
ar
X

iv
:2

10
9.

05
66

0v
3 

 [
m

at
h.

C
O

] 
 2

 J
un

 2
02

2

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 24:1, 2022, #22

Asymptotically sharpening the

s-Hamiltonian index bound

Sulin Song1 Lan Lei2∗ Yehong Shao3 Hong-Jian Lai1†

1 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.
2 School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing

400067, P.R. China.
3 Arts and Science, Ohio University Southern, Ironton, OH 45638, USA.

received 15th Sep. 2021, revised 23rd May 2022, accepted 24th May 2022.

For a non-negative integer s ≤ |V (G)| − 3, a graph G is s-Hamiltonian if the removal of any k ≤ s

vertices results in a Hamiltonian graph. Given a connected simple graph G that is not isomorphic to

a path, a cycle, or a K1,3, let δ(G) denote the minimum degree of G, let hs(G) denote the smallest

integer i such that the iterated line graph Li(G) is s-Hamiltonian, and let ℓ(G) denote the length of

the longest non-closed path P in which all internal vertices have degree 2 such that P is not both of

length 2 and in a K3. For a simple graph G, we establish better upper bounds for hs(G) as follows.

hs(G) ≤






ℓ(G) + 1, if δ(G) ≤ 2 and s = 0;

d̃(G) + 2 + ⌈lg(s+ 1)⌉, if δ(G) ≤ 2 and s ≥ 1;

2 +

⌈
lg

s+ 1

δ(G)− 2

⌉
, if 3 ≤ δ(G) ≤ s+ 2;

2, otherwise,

where d̃(G) is the smallest integer i such that δ(Li(G)) ≥ 3. Consequently, when s ≥ 6, this new

upper bound for the s-hamiltonian index implies that hs(G) = o(ℓ(G) + s + 1) as s → ∞. This

sharpens the result, hs(G) ≤ ℓ(G) + s+ 1, obtained by Zhang et al. in [Discrete Math., 308 (2008)

4779-4785].

Keywords: s-Hamiltonian; (s, t)-supereulerian; Collapsible graphs; k-triangular; Line graph stable

properties

1 Introduction

Finite loopless graphs permitting parallel edges are considered with undefined terms being

referenced to [5]. As in [5], a simple graph is one that is loopless and without parallel

edges, and the minimum degree of a graph G is denoted by δ(G). For a subset X ⊆ V (G)
or E(G), let G[X ] denote the subgraph induced by X , and let G−X = G[V (G)−X ] or

G[E(G) −X ], respectively. When X = {x}, we write G − x for G − {x}. Throughout

this paper, if X ⊆ E(G), then, for notational convenience, we often use X to denote both

the edge subset of E(G) and G[X ]. We also use lg x as an alternative notation for log2 x,

and set [m,n] = {m,m+ 1, . . . , n} for two integers m,n with m ≤ n.

A graph is considered Hamiltonian if it has a spanning cycle. For a non-negative integer

s ≤ |V (G)| − 3, a graph is called s-Hamiltonian if the removal of any k ≤ s vertices

results in a Hamiltonian graph. A subgraph H of G is dominating if G−V (H) is edgeless.
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Following [4,6], a graph is supereulerian if it has a spanning closed trail. Harary and Nash-

Williams [13] characterized Hamiltonian line graphs as follows, which implies that the line

graph of every supereulerian graph is Hamiltonian.

Theorem 1.1 (Harary and Nash-Williams, Proposition 8 of [13]). Let G be a graph with

at least three edges. Then L(G) is Hamiltonian if and only if G has a dominating closed

trail.

The line graph of a graph G, denotedL(G), is a simple graph with E(G) being its vertex

set, where two vertices in L(G) are adjacent whenever the corresponding edges in G are

adjacent. A claw-free graph is one that does not have an induced subgraph isomorphic to

K1,3. Beineke [2] and Robertson (Page 74 of [12]) showed that line graphs are claw-free

graphs. For a positive integer i, we define L0(G) = G, and the ith iterated line graph of G,

denoted Li(G), is defined recursively as Li(G) = L(Li−1(G)).
Let J1 and J2 be two graphs obtained from K1,3 via identifying two and three vertices of

degree 1, respectively. Let K+
1,3 = {J1, J2,K1,3}. Since the line graph of a cycle remains

unchanged, in general, we assume that graphs are not isomorphic to paths, cycles or any

members in K+
1,3. For this reason, we define

G = {G : G is connected and is not isomorphic to a path, or a cycle, or a member in K+
1,3}.

Chartrand in [9] introduced and studied the Hamiltonian index of a graph, and initiated the

study of indices of graphical properties. More generally, we have the following definition.

Definition 1.1 (Definition 5.8 of [17]). For a property P , the P-index of G ∈ G is defined

by

P(G) =

{
min{i : Li(G) has property P}, if one such integer i exists;

∞, otherwise.

A property P is line graph stable if L(G) has P whenever G has P . Chartrand [9]

showed that for every graph G ∈ G, the Hamiltonian index exists as a finite number, and the

characterization of Hamiltonian line graphs (Theorem 1.1) by Harary and Nash-Williams

implies that being Hamiltonian is line graph stable. Z. Ryjáček et al. [25] indicated that de-

termining the value of the Hamiltonian index is difficult. Clark and Wormald [11] showed

that for all graphs in G, other Hamiltonian-like indices also exist as finite numbers; and

in [17], it is shown that these Hamiltonian-like properties are also line graph stable. Let

h(G), hs(G) and s(G) be the Hamiltonian index, s-Hamiltonian index and supereulerian

index of G ∈ G, respectively. By definitions, h(G) = h0(G).
Let P = v0e1v1e2 · · · vs−1esvs be a path of a graph G where each ei ∈ E(G) and each

vi ∈ V (G). Then P is called a (v0, vl)-path or an (e1, es)-path of G. A path P of G is

divalent if every internal vertex of P has degree 2 in G. For two non-negative integers s
and t, a divalent path P of G is a divalent (s, t)-path if the two end vertices of P have

degrees s and t, respectively. A non-closed divalent path P is considered proper if P is not

both of length 2 and in a K3. As in [16, 26], for a graph G ∈ G, define

ℓ(G) = max{m : G has a length m proper divalent path}. (1)

Theorem 1.2. Let G ∈ G be a simple graph. Each of the following holds.

(i) (Corollary 6 of [16]) s(G) ≤ ℓ(G).
(ii) (Corollary 6 of [16]) h(G) ≤ s(G) + 1 ≤ ℓ(G) + 1.

(iii) (Zhang et al., Theorem 1.1 of [26]) hs(G) ≤ ℓ(G) + s+ 1.

Several natural questions arise here. Can we improve the upper bounds above? Can

we generalize Theorem 1.2(i) in the way as Theorem 1.2(iii) extends Theorem 1.2(ii)?

As a generalization of supereulerian graphs, given two non-negative integers s and t, it is

defined in [21] that a graph G is (s, t)-supereulerian if for any disjoint sets X,Y ⊂ E(G)
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with |X | ≤ s and |Y | ≤ t, G−Y contains a spanning closed trail that traverses all edges in

X . Former studies on (s, t)-supereulerian graphs can be found in [19–21], among others.

Let is,t(G) denote the (s, t)-supereulerian index of a graph G ∈ G. Thus, i0,0(G) = s(G).
By the characterization of Hamiltonian line graphs (Theorem 1.1), the line graph of every

(0, s)-supereulerian graph is s-Hamiltonian, and then we obtain the following observation.

Observation 1. Let G ∈ G. Then hs(G) ≤ i0,s + 1. In particular, h(G) ≤ s(G) + 1.

To present the main results, an additional notation would be needed. Since G ∈ G, it

is observed that (for example, Theorem 18 of [10]) there exists an integer i > 0 such that

δ(Li(G)) ≥ 3. Define

d̃(G) = min{i : δ(Li(G)) ≥ 3}. (2)

Our main results can now be stated as follows.

Theorem 1.3. Let G ∈ G be a simple graph with δ = δ(G) and d̃ = d̃(G). Then, given

two non-negative integers s and t,

is,t(G) ≤





ℓ(G), if δ ≤ 2 and s = t = 0;

d̃+ 1 + ⌈lg(s+ t+ 1)⌉, if δ ≤ 2 and s+ t ≥ 1;

1 +

⌈
lg

s+ t+ 1

δ − 2

⌉
, if 3 ≤ δ ≤ s+ t+ 2;

1, otherwise.

(3)

Using Observation 1, Theorem 1.3 implies Corollary 1.4 below.

Corollary 1.4. Let G ∈ G be a simple graph with δ = δ(G) and d̃ = d̃(G). Then, given a

non-negative integer s ≤ |V (G)| − 3,

hs(G) ≤





ℓ(G) + 1, if δ ≤ 2 and s = 0;

d̃+ 2 + ⌈lg(s+ 1)⌉, if δ ≤ 2 and s ≥ 1;

2 +

⌈
lg

s+ 1

δ − 2

⌉
, if 3 ≤ δ ≤ s+ 2;

2, otherwise.

(4)

Given a simple graph G ∈ G with ℓ = ℓ(G) and d̃ = d̃(G). By the formula to compute d̃

to be presented in Section 3.1, we have d̃ ≤ ℓ+2. When s ≥ 6, as ⌈lg(s+1)⌉+2 ≤ s−1,

we have d̃+2+ ⌈lg(s+1)⌉ ≤ ℓ+1+ s. Moreover, since ⌈lg(s+1)⌉ = o(s) as s → ∞, it

follows that d̃+2+⌈lg(s+1)⌉ = o(ℓ+s+1) as s → ∞. Similarly, when s ≥ 1 and n ≥ 1,

we have
⌈
lg s+1

n

⌉
≤ s and

⌈
lg s+1

n

⌉
= o(s) as s → ∞. It means that 2+

⌈
lg s+1

n

⌉
≤ s+2

and 2 +
⌈
lg s+1

n

⌉
= o(s + 2) as s → ∞. Hence, when s ≥ 6, the upper bounds above

sharpen the result of Theorem 1.2(iii).

In the next section, we present preliminaries and tools that will be used in our discus-

sions. In Section 3, we shall show some important lemmas, including a corrected formula

to compute d̃(G), which are very helpful to prove the main result, Theorem 1.3, in Section

4.

2 Preliminaries

For a vertex v ∈ V (G), we denote NG(v) to be the set of all neighbors of vertex v in a

graph G, and denote EG(v) to be the set of all edges incident with v in G. The degree of

vertex v is denoted by dG(v) = |EG(v)|. For integer i ≥ 0, let Di(G) be the set of all

vertices of degree i in G, and let O(G) be the set of all odd degree vertices in G. For an edge

e ∈ E(G), let EG(e) be the set of all edges adjacent with e in G and dG(e) = |EG(e)|.
For notational convenience, if v ∈ V (G) and e ∈ E(G), we write d(v) and d(e) for dG(v)
and dG(e) = dL(G)(e), respectively, when G or L(G) is understood from context.
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2.1 Iterated Line Graphs

For a subset X ⊆ E(G), let L0(X) = X and Li(X) = Li(G)[Li−1(X)] for each integer

i ≥ 1. Moreover, for a subset Y ⊆ E(Li(G)), by the definition of the iterated line graphs,

there exists a unique Z ⊆ E(Li−j(G)) for each j ∈ [0, i] such that Lj(Z) = Y , denoted

Z = L−j(Y ). Thus, for two integers i, j and an edge subset X ⊆ E(G), Li(Lj(X)) =
Li+j(X).

Lemma 2.1. Given an integer i ≥ 0 and a graph G. If P is a divalent (s, t)-path in Li(G)
of length r that is not in a K3, then for each j ∈ [0, i], L−j(P ) is a divalent (s, t)-path in

Li−j(G) of length r + j.

Proof: Assume that j0 is the smallest number such that L−j0(P ) is not a divalent (s, t)-
path of length r + j0 where 0 < j0 ≤ i. Let Q = L−j0+1(P ). Thus, Q is a divalent

(s, t)-path in Li−(j0−1)(G) of length r+ j0 − 1. First, we claim that Q is not in a K3. If Q
is in a K3, then P = Lj0−1(Q) is in a K3 since the line graph of a K3 is still a K3, which

contradicts the assumption of P being not in a K3.

Now, set J = Li−j0(G), and then L(J) = Li−(j0−1)(G). Let Q be a (u, v)-path of

L(J), where u ∈ Ds(L(J)) and v ∈ Dt(L(J)). As Q is not in a K3 and the definition of

divalent paths, L−j0(P ) = L−1(Q) is a divalent (u, v)-path in J , where {u, v} ⊂ E(J).
Let L−j0(P ) be a (x, y)-path where {x, y} ⊂ V (J). Since d(x) = d(u) − 2 + 2 = s
and d(y) = d(v) − 2 + 2 = t, L−j0(P ) is a divalent (s, t)-path of length r + j0, which

contradicts our choice of j0.

2.2 Collapsible Graphs

In [7], Catlin defined collapsible graphs as a useful tool to study supereulerian graphs.

A graph G is collapsible if for every subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has

a subgraph ΓR such that O(ΓR) = R and G − E(ΓR) is connected. By definition, all

complete graphs Kn except K2 are collapsible. As shown in Proposition 1 of [18], a

graph G is collapsible if and only if for every subset R ⊆ V (G) with |R| ≡ 0 (mod

2), G has a spanning connected subgraph LR with O(LR) = R. As L∅ is a spanning

eulerian subgraph, every collapsible graph is supereulerian. Collapsible graphs have been

considered to be very useful to study eulerian subgraphs via the graph contraction. For an

edge subset X ⊆ E(G), the contraction G/X is obtained from G by identifying the two

ends of each edge in X and deleting the resulting loops. If H is a subgraph of G, then we

write G/H for G/E(H). The following theorem summarizes some useful properties of

collapsible graphs for our proofs.

Theorem 2.2. Let G be a graph and H be a subgraph of G.

(i) (Catlin, Theorem 3 of [8]) If each edge of a connected graph G is in a cycle of length 2
or 3, then G is collapsible.

(ii) (Catlin, Corollary of Theorem 3 of [7]) If H is collapsible, then G is collapsible if and

only if G/H is collapsible.

3 The k-Triangular Index

A cycle of length 3 is often called a triangle. Following [3], for an integer k > 0, a graph G
is k-triangular if every edge lies in at least k distinct triangles in G; a graph G is triangular

if G is 1-triangular. Let T k denote the family of all k-triangular graphs. Thus, δ(G) ≥ k+1
if G ∈ T k.

Triangular graphs are often considered as models for some kinds of cellular networks

( [14]) and for certain social networks ( [22]), as well as mechanisms to study network

stabilities and to classify spam websites ( [1]). In addition to its applications in the hamil-

tonicity of line graphs ( [3]), triangular graphs are also related to design theory. In 1984,

Moon in [23] introduced the Johnson graphs J(n, s), named after Selmer M. Johnson for
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the closely related Johnson scheme. The vertex set of J(n, s) is all s-element subsets of

an n-element set, where two vertices are adjacent whenever the intersection of the corre-

sponding two subsets contains exactly s− 1 elements. For example, J(n, 1) is isomorphic

to Kn. By definitions, for any integers n ≥ 3 and s with n > s, J(n, s) is (n − 2)-
triangular. Therefore, it is of interests to investigate k-triangular graphs for a generic value

of k.

For an integer k > 0, define tk(G) to be the k-triangular index of G ∈ G, that is, the

smallest integer m such that Lm(G) ∈ T k. The triangular index t1(G) is first investigated

by Zhang et al.

Theorem 3.1. Let G ∈ G be a simple graph. Each of the following holds.

(i) (Zhang et al., Proposition 2.3 (i) of [27]) Being triangular is line graph stable.

(ii) (Zhang et al., Lemma 3.2 (iii) of [26]) t1(G) ≤ ℓ(G).

One of the purposes of this section is to determine, for any positive integer k, the best

possible bounds for tk(G) and to investigate whether being k-triangular is line graph stable.

3.1 A Formula to Compute d̃(G)

Recall that d̃(G) = min{i : δ(Li(G)) ≥ 3}, which is defined in (2). Define

ℓ1(G) = max{|E(P )| : P is a divalent (1, 3)-path of G},

ℓ2(G) = max{|E(P )| : P is a divalent (1, t)-path of G, where t ≥ 4},

ℓ3(G) = max{|E(P )| : P is a divalent (s, t)-path of G, where s, t ≥ 3},

(5)

and

ℓ0(G) = max{ℓ1(G) + 1, ℓ2(G), ℓ3(G) − 1}.

In [15], it is claimed that “It is easy to see d̃(G) = ℓ0(G).” However, there exists an infinite

family of graphs each of which shows that this claim might be incorrect. Let B = {T : T
is a tree with V (T ) = D1(T ) ∪D3(T )}. For each G ∈ B, we have ℓ1(G) = ℓ3(G) = 1

and ℓ2(G) = 0. Direct computation indicates that d̃(G) = 3 > ℓ0(G). See Figure 1 for an

illustration.

G L(G) L2(G)

Fig. 1: A member G ∈ B and its iterated line graphs.

Thus what would be the correct formula to compute d̃(G) becomes a question to be

answered. Before presenting our answer to it, we need some notation. Let U = {v ∈
V (G) : |NG(v)| = 1} and F =

⋃
v∈U EG(v).

Lemma 3.2. Let G ∈ G be a graph with δ(G) ≤ 2, d̃ = d̃(G) and ℓ0 = ℓ0(G). The

formula below computes d̃:

d̃ =

{
max{ℓ0, 3}, if |EG(v) ∩ F | = 2 for some v ∈ D3(G);
ℓ0, otherwise.

(6)

Proof: Let m be the right-hand side of (6) and let ℓi = ℓi(G) for each i ∈ {1, 2, 3}. Then

m ≤ d̃ by definitions of d̃ and line graphs. Now, it suffices to show that δ(Lm(G)) ≥ 3.

We assume that δ(Lm(G)) ≤ 2 to seek a contradiction.

If δ(Lm(G)) = 1, then Lm(G) has a divalent (1, t)-path of length r where t ≥ 3. By

Lemma 2.1, G has a divalent (1, t)-path of length r +m. If t = 3, then m+ 1 ≤ m+ r ≤
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ℓ1 ≤ m − 1, a contradiction; if t > 3, then m + 1 ≤ m + r ≤ ℓ2 ≤ m, which is also a

contradiction.

Then, δ(Lm(G)) = 2. Pick u ∈ D2(L
m(G)). If u is not in any triangles of Lm(G), then

u is in a divalent (s′, t′)-path of length r′ ≥ 2 in Lm(G) that is not in a K3, where s′ ≥ 3
and t′ ≥ 3. It follows that G has a divalent (s′, t′)-path of length r′ +m by Lemma 2.1,

which shows that 2+m ≤ r′ +m ≤ ℓ3 ≤ m+1, a contradiction. Thus, u ∈ V (H) where

H ∼= K3 is a subgraph of Lm(G). By the definition of line graphs, L−1(H) is isomorphic

to one member of {K3,K1,3, J1, J2}. Let u = xy ∈ E(L−1(H)).

When L−1(H) ∼= K1,3, as d(u) = 2, we have ℓ1(L
m−1(G)) ≥ 1. By Lemma 2.1,

ℓ1 ≥ 1 + (m− 1) = m ≥ ℓ1 + 1, a contradiction.

When L−1(H) ∼= J1 or J2, as there is no parallel edges in line graphs, m = 1. If

L−1(H) ∼= J2, then G ∼= J2 as d(u) = 2, contradicting the definition of G. Then,

L−1(H) ∼= J1. If u = xy is one of the parallel edges of J1, then one of end vertices of

u, say x, of degree 3 in G satisfies |EG(x) ∩ F | = 2, which implies m ≥ 3 by (6). It is a

contradiction with m = 1.

When L−1(H) ∼= K3, we have d(x) = d(y) = 2 and ℓ3 ≥ 3 as d(u) = 2. If m =
1, as ℓ3 ≥ 3, then 1 = m ≥ ℓ3 − 1 ≥ 2, a contradiction. So, m ≥ 2. Note that

L−2(H) is isomorphic to one member of {K3,K1,3, J1, J2}. If L−2(H) ∼= K3 or J2, then

Lm−2(G) ∼= G ∼= K3 or J2, respectively, as d(x) = d(y) = 2. It contradicts G ∈ G.

Now, L−2(H) is isomorphic to one member of {K1,3, J1}. Since d(x) = d(y) = 2 as

well as line graphs are claw-free and contain no parallel edges, it shows that m = 2. As

d(x) = d(y) = 2, {x, y} ⊆ F and there is a common end vertex of edges x and y of degree

three, which shows m ≥ 3 by (6). It contradicts the fact we got before that m = 2.

3.2 The k-Triangular Index

Before establishing the bounds for tk(G), we need some lemmas.

Theorem 3.3 (Niepel, Knor and Šoltés, Lemma 1(1) of [24]). Let G be a simple graph

with δ(G) ≥ 3. Then, δ(Li(G)) ≥ 2i(δ(G) − 2) + 2 for each integer i ≥ 0.

By the definition of line graphs, if G is a regular graph, then for each integer i ≥ 0, we

always have δ(Li(G)) = 2i(δ(G)− 2) + 2, and so the lower bound in Theorem 3.3 is best

possible in this sense.

Lemma 3.4. Let G ∈ G be a simple graph with δ = δ(G). Each of the following holds for

each integer i > 0.

(i) If δ ≥ 3, then Li(G) is (2i−1(δ − 2))-triangular.

(ii) If δ ≤ 2, then Ld̃+i(G) is (2i−1(δ0 − 2))-triangular where δ0 = δ(Ld̃(G)(G)). In

particular, Ld̃+i(G) is 2i−1-triangular.

Proof: Let e1e2 ∈ E(L(G)) be an arbitrary edge in L(G). Then there exists a vertex

u ∈ V (G) such that {e1, e2} ⊂ EG(u). Suppose δ ≥ 3. In general, as L(G)[EG(u)] ∼=
Kd(u), the edge e1e2 lies in at least d(u) − 2 ≥ δ − 2 ≥ 1 distinct triangles. It means

that L(G) is (δ − 2)-triangular. By Theorem 3.3, for each integer i > 0, δ(Li−1(G)) ≥
2i−1(δ − 2) + 2 ≥ 3. It follows that Li(G) is (2i−1(δ − 2))-triangular and (i) is proved.

To show (ii), as δ0 ≥ 3, it follows by (i) that Ld̃+i(G) = Li(Ld̃(G)) is (2i−1(δ0 − 2))-
triangular.

Theorem 3.5. Let k ≥ 2 be an integer and G ∈ G be a simple graph with δ = δ(G) and

d̃ = d̃(G). Each of the following holds.

(i) Being k-triangular is line graph stable.
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(ii)

tk(G) ≤





d̃+ 1 + ⌈lg k⌉, if δ ≤ 2;

1 +

⌈
lg

k

δ − 2

⌉
, if 3 ≤ δ ≤ k + 1;

1, otherwise.

(7)

Moreover, the equality holds for sufficiently large k when δ ≤ k + 1.

Proof: (i) Suppose G ∈ G is a simple k-triangular graph for given k ≥ 2. Then δ(G) ≥
k + 1 ≥ 3. Pick an edge e1e2 ∈ E(L(G)). To show that L(G) ∈ T k, it is enough to

prove that e1e2 lies in at least k distinct triangles in L(G). Let x be the common vertex of

e1 and e2 in G, and X be the set of all edges adjacent with both edges e1 and e2, that is,

X = EG(e1)∩EG(e2). If d(x) ≥ k+2, then |X | ≥ k. It means that e1e2 lies in at least k
distinct triangles in L(G). Now, we consider that d(x) = k + 1. Since G ∈ T k is a simple

graph, G[NG(x)] is a complete graph and then e1e2 lies in at least k distinct triangles in

L(G).
(ii) Let t = tk(G). First, we consider the situation when δ ≤ 2. As k ≥ 2, by the

definition of d̃, we have t ≥ d̃. If t < d̃+2, then t < d̃+1+ ⌈lg k⌉ as k ≥ 2. Assume next

that k is so large that t ≥ d̃ + 2. As Lt(G) ∈ T k but Lt−1(G) /∈ T k, by Lemma 3.4(ii),

2t−d̃−2 < k ≤ 2t−d̃−1. Then algebraic manipulation leads to t− d̃− 2 < lg k ≤ t− d̃− 1,

which means that ⌈lg k⌉ = t− d̃− 1. Hence we conclude that t = d̃+ 1 + ⌈lg k⌉.

Now, we suppose that δ ≥ 3. If δ ≥ k + 2, then L(G) ∈ T δ−2 by Lemma 3.4(i), which

implies that L(G) ∈ T k and then t ≤ 1.

If δ ≤ k + 1 and t ≥ 2, then, by Lemma 3.4(i), for each integer i > 0, Li(G) is

(2i−1(δ−2))-triangular. So 2t−2(δ−2) < k ≤ 2t−1(δ−2) by the definition of t = tk(G).

It follows that t = 1 +
⌈
lg k

δ−2

⌉
. Then, t ≤ 1 +

⌈
lg k

δ−2

⌉
when 3 ≤ δ ≤ k + 1.

4 Proof of Theorem 1.3

An elementary subdivision of a graph G at an edge e = uv is a graph G(e) obtained from

G− e by adding a new vertex ve and two new edges uve and vev. For a subset X ⊆ E(G),
we define G(X) to be the graph obtained from G by elementarily subdividing every edge

of X .

Lemma 4.1. For an integer k > 1, if G ∈ G is a k-triangular simple graph andX ⊂ E(G)
with |X | = s where 1 ≤ s < k, then G−X ∈ T k−s.

Proof: Pick e ∈ E(G − X). Since G ∈ T k, edge e lies in at least k distinct triangles in

G, say Ce
1 , C

e
2 , . . . , C

e
k . As E(Ce

i ∩ Ce
j ) = {e} for each {i, j} ⊆ [1, k] and |X | = s < k,

there exist k − s such triangles Ce
i′ where i′ ∈ [1, k] such that E(Ce

i′ ) ∩X = ∅. It follows

that G−X ∈ T k−s.

Lemma 4.2. Given two non-negative integers s and t. If G ∈ G is a (s+ t+1)-triangular

simple graph, then G is (s, t)-supereulerian.

Proof: For any X,Y ⊂ E(G) with X ∩ Y = ∅, |X | = s1 ≤ s and |Y | ≤ t. Then

|X ∪ Y | ≤ s + t. Let H = G − (X ∪ Y ). By Lemma 4.1, H ∈ T 1. It follows that H
is collapsible by Theorem 2.2(i). Let X = {x1, x2, . . . , xs1}. Then V (G(X)) = V (G) ∪
{vx1

, vx2
, . . . , vxs1

}. Note that G(X)−Y −{vx1
, vx2

, . . . , vxs1
} = H is collapsible. Since

every edge of (G(X)−Y )/H lies in a cycle of length 2, which implies that (G(X)−Y )/H
is collapsible by Theorem 2.2(i). It indicates that G(X) − Y is collapsible by Theorem

2.2(ii) as H is collapsible. Then G(X)− Y is supereulerian, which means that G(X)− Y
has a spanning eulerian subgraph J . Note that dG(X)−Y (vxi

) = 2 for each i ∈ [1, s1].
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Then subgraph J contains all edges incident with some vxi
, which means that G − Y has

a spanning eulerian subgraph J ′ containing X , and so G is (s, t)-supereulerian.

Proof of Theorem 1.3: Combine Theorem 3.1(ii), Theorem 3.5(ii) and Lemma 4.2, and

then we complete the proof of it.
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