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For a non-negative integer s < |V (G)| — 3, a graph G is s-Hamiltonian if the removal of any k£ < s
vertices results in a Hamiltonian graph. Given a connected simple graph G that is not isomorphic to
a path, a cycle, or a K13, let 6(G) denote the minimum degree of G, let hs(G) denote the smallest
integer i such that the iterated line graph L*(G) is s-Hamiltonian, and let £(G') denote the length of
the longest non-closed path P in which all internal vertices have degree 2 such that P is not both of
length 2 and in a K3. For a simple graph GG, we establish better upper bounds for hs(G) as follows.

UG) + 1, if0(G) <2and s =0;

d(G)+2+Nlg(s +1)], ifd(GQ)<2ands>1;
hs(G) < s+1

2+{1g6(G)_2—‘, if3<0(G) <s+2

2, otherwise,

where d(G) is the smallest integer i such that §(L(G)) > 3. Consequently, when s > 6, this new
upper bound for the s-hamiltonian index implies that hs(G) = o(£(G) + s + 1) as s — oo. This
sharpens the result, hs(G) < £(G) + s + 1, obtained by Zhang et al. in [Discrete Math., 308 (2008)
4779-4785].

Keywords: s-Hamiltonian; (s, ¢)-supereulerian; Collapsible graphs; k-triangular; Line graph stable
properties

1 Introduction

Finite loopless graphs permitting parallel edges are considered with undefined terms being
referenced to [5]. As in [5], a simple graph is one that is loopless and without parallel
edges, and the minimum degree of a graph G is denoted by §(G). For a subset X C V (G)
or E(G), let G[X] denote the subgraph induced by X, andlet G — X = G[V(G) — X] or
G[E(G) — X], respectively. When X = {z}, we write G — x for G — {z}. Throughout
this paper, if X C F(G), then, for notational convenience, we often use X to denote both
the edge subset of E(G) and G[X]. We also use 1g z as an alternative notation for log, x,
and set [m,n] = {m,m+ 1,...,n} for two integers m, n with m < n.

A graph is considered Hamiltonian if it has a spanning cycle. For a non-negative integer
s < |V(G)| — 3, a graph is called s-Hamiltonian if the removal of any k < s vertices
results in a Hamiltonian graph. A subgraph H of G is dominating if G — V (H) is edgeless.
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Following [4,6], a graph is supereulerian if it has a spanning closed trail. Harary and Nash-
Williams [13] characterized Hamiltonian line graphs as follows, which implies that the line
graph of every supereulerian graph is Hamiltonian.

Theorem 1.1 (Harary and Nash-Williams, Proposition 8 of [13]). Let G be a graph with
at least three edges. Then L(G) is Hamiltonian if and only if G has a dominating closed
trail.

The line graph of a graph G, denoted L(G), is a simple graph with E(G) being its vertex
set, where two vertices in L(G) are adjacent whenever the corresponding edges in G are
adjacent. A claw-free graph is one that does not have an induced subgraph isomorphic to
K 3. Beineke [2] and Robertson (Page 74 of [12]) showed that line graphs are claw-free
graphs. For a positive integer i, we define L°(G) = G, and the ith iterated line graph of G,
denoted L*(G), is defined recursively as L*(G) = L(L*"Y(G)).

Let J; and J> be two graphs obtained from K 3 via identifying two and three vertices of
degree 1, respectively. Let K 3 = {J1, J2, K1 3}. Since the line graph of a cycle remains
unchanged, in general, we assume that graphs are not isomorphic to paths, cycles or any
members in K 1+ 5. For this reason, we define

G = {G : G is connected and is not isomorphic to a path, or a cycle, or a member in K" 3}

Chartrand in [9] introduced and studied the Hamiltonian index of a graph, and initiated the
study of indices of graphical properties. More generally, we have the following definition.

Definition 1.1 (Definition 5.8 of [17]). For a property P, the P-index of G € G is defined
by
PG) = { min{i : L*(G) has property P}, if one such integer i exists;

0, otherwise.

A property P is line graph stable if L(G) has P whenever G has P. Chartrand [9]
showed that for every graph G € G, the Hamiltonian index exists as a finite number, and the
characterization of Hamiltonian line graphs (Theorem 1.1) by Harary and Nash-Williams
implies that being Hamiltonian is line graph stable. Z. Ryjacek et al. [25] indicated that de-
termining the value of the Hamiltonian index is difficult. Clark and Wormald [11] showed
that for all graphs in G, other Hamiltonian-like indices also exist as finite numbers; and
in [17], it is shown that these Hamiltonian-like properties are also line graph stable. Let
h(G), hs(G) and s(G) be the Hamiltonian index, s-Hamiltonian index and supereulerian
index of G € G, respectively. By definitions, h(G) = ho(G).

Let P = vgejvies - - - Us—1€505 be a path of a graph G where each e; € E(G) and each
v; € V(G). Then P is called a (vg, v;)-path or an (eq, es)-path of G. A path P of G is
divalent if every internal vertex of P has degree 2 in (G. For two non-negative integers s
and ¢, a divalent path P of G is a divalent (s, t)-path if the two end vertices of P have
degrees s and t, respectively. A non-closed divalent path P is considered proper if P is not
both of length 2 and in a K3. As in [16,26], for a graph G € G, define

¢(G) = max{m : G has a length m proper divalent path}. (1)

Theorem 1.2. Let G € G be a simple graph. Each of the following holds.
(i) (Corollary 6 of [16]) s(G) < £(G).

(ii) (Corollary 6 of [16]) h(G) < s(G) +1 < 4(G) + 1.

(iii) (Zhang et al., Theorem 1.1 of [26]) hs(G) < 4(G) + s + 1.

Several natural questions arise here. Can we improve the upper bounds above? Can
we generalize Theorem 1.2(i) in the way as Theorem 1.2(iii) extends Theorem 1.2(ii)?
As a generalization of supereulerian graphs, given two non-negative integers s and ¢, it is
defined in [21] that a graph G is (s, t)-supereulerian if for any disjoint sets X, Y C E(G)
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with | X| < sand |Y| < ¢, G—Y contains a spanning closed trail that traverses all edges in
X . Former studies on (s, t)-supereulerian graphs can be found in [19-21], among others.
Let i, (G) denote the (s, t)-supereulerian index of a graph G € G. Thus, i00(G) = s(G).
By the characterization of Hamiltonian line graphs (Theorem 1.1), the line graph of every
(0, s)-supereulerian graph is s-Hamiltonian, and then we obtain the following observation.
Observation 1. Let G € G. Then hy(G) < ig s + L. In particular, h(G) < s(G) + 1.

To present the main results, an additional notation would be needed. Since G € G, it
is observed that (for example, Theorem 18 of [10]) there exists an integer ¢ > 0 such that
§(LI(G)) > 3. Define

d(G) = min{i : §(L'(G)) > 3}. )
Our main results can now be stated as follows.

Theorem 1.3. Let G € G be a simple graph with § = §(G) and d = cflv(G) Then, given
two non-negative integers s and t,

L(Q), ifd <2ands=1t=0;
d+1+lg(s+t+1)], if6<2ands+t>1;
ist(G) < t+1 (3)
(&) 1+Pg%w F3<8<stit2

1, otherwise.

Using Observation 1, Theorem 1.3 implies Corollary 1.4 below.

Corollary 1.4. Let G € G be a simple graph with § = 6(G) and d= J(G) Then, given a
non-negative integer s < |V (G)| — 3,

0(G) + 1, if0 < 2ands=0;
d+2+lg(s+1)], if6<2ands>1;
hs(G) < 4)
@ 2+{lg8+ﬂ, f3<0<s+2;
d—2
2, otherwise.

Given a simple graph G € G with ¢ = ¢(G) and d= EZV(G) By the formula to compute d
to be presented in Section 3.1, we have d < ¢+2. When s > 6, as [lg(s+1)]+2<s—1,
we have d+ 2+ [1g(s+1)] < £+ 1+ s. Moreover, since [lg(s+1)] = o(s) as s — oo, it
follows that d+2+[lg(s+1)] = o(f+s+1) as s — oco. Similarly, when s > 1andn > 1,
we have [lg 1| < sand [lg =t1| = o(s) as s — co. It means that 2+ [Ig 1] < s+ 2
and 2 + [1g %W = o(s + 2) as s — oo. Hence, when s > 6, the upper bounds above
sharpen the result of Theorem 1.2(iii).

In the next section, we present preliminaries and tools that will be used in our discus-
sions. In Section 3, we shall show some important lemmas, including a corrected formula

to compute d(G), which are very helpful to prove the main result, Theorem 1.3, in Section
4.

2 Preliminaries

For a vertex v € V(G), we denote N¢(v) to be the set of all neighbors of vertex v in a
graph GG, and denote E¢(v) to be the set of all edges incident with v in G. The degree of
vertex v is denoted by dg(v) = |Eg(v)|. For integer i > 0, let D;(G) be the set of all
vertices of degree ¢ in G, and let O(G) be the set of all odd degree vertices in G. For an edge
e € E(G), let Eg(e) be the set of all edges adjacent with e in G and dg(e) = |Eg(e)|.
For notational convenience, if v € V(G) and e € E(G), we write d(v) and d(e) for dg(v)
and dg(e) = dp(g)(e), respectively, when G or L(G) is understood from context.
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2.1 lIterated Line Graphs

For a subset X C E(G), let L°(X) = X and L*(X) = L(G)[L*~1(X)] for each integer
i > 1. Moreover, for a subset Y C F (Li(G)), by the definition of the iterated line graphs,
there exists a unique Z C E(L""7(Q)) for each j € [0,i] such that LY(Z) = Y, denoted
Z = L77(Y). Thus, for two integers i, j and an edge subset X C E(G), LY (L (X)) =
Liti(X).

Lemma 2.1. Given an integeri > 0 and a graph G. If P is a divalent (s, t)-path in L*(G)
of length r that is not in a K3, then for each j € [0,i], L7 (P) is a divalent (s,t)-path in
L= (G) of length r + j.

Proof: Assume that jy is the smallest number such that L=7°(P) is not a divalent (s, t)-
path of length r + jo where 0 < jo < i. Let @ = L~7F(P). Thus, Q is a divalent
(s,t)-path in L*=0Go=1)(@G) of length 7 4 jo — 1. First, we claim that Q is not in a K3. If Q
isina K3, then P = L%°~1(Q) is in a K3 since the line graph of a K3 is still a K3, which
contradicts the assumption of P being notin a K.

Now, set J = L*~70(@), and then L(J) = L*~Uo=D(@). Let Q be a (u,v)-path of
L(J), where u € Dy(L(J)) and v € Dy(L(J)). As Q is not in a K3 and the definition of
divalent paths, L=7°(P) = L~1(Q) is a divalent (u, v)-path in .J, where {u,v} C E(J).
Let L=79(P) be a (z,y)-path where {z,y} C V(J). Since d(z) = d(u) —2+2 = s
and d(y) = d(v) — 2+ 2 = t, L7/°(P) is a divalent (s, t)-path of length  + jo, which
contradicts our choice of jg. O

2.2 Collapsible Graphs

In [7], Catlin defined collapsible graphs as a useful tool to study supereulerian graphs.
A graph G is collapsible if for every subset R C V(G) with |R| = 0 (mod 2), G has
a subgraph I'p such that O(T'r) = R and G — E(I'g) is connected. By definition, all
complete graphs K, except Ky are collapsible. As shown in Proposition 1 of [18], a
graph G is collapsible if and only if for every subset R C V(G) with |[R| = 0 (mod
2), G has a spanning connected subgraph Lr with O(Lg) = R. As Ly is a spanning
eulerian subgraph, every collapsible graph is supereulerian. Collapsible graphs have been
considered to be very useful to study eulerian subgraphs via the graph contraction. For an
edge subset X C E(Q), the contraction G/X is obtained from G by identifying the two
ends of each edge in X and deleting the resulting loops. If H is a subgraph of G, then we
write G/H for G/E(H). The following theorem summarizes some useful properties of
collapsible graphs for our proofs.

Theorem 2.2. Let G be a graph and H be a subgraph of G.

(i) (Catlin, Theorem 3 of [8]) If each edge of a connected graph G is in a cycle of length 2
or 3, then G is collapsible.

(ii) (Catlin, Corollary of Theorem 3 of [7]) If H is collapsible, then G is collapsible if and
only if G/ H is collapsible.

3 The k-Triangular Index

A cycle of length 3 is often called a triangle. Following [3], for an integer k£ > 0, a graph G
is k-triangular if every edge lies in at least k distinct triangles in GG; a graph G is triangular
if G is 1-triangular. Let 7, denote the family of all k-triangular graphs. Thus, §(G) > k+1
ifG € Th.

Triangular graphs are often considered as models for some kinds of cellular networks
( [14]) and for certain social networks ( [22]), as well as mechanisms to study network
stabilities and to classify spam websites ( [1]). In addition to its applications in the hamil-
tonicity of line graphs ( [3]), triangular graphs are also related to design theory. In 1984,
Moon in [23] introduced the Johnson graphs J(n, s), named after Selmer M. Johnson for
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the closely related Johnson scheme. The vertex set of J(n, s) is all s-element subsets of
an n-element set, where two vertices are adjacent whenever the intersection of the corre-
sponding two subsets contains exactly s — 1 elements. For example, J(n, 1) is isomorphic
to K,. By definitions, for any integers n > 3 and s with n > s, J(n,s) is (n — 2)-
triangular. Therefore, it is of interests to investigate k-triangular graphs for a generic value
of k.

For an integer k& > 0, define ¢4 (G) to be the k-triangular index of G € G, that is, the
smallest integer m such that L™ (G) € T . The triangular index ¢1(G) is first investigated
by Zhang et al.

Theorem 3.1. Let G € G be a simple graph. Each of the following holds.
(i) (Zhang et al., Proposition 2.3 (i) of [27]) Being triangular is line graph stable.
(ii) (Zhang et al., Lemma 3.2 (iii) of [26]) t1(G) < ¢(G).
One of the purposes of this section is to determine, for any positive integer k, the best
possible bounds for ¢;(G) and to investigate whether being k-triangular is line graph stable.

3.1 A Formula to Compute d(G)

Recall that d(G) = min{i : §(L*(G)) > 3}, which is defined in (2). Define
01(G) = max{|E(P)| : Pisadivalent (1, 3)-path of G},
l5(G) = max{|E(P)| : Pisadivalent (1,¢)-path of G, where t > 4}, 5)
l5(G) = max{|E(P)| : Pisadivalent (s, t)-path of G, where s,t > 3},

and
EO(G) = Inax{él(G) + 1,62(G>,€3(G> — 1}.

In [15], it is claimed that “Tt is easy to see d(G) = £y(G).” However, there exists an infinite
family of graphs each of which shows that this claim might be incorrect. Let B = {T : T
is a tree with V(T') = D1(T) U D3(T')}. For each G € B, we have ¢1(G) = (3(G) =1
and (5(G) = 0. Direct computation indicates that d(G) = 3 > £,(G). See Figure 1 for an
illustration.

G L(G) L*(@)

Fig. 1: A member GG € B and its iterated line graphs.
Thus what would be the correct formula to compute CT(G) becomes a question to be
answered. Before presenting our answer to it, we need some notation. Let U = {v €

V(G) : [Ng(v)| =1} and F' = {J, oy Ea(v).
Lemma 3.2. Let G € G be a graph with §(G) < 2, d = d(G) and ty = lo(G). The
formula below computes d:

~ {max{go,?)}, if|Eq(v) N F| = 2 for some v € D3(G); ©)

d= )
Lo, otherwise.

Proof: Let m be the right-hand side of (6) and let ¢; = ¢;(G) for each ¢ € {1,2,3}. Then
m < d by definitions of d and line graphs. Now, it suffices to show that §(L™(G)) > 3.
We assume that 6(L™(G)) < 2 to seek a contradiction.

If §(L™(G)) = 1, then L™(QG) has a divalent (1,¢)-path of length » where ¢ > 3. By
Lemma 2.1, G has a divalent (1, ¢)-path of length r +m. If t = 3, thenm +1 <m+r <
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{1 < m — 1, a contradiction; if £ > 3, then m + 1 < m + r < {9 < m, which is also a
contradiction.

Then, 6(L™(G)) = 2. Picku € Do(L™(G)). If u is not in any triangles of L™ (G), then
w is in a divalent (s',t)-path of length +' > 2 in L™ (G) that is not in a K5, where s’ > 3
and t' > 3. It follows that G has a divalent (s’,¢’)-path of length 7' + m by Lemma 2.1,
which shows that 2+m < ' +m < {3 < m+ 1, a contradiction. Thus, v € V(H ) where
H = K3 is a subgraph of L™(G). By the definition of line graphs, L~ (H) is isomorphic
to one member of { K3, K1 3, J1, J2}. Letu = xy € E(L™1(H)).

When L~Y(H) 2 K3, as d(u) = 2, we have £,(L™"*(G)) > 1. By Lemma 2.1,
l1 > 1+ (m—1)=m >{; + 1, a contradiction.

When L~1(H) = J; or J, as there is no parallel edges in line graphs, m = 1. If
L=Y(H) = J,, then G = J, as d(u) = 2, contradicting the definition of G. Then,
L7Y(H) = J;. If u = xy is one of the parallel edges of .Ji, then one of end vertices of
u, say x, of degree 3 in G satisfies |[Eq(z) N F| = 2, which implies m > 3 by (6). Itis a
contradiction with m = 1.

When L™1(H) & K3, we have d(z) = d(y) = 2and /3 > 3asd(u) = 2. If m =
l,as /3 > 3,thenl = m > ¢35 — 1 > 2, a contradiction. So, m > 2. Note that
L~2(H) is isomorphic to one member of { K3, K1 3, J1, Jo}. If L=2(H) = K3 or Jo, then
L™ %(G) = G = Kj or J, respectively, as d(z) = d(y) = 2. It contradicts G € G.
Now, L~2(H) is isomorphic to one member of {Kj 3, J1}. Since d(z) = d(y) = 2 as
well as line graphs are claw-free and contain no parallel edges, it shows that m = 2. As
d(z) = d(y) = 2, {z,y} C F and there is a common end vertex of edges x and y of degree
three, which shows m > 3 by (6). It contradicts the fact we got before that m = 2. O

3.2 The k-Triangular Index
Before establishing the bounds for ¢ (G), we need some lemmas.

Theorem 3.3 (Niepel, Knor and Soltés, Lemma 1(1) of [24]). Let G be a simple graph
with §(G) > 3. Then, §(L'(G)) > 24(§(G) — 2) + 2 for each integer i > 0.

By the definition of line graphs, if G is a regular graph, then for each integer ¢ > 0, we
always have §(L*(G)) = 2¢(6(G) — 2) + 2, and so the lower bound in Theorem 3.3 is best
possible in this sense.

Lemma 3.4. Let G € G be a simple graph with § = 6(G). Each of the following holds for
each integer © > (.
(i) If 6 > 3, then L*(G) is (2~'(0 — 2))-triangular.

(i) If 6 < 2, then LA*(G) is (201 (09 — 2))-triangular where & = 5(L‘I(G)(G)). In
particular, L4T4(G) is 2~ -triangular.

Proof: Let e;eo € E(L(G)) be an arbitrary edge in L(G). Then there exists a vertex
u € V(G) such that {e1,e2} C Eqg(u). Suppose & > 3. In general, as L(G)[Eq(u)] =
K (), the edge ejez lies in at least d(u) — 2 > 0 — 2 > 1 distinct triangles. It means
that L(G) is (6 — 2)-triangular. By Theorem 3.3, for each integer i > 0, §(L*"1(G)) >
2i71(§ — 2) + 2 > 3. It follows that L (G) is (2¢71(§ — 2))-triangular and (i) is proved.
To show (ii), as 59 > 3, it follows by (i) that L+ (G) = L{(L4(Q)) is (271(0 — 2))-
triangular. o

Theorem 3.5. Let k > 2 be an integer and G € G be a simple graph with 6 = §(G) and

d= d(G). Each of the following holds.
(i) Being k-triangular is line graph stable.
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(ii)
d+ 1+ [lgk], if§d <2;
1, otherwise.

Moreover, the equality holds for sufficiently large k when § < k + 1.

Proof: (i) Suppose G € G is a simple k-triangular graph for given k > 2. Then §(G) >
k 4+ 1 > 3. Pick an edge eje2 € E(L(G)). To show that L(G) € Ty, it is enough to
prove that ej e lies in at least & distinct triangles in L(G). Let = be the common vertex of
ey and eg in G, and X be the set of all edges adjacent with both edges e; and es, that is,
X = Eg(e1)NEg(e2). If d(z) > k42, then | X| > k. It means that e; es lies in at least k
distinct triangles in L(G). Now, we consider that d(z) = k + 1. Since G € T is a simple
graph, G[N¢(z)] is a complete graph and then ejes lies in at least k distinct triangles in
L(G).

(ii) Let t = ti(G). First, we consider the situation when 6 < 2. As k > 2, by the
definition of CT, wehavet > d. Ift < d+2,thent < d-+1+ [lgk] as k > 2. Assume next
that k is so large that t > d + 2. As L'(G) € T} but L'=*(G) ¢ T, by Lemma 3 4(ii),
2t=d=2 |, < 9t=d=1 Then algebraic manipulationleads to t —d —2 < lgk < t —d — 1,
which means that [1gk] = ¢ — d — 1. Hence we conclude that ¢ = d + 1 + [Igk].

Now, we suppose that § > 3. If 6 > k + 2, then L(G) € T 5—2 by Lemma 3.4(i), which
implies that L(G) € T and then ¢t < 1.

If§ < k+1andt > 2, then, by Lemma 3.4(i), for each integer i > 0, Li(G) is
(2¢71(6 — 2))-triangular. So 2¢72(§ —2) < k < 2¢71(§ —2) by the definition of t = ¢,(G).
It follows that t = 1 + [lg 55—2—‘ Then, t <1+ [lg 55—2—‘ when3 < § <k -+ 1. O

4 Proof of Theorem 1.3

An elementary subdivision of a graph G at an edge e = uv is a graph G(e) obtained from
G — e by adding a new vertex v, and two new edges uv, and v.v. For a subset X C E(G),
we define G(X) to be the graph obtained from G by elementarily subdividing every edge
of X.

Lemma 4.1. Foranintegerk > 1, if G € G is a k-triangular simple graphand X C E(Q)
with | X| = swhere 1 < s <k, thenG — X € T_s.

Proof: Pick e € E(G — X). Since G € T, edge e lies in at least k distinct triangles in
G, say C7,Cs5,...,Cp. As E(Cf N C%) = {e} foreach {7, j} C [1,k] and | X| = s < K,
there exist k — s such triangles C§ where ¢’ € [1, k] such that E(C%) N X = (. It follows
that G — X € Tp_s. O

Lemma 4.2. Given two non-negative integers s and t. If G € G is a (s +t + 1)-triangular
simple graph, then G is (s, t)-supereulerian.

Proof: For any X,Y C E(G) with X NY = 0, |X| = s; < sand [Y| < t. Then
IXUY| <s+t Let H=G—(XUY). By Lemma4.l, H € T;. It follows that H
is collapsible by Theorem 2.2(i). Let X = {x1,2,...,25, }. Then V(G(X)) = V(G) U
{Vay5Vayy - -+, vz, }. Note that G(X) =Y —{vs,, Vs, .-, Vs, } = H is collapsible. Since
every edge of (G(X)—Y)/H lies in a cycle of length 2, which implies that (G(X)—Y)/H
is collapsible by Theorem 2.2(i). It indicates that G(X) — Y is collapsible by Theorem
2.2(ii) as H is collapsible. Then G(X) — Y is supereulerian, which means that G(X) — Y
has a spanning eulerian subgraph J. Note that dg(x)—y (vz;) = 2 for each i € [1,s1].
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Then subgraph J contains all edges incident with some v, which means that G — Y has
a spanning eulerian subgraph J’ containing X, and so G is (s, t)-supereulerian. O

Proof of Theorem 1.3: Combine Theorem 3.1(ii), Theorem 3.5(ii) and Lemma 4.2, and
then we complete the proof of it. o
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