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Pat Morin1 David R. Wood3

1 School of Computer Science, Carleton University, Ottawa, Canada
2 School of Computer Science and Electrical Engineering, University of Ottawa, Ottawa, Canada
3 School of Mathematics, Monash University, Melbourne, Australia

received 5th May 2021, revised 24th Nov. 2021, accepted 12th Apr. 2022.

Layered treewidth and row treewidth are recently introduced graph parameters that have been key ingredients in the

solution of several well-known open problems. In particular, the layered treewidth of a graph G is the minimum

integer k such that G has a tree-decomposition and a layering such that each bag has at most k vertices in each layer.

The row treewidth of G is the minimum integer k such that G is isomorphic to a subgraph of H ⊠ P for some graph

H of treewidth at most k and for some path P . It follows from the definitions that the layered treewidth of a graph

is at most its row treewidth plus 1. Moreover, a minor-closed class has bounded layered treewidth if and only if it

has bounded row treewidth. However, it has been open whether row treewidth is bounded by a function of layered

treewidth. This paper answers this question in the negative. In particular, for every integer k we describe a graph with

layered treewidth 1 and row treewidth k. We also prove an analogous result for layered pathwidth and row pathwidth.
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1 Introduction

Treewidth is a graph parameter that measures how similar a given graph is to a tree; it is of fundamental

importance in structural and algorithmic graph theory; see the surveys [3, 23, 32].

Layered treewidth is a variant of treewidth introduced independently by Dujmović, Morin, and Wood

[15] and Shahrokhi [37]; see Section 2 for the definition. A key property is that layered treewidth is

bounded on planar graphs but treewidth is not. In particular, planar graphs have layered treewidth at most

3 [15], but the n × n grid graph has treewidth n. Layered treewidth has been used in upper bounds on

several graph parameters including queue-number [13, 15], stack number [13], boxicity [36], clustered

chromatic number [28], generalised colouring numbers [26], asymptotic dimension [4], as well for results

in intersection graph theory [37].

Row treewidth(i) is a refinement of layered treewidth, implicitly introduced by Dujmović, Joret, Micek,

Morin, Ueckerdt, and Wood [14], who proved that planar graphs have row treewidth at most 8. This result
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and its generalisations have been the key to solving several open problems, regarding queue-number

[14], nonrepetitive chromatic number [12], universal graphs [5, 11, 21], centred colouring [7], graph

drawing [14, 31], and vertex ranking [6].

Layered and row treewidth are closely related in that the layered treewidth of a graph is at most its row

treewidth plus 1, and a minor-closed class has bounded layered treewidth if and only if it has bounded

row treewidth. However, a fundamental open problem is whether row treewidth is bounded by a function

of layered treewidth. This paper answers this question in the negative.

Theorem 1. For each k ∈ N there is a graph with layered treewidth 1 and row treewidth k.

This result is proved in Section 3. In Section 4 we use a key lemma from the proof of Theorem 1 to

prove a result about the relationship between layered treewidth and queue-number.

Layered pathwidth is a graph parameter analogous to layered treewidth, first studied by Bannister,

Devanny, Dujmović, Eppstein, and Wood [1] and Dujmović, Eppstein, Joret, Morin, and Wood [10]. Row

pathwidth is defined in a similar way to row treewidth. We prove the following analogue of Theorem 1

for layered pathwidth and row pathwidth.

Theorem 2. For each k ∈ N there is a tree with layered pathwidth 1 and row pathwidth k.

2 Definitions

We consider finite, undirected, simple graphs and use standard graph theory terminology [8].

Minors

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by

contracting edges. A graph class G is minor-closed if for every graph G ∈ G, every minor of G is in G.

A graph class G is proper if some graph is not in G. A Kt model in a graph G is a set {X1, . . . , Xt} of

pairwise-disjoint connected subgraphs in G, such that there is an edge of G between Xi and Xj for all

distinct i, j ∈ {1, . . . , t}. Clearly, Kt is a minor of G if and only if G contains a Kt model.

Treewidth and Pathwidth

A tree decomposition T of a graph G is a collection (Bx : x ∈ V (T )) of subsets of V (G) called bags

indexed by the nodes of a tree T such that (i) for each v ∈ V (G), the induced subgraph T [{x ∈ V (T ) :
v ∈ Bx}] is nonempty and connected; and (ii) for each edge vw ∈ E(G), there exists x ∈ V (T ) such

that {v, w} ⊆ Bx. The width of a tree-decomposition is the size of its largest bag, minus 1. The treewidth

tw(G) of a graph G is the minimum width of any tree-decomposition of G. If P = (Bx : x ∈ V (P )) is

a tree-decomposition of G and P is a path, then P is a path-decomposition of G. The pathwidth pw(G)
of a graph G is the minimum width of any path-decomposition of G. For each k ∈ N, the graphs with

treewidth at most k form a minor-closed class, as do the graphs with pathwidth at most k. Note that

tw(Kn) = pw(Kn) = n− 1.

Layered Treewidth and Pathwidth

A layering L of a graph G is a partition of V (G) into a sequence of sets (L0, L1, . . .) such that for

any edge vw ∈ E(G), if v ∈ Li and w ∈ Lj then |i − j| 6 1. For example, if r is a vertex in

a connected graph G, and Li is the set of vertices at distance i from r in G, then (L0, L1, . . . ) is the

breadth-first layering of G rooted at r. A layered tree-decomposition of a graph G consists of a pair
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(L, T ) where L = (L0, L1, . . .) is a layering of G and T = (Bx : x ∈ V (T )) is a tree-decomposition of

G. The (layered) width of (L, T ) is the size of the largest intersection between a layer and a bag; that is,

max{|Bx ∩ Li| : x ∈ V (T ), i ∈ N0}. The layered treewidth ltw(G) of G is the minimum width of any

layered tree-decomposition of G.

This definition was introduced independently by Shahrokhi [37] and Dujmović et al. [15]. The latter

authors proved that ltw(G) 6 3 for every planar graph G; more generally that ltw(G) 6 2g+3 for every

graph G of Euler genus g; and that a minor-closed class G has bounded layered treewidth if and only if

some apex graph(ii) is not in G. For an arbitrary proper minor-closed class G, Dujmović et al. [15] showed

that every graph in G has a tree-decomposition in which each bag has a bounded set of vertices whose

deletion leaves a subgraph with bounded layered treewidth. This version of Robertson and Seymour’s

Graph Minor Structure Theorem has proved to be very useful [4, 27–29].

If (L,P) is a layered tree-decomposition of G and P is a path-decomposition, then (L,P) is a lay-

ered path-decomposition of G. The layered pathwidth of G is the minimum width of any layered path-

decomposition of G. This parameter was introduced by Bannister et al. [1], who proved that every outer-

planar graph has layered pathwidth at most 2 (amongst other examples).

Row Treewidth and Pathwidth

The cartesian product of graphs A and B, denoted by A�B, is the graph with vertex set V (A)× V (B),
where distinct vertices (v, x), (w, y) ∈ V (A) × V (B) are adjacent if: v = w and xy ∈ E(B); or

x = y and vw ∈ E(A). The direct product of A and B, denoted by A × B, is the graph with vertex set

V (A) × V (B), where distinct vertices (v, x), (w, y) ∈ V (A) × V (B) are adjacent if vw ∈ E(A) and

xy ∈ E(B). The strong product of A and B, denoted by A⊠B, is the union of A�B and A×B.

The row treewidth rtw(G) of a graph G is the minimum treewidth of a graph H such that G is iso-

morphic to a subgraph of H ⊠ P∞, where P∞ is the 1-way infinite path. This definition is implicit in

the work of Dujmović et al. [14] who proved that rtw(G) 6 8 for every planar graph G; more gener-

ally, that rtw(G) 6 2g + 9 for every graph G of Euler genus g; and that a minor-closed class G has

bounded row treewidth if and only if some apex graph is not in G. For an arbitrary minor-closed class

G, Dujmović et al. [14] showed that every graph in G has a tree-decomposition in which each bag has a

bounded set of vertices whose deletion leaves a subgraph with bounded row treewidth.

It follows from the definitions that for every graph G,

ltw(G) 6 rtw(G) + 1.

To see this, suppose that G ⊆ H ⊠ P∞ where tw(H) = rtw(G). Let T = (Bx : x ∈ V (T )) be a

minimum-width tree-decomposition of H . Assume V (P∞) = N. For each b ∈ N, let Lb := {(a, b) ∈
V (G) : a ∈ V (H)}. So L = (L1, L2, . . . ) is a layering of G. For each x ∈ V (T ), let B′

x := {(a, b) ∈
V (G) : a ∈ V (H) ∩ Bx, b ∈ N}. So T ′ := (B′

x : x ∈ V (T )) is a tree-decomposition of G. Note that

|B′

x ∩ Lb| 6 |Bx| 6 tw(H) + 1. Thus (L, T ) is a layered tree-decomposition of G with width at most

tw(H) + 1 = rtw(G) + 1.

Define the row pathwidth rpw(G) of a graph G to be the minimum pathwidth of a graph H such

that G is isomorphic to a subgraph of H ⊠ P∞. Then lpw(G) 6 rpw(G) + 1 for every graph G. As

explained above, “bounded layered treewidth” and “bounded row treewidth” coincide for minor-closed

classes. However, this is not the case for their pathwidth analogues. Dujmović et al. [10] proved that a

(ii) A graph G is apex if G− v is planar for some vertex v. A graph G is an apex-forest if G− v is a forest for some vertex v.
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minor-closed class G has bounded layered pathwidth if and only if some apex-forest is not in G. However,

forests are a minor-closed class excluding some apex-forest (namely, K3), but forests have unbounded

row pathwidth by Theorem 2. In fact, Robertson and Seymour [33] proved that for every fixed forest

T , the class of T -minor-free graphs has bounded pathwidth (see [2] for a tight bound). It follows that a

minor-closed class G has bounded row pathwidth if and only if G has bounded pathwidth if and only if

some tree is not in G.

3 Separating Layered Treewidth and Row Treewidth

This section proves Theorem 1. Subdivisions play a key role. A subdivision of a graph G is a graph

G′ obtained by replacing each edge vw of G with a path Pvw from v to w whose internal vertices have

degree 2. If each Pvw has exactly s internal vertices, then G′ is the s-subdivision of G. If each Pvw has

at most s internal vertices, then G′ is a (6 s)-subdivision of G. It is well known and easily proved that

tw(G′) = tw(G) for every subdivision G′ of G.

The proof of Theorem 1 is based on two lemmas. The first shows that subdivisions efficiently reduce

layered treewidth (Lemma 3). The second shows that subdivisions do not efficiently reduce row treewidth

(Lemma 6). The theorem quickly follows.

3.1 Subdivisions Efficiently Reduce Layered Treewidth

Lemma 3. For every graph G with layered treewidth k ∈ N,

(a) there exists a (62k − 2)-subdivision G′ of G of layered treewidth 1; and

(b) if any subdivision G′ of G has layered treewidth at most c, then some edge of G is subdivided at

least k/c− 1 times in G′.

Proof: Let (Bx : x ∈ V (T )) be a tree-decomposition of G and let (V0, V1, . . . ) be a layering of G, such

that |Bx ∩ Vi| 6 k for each x ∈ V (T ) and i ∈ N0.

First we prove (a). We may assume that Bx ∩ Vi is a clique for each x ∈ V (T ) and i ∈ N0. So G[Vi] is

a chordal graph with no (k+1)-clique, which is therefore k-colourable. Let c : V (G) → {0, 1, . . . , k−1}
be a function such that c is a proper k-colouring of G[Vi] for each i ∈ N0. Thus for each x ∈ V (T ) and

i ∈ N0, and for all distinct vertices v, w ∈ Bx∩Vi, we have c(v) 6= c(w). Let Lki+j := {v ∈ Vi : c(v) =
j} for i ∈ N0 and j ∈ {0, 1, . . . , k − 1}. Let G′ be obtained from G as follows. Consider each edge

e = vw of G. Say v ∈ Vi and w ∈ Vi′ , and v ∈ La and w ∈ La′ . Without loss of generality, a < a′. Then

a′ 6 k(i′+1)− 1 6 k(i+2)− 1 6 a+2k− 1. Replace e by the path (v, se,a+1, se,a+2, . . . , se,a′−1, w)
in G′. The number of division vertices is a′ − 1 − a 6 2k − 2. Put the division vertex se,b in Lb for

each b ∈ {a+ 1, . . . , a′ − 1}. So (L1, L2, . . . ) is a layering of G′. Some bag Bx contains v and w. Add

a leaf node to T adjacent to x with corresponding bag {v, se,a+1, se,a+2, . . . , se,a′−1, w}. We obtain a

tree-decomposition of G′ with at most one vertex in each layer and in each bag. Hence ltw(G′) = 1.

We now prove (b). Suppose that some (6 r)-subdivision G′ of G has ltw(G′) 6 c. Let (Bx : x ∈
V (T )) be a tree-decomposition of G′ and let (V0, V1, . . . ) be a layering of G′ such that |Bx ∩ Vi| 6 c for

each x ∈ V (T ) and i ∈ N0. Orient each edge of G arbitrarily. For each oriented edge vw of G and for

each division vertex z of vw, let α(z) := v. For each node x ∈ V (T ), let Cx be obtained from Bx by

replacing each division vertex z ∈ Bx by α(z). Observe that (Cx : x ∈ V (T )) is a tree-decomposition of

G. For j ∈ N0, let Lj := V (G)∩ (Vj(r+1)∪Vj(r+1)+1∪· · ·∪V(j+1)(r+1)−1). Consider an edge vw of G
with v ∈ Vi and w ∈ Vi′ and i 6 i′. Then i′ 6 i+r+1 since vw is subdivided at most r times. Say v ∈ Lj
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and w ∈ Lj′ . By definition, j(r+1) 6 i 6 (j +1)(r+1)− 1 and j′(r+1) 6 i′ 6 (j′ +1)(r+1)− 1.

Hence j′(r + 1) 6 i′ 6 i + r + 1 6 (j + 1)(r + 1) − 1 + (r + 1) = (j + 1)(r + 1) + r, implying

j′ 6 j + 1. That is, (L0, L1, . . . ) is a layering of G. Each layer Lj contains at most c(r + 1) vertices in

each bag Cx. Thus k = ltw(G) 6 c(r + 1), implying r > k/c− 1.

Note that the proof of Lemma 3(a) is easily adapted to show that if se > 2k−2 for each edge e ∈ E(G)
and G′ is the subdivision of G in which each edge e is subdivided se times, then ltw(G′) 6 2. We omit

these straightforward details.

Bannister et al. [1] proved that lpw(G) 6 ⌈(pw(G) + 1)/2⌉. An analogous proof shows that ltw(G) 6
⌈(tw(G) + 1)/2⌉. Lemma 3(a) then implies:

Corollary 4. Every graph with treewidth k has a (6 k)-subdivision with layered treewidth 1.

We remark that Corollary 4 is tight, up to a small constant factor:

Observation 5. Let G′ be any (6 s)-subdivision of the complete graph Kk+1. Then ltw(G′) > (k +
1)/(2s+ 3). In particular, ltw(G′) > 1 if s < (k − 2)/2.

Proof: Let (L, T ) be a layered tree-decomposition of G′. Since Kk+1 has radius 1, G′ has radius at most

s+ 1 and therefore |L| 6 2s+ 3. Since Kk+1 has treewidth k, so does G′. Thus T has at least one bag

Bx of size at least k+1. By the pigeonhole principle, |Bx ∩L| > (k+1)/|L| > (k+1)/(2s+3) for at

least one L ∈ L.

3.2 Subdivisions do not Efficiently Reduce Row Treewidth

This section proves the following result.

Lemma 6. For each k ∈ N and s ∈ N0 there exists a graph G such that for every (6 s)-subdivision G′

of G,

rtw(G′) > k > tw(G).

A weaker version (with a more indirect proof) of Lemma 6 is implied by existing results about the

p-centred chromatic number χp(G) of a graph G; see [7, 9] for the definition (we will not need it).

Dubois et al. [9] show that, for each p ∈ N, there exists an integer k ∈ Θ(
√
p) and a treewidth-k graph G,

such that if G′ is the 6k-subdivision of G, then

χp(G
′) > 2Ω(tw(G)).

On the other hand, Dȩbski et al. [7] (see also [16]) show that for every graph G and p ∈ N,

χp(G) 6 (p+ 1)p(
p+rtw(G)
rtw(G) ).

Thus, for the graph G′ constructed by Dubois et al. [9],

2Ω(tw(G)) 6 χp(G
′) 6 (p+ 1)p(

p+rtw(G′)

rtw(G′) ).

This implies that rtw(G′) ∈ Ω(tw(G)/ log(tw(G))), as noted in [19].

To prove Lemma 6 it will be convenient to use the language of H-partitions from [14]. An H-partition

of a graph G is a partition H = (Bx : x ∈ V (H)) of V (G) indexed by the nodes of some graph H such
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that for any edge vw ∈ E(G), if v ∈ Bx and w ∈ By , then xy ∈ E(H) or x = y. A layered H-partition

(H,L) of a graph G consists of an H-partition H and a layering L of G. The (layered) width of (H,L) is

max{|Bx∩L| : x ∈ V (H), L ∈ L}. The layered width of an H-partition H of a graph G is the minimum

width, taken over all layerings L of G, of the width of (H,L). Dujmović et al. [14] observed that:

Observation 7 ([14]). For all graphs G and H , G is isomorphic to a subgraph of H ⊠ P∞ ⊠ Kw if

and only if G has an H-partition of layered width at most w. In particular, rtw(G) equals the minimum

treewidth of a graph H for which G has a layered H-partition of layered width 1.

This observation and the next lemma (with w = 1) implies Lemma 6. Lemma 8 generalises a result of

Dujmović et al. [14] who proved the s = 0 case.

Lemma 8. For all w, k ∈ N and s ∈ N0, there exists a graph G = Gs,k,w such that tw(G) 6 k, and

for any (6s)-subdivision G′ of G, and for any graph H and any H-partition of G′ with layered width at

most w, there is a Kk+1 minor in H , implying tw(H) > k and rtw(G) > k.

Say a Kk model {Y1, . . . , Yk} in a graph G respects an H-partition (Ax : x ∈ V (H)) of G if for

each x ∈ V (H) there is at most one value of i ∈ {1, . . . , k} for which V (Yi) ∩ Ax 6= ∅. For each i ∈
{1, . . . , k}, let Xi be the subgraph of H induced by those vertices x ∈ V (H) such that V (Yi) ∩ Ax 6= ∅.

Then {X1, . . . , Xk} is a Kk model in H . Thus the next lemma implies Lemma 8.

Lemma 9. For all w ∈ N and k, s ∈ N0, there exists a graph G = Gs,k,w such that tw(G) 6 k, and for

any (6 s)-subdivision G′ of G, and for any graph H and any H-partition (Ax : x ∈ V (H)) of G′ with

layered width at most w, there is a model {Y1, . . . , Yk+1} of Kk+1 in G′ that respects (Ax : x ∈ V (H)),
and for each i ∈ {1, . . . , k + 1} we have |V (Yi)| 6 k(2s+ 1) + 1 and V (Yi) ∩ V (G) 6= ∅.

Proof: The proof is by induction on k. For the base case with k = 0, let Gs,0,w be the graph with one

vertex v and no edges. Any subdivision G′ contains a model Y1 = G′[{v}] of K1 with |Y1| 6 1 =
0(2s+ 1) + 1, and this model trivially respects any H-partition of G′, for any graph H .

Now assume k > 1, and that the induction hypothesis holds for k − 1. Let Q = Gs,k−1,w be the graph

obtained by induction. Let N := k2(2s+1)(4s+5)w+1. Create the graph G by starting with N disjoint

copies Q1, . . . , QN of Q. Next add a vertex v and, for each i ∈ {1, . . . , N} and each u ∈ V (Qi), add N
internally disjoint paths of length 2 from v to u.

First we show that tw(G) 6 k. If k = 1 then G is a subdivided star, which has treewidth 1. Now

assume that k > 2. Begin with any tree-decomposition (Bx : x ∈ V (T )) of Q1 ∪ . . . ∪ QN with width

at most (k − 1). Add v to every bag Bx. For all i, j ∈ {1, . . . , N} and for each vertex u ∈ V (Qi),
choose a bag Bx that contains u, and attach a leaf node adjacent to x whose bag contains v, u, and the

degree-2 vertex of the j-th length-2 path from v to u. Each bag of this decomposition has size at most

max{3, k + 1} 6 k + 1 and therefore tw(G) 6 k.

Let G′ be a (6 s)-subdivision of G. Let H be a graph and let (H,L) be a layered H-partition of G′

with width at most w, where H := (Ax : x ∈ V (H)). Since the radius of G is 2, the radius of G′ is at

most 2s+ 2. Therefore |L| 6 4s+ 5, and |Ax| 6 (4s+ 5)w for each x ∈ V (H).
Let z be the unique node of H such that v ∈ Az , and let Q′

1, . . . , Q
′

N be the (possibly subdivided)

copies of Q1, . . . , QN that appear in G′. So Az ∩ V (Q′

i) 6= ∅ for at most (4s + 5)w − 1 values of

i ∈ {1, . . . , N}. Since N > (4s+ 5)w, we have V (Q′

i) ∩Az = ∅ for some i ∈ {1, . . . , N}.

Let Hi be the subgraph of H induced by the nodes τ ∈ V (H) such that Aτ ∩ V (Q′

i) 6= ∅. So

(Aτ ∩ V (Q′

i) : τ ∈ V (Hi)) defines a width-w layered Hi-partition of Q′

i (with respect to layering L).
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By induction, there is a Kk model {Y1, . . . , Yk} in G′ that respects (Aτ ∩ V (Q′) : τ ∈ V (Hi)), and for

each j ∈ {1, . . . , k} we have |V (Yj)| 6 (k − 1)(2s + 1) + 1 6 k(2s + 1) and V (Yj) ∩ V (G) 6= ∅.

Let yj be a vertex in V (Yj) ∩ V (G). Note that |V (Y1 ∪ · · · ∪ Yk)| 6 k2(2s + 1). Let F :=
⋃{Ax :

Ax ∩ V (Y1 ∪ · · · ∪ Yk) 6= ∅}. So |F | 6 k2(2s+ 1)(4s+ 5)w.

Since V (Q′

i) ∩ Az = ∅, we have v 6∈ F . Since N > |F |, for each j ∈ {1, . . . , k}, for at least one

of the N paths between v and yj added in the construction of G, the corresponding path in G′ avoids F .

Let Pj be this path, not including yj . Let Yk+1 :=
⋃{Pj : j ∈ {1, . . . , k}}. So V (Yk+1) ∩ F = ∅. By

construction, there is an edge from yj to Yk+1 for each j ∈ {1, . . . , k}. So {Y1, . . . , Yk+1} is a Kk+1

model in G′. Since {Y1, . . . , Yk} respects (Aτ ∩ V (Q′) : τ ∈ V (Hi)) and V (Yk+1) ∩ F = ∅, it follows

that {Y1, . . . , Yk+1} respects (Ax : x ∈ V (H)). By construction, |V (Yk+1)| 6 k(2s + 1) + 1 and

v ∈ V (Yk+1) ∩ V (G). By assumption, for each j ∈ {1, . . . , k} we have |V (Yj)| 6 (k − 1)(2s+ 1) + 1
and V (Yj) ∩ V (G) 6= ∅. This shows that {Y1, . . . , Yk+1} is the desired Kk+1 model in G′.

We now prove the following strengthening of Theorem 1.

Theorem 10. For each k ∈ N there is a graph G with ltw(G) = 1 and rtw(G) = tw(G) = k.

Proof: By Lemma 6 with s = k, there is a graph G with tw(G) 6 k such that rtw(G′) > k for every

(6k)-subdivisionG′ of G. By Corollary 4, there exists a (6k)-subdivisionG′ ofG with ltw(G′) = 1. By

definition, rtw(H) 6 tw(H) for every graphH . It is well known and easily proved that tw(H) = tw(H ′)
for every subdivision H ′ of H . Thus k 6 rtw(G′) 6 tw(G′) = tw(G) 6 k, implying rtw(G) =
tw(G′) = k.

See [9, 22] for other examples where O(tw(G))-subdivisions of graphs G are used to prove lower

bounds.

4 Queue Layouts and Layered Treewidth

The queue-number qn(G) of a graph G is a well-studied graph parameter introduced by Heath, Leighton

and Rosenberg [24, 25]; we omit the definition since we will not need it. Queue-number can be upper

bounded in terms of layered treewidth and row treewidth. In particular, Dujmović et al. [15] proved that

n-vertex graphs of bounded layered treewidth have queue-number in O(log n), while Dujmović et al.

[14] proved that graphs of bounded row treewidth have bounded queue-number. (Row treewidth was

discovered as a tool for proving that planar graphs have bounded queue-number.) This is a prime example

of a difference in behaviour between layered treewidth and row treewidth. Nevertheless, it is open whether

graphs of bounded layered treewidth have bounded queue-number. We show that the answer to this

question depends entirely on the case of layered treewidth 1.

Corollary 11. Graphs of bounded layered treewidth have bounded queue-number if and only if graphs of

layered treewidth 1 have bounded queue-number.

Proof: The forward implication is immediate. Now assume that every graph of layered treewidth 1 has

queue-number at most some constant c. Let G be a graph with layered treewidth k. By Lemma 3, G has

a (6 k)-subdivision G′ with layered treewidth 1. So qn(G′) 6 c. Dujmović and Wood [18] proved that

for every graph H and (6 s)-subdivision H ′ of H , we have qn(H) ∈ O(qn(H ′)2s). This bound was

improved to O(qn(H ′)s+1) in [17]. Thus qn(G) 6 O(ck+1), implying that graphs of bounded layered

treewidth have bounded queue-number.
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This proof highlights the value of considering the behaviour of a graph parameter on subdivisions. An

analogous result holds for nonrepetitive chromatic number π(G) (using a result of Nešetřil, Ossona de

Mendez, and Wood [30] to bound π(H) in terms of π(H ′)).

Corollary 12. Graphs of bounded layered treewidth have bounded nonrepetitive chromatic number if and

only if graphs of layered treewidth 1 have bounded nonrepetitive chromatic number.

5 Separating Layered Pathwidth and Row Pathwidth

Recall that Theorem 2 asserts that for all k ∈ N there is a tree T with lpw(T ) = 1 and rpw(T ) > k. We

first show that this theorem, in fact, follows from results in the literature. Bannister et al. [1] noted that

lpw(T ) = 1 for every tree T . Dvorák et al. [19] showed that any family G of graphs with bounded row

pathwidth has polynomial growth. The family of complete binary trees does not have polynomial growth,

so for each k ∈ N, there exists a complete binary tree T with rpw(T ) > k. This proves Theorem 2.

We now prove the following stronger result.

Theorem 13. For every k ∈ N there exists a tree T with pw(T ) = rpw(T ) = k.

Let Td,h be the complete d-ary tree of height h. It is folklore that pw(Td,h) = h for all d > 3 (see

[20, 34, 35]). So Observation 7 and Lemma 14 with ℓ = 3 and w = 1 implies Theorem 13.

Lemma 14. For all h ∈ N0 and w, ℓ ∈ N there exists d ∈ N such that for every graph H and every

H-partition (Ax : x ∈ V (H)) of Td,h with layered width at most w, the graph H contains a subgraph

isomorphic to Tℓ,h. Moreover, if r is the root vertex of Td,h and r ∈ Az , then z is the root vertex of a

subgraph of H isomorphic to Tℓ,h.

Proof: We proceed by induction on h. The case h = 0 is trivial. Now assume that h > 1. We may assume

that the number of layers is at most the diameter of Td,h plus 1, which equals 2h+1. So |Ax| 6 w(2h+1)
for each x ∈ V (H). Let r1, . . . , rd be the children of r in Td,h. Let T 1, . . . , T d be the copies of Td,h−1

in Td,h, where T i is rooted at ri. At most w(2h + 1) − 1 of T 1, . . . , T d intersect Az . Without loss of

generality, T 1, . . . , T d−w(2h+1)+1 do not intersect Az . For each i ∈ {1, . . . , d − w(2h + 1) + 1}, let zi
be the vertex of H such that ri ∈ Azi . Since T i ∩ Az = ∅, we have zi 6= z. Since rri ∈ E(Td,h), we

have zzi ∈ E(H). By induction, H − z contains a subgraph Si isomorphic to Tℓ,h−1 rooted at zi. Let

X be the intersection graph of S1, . . . , Sd−w(2h+1)+1. If Si and Sj intersect in node y of H , then T i

and T j both intersect Ay . Since |V (Si)| 6 (ℓ + 1)h−1 and |Ay| 6 w(2h + 1), X has maximum degree

∆(X) 6 w(2h + 1)(ℓ + 1)h. Thus χ(X) 6 w(2h + 1)(ℓ + 1)h + 1. For sufficiently large d, we have

|V (X)| > (ℓ − 1)χ(X). Thus, in any χ(X)-colouring of X , some colour class has at least ℓ vertices.

Without loss of generality, S1, . . . , Sℓ are pairwise-disjoint. Hence, S1 ∪ · · · ∪ Sℓ along with z forms a

subgraph of H isomorphic to Tℓ,h, rooted at z, as desired.

We finish with an open problem: what is rpw(T2,h)? It follows from a result of Dvorák et al. [19] that

rpw(T2,h) ∈ Ω( h
log h

). Is this tight, or is rpw(T2,h) ∈ Ω(h)? Obviously rpw(T2,h) 6 pw(T2,h) = ⌈h
2 ⌉.
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