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On the Erdős-Pósa property for immersions
and topological minors in tournaments∗
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We consider the Erdős-Pósa property for immersions and topological minors in tournaments. We prove that for every
simple digraph H , k ∈ N, and tournament T , the following statements hold:

• If in T one cannot find k arc-disjoint immersion copies of H , then there exists a set of OH(k3) arcs that
intersects all immersion copies of H in T .

• If in T one cannot find k vertex-disjoint topological minor copies of H , then there exists a set of OH(k log k)
vertices that intersects all topological minor copies of H in T .

This improves the results of Raymond [DMTCS ’18], who proved similar statements under the assumption that H is
strongly connected.
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1 Introduction
The Erdős-Pósa problems concern hitting-packing duality in set systems arising in different combinatorial
settings. Suppose we consider a universeU and a family S of subsets of this universe. The packing number
of the set system (U,S) is the maximum number of disjoint sets that one can find in S, while the hitting
number is the minimum size of a subset of U that intersects every set in S. Clearly, the packing number is
always a lower bound for the hitting number. In general, we cannot hope for the reverse inequality to hold
even in the following weak sense: we would wish that the hitting number is bounded by a function of the
packing number. However, such a bound often can be established when we have further assumptions on
the origin of the set system (U,S), e.g., S comprises of some well-behaved combinatorial objects.

The first result of this kind was delivered by Erdős and Pósa [5], who proved that for every undirected
graph G and k ∈ N, one can find in G either k vertex-disjoint cycles, or a set of O(k log k) vertices that
meets all the cycles. This idea can be generalized to packing and hitting minor models in graphs in the
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following sense. Consider any fixed undirected graph H . We say that H has the Erdős-Pósa property
for minors if there exists a function f such that for every graph G and k ∈ N , one can find in G either
k vertex-disjoint minor models of H , or a set of at most f(k) vertices that meets all minor models of
H . Thus, the result Erdős and Pósa asserts that the triangle K3 has the Erdős-Pósa property for minors.
Robertson and Seymour [13] proved that a graph H has the Erdős-Pósa property for minors if and only if
H is planar.

Since the work of Erdős and Pósa, establishing the Erdős-Pósa property for different objects in graphs,
as well as finding tight estimates on the best possible bounding functions f , became a recurrent topic in
graph theory. There are still many open problems in this area. For instance, the setting of directed graphs
(digraphs) remains rather scarcely explored. The analogue of the result of Erdős and Pósa for packing
and hitting directed cycles was finally established by Reed et al. [12] after functioning for over 20 years as
the Younger’s conjecture, while a characterization of strongly connected digraphs H posessing the Erdős-
Pósa property for topological minors was recently announced by Amiri et al. [1]. We refer the reader to
the survey of Raymond and Thilikos [11] and to a website maintained by Raymond [9] for an overview
of the current state of knowledge on Erdős-Pósa problems.

Our contribution. We consider the Erdős-Pósa problems for immersions and topological minors when
the host graphG is restricted to be a tournament: a directed graph where every pair of vertices is connected
by exactly one arc. Recall here that a directed graph H can be immersed in a digraph D if one can find a
mapping that maps vertices ofH to pairwise different vertices ofD, and arcs ofH to pairwise arc-disjoint
oriented paths in H connecting the images of endpoints. The subgraph of D consisting of all the vertices
and arcs participating in the image of the mapping is called an immersion copy of H in D. We define
topological minors and topological minor copies in the same way, except that we require the paths to be
vertex-disjoint instead of arc-disjoint. See Section 2 for formal definitions.

As usual, the Erdős-Pósa property for topological minors refers to packing vertex-disjoint topological
minor copies and hitting topological minor copies with vertices. Since the notion of an immersion is
based on arc-disjointness, it is more natural to speak about packing arc-disjoint immersion copies and
hitting immersion copies with arcs instead of vertices. The following two definitions formally introduce
the properties we are interested in.

Definition 1. A directed graph H has the Erdős-Pósa property for immersions in tournaments if there
is a function f : N → N, called further a bounding function, such that for every k ∈ N and every
tournament T , at least one of the following holds:

• T contains k pairwise arc-disjoint immersion copies of H; or
• there exists a set of at most f(k) arcs of T that intersects all immersion copies of H in T

Definition 2. A directed graph H has the Erdős-Pósa property for topological minors in tournaments if
there is a function f : N → N, called further a bounding function, such that for every k ∈ N and every
tournament T , at least one of the following holds:

• T contains k pairwise vertex-disjoint topological minor copies of H; or
• there exists a set of at most f(k) vertices of T that intersects all topological minor copies of H in
T .

These two properties were investigated by Raymond [10], who proved that as long as H is simple —
there are no multiple arcs with the same head and tail — and strongly connected — for every pair of
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vertices u, v, there are directed paths both from u to v and from v to u — the considered Erdős-Pósa
properties hold.

Theorem 1 (Theorem 2 of [10]). Every simple, strongly connected directed graph has the Erdős-Pósa
property for topological minors in tournaments.

Theorem 2 (Theorem 3 of [10]). Every simple, strongly connected directed graph has the Erdős-Pósa
property for immersions in tournaments.

Raymond asked in [10] whether the assumption that the digraph in question is strongly connected can be
dropped, as it was important in his proof. We answer this question in affirmative by proving the following.

Theorem 3. Every simple directed graph H has the Erdős-Pósa property for immersions in tournaments
with bounding function f(k) ∈ OH(k3).

Theorem 4. Every simple directed graph H has the Erdős-Pósa property for topological minors in tour-
naments with bounding function f(k) ∈ OH(k log k).

Observe that compared to the results reported by Raymond in [10], we also give explicit upper bounds
on the bounding function that are polynomial in k: cubic for immersions and near-linear for topological
minors. The presentation of [10] does not claim any explicit estimates on the bounding function, as it relies
on qualitative results of Chudnovsky et al. [3] and of Fradkin and Seymour [8]. These results respectively
say the following: If a tournament T excludes a fixed digraph H as a immersion (respectively, as a
topological minor), then the cutwidth of T (respetively, pathwidth) of T is bounded by a constant cH
that depends only on H . Instead of relying on the results of [3, 8], we point out that we can use their
quantitative improvements of Fomin and the second author [6], and thus obtain concrete bounds on the
bounding function that are polynomial in k.

However, the bulk of our work concerns treating directed graphs H that are possibly not strongly
connected. Similarly to Raymond [10], using the results of [6] we may restrict attention to tournaments
of bounded cutwidth or pathwidth, which in both cases provides us with a suitable linear “layout” of the
tournament. Then we analyze how an immersion or a topological minor copy ofH can look in this layout,
and in particular how the strongly connected components of H are ordered by it. The main point is to
focus on every topological ordering of the strongly connected components of H separately. Namely, we
show that for a given topological ordering π, we can either find k disjoint copies of H respecting this
ordering in the layout, or uncover a small hitting set for all copies respecting π. Then taking the union of
the hitting sets for all topological orderings π finishes the proof.

We do not expect the estimates on the bounding function given by Theorems 3 and 4 to be optimal. In
fact, on the way to proving Theorem 3 we establish an improved bound of OH(k2) under the assumption
that H is strongly connected, which suggests that the same asymptotic bound (i.e. quadratic instead of
cubic) should also hold without this assumption. However, to the best of our knowledge, in both cases it
could even be that the optimal bounding function is linear in k. Finding tighter estimates is an interesting
open question.

2 Preliminaries
For a positive integer n, we denote [n] := {1, . . . , n}. Throughout this paper, all logarithms are base 2.
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We use standard graph terminology and notation. All graphs considered in this paper are finite, simple
(i.e. without self-loops or multiple arcs with same head and tail), and directed (i.e. are digraphs). For a
digraph D, by V (D) and A(D) we denote the vertex set and the arc set of D, respectively. We denote

|D| := |V (D)| and ‖D‖ := |V (D)|+ |A(D)|.

For X ⊆ V (D), the subgraph induced by X , denoted D[X], comprises of the vertices of X and all the
arcs of D with both endpoints in X . By D −X we denote the digraph D[V (D) \X]. Further, if F is a
subset of arcs of D, then by D−F we denote the digraph obtained from D by removing all the arcs of F .

A strong component of D is an inclusion-wise maximal induced subgraph C of D that is strongly
connected, that is, for every pair of vertices u and v of C, there are directed paths in C both from u to v
and from v to u.

Tournaments. A simple digraph T = (V,A) is called a tournament if for every pair of distinct vertices
u, v ∈ V , either (u, v) ∈ A, or (v, u) ∈ A (but not both). Alternatively, one can represent the tournament
T by providing a pair (σ,

←−
Aσ(T )), where σ : V → [|V |] is an ordering of the set V and

←−
Aσ(T ) is the set

of σ-backward arcs, that is,

←−
Aσ(T ) := { (u, v) ∈ A | σ(u) > σ(v) }.

All the remaining arcs are called σ-forward. If the choice of ordering σ is clear from the context, we will
call the arcs simply backward or forward.

Cutwidth. Let T = (V,A) be a tournament and σ be an ordering of V . For α, β ∈ {0, 1, . . . , |V |},
α ≤ β, we define

σ(α, β] := {v ∈ V | α < σ(v) ≤ β}.

Sets σ(α, β] as defined above shall be called σ-intervals. If I = σ(α, β], we denote

startσ(I) := α and endσ(I) := β.

Moreover, let σ[α] := σ(0, α] and call this interval an α-prefix of σ. The set

cut[α] = {(u, v) ∈ A | σ(u) > α ≥ σ(v)} ⊆
←−
Aσ(T )

is called the α-cut of σ. The width of the ordering σ is equal to max0≤α≤|V | | cut[α]|, and the cutwidth
of T , denoted ctw(T ), is the minimum width among all orderings of V .

Immersions. Digraph Ĥ is an immersion model (or an immersion copy) of a digraph H if there exists a
mapping φ, called an immersion embedding, such that:

• vertices of H are mapped to pairwise different vertices of Ĥ;
• each arc (u, v) ∈ A(H) is mapped to a directed path in Ĥ starting at φ(u) and ending at φ(v); and
• each arc of Ĥ belongs to exactly one of the paths {φ(a) : a ∈ A(H)}.

If the immersion embedding φ is clear for the context, then for a subgraph C of H we define Ĥ|C to be
the subgraph of Ĥ consisting of all the vertices and arcs participating in the image of C under φ. Note
that thus, Ĥ|C is an immersion model of C.
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Let H be a digraph. We say that a digraph G contains H as an immersion (or H can be immersed in
G) if G has a subgraph that is an immersion model of H . Digraph G is called H-immersion-free if it does
not contain H as an immersion.

We will use the following result of Fomin and the second author.

Theorem 5 (Theorem 7.3 of [6]). Let T be a tournament which does not contain a digraph H as an
immersion. Then ctw(T ) ∈ O(‖H‖2).

From Theorem 5 we can derive the following statement.

Corollary 6. Let T be a tournament which does not contain k arc-disjoint immersion copies of a digraph
H . Then ctw(T ) ∈ O(‖H‖2k2).

Proof: LetD be the digraph obtained by taking k vertex-disjoint copies ofH . Clearly, T does not contain
D as an immersion, hence from Theorem 5 we conclude that ctw(T ) ∈ O(‖D‖2) = O(‖H‖2k2).

Pathwidth. Denote by I the set of all nonempty intervals [α, β] ⊆ R such that α, β ∈ Z. If I = [α, β],
denote start(I) := α and end(I) := β. For I, J ∈ I we will write I < J if and only if end(I) < start(J).

For a tournament T = (V,A), a function I : V → I is called an interval decomposition of T if for
every pair of vertices u, v ∈ V such that I(u) < I(v), we have (u, v) ∈ A. In other words, every arc
joining disjoint intervals is forward. For α ∈ Z, the set

vcut[α] := {v ∈ V | α ∈ I(v)}

is called the α-cut of I . The width of the decomposition I is equal to maxα∈Z | vcut[α]|, and the pathwidth
of T , denoted pw(T ), is the minimum width among all interval decompositions of T .

Let us remark here that the definition of pathwidth used in [6] is seemingly somewhat different to the
one delivered above: it is based on a notion of a path decomposition, which is a sequence of bags that
correspond to sets {vcut[α] : α ∈ Z} in an interval decomposition. However, it is straightforward to verify
that the definitions are in fact equivalent.

Also, it is easy to see that given an interval decomposition I of a tournament T , one can adjust I to
an interval decomposition I ′ of the same width where no two intervals share an endpoint and no interval
has length 0. Indeed, whenever a subset of intervals all have endpoints at α ∈ Z, then one can shift those
endpoints by pairwise different small reals — positive for the intervals ending at α and negative for those
starting at α — so that they all become different, and then re-enumerate all the endpoints so that they stay
integral. Similarly one can stretch an interval of length 0 which doesn’t share endpoints with any other
interval to an interval of positive length. Therefore, we will assume this property for all the considered
interval decompositions: {start(I(u)), end(I(u))} ∩ {start(I(v)), end(I(v))} = ∅ for all u 6= v and
start(I(u)) 6= end(I(u)) for all u. Moreover, by shifting all the intervals if necessary, we may (and will)
assume that all endpoints correspond to non-negative integers.

If I is an interval decomposition of a tournament T = (V,A), then for α, β ∈ Z we define

I[α, β] := {v ∈ V | I(v) ⊆ [α, β]}.

In other words, I[α, β] is the set of all vertices of T corresponding to intervals entirely contained in [α, β].
Note that if α1 < β1 ≤ α2 < β2, then I[α1, β1] ∩ I[α2, β2] = ∅. Also, let I[α] := I[0, α].
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Topological minors. Digraph Ĥ is a topological minor model (or a topological minor copy) of a digraph
H if there exists a mapping φ, called a topological minor embedding, such that:

• vertices of H are mapped to pairwise different vertices of Ĥ;
• each arc (u, v) ∈ A(H) is mapped to a directed path in Ĥ starting at φ(u) and ending at φ(v); and
• these paths are internally vertex-disjoint, do not contain any φ(u), u ∈ V (H), as an internal vertex,

and saturate the whole vertex set and arc set of Ĥ . In other words, every arc of Ĥ and every vertex of
Ĥ that is not an image of a vertex ofH participates in the image φ(a) of exactly one arc a ∈ A(H).

If the topological minor embedding φ is clear for the context, then for a subgraph C of H we define Ĥ|C
to be the subgraph of Ĥ consisting of all the vertices and arcs participating in the image of C under φ.
Note that thus, Ĥ|C is a topological minor model of C.

LetH be a digraph. We say that a digraphG containsH as a topological minor ifG has a subgraph that
is a topological minor model of H . Digraph G is called H-topological-minor-free if it does not contain
H as a topological minor.

We will use another result of Fomin and the second author.

Theorem 7 (Theorem 7.1 of [6]). Let T be a tournament which does not contain a digraph H as a topo-
logical minor. Then pw(T ) ∈ O(‖H‖).

Applying Theorem 7 directly to the graph that is the disjoint union of k copies of a fixed digraph, we
can derive the following statement.

Corollary 8. Let T be a tournament that does not contain k vertex-disjoint topological minor copies of a
digraph H . Then pw(T ) ∈ O(‖H‖k).

3 Erdős-Pósa property for immersions
In this section we prove Theorem 3. In the following, a subset of arcs F in a digraph D is H-hitting if
the digraph D − F is H-immersion-free. We also fix the constant dctw hidden in the O(·)-notation in
Theorem 5; that is, if a tournament T does not contain H as an immersion then ctw(T ) ≤ dctw‖H‖2.
Note that the constant hidden in the O(·)-notation in Corollary 6 is also equal to dctw. Without loss of
generality we assume that dctw is the square of an even integer.

We start with two straightforward observations which will be used several times later on.

Observation 9. Suppose Ĥ is an immersion model of a digraph H in a digraph G, and C is a strong
component of H . Then there exists a strong component D of G such that Ĥ|C is a subgraph of D.

Observation 10. Let T be a tournament and σ be an ordering of V (T ). Let H be a strongly connected
simple digraph with at least one arc and let Ĥ be an immersion model of H in T . Let v be the vertex of
V (Ĥ) that is last in the ordering σ. Then A(Ĥ) contains a σ-backward arc with tail v.

We now consider two special cases: when H is acyclic and when H is strongly connected. For the
acyclic case, we will use the following corollary of the classic results of Erdős and Hanani [4].

Lemma 11 (follows from [4]). There exists a universal constant deh such that for all positive integers
q, k, in a complete graph on at least deh · q

√
k vertices one can find k pairwise arc-disjoint complete

subgraphs, each on q vertices.

From now on, we adopt the constant deh in the notation.
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Lemma 12. Let H be an acyclic simple digraph and let T be a tournament such that |T | ≥ deh ·2|H|
√
k.

Then T contains k arc-disjoint subgraphs isomorphic to H .

Proof: By Lemma 11, in T one can find k arc-disjoint subtournaments T1, . . . , Tk, each on 2|H| vertices.
It is well-known that a tournament on 2|H| vertices contains a transitive (i.e. acyclic) subtournament on
|H| vertices. As H is acyclic, it is a subgraph of a transitive tournament on |H| vertices. Hence, each of
T1, . . . , Tk contains a subgraph isomorphic to H , and these subgraphs are arc-disjoint.

Corollary 13. Let H be a simple digraph that is acyclic and let k be a positive integer. Let T be a
tournament that does not contain k arc-disjoint immersion copies of H . Then one can find in T a set of at
most d2

eh · 4|H|k arcs that is H-hitting.

Proof: We first consider the corner case when H does not contain any arc. Then T must have less than
|H| vertices, for otherwise repeating any set of |H| vertices k times would yield k arc-disjoint immersion
copies of H . Therefore, T in fact does not contain any immersion copy of H , due to having less vertices,
and the empty set is H-hitting in T .

Hence, let us assume that H contains at least one arc. Observe that |T | < deh · 2|H|
√
k, for otherwise,

by Lemma 12, there would exist k arc-disjoint immersion copies of H in T . Since H has at least one arc,
the set A(T ) of all the arcs of T is H-hitting, and this set has size at most

(
deh·2|H|√k

2

)
≤ d2

eh · 4|H|k, as
requested.

We now move to the case when H is strongly connected. Recall that this case was already considered
by Raymond [10], but we give a more refined argument that gives precise upper bounds on the bounding
function. The proof relies on an strategy of finding a cut that separates the immersion copies of H in
a roughly balanced way, and applying induction to each side of the cut. This strategy has been applied
before in the context of Erdős-Pósa properties, see e.g. [7].

Lemma 14. Let H be a simple digraph that is strongly connected and contains at least one arc, and let k
be a positive integer. Let T be a tournament that does not contain k arc-disjoint immersion copies of H .
Then one can find in T a set of at most 6dctw‖H‖2k2 arcs that is H-hitting.

Proof: We prove the lemma by induction on k. For the base case k = 1, T does not contain any immersion
copy of H , hence the empty set is H-hitting.

Assume then that k ≥ 2. By Corollary 6, there is an ordering σ of V (T ) of width at most dctw‖H‖2k2.
Let α ∈ {0, 1, . . . , |V (T )|} be the largest index such that the tournament T [σ[α]] does not contain dk/2e
arc-disjoint immersion copies of H . Since dk/2e < k, by induction there exists a set of arcs F1 of size at
most 6dctw‖H‖2dk/2e2 that is H-hitting in T [σ[α]].

If α = |V (T )|, or equivalently T [σ[α]] = T , then F1 is in fact H-hitting in T and we are done. Hence,
we assume from now on that α < |V (T )|. By the maximality of α we know that T [σ[α + 1]] contains
dk/2e arc-disjoint immersion copies of H . It follows that the tournament T − σ[α + 1] does not contain
bk/2c arc-disjoint immersion copies of H , for otherwise together we would expose dk/2e + bk/2c = k
arc-disjoint immersion copies of H in T . By induction, there exists a set of arcs F2 of size at most
6dctw‖H‖2bk/2c2 that is H-hitting in T − σ[α+ 1].

Let now
F := F1 ∪ F2 ∪ cut[α] ∪ cut[α+ 1].
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Observe that F is H-hitting in T . Indeed, since H is strongly connected and has at least one arc, every
immersion copy of H in T that in not entirely contained in T [σ[α]] or T − σ[α + 1] is hit by cut[α] ∪
cut[α+ 1], whereas immersion copies entirely contained in T [σ[α]] and in T −σ[α+ 1] are hit by F1 and
F2, respectively. It remains to estimate the size of F :

|F | ≤ |F1|+ |F2|+ | cut[α]|+ | cut[α+ 1]|
≤ 6dctw‖H‖2

(
dk/2e2 + bk/2c2

)
+ 2dctw‖H‖2k2

≤ 6dctw‖H‖2
((

k + 1

2

)2

+

(
k − 1

2

)2
)

+ 2dctw‖H‖2k2

= dctw‖H‖2
(
3(k2 + 1) + 2k2

)
≤ 6dctw‖H‖2k2.

This concludes the inductive proof.

Actually, in our later proof we will not be able to rely on Lemma 14 for the following reason: we
will need the copies to be vertex-disjoint, rather than arc-disjoint. The following statement is tailored to
vertex-disjointness.

Lemma 15. Let H be a simple digraph that is strongly connected and contains at least one arc, and
let k be a positive integer. Further, let T be a tournament with ctw(T ) ≤ c that does not contain k
vertex-disjoint immersion copies of H . Then one can find in T a set of at most 2(k − 1)c arcs that is
H-hitting.

Proof: We proceed by induction on k. Let σ be an ordering of T of width at most c. If T does not contain
any copy of H , then the empty set is H-hitting. This proves the base case k = 1, so from now on we may
assume that k ≥ 2 and that T contains at least one immersion copy of H .

Let α be the minimum integer satisfying the following: T [σ[α]] contains an immersion copy Ĥ of H .
LetB1 := {(u, v) ∈

←−
Aσ(T ) | σ(u) = α} be the set of backward arcs with tail α and letB := B1∪cut[α].

As B1 ⊆ cut[α− 1], we have |B| ≤ 2c.
Observe that in T ′ := T [V (T ) \ σ[α]] one cannot find a family of k − 1 vertex-disjoint immersion

copies of H . Indeed, if there was such a family, then adding Ĥ to it would yield a family of k vertex-
disjoint copies of H in T , a contradiction. Hence, by induction hypothesis, in T ′ there is a set S of at
most 2(k − 2)c arcs that is H-hitting. We claim that the set B ∪ S is H-hitting in T . Note that since
|B ∪ S| ≤ |B|+ |S| ≤ 2(k − 1)c, this will conclude the proof.

Indeed, suppose that Ĥ ′ is an immersion copy ofH in T − (B∪S). By Observation 9, either V (Ĥ ′) ⊆
V \ σ[α], or V (Ĥ ′) ⊆ σ[α]. The first case is impossible, because every immersion copy of H in T ′

contains an arc from S. On the other hand, if V (Ĥ ′) ⊆ σ[α], then by the minimality of α we infer
that σ−1(α) ∈ V (Ĥ ′). Then Observation 10 implies that Ĥ ′ needs to contain an arc of B1, again a
contradiction.

Note that by combining Lemma 15 with Corollary 6, we obtain a statement analogous to Lemma 14,
however with a bound of O(k3) instead of O(k2). This drawback will accordingly affect the final depen-
dency on k in Theorem 3.

We now proceed to the main part of the proof, which concerns digraphs that are not acyclic and that are
not necessarily strongly connected.
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Lemma 16. Let H be a simple digraph that is not acyclic and let k be a positive integer. Let T be a
tournament that does not contain k arc-disjoint immersion copies of H . Then one can find in T a set
consisting of at most 2d

3/2
ctw · |H|! · |H| · ‖H‖3 · k3 arcs that is H-hitting.

Proof: Let Comps be the family of all strong components of H and let h := |Comps|. Since H is not
acyclic, Comps contains at least one strong component C that is non-trivial, that is, |C| > 1. In particular,
h ≤ |H| − 1. Further, let Π be the set of all topological orderings of the strong components of H; that
is, the elements of Π are orderings π : Comps → [|Comps|] such that for every arc of H with tail in
C ∈ Comps and head in D ∈ Comps, we have π(C) ≤ π(D). It is well-known that Π 6= ∅. Also, note
that |Π| ≤ h! ≤ (|H| − 1)!.

Let T = (V,E). By Corollary 6, there is an ordering σ of vertices of T of width at most c, where

c := dctw‖H‖2k2.

We also define
s :=

√
dctw · h‖H‖k.

Note that thus, s = h
√
c and s is an even integer, because we assume dctw to be a square of an even

integer.
Let I be the set of all σ-intervals. For I ∈ I, we define

cut−(I) := cut[startσ(I)] and cut+(I) := cut[endσ(I)].

We define functions

I : Comps× [|V |]→ I and A,B : Comps× [|V |]→ Pow
(←−
Aσ(T )

)
,

where Pow(X) denotes the power set of X , as follows:
• I(C,α) is the inclusion-wise minimal σ-interval I such that startσ(I) = α and T [I] contains at least
s vertex-disjoint immersion copies of C. If no such interval exists, we set I(C,α) := σ(α, |V |].
Note that either way, T [I] does not contain s+ 1 vertex-disjoint immersion copies of C.

• If C is trivial, then A(C,α) is the set of all backward arcs contained in T [I(C,α)]. If C is non-
trivial, then A(C,α) is a set of arcs that is C-hitting in T [I(C,α)] and is of size at most 2sc, whose
existence follows from Lemma 15.

• B(C,α) := cut+(I(C,α)).
Note that if C is trivial, then |I(C,α)| ≤ s. This implies that |A(C,α)| ≤

(
s
2

)
≤ 2sc. Hence, in all cases

we have
|A(C,α)| ≤ 2sc and |B(C,α)| ≤ c.

Consider an arbitrary topological ordering π ∈ Π. We define indices α0, α1, . . . , αh and intervals
Iπ,1, Iπ,2, . . . , Iπ,h by induction as follows: α0 := 0 and, for i = 1, 2, . . . , h, we set

Iπ,i := I(π−1(i), αi−1) and αi := endσ(Iπ,i),

where if needed we put endσ(∅) = |V |. Moreover, for i ∈ [h] we define

Aπ,i := A(π−1(i), αi−1) and Bπ,i := B(π−1(i), αi−1).
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Our next step is to show that if for some π ∈ Π, each interval Iπ,i contains s vertex-disjoint immersion
copies of H , then we get a contradiction: there are k vertex-disjoint immersion copies of H in T . For
this, we will use the following auxiliary statement.

Claim 1. LetG be a graph with vertex set partitioned into disjoint sets V1, . . . , Vh, each of size s. Suppose
that for each pair of indices 1 ≤ i < j ≤ h, there are at most s2

h2 edges with one endpoint in Vi and
second in Vj . Then one can find s/2 pairwise disjoint independent sets I1, . . . , Is/2 in G such that each
independent set It, t ∈ [s/2], contains exactly one vertex from each set Vi, i ∈ [h].

PROOF. For each i ∈ [h] let us arbitrarily enumerate the vertices of Vi as vi[0], . . . , vi[s − 1]. Consider
the following random experiment: draw independently and uniformly at random numbers t, a1, . . . , ah
from {0, 1, . . . , s− 1}, and let

I := {vi[(t+ ai) mod s] : i ∈ [h]}.

Note that for each fixed pair of indices 1 ≤ i < j ≤ h, the probability that there is an edge between
vertices vi[(t+ ai) mod s] and vj [(t+ aj) mod s] is bounded by 1

h2 . By the union bound we infer that I
is an independent set with probability at least 1

2 . Hence, there is a choice of â1, . . . , âh ∈ {0, 1, . . . , s−1}
such that conditioned on a1 = â1, . . . , ah = âh, the probability (over the choice of t) that I is an
independent set is at least 1

2 . In other words, for at least s/2 choices of t, the set {vi[(t+ âi) mod s] : i ∈
[h]} is independent. This gives us the desired family of s/2 pairwise disjoint independent sets. y

Claim 2. Suppose that there exists π ∈ Π such that for every i ∈ [h], the tournament T [Iπ,i] contains s
vertex-disjoint immersion copies of π−1(i). Then T contains k vertex-disjoint immersion copies of H .

PROOF. Denote Cπ,i := π−1(i). For each i ∈ [h], let Ci be the family of s vertex-disjoint immersion
copies of Cπ,i contained in T [Iπ,i].

Let G be a graph on vertex set C1 ∪ . . . ∪ Cp where for each pair of indices 1 ≤ i < j ≤ h and pair of
immersion copies Q ∈ Ci and R ∈ Cj , we put an edge if and only if in T there is arc with tail in R and
head in Q. Note that such an arc is backward in σ and belongs to cut[αi]. Hence, for every pair of indices
i, j as above, G contains at most c edges with one endpoint in Ci and second in Cj .

Noting that c = s2

h2 , we may apply Claim 1 to conclude that G contains s/2 pairwise independent
sets, each consisting of one element from each of the families C1, . . . , Ch. As s/2 ≥ k, let I1, . . . , Ik
be any k of those independent sets. Now, for each t ∈ [k], we may construct an immersion copy of H
contained in T [

⋃
Q∈It V (Q)] as follows: take the union of subgraphsQ ∈ It, which are immersion copies

of Cπ,1, . . . , Cπ,t, respectively, and for each arc (a, b) of H that is not contained in any of Cπ,1, . . . , Cπ,t,
say a ∈ V (Cπ,i) and b ∈ V (Cπ,j) where we necessarily have i < j, map (a, b) to the single edge
between the corresponding two vertices from the copies of Cπ,i and Cπ,j in It. Note that this edge is
oriented forward in σ, because It is an independent set in G (a backward arc would have generated an
edge in G). Thus, we have constructed k vertex-disjoint copies of H in T . y

If the assumption of Claim 2 holds, then we immediately obtain a contradicion and the proof is finished.
Therefore, we may further assume that for every π ∈ Π(H) there exists j ∈ [h] such that Iπ,j contains
less than s vertex-disjoint copies of π−1(j). Observe that this implies that endσ(Iπ,j) = |V |, hence in
particular we have

h⋃
i=1

Iπ,i = V (T ) for each π ∈ Π.
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Let

S :=
⋃
π∈Π

h⋃
i=1

Aπ,i ∪Bπ,i.

Observe that

|S| ≤ |Π| · |H| · (2sc+ c)

≤ (|H| − 1)! · |H| · (2s+ 1)c

= |H|! · (2
√
dctw · h‖H‖k + 1) · dctw‖H‖2k2

≤ 2d
3/2
ctw · |H|! · |H| · ‖H‖3 · k3,

so to finish the proof it suffices to show that S is H-hitting in T . Let T ′ := T − S.

σ

B1 B2 B3 B4 B
J1 J2 J3 J4

π
12 = t1

3

4 = t2

56

7 = t3 10 = t4

9

8

L1 L2 L3 L4

Figure 1: Objects defined in the proof of Claim 3 with h = 10, m = 4, n = 3.

Claim 3. T ′ is H-immersion-free.

PROOF. Let B be the family of all inclusion-wise maximal σ-intervals B satisfying the following prop-
erty: for every π ∈ Π and i ∈ [h], either B ⊆ Iπ,i or B ∩ Iπ,i = ∅. Call elements of B base in-
tervals and observe that B is a partition of V (T ′). Let F be the family of all σ-intervals which are
disjoint unions of collections of base intervals. For two disjoint intervals J, J ′ ∈ F , we write J < J ′ if
endσ(J) ≤ startσ(J ′).

Suppose for contradiction that T ′ contains an immersion model Ĥ of H . We fix some immersion
embedding ofH in Ĥ , to which we will implicitly refer when considering subgraphs Ĥ|C forC ∈ Comps.

Note that in T ′ there are no backward arcs with endpoints in different intervals from B, as Bπ,i ⊆ S
for every π ∈ Π and i ∈ [h]. Hence, every non-trivial strongly connected subgraph of T ′ must have
all vertices contained in a single base interval. In particular, from Observation 9 we infer that for every
non-trivial strong component C ∈ Comps, the subgraph Ĥ|C has all its vertices contained in a single base
interval. Note that this conclusion also holds trivially when C is trivial.

Let B1 < B2 < . . . < Bm be all the base intervals containing subgraphs Ĥ|C for non-trivial com-
ponents C ∈ Comps. Consider any partition of V (T ) into intervals J1, J2, . . . , Jm ∈ F such that
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Bi ⊆ Ji for each i ∈ [m]. Note that this implies that J1 < J2 < . . . < Jm. For each i ∈ [m], let
Compsi ⊆ Comps be the set of all (including trivial) components C ∈ Comps such that V (Ĥ|C) ⊆ Ji.
Note that {Compsi : i ∈ [m]} is a partition of Comps and each family Compsi contains at least one
non-trivial component.

Observe that if C ∈ Compsi and C ′ ∈ Compsi′ , where i 6= i′, and in H there is an arc (u, v)
with u ∈ V (C) and v ∈ V (C ′), then we necessarily have i < i′. Indeed, the image of (u, v) in the
immersion embedding is a path in T ′ that starts in Ji and ends in Ji′ , while in T ′ arcs with endpoints in
different intervals among {J1, . . . , Jm} always point from an interval with a smaller index to an interval
with a higher index. Therefore, there exists a topological ordering π ∈ Π such that for all i, i′ ∈ [m]
satisfying i < i′, all the components of Compsi appear in π before all the components of Compsi′ . In
other words, there exist integers 0 = t0 < t1 < t2 < . . . < tm = h such that for each i ∈ [m], we have
π(Compsi) = (ti−1, ti] ∩ Z (cf. Figure 1). For every i ∈ [m], we define

Li :=
⋃

C∈Compsi

Iπ,π(C).

Note that Li is a σ-interval belonging to F , because the set Compsi is contiguous in the ordering π.
Furthermore {Li : i ∈ [m]} is a partition of V (T ) and L1 < L2 < . . . < Lm.

Recalling that both {Ji : i ∈ [m]} and {Li : i ∈ [m]} are partitions of V (T ), we can define n to be the
smallest positive integer satisfying

⋃n
i=1 Ji ⊆

⋃n
i=1 Li. By the minimality of n, we have Jn ⊆ Ln.

Recall that Bn ⊆ Jn ⊆ Ln and Bn is a base interval. Therefore, there exists C ∈ Compsn such that
Bn ⊆ Iπ,π(C). If C is non-trivial, then the set of arcsAπ,π(C) is C-hitting in T [Iπ,π(C)]. This implies that
T ′[Iπ,π(C)] is C-immersion-free, and so is its subgraph T ′[Bn]. However, Bn is the only interval among
{B1, . . . , Bm} that is contained in Iπ,π(C), hence C being a non-trivial component from Compsn implies
that V (Ĥ|C) ⊆ Bn; a contradiction. IfC is trivial, then T [Iπ,π(C)]−Aπ,π(C) is acyclic, hence T ′[Iπ,π(C)]
is C ′-immersion-free for every non-trivial component C ′ ∈ Compsn. Since there exists such a non-trivial
component C ′ and it again satisfies V (ĤC′) ⊆ Bn ⊆ Iπ,π(C), we again obtain a contradiction. y

As argued, Claim 3 finishes the proof of Lemma 16.

With Lemma 16 in place, we can finish the proof of Theorem 3.

Proof of Theorem 3: If H has no arcs, then the statement holds trivially for bounding function f(k) = 0.
Hence, from now on assume that H has at least one arc. Suppose T is a tournament that does not contain
k arc-disjoint immersion copies of H . If H is acyclic, then, by Corollary 13, we may find in T a set of at
most d2

eh ·4|H|k ∈ OH(k) arcs that isH-hitting. On the other hand, ifH is not acyclic, then by Lemma 16
we may find in T an H-hitting set of arcs of size at most 2d

3/2
ctw · |H|! · |H| · ‖H‖3 · k3 ∈ OH(k3).

4 Erdős-Pósa property for topological minors
In this section we prove Theorem 4. The proof follows similar ideas to the ones presented in the previous
section, only adjusted to the setting of interval decompositions. Throughout this section, the notions of
a copy and of hitting will refer to topological minor copies. Let us fix the constant dpw hidden in the
O(·)-notation in Theorem 7 and note that the constant hidden in the O(·)-notation in Corollary 8 is also
equal to dpw.

Consider first the acyclic case. The following statements are analogues of Lemma 12 and Corollary 13.
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Lemma 17. Let H be an acyclic simple digraph let T be a tournament such that |T | ≥ 2|H|k. Then T
contains k vertex-disjoint subgraphs isomorphic to H .

Proof: Arbitrarily partition the vertex set of T into subsets W1, . . . ,Wk so that |Wi| ≥ 2|H| for each
i ∈ [k]. Since a tournament on 2|H| vertices contains a transitive subtournament on |H| vertices, which
in turn contains H as a subgraph, we infer that each tournament T [Wi], i ∈ [k], contains a topological
minor copy of H . This gives k vertex-disjoint topological minor copies of H in T .

Corollary 18. Let H be a simple digraph that is acyclic and let k be a positive integer. Let T be a
tournament that does not contain k vertex-disjoint topological minor copies of H . Then one can find in T
a set of at most 2|H|k vertices that is H-hitting.

Proof: By Lemma 17 we have |T | < 2|H|k, so we can take the whole vertex set of T as the requested
H-hitting set.

We now proceed to the strongly connected case and prove an analogue of Lemma 14. Note that in
this setting, we can use the strategy from the proof of Lemma 14 and directly achieve vertex-disjointness.
Hence, we will need no counterpart of Lemma 15.

Lemma 19. Let H be a strongly connected simple digraph and let T be a tournament that does not
contain k vertex-disjoint topological minor copies ofH . Then in T one can find a set of at most 2dpw‖H‖·
k log k vertices that is H-hitting.

Proof: We proceed by induction on k. In the base case k = 1 there are no copies of H in T , hence we
can take the empty set as an H-hitting set. Let us then assume that k ≥ 2.

If T does not contain dk/2e vertex-disjoint copies ofH , then as dk/2e < k, we may apply the induction
assumption for dk/2e. Hence, from now on assume that T contains dk/2e vertex-disjoint copies of T .

By Corollary 8, T admits an interval decomposition of width at most dpw‖H‖ · k. Recall that we may
assume that the endpoints of intervals in I correspond to pairwise different nonnegative integers. Let α be
the largest integer such that T [I[α]] does not contain dk/2e vertex-disjoint copies ofH . By the assumption
from the previous paragraph, α is well defined and T [α + 1] contains dk/2e vertex-disjoint copies of H .
It follows that T [I[α + 2,∞]] does not contain bk/2c vertex-disjoint copies of H , for otherwise in total
we would obtain dk/2e+ bk/2c = k vertex-disjoint copies of H .

By induction assumption, in T [I[α]] and in T [I[α + 2,∞]] we can find H-hitting sets S1 and S2 of
sizes 2dpw‖H‖ · dk/2e logdk/2e and 2dpw‖H‖ · bk/2c logbk/2c, respectively. Let

S := S1 ∪ S2 ∪ vcut[α+ 1].

We claim that S is H-hitting in T . Indeed, since H is strongly connected, every copy of H in T that
does not intersect vcut[α] must be entirely contained either in T [I[α]] or in T [I[α + 2,∞]], and then it
intersects S1 or S2, respectively.
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We are left with bounding the size of S. Observe that

|S| ≤ |S1|+ |S2|+ | vcut[α+ 1]|
≤ 2dpw‖H‖ (dk/2e logdk/2e+ bk/2c logbk/2c) + dpw‖H‖k
≤ 2dpw‖H‖ (k/2 (logdk/2e+ logbk/2c) + 1/2 (logdk/2e − logbk/2c)) + dpw‖H‖k
≤ 2dpw‖H‖ (k log(k/2) + 1/2) + dpw‖H‖k
= dpw‖H‖ (2k log k − 2k + 1 + k) ≤ 2dpw‖H‖ · k log k.

This concludes the proof.

We proceed to the main part of the proof, which is is again conceptually very close to the one presented
in the case of immersions. It is arguably simpler, as we work only with vertex-disjointness.

Lemma 20. Let H be a simple digraph that is not acyclic and let k be a positive integer. Let T be a
tournament that does not contain k vertex-disjoint topological minor copies of H . Then one can find in T
a set consisting of at most 6dpw · |H|! · ‖H‖ · k log k vertices that is H-hitting.

Proof: Denote T = (V,E). Define Comps, h, Π, topological ordering and (non-)trivial components as in
the proof of Lemma 16. Note that the same assertions about these objects apply.

By Corollary 8, T admits an interval decomposition I of width at most

p := dpw‖H‖ · k.

Recall that we may assume that the endpoints of the intervals of I are pairwise different nonnegative
integers. Let N be the largest interval end, i.e. N := max{end(I(v)) : v ∈ V }. Define functions

β : Comps× Z→ Z and A, B : Comps× Z→ Pow(V )

as follows:
• β(C,α) is the minimum integer β with the property that interval T [I[α, β]] contains at least k

vertex-disjoint topological minor copies of C. If no such β exists, we set β = N . Note that since
we assume that the endpoints of the intervals in I are pairwise different, in either case T [I[α, β]]
does not contain k + 1 vertex-disjoint topological minor copies of C.

• If C is trivial, then A(C,α) = I[α, β(C,α)]. If C is non-trivial, then A(C,α) is a C-hitting set of
vertices in T [I[α, β(C,α)]] of size at most 2dpw‖H‖ · (k + 1) log(k + 1) ≤ 5dpw‖H‖ · k log k,
whose existence follows from Lemma 19.

• B(C,α) := vcut[β(C,α)].
Note that since p ≤ 5dpw‖H‖ · k log k, for all C and α we have

|A(C,α)| ≤ 5dpw‖H‖ · k log k and |B(C,α)| ≤ p.

Consider an arbitrary π ∈ Π and define indices απ,0, απ,1, . . ., απ,h by induction as follows: απ,0 := 0
and, for i = 1, 2, . . . , h, set

απ,i := β(π−1(i), απ,i−1).

Moreover, for i ∈ [h] we define

Iπ,i := I[απ,i−1, απ,i], Aπ,i := A(π−1(i), απ,i−1) and Bπ,i := B(π−1(i), απ,i−1).
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Note that since no interval in the decomposition I has length 0, sets Iπ,i for i ∈ [h] are pairwise disjoint.
Moreover, since intervals in I have pairwise different endpoints, for all 1 ≤ i < j ≤ h, all arcs with one
endpoint in Iπ,i and second in Iπ,j have tail in Iπ,i and head in Iπ,j .

The following statement can be proved using the same arguments as the corresponding claim in the
proof of Lemma 16 (that is, Claim 2). We simply join the copies of strong components of H by single
forward arcs between intervals Iπ,i.

Claim 4. Suppose that there exists π ∈ Π such that for every i ∈ [h], the tournament T [Iπ,i] contains k
vertex-disjoint topological minor copies of π−1(i). Then T contains k vertex-disjoint topological minor
copies of H .

Just as in the proof of Lemma 16, due to Claim 4 we may now assume that

h⋃
i=1

Iπ,i = V (T ) for each π ∈ Π.

Consider
S :=

⋃
π∈Π

⋃
i∈[h]

Aπ,i ∪Bπ,i.

Since |Π| ≤ (|H| − 1)! due to H not being acyclic, we have

|S| ≤ (|H| − 1)! · |H| · (5dpw‖H‖ · k log k + dpw‖H‖ · k) ≤ 6dpw · |H|! · ‖H‖ · k log k.

So it is enough to prove that S is H-hitting in T . Let T ′ := T − S.

Claim 5. T ′ is H-topological-minor-free.

PROOF. The proof follows precisely the same steps as the one of Claim 3, with minor and straightforward
adjustments (e.g. instead of σ-intervals we consider simply intervals). y

Claim 5 finishes the proof of Lemma 20.

Now we can finish the proof of Theorem 4.

Proof of Theorem 4: Suppose T is a tournament that does not contain k vertex-disjoint topological minor
copies of H . If H is acyclic, then, by Corollary 18, we may find in T a set of at most 2|H|k ∈ OH(k)
vertices that is H-hitting. On the other hand, if H is not acyclic, then by Lemma 20 we may find in T an
H-hitting set of vertices of size at most 6dpw · |H|! · ‖H‖ · k log k ∈ OH(k log k).
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OH(k log k) for the Erdős-Pósa property for topological minors, (ii) drawing our attention to the work of
Fomin et al. [7], and (iii) many other comments that helped us in improving this manuscript.
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