permutation has a 123 pattern. Thus, in order to count the elements that become inactive at

level n, we need to enumerate the following set:

For n > 3 and 1 ≤ d ≤ n− 3, define

Gdn(123) = {σ ∈ Sn |σ has a 123 pattern, d descents, and σ′ ∈ Sn−1(123)}, (3.4)

where σ′ ∈ Sn−1 denotes the permutation obtained from σ ∈ Sn by removing n. In addition, we define

Gd1 (123) = Gd2 (123) = ∅ and G03(123) = {123}.
(i) A Dyck path of semilength n is a lattice path from (0, 0) to (0, 2n) with steps U = (1, 1) and D = (1,−1), never going below

the x-axis. A valley is a subpath DU.
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Proposition 3.5 If gn,d = |Gdn(123)|, then g3,0 = 1, and for n > 3 and 1 ≤ d ≤ n− 3,

gn,d = (d+ 1)en−1,d + (n− d)en−1,d−1 − en,d, (3.6)

where en,d = |Sd
n(123)|. Therefore, G(x, y) = x3 +

∞
∑

n=4

n−3
∑

d=1

gn,d x
nyd satisfies

G(x, y) = x+ (x− 1)E(x, y) + x2yEx(x, y) + (xy − xy2)Ey(x, y).

where 〈Ex, Ey〉 = ∇E, and E(x, y) is the function in (3.2). In other words,

G(x, y) =
1− 4xy(1 + x− xy) + 2x2y − (1− 2xy)

√

1− 4xy(1 + x− xy)

2xy2
√

1− 4xy(1 + x− xy)
.

Proof: For n > 3, every σ in Gdn(123) can be generated by inserting n into a permutation σ′ ∈
Sd
n−1(123) ∪ Sd−1

n−1(123) at a position where it creates a 123 pattern.

If σ′ has d descents, then n may only be inserted at a descent or at the last position of σ′. Thus, each

σ′ ∈ Sd
n−1(123) generates d + 1 permutations in Sd

n. On the other hand, if σ′ has d − 1 descents, then

n will have to be inserted at one of the n − d available ascents of σ′ in order to create an extra descent.

Therefore, each σ′ ∈ Sd−1
n−1(123) generates n− d permutations in Sd

n.

Together, the above insertion procedures generate (d + 1)en−1,d + (n − d)en−1,d−1 permutations of

size n with d descents. However, since the elements of Gdn(123) are required to have a 123 pattern, we

need to remove the en,d permutations that avoid 123.

The first statement about G(x, y) then follows from (3.6) by means of routine algebraic manipulations.

The closed form statement is just a consequence of (3.2). ✷

Theorem 3.7 If wn is the number of weak-ordering chains inWOC(n), subject to the stopping condition

xi1 < xi2 < xi3 with i1 < i2 < i3, then

wn =

n−1
∑

d=0

2den,d +

n
∑

j=3

j−3
∑

d=0

2dgj,d.

The sequence (wn)n∈N starts with 1, 3, 13, 69, 401, 2433, 15121, 95441, . . . , and W (x) =
∞
∑

n=1
wnx

n

satisfies

W (x) =
x+ x

√
1− 8x+ 8x2

2(1− x)
√
1− 8x+ 8x2

.

Proof: By (3.1), the number of active leaves after n steps is an =
n−1
∑

d=0

2den,d, and their generating

function A(x) is given by

A(x) = E(x, 2) =
(1− 2x)2 −

√
1− 8x+ 8x2

8x(1− x)
.
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On the other hand, a weak-ordering chain that becomes inactive at level j ≥ 3 leads to a σ ∈ Sj that

has a 123 pattern, and such that σ′ ∈ Sj−1(123). The number of such permutations having d descents is

given by gj,d in (3.6). Now, since a descent σ(i) > σ(i + 1) in σ comes from either xσ(i) < xσ(i+1) or

xσ(i) = xσ(i+1) in the chain, there are 2dgj,d chains projecting to the permutations in Gdj (123). Therefore,

b1 = b2 = 0, and ∆j = bj − bj−1 =

j−3
∑

d=0

2dgj,d for j ≥ 3.

The formula for wn = an + bn follows from the fact that bn =
n
∑

j=3

∆j .

Finally, using Proposition 3.5 we can write B(x) =
∞
∑

n=1
bnx

n as

B(x) =
G(x, 2)

1− x
=

1− 8x+ 12x2 − (1− 4x)
√
1− 8x+ 8x2

8x(1− x)
√
1− 8x+ 8x2

,

and the claimed expression for W (x) is obtained by combining A(x) +B(x). ✷

4 Stopping condition xi1 ≤ xi2 ≤ xi3 with i1< i2< i3

This case is more restrictive than the previous one. For example, the chains

x1 = x2 < x3, x1 < x2 = x3, and x1 = x2 = x3,

that were previously active leaves, will now turn into inactive leaves.

In order to handle the stopping condition at the permutation level in a consistent manner (i.e. using

descents in the permutation to mark the places where the corresponding chain may have an = symbol),

it is convenient to consider underlined 321-avoiding permutations. We will then use the complement

map to obtain underlined 123-avoiding permutations that correspond to the weak-ordering chains with the

stopping condition xi1 ≤ xi2 ≤ xi3 .

This process will be explained and illustrated in the proof of the following proposition.

Proposition 4.1 The set of active leaves inWOC(n), subject to the stopping condition xi1 ≤ xi2 ≤ xi3

with i1 < i2 < i3, is in one-to-one correspondence with the set of Dyck paths of semilength n where each

subpath UDD can take on two colors. If we let an denote the number of such paths, then their generating

function A(x) satisfies

1 +A(x) =
1−
√
1− 4x− 4x2

2x(1 + x)
= C(x(1 + x)),

where C(x) is the Catalan function, and therefore, an =
n
∑

j=0

(

n−j
j

)

Cn−j . This gives the sequence 1, 3, 9,

31, 113, 431, 1697, 6847, . . . , cf. [5, A052709].
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Proof: We will prove the statement by establishing a bijection that relies on a known map between Dyck

paths and 321-avoiding permutations, see e.g. [3]. We represent a Dyck path as a lattice path from (0, 0) to

(n, n), starting with an N-step (0, 1), ending with an E-step (1, 0), and never going below the line y = x.

We will allow NEE to take on two colors.

Given a Dyck path P of the above type, drawn on a coordinate grid, place a dot in every cell bounded

by an NE-turn of the path, and then place dots in increasing order (from left to right) so that every column

below the path has exactly one dot with no two dots in the same row. This gives the plot of a 321-avoiding

permutation σP , and we underline adjacent elements of the permutation if the corresponding steps in the

path are orange. For example, for n = 3 we have the following 9 elements:

312 312 231 231

213 213 132 132 123

Finally, we take the complement of σP (keeping the underlines) and construct the weak-ordering chain

wP associated with P by replacing ij in σc
P with xi < xj and ij with xi = xj . Note that σc

P ∈ Sn(123),
hence wP does not contain the stopping condition. Also observe that, while xi = xj and xj = xi

represent the same chain, our map gives the partition blocks in the form: smallest element first, followed

by the rest of the elements in decreasing order.

The above paths correspond to the chains:

x1 < x3 < x2, x1 = x3 < x2, x2 < x1 < x3, x2 < x1 = x3

x2 < x3 < x1, x2 = x3 < x1, x3 < x1 < x2, x3 < x1 = x2, x3 < x2 < x1.

We now illustrate the inverse by means of an example. Suppose we have the active leaf

w : x5 = x7 < x2 = x6 < x4 < x1 < x3.

To this weak-ordering chain we associate the underlined permutation σw = 57 26413 with complement

σc
w = 31 62 475. Finally, constructing the Dyck path corresponding to 3162475 and making orange the

NEE steps above underlined numbers, we arrive at
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which is a colored Dyck path of the desired form.

Note that a permutation σ on [n] with d descents gives rise to 2d chains. Since the reverse σr is a

123-avoiding permutation with d ascents (hence n − 1 − d descents), we conclude that the number of

active leaves is given by

an =

n−1
∑

d=0

2den,n−1−d =

n−1
∑

d=0

2n−1−den,d, (4.2)

where en,d = |Sd
n(123)|. Thus A(x) = 1

2E(2x, 1
2 ) with E(x, y) from (3.2), which simplifies to the

claimed expression. ✷

Theorem 4.3 If wn is the number of weak-ordering chains inWOC(n), subject to the stopping condition

xi1 ≤ xi2 ≤ xi3 with i1 < i2 < i3, then

wn =

n−1
∑

d=0

2n−1−den,d +

n
∑

j=3

j−1
∑

d=2

2j−1−dgj,d.

The sequence (wn)n∈N starts with 1, 3, 13, 59, 269, 1227, 5613, 25771, 118765, . . . , and the generating

function W (x) =
∞
∑

n=1
wnx

n satisfies

1 +W (x) =
x

1− x2
+

1− 2x− 2x2

(1− x2)
√
1− 4x− 4x2

.

Proof: We already know that the number of active chains is given by (4.2), so we only need to focus

on the inactive ones. Note that inactive chains at level j come from permutations in Sj that contain the

pattern 321 and such that their reduced permutation (obtained by removing j) belongs to Sj−1(321). The

set of such permutations having exactly d descents is in bijection with Gj−1−d
j (123) (as defined in (3.4)),

and therefore, each such permutation induces 2dgj,j−1−d inactive weak-ordering chains. Hence

∆j = bj − bj−1 =

j−3
∑

d=0

2dgj,j−1−d =

j−1
∑

d=2

2j−1−dgj,d,

which implies bn =
n
∑

j=3

∆j =
n
∑

j=3

j−1
∑

d=2

2j−1−dgj,d. We can then use Proposition 3.5 to write its generating

function B(x) as

B(x) =
1
2G(2x, 1

2 )

1− x
=

1− 4x− (1− 2x)
√
1− 4x− 4x2

2x(1− x)
√
1− 4x− 4x2

.

Combined with Proposition 4.1, this gives a closed form for 1 +W (x) = 1 +A(x) +B(x). ✷
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5 Stopping condition xi1 ≤ xi2 < xi3 with i1< i2< i3

Proposition 5.1 The set of active leaves inWOC(n), subject to the stopping condition xi1 ≤ xi2 < xi3

with i1 < i2 < i3, is in one-to-one correspondence with the set of Dyck paths of semilength n in which

valleys may be marked. They are counted by the little Schröder numbers 1, 3, 11, 45, . . . , [5, A001003].

Proof: We will use the same map between 321-avoiding permutations and Dyck paths used in Propo-

sition 4.1 to provide a bijection between active weak-ordering chains of length n and Dyck paths from

(0, 0) to (n, n) in which valleys may be marked. It is easy to check that these paths are counted by the

little Schröder numbers.

For every possibly marked Dyck path P , we plot the corresponding 321-avoiding permutation σP and

underline adjacent elements of σP if there is a marked valley between their plots. For example, for n = 3
there are 11 such elements:

312 132 132 213 213

132 132 123 123 123 123

Note that, by construction, a 312 pattern can never occur. We then take the reverse of σP (keeping

the underlines) and construct the weak-ordering chain wP associated with P by replacing ij in σr
P with

xi < xj and ij with xi = xj . The resulting underlined permutation σr
P avoids 123 and does not contain a

213 pattern. Hence, the chain wP does not contain the stopping condition. For example, the above paths

correspond to the active chains:

x2 < x1 < x3, x2 < x3 < x1, x2 < x3 = x1, x3 < x1 < x2, x3 = x1 < x2,

x2 < x3 < x1, x2 < x3 = x1, x3 < x2 < x1, x3 < x2 = x1, x3 = x2 < x1, x3 = x2 = x1.

The reverse map is straightforward. From an active chain, read the underlined permutation made from

its indices (with the convention that in a block of equal elements, indices are sorted in decreasing or-

der). Then take the reverse permutation (necessarily 321-avoiding) and draw the associated Dyck paths,

marking the valleys that correspond to underlined adjacent entries in the permutation. ✷

Observe that, since the number of Dyck paths with v valleys is counted by the Narayana numbers

Nn,v = 1
n

(

n

v

)(

n

v+1

)

, the number of active leaves is given by

an =
n−1
∑

v=0

2vNn,v =
n−1
∑

v=0

2v

n

(

n

v

)(

n

v + 1

)

.
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For n > 3 and 1 ≤ d ≤ n− 2, define

Gdn(213) = {σ ∈ Sn |σ has a 213 pattern, d descents, and σ′ ∈ Sn−1(213)},

where σ′ ∈ Sn−1 is the reduced permutation obtained by removing n. In addition, we define Gd1 (213) =
Gd2 (213) = ∅ and G13(213) = {213}.
Proposition 5.2 If ℓn,d = |Gdn(213)|, then ℓ3,1 = 1, and for n > 3 and 1 ≤ d ≤ n− 2,

ℓn,d = (d+ 1)Nn−1,d + (n− d)Nn−1,d−1 −Nn,d.

Moreover, L(x, y) = x3 +
∞
∑

n=4

n−2
∑

d=1

ℓn,d x
nyd has the closed form

L(x, y) =
x(y + 1)− 2(y2 − y)x4 − 1

2xy
+

(1 − xy)2 + x2 − 2x

2xy
√

1− 2x(y + 1) + x2(y − 1)2
.

Proof: The formula for ℓn,d follows from an argument similar to the one made for the proof of (3.6).

There are (d + 1)Nn−1,d permutations of size n with d descents that can be created by inserting n (at a

descent or at the end) into the Nn−1,d elements of Sd
n−1(213). In addition, there are (n − d)Nn−1,d−1

such permutations that can be generated from Sd−1
n−1(213). To get the total number of elements in Gdn(213),

we combine the above permutations and remove the ones that avoid 213 (counted by Nn,d).

As a consequence, if N(x, y) is the generating function for the Narayana numbers, then

L(x, y) = x+ (1 − y)x3 + (x− 1)N(x, y) + x2yNx(x, y) + (xy − xy2)Ny(x, y).

Finally, using the known formula

N(x, y) =
1− x(y + 1)−

√

1− 2x(y + 1) + x2(y − 1)2

2xy
,

one derives the closed form of L(x, y). ✷

Theorem 5.3 If wn is the number of weak-ordering chains inWOC(n), subject to the stopping condition

xi1 ≤ xi2 < xi3 with i1 < i2 < i3, then

wn =

n−1
∑

d=0

2dNn,d +

n
∑

j=3

j−2
∑

d=1

2dℓj,d.

The sequence (wn)n∈N starts with 1, 3, 13, 65, 341, 1827, 9913, 54273, 299209, 1658723, . . . , and the

function W (x) =
∞
∑

n=1
wnx

n satisfies

W (x) =
(1− x)2 − (1− 3x)

√
1− 6x+ x2

4(1− x)
√
1− 6x+ x2

.
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Proof: The first summation in the claimed formula for wn represents the number of active weak-ordering

chains (Proposition 5.1). Thus their generating function can be written as

A(x) = N(x, 2) =
1− 3x−

√
1− 6x+ x2

4x
.

In order to derive a formula for the number ∆j of active chains that become inactive at level j, we will

provide a bijection φ between these chains and the set of permutations in
⋃j−2

d=1 Gdj (213) where descents

may be underlined. That implies ∆1 = ∆2 = 0, and for j ≥ 3, ∆j =
j−2
∑

d=1

2dℓj,d. As a consequence, the

total number of inactive chains will be given by

b1 = b2 = 0, and bn =

n
∑

j=3

∆j =

n
∑

j=3

j−2
∑

d=1

2dℓj,d for n ≥ 3,

with generating function

B(x) =
x3 + L(x, 2)

1− x
=

3x− 1

4x(1− x)
− 5x− 1

4x
√
1− 6x+ x2

.

Combining the active and inactive chains, we get the formulas for wn and W (x).
We finish the proof by describing the bijection φ. Let w ∈ WOC(n) be a chain that becomes inactive at

level n, and let σw be the permutation corresponding to w obtained from the indices of the variables, with

the usual convention that indices of equal elements are underlined and listed in decreasing order. Observe

that for w to be inactive, the entry n in σw must be part of either a 123 pattern or a 213 pattern, while the

reduced permutation σ′
w must avoid both patterns. In particular, this implies that the entry n − 1 in σw

cannot be to the right of entry n.

If n− 1 and n are not adjacent, we proceed as follows:

• Map σ′
w to the 213-avoiding permutation τ ′w having the same right-to-left maxima(ii), keeping the

underlines in the same positions.

• If i is the position of n in σw, we let φ(w) be the permutation obtained by inserting n into τ ′w at

position i.

Since n−1 must be left of n in σw, the permutation φ(w) will always contain a 213-pattern. For example,

for the chain x6 < x8 < x7 = x4 < x2 < x9 < x5 = x1 < x3, the above steps give the permutations

σw = 687429513

σ′
w = 68742513 7→ τ ′w = 68714523

φ(w) = 687149523.

(ii) A right-to-left maximum of a permutation is an entry with no larger entries to its right.
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If n − 1 and n are adjacent in σw, then it must be of the form σ0(n − 1)n∗, where σ0 is a decreasing

permutation of size at least 1 with no underlines. In this case, we create the permutation σ̃w = (n−1)σ0n∗
and proceed as in the previous case. For example, for x6 < x5 < x8 < x9 < x7 = x4 = x2 < x1 < x3,

we get:

σw = 658974213 7→ σ̃w = 865974213

σ̃′
w = 86574213 7→ τ ′w = 85674123

φ(w) = 856974123.

Observe that if the original permutation σw starts with n − 1, there must be either an ascent or a 21
pattern left of n, so σ̃w cannot create a duplicate. The above algorithm can be easily reversed, showing

the invertibility of φ. ✷

6 Other stopping conditions

In this section, we generalize the stopping condition xi = xj to chains of arbitrary length. We also

consider some conditions with restrictions in both the order and the sizes of the parts in the partitions

corresponding to the weak-ordering chains.

The k-equal stopping condition

For the stopping condition xi1 = · · · = xik with k > 1, active chains in the setWOC(n) correspond to

ordered partitions of [n] with parts of size at most k − 1. Thus, an (number of active leaves at level n)

satisfies the recurrence relation

ai = fi for 1 ≤ i < k, and an =

k−1
∑

i=1

(

n

i

)

an−i for n ≥ k,

where fi denotes the i-th Fubini number, cf. [5, A276921]. To verify this formula, observe that the set

of active leaves can be organized by the size of the last block in the partition, so it is the union of k − 1
disjoint sets. There are

(

n
i

)

possible blocks of size i, and once such a block has been chosen as the last

block of the partition, there are an−i possible active partitions for the remaining elements.

We now derive a formula for the number bn of inactive chains at step n. The first stopping condition

can only occur after k steps, so b1 = · · · = bk−1 = 0.

Inactive nodes of length j ≥ k correspond to ordered partitions of [j] having a part of size k that

contains j, and such that all other parts have size less than k. There are
(

j−1
k−1

)

ways to form the block of

size k that contains j, and for the remaining j − k elements, we choose i to be in parts to the left of that

block. Thus,

∆j = bj − bj−1 =

(

j − 1

k − 1

) j−k
∑

i=0

(

j − k

i

)

aiaj−k−i,

where (an)n∈N is the sequence enumerating the active chains. Therefore, for n ≥ k,

bn =

n
∑

j=k

∆j =

n
∑

j=k

(

j − 1

k − 1

) j−k
∑

i=0

(

j − k

i

)

aiaj−k−i.
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Finally, the total number of weak-ordering chains subject to the above stopping condition can be ob-

tained by adding the active and inactive chains.

Theorem 6.1 If wn is the number of weak-ordering chains inWOC(n), subject to the stopping condition

xi1 = · · · = xik with k > 1, then wi = fi for 1 ≤ i < k, where fi is the ith Fubini number, and for

n ≥ k,

wn =

k−1
∑

i=1

(

n

i

)

an−i +

n
∑

j=k

(

j − 1

k − 1

) j−k
∑

i=0

(

j − k

i

)

aiaj−k−i,

where (an)n∈N is the sequence that counts the corresponding active chains.

For example, for k = 3, we have w1 = 1, w2 = 3, and

wn = nan−1 +

(

n

2

)

an−2 +

n
∑

j=3

(

j − 1

2

) j−3
∑

i=0

(

j − 3

i

)

aiaj−3−i for n ≥ 3.

This sequence starts with 1, 3, 13, 73, 505, 4165, 39985, 438145, . . . .

Stopping condition xi1 < xi2 = xi3 with i1< i2< i3

We start by discussing the number an of active chains. Clearly, a1 = 1 and a2 = 3.

For n ≥ 3, let w ∈ WOC(n) and let πw = {B1, B2, . . . , Bℓ} be its corresponding ordered partition of

[n]. The chain w is active if for every block Bj with more than one element, its second largest element is

smaller than all the elements in every block Bi with i < j.

We enumerate these partitions by the size of their last block. If the size of Bℓ is k ≥ 1, then we must

have Bℓ = {1, 2, . . . , k− 1, ik}, with k ≤ ik ≤ n. All other blocks must correspond to an active partition

of the set {k, . . . , n}\{ik}. So, we have the following recurrence relation for n ≥ 1 (setting a0 = 1):

an =

n
∑

k=1

(n− k + 1)an−k =

n−1
∑

k=0

(k + 1)ak.

Thus, an = (n+ 1)an−1 which implies an = (n+1)!
2 .

We now proceed to derive a formula for ∆n, the number of inactive leaves at step n. The base cases

are ∆1 = ∆2 = 0. Furthermore, we claim that

∆n = n∆n−1 + (n− 2)an−2, for n ≥ 3. (6.2)

First observe that, given an active partition πa of [n − 2], the partition obtained by adding the block

{n− 1, n} to the end of πa is inactive. Moreover, πa can be used to create n− 3 more inactive partitions

as follows: Choose i such that 2 ≤ i ≤ n − 2. Then, for every element j ≥ i of πa, replace j by j + 1
and place the block {i, n} at the end of the modified partition. This gives (n− 2)an−2 inactive partitions

of [n] having a last block of size 2.

The remaining inactive partitions must have a last block of size 1 or larger than 2. They can be generated

from the ∆n−1 inactive partitions at level n− 1 by the following process:
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• For every inactive partition π of [n− 1] and i ∈ {1, . . . , n− 1}, replace j by j + 1 for every j ≥ i

and add the singleton {i} to the end of the modified partition. This gives (n − 1)∆n−1 inactive

partitions of [n].

• Alternatively, replacing j by j + 1 in π and adding 1 to the last block, yields ∆n−1 additional

inactive partitions of [n].

In conclusion, we arrive at the recurrence relation (6.2). Since an = (n+1)!
2 , we can solve (6.2) and

obtain the explicit formula

∆n =
n!

2

n
∑

k=3

k − 2

k
, for n ≥ 3.

Stopping condition xi1 ≤ xi2 = xi3 with i1< i2< i3

As in the above case, we start by discussing the active chains. Once again, a1 = 1 and a2 = 3.

If π = {B1, B2, . . . , Bℓ} is the partition corresponding to an active chain, we must have |Bℓ| ≤ 2.

Thus, the block Bℓ is either a singleton {ik} or a block of the form {1, ik}. All other blocks must

correspond to an active partition of either {1, . . . , n}\{ik} or {2, . . . , n}\{ik}. We therefore have the

recurrence relation (with a0 = a1 = 1)

an = nan−1 + (n− 1)an−2 for n ≥ 2.

For the enumeration of the chains that become inactive at step n, the base cases are ∆1 = ∆2 = 0, and

∆3 = 2 (namely x1 < x2 = x3 and x1 = x2 = x3). For n ≥ 4 we have

∆n = (n− 1)∆n−1 + (n− 2)∆n−2 + an−1 − an−2. (6.3)

To show this, we look at four disjoint cases:

(a) Every inactive partition π of [n − 1] yields n − 1 inactive partitions of [n] whose last block is a

singleton: Given i ∈ {1, . . . , n − 1}, replace j by j + 1 for every j ≥ i and add {i} to the end.

This gives (n− 1)∆n−1 inactive partitions of [n].

(b) For every inactive partition π of [n− 2] relabel j → j + 1 and add the block {1} to the end. Next,

choose i in {2, . . . , n − 1}, replace j by j + 1 for every j ≥ i, and add i to the last block so it

becomes {1, i}. There are (n− 2)∆n−2 such partitions of [n].

(c) For every active partition πa of [n − 2], the partition obtained by adding the block {n − 1, n} to

the end of πa is inactive. Moreover, we can create n − 3 additional inactive partitions of [n] as

follows: Choose i such that 2 ≤ i ≤ n− 2. For every j ≥ i, replace j by j + 1 in πa and add the

block {i, n} to the end of the modified partition. Together, we have (n− 2)an−2 inactive partitions

whose last block is of size 2 and does not contain the element 1.

(d) Finally, every active partition πa of [n − 3] generates n − 2 inactive partitions of [n] obtained by

relabeling πa so that we can add the block {1, i, n} with i ∈ {2, . . . , n− 1} to the end of it. There

are (n− 2)an−3 inactive partitions of this type.

The relation (6.3) follows from the fact that (n− 2)(an−2 + an−3) = an−1 − an−2.
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