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1 Département d’informatique, Université de Sherbrooke, Canada
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Recently, a conjecture due to Hendry which stated that every Hamiltonian chordal graph is cycle extendable was

disproved. Here we further explore the conjecture, showing that it fails to hold even when a number of extra conditions

are imposed. In particular, we show that Hendry’s Conjecture fails for strongly chordal graphs, graphs with high

connectivity, and if one relaxes the definition of “cycle extendable” considerably. We also consider the original

conjecture from a sub-tree intersection model point of view, showing that a result of Abuieda et al. is nearly best

possible.
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1 Introduction

All graphs considered here are simple, finite, connected, and undirected. A Hamiltonian cycle is a cycle

of a graph that contains every vertex; a graph that contains a Hamiltonian cycle is called Hamiltonian.

A graph G on n vertices is pancyclic if G contains a cycle of length m for every integer 3 ≤ m ≤ n.

A graph G is cycle extendable if, for every non-Hamiltonian cycle C, there exists a cycle C′ such that

V (C) ⊂ V (C′) and |V (C′)| = |V (C)|+ 1 (we say that C extends to C′). If, in addition, every vertex of

G is contained in a triangle, then G is fully cycle extendable.

A graph H is an induced subgraph of G if H can be obtained from G by deleting vertices and all edges

incident to these vertices. The remaining vertices are said to induce H . If no induced subgraph of G is

isomorphic to H , G is said to be H-free. A graph is chordal if it is Ck-free for every integer k ≥ 4; that

is, every cycle of length 4 or greater has a chord. A graph is strongly chordal if it is chordal and every

even cycle of length at least 6 has a chord that connects vertices at an odd distance from one another along

the cycle.

The results in this paper are motivated by the following conjecture:

Hendry’s Conjecture. [9] If G is a Hamiltonian chordal graph, then G is fully cycle extendable.

In [10], the first two authors answered Hendry’s Conjecture in the negative:
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Theorem 1.1. For any n ≥ 15, there exists a Hamiltonian chordal graph G on n vertices which is not

fully cycle extendable.

In this paper, we improve on the counterexample construction given in [10] to show that counterexam-

ples to Hendry’s Conjecture exist even in highly restrictive settings. For instance, in [10], it was asked

whether or not Hendry’s Conjecture holds for either strongly chordal graphs. This question is answered in

the negative in Section 2. In Section 3, we examine ways in which we can modify the construction given

in Section 2 to obtain examples which satisfy even stronger conditions in terms of forbidden induced

paths (improving on a result from [10]), connectivity (answering a question from [10], S-extendability

(answering a conjecture from [3]), and underlying tree structure (showing that results in [1] are almost

best possible). Note that similar results to some of those presented in Sections 2 and 3 were indepen-

dently obtained by Rong et al. [12]. Finally, we propose an extremal problem in Section 4 related to our

counterexample constructions.

2 A new family of counterexamples to Hendry’s Conjecture

In this section, we describe a family of strongly chordal graphs for which Hendry’s Conjecture fails to

hold; that is, the graphs are Hamiltonian and chordal, but not cycle extendable.

The join of two disjoint graphs G and H , denoted G ∨H , is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. For the remainder of this

note, we let Gk := Kk ∨ P2k+1, where the vertices of the complete graph Kk are denoted

{x1, x2, . . . , xk} and the path P2k+1 has vertices (in order) {u1, u2, . . . uk, z, vk, . . . , v2, v1}. Let

Ak = {xiui : 1 ≤ i ≤ k} ∪ {xivi : 1 ≤ i ≤ k − 1} ⊂ E(Gk); we call an edge e ∈ Ak a

heavy edge of Gk. Figure 1 depicts Gk with the heavy edges Ak in bold.

u1 uk−1 uk z vk vk−1 v1

xk

xk−1

x1

Fig. 1: The base graph Gk
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Rather than work directly with the definition of strongly chordal graphs, we use an equivalent char-

acterization, given by Farber in [7]. Let G be a graph. A vertex v ∈ V (G) is called simple if for all

x, y ∈ N [v] either N [x] ⊆ N [y] or N [y] ⊆ N [x]. In other words, x is simple if the closed neigh-

bourhoods of its neighbours can be ordered by inclusion. A simple elimination ordering of G is a vertex

ordering v1 ≺ v2 ≺ . . . ≺ vn such that vi is simple in G[{vi, . . . , vn}] for every 1 ≤ i ≤ n.

Theorem 2.1 (Farber [7]). A graph G is strongly chordal if and only if G admits a simple elimination

ordering.

It is easy to check that the following ordering of E(Gk) is a simple elimination ordering:

u1 ≺ u2 ≺ · · · ≺ uk ≺ v1 ≺ v2 ≺ · · · ≺ vk ≺ x1 ≺ x2 ≺ · · · ≺ xk ≺ z,

and so we have the following:

Lemma 2.2. For any k ≥ 1, Gk is strongly chordal.

A cycle C is a heavy cycle of Gk if Ak ⊂ E(C).

Lemma 2.3. For any k ≥ 1, Gk has a heavy Hamiltonian cycle C.

Proof: If k is even, then there is a heavy Hamiltonian cycle with edge set

Ak ∪ {u1xk, u2u3, . . . uk−2uk−1, ukz, zvk, vkvk−1, . . . , v2v1}. If k is odd, then there is a heavy

Hamiltonian cycle with edge set Ak ∪ {u1u2, . . . , uk−2uk−1, ukz, zvk, vkvk−1, . . . , v3v2, v1xk}.

Lemma 2.4. For any k ≥ 2, Gk has a heavy cycle C1 such that V (C1) = V (Gk) \ {vk, z}.

Proof: If k is even, then there is a heavy cycle with edge set

Ak ∪ {u1u2, . . . , uk−1uk, vk−1vk−2, . . . , v3v2, v1xk}. If k is odd, then there is a heavy cycle

with edge set Ak ∪ {u1xk, u2u3, . . . , uk−1uk, vk−1vk−2, . . . , v2v1}.

Lemma 2.5. For any k ≥ 3, Gk does not contain a heavy cycle whose vertex set is either V (G) \ {z} or

V (G) \ {vk}.

Proof: Suppose, to the contrary, such a cycle does exist. It clearly cannot contain any edge incident to

a non-heavy edge in {x1, . . . , xk−1}, nor can it contain the edge zvk. This immediately implies that no

heavy cycle exists with vertex set V (G) \ {vk}, since the only available edges incident to z are zuk and

zxk. This, in turn, implies that both uk−1uk and vk−1vk must be in such a cycle. Hence our cycle must

be exactly uk−1xk−1vk−1vkxkukuk−1, contradicting the fact that k ≥ 3.

We now define the family of graphs Hk as those which can be obtained from Gk by pasting a distinct

clique onto each edge in Ak.

Lemma 2.6. For each k ≥ 3, every graph in Hk is strongly chordal.

Proof: By Theorem 2.1, we need only show that H admits a simple elimination ordering. Let Gk

be the graph from which Hk is obtained. For each i = 1, 2, . . . , k, NGk
(ui) ⊆ NGk

(xi) and

NGk
(vi) ⊆ NGk

(xi). It follows that we can obtain a simple elimination ordering of H as follows:

first, for each complete graph pasted onto a heavy edge of Gk, take in any order all of its vertices except

those in the edge onto which it is pasted in H , then finish by taking a simple elimination ordering of Gk

guaranteed by Lemma 2.2.
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Theorem 2.7. If H ∈ Hk for some k ≥ 3, then H is Hamiltonian but not cycle extendable.

Proof: Let Gk be the graph from which H is obtained. Lemma 2.3 states that Gk contains a heavy

Hamiltonian cycle. By replacing each heavy edge in Gk with a Hamiltonian path in its corresponding

clique connecting its ends, we see that H has a Hamiltonian cycle. Similarly, Lemma 2.4 guarantees that

H has a cycle of length |V (H)| − 2 that does not contain z or vk. Call this cycle C. If C were to extend

in H , then this cycle would correspond to a heavy cycle in Gk that avoids only z or vk. Since this cannot

happen by Lemma 2.5, H is not cycle extendable.

Since Lemma 2.6 states that the graphs in the proof above are strongly chordal, we have the following:

Corollary 2.8. For any n ≥ 15, there exists a Hamiltonian strongly chordal graph G on n vertices which

is not fully cycle extendable.

We noted in [10] that bull-free chordal graphs form a subclass of strongly chordal graphs. Let H ∈ Hk,

w be a vertex in the clique pasted onto u1x1, and y be a vertex in the clique pasted onto v2x2. Since

{u1, x2, x3, w, y} induce a bull, we see that our counterexamples are not bull-free.

Question 2.9. Are Hamiltonian bull-free chordal graphs fully cycle extendable?

3 Counterexamples satisfying stronger conditions

In this section, we show how the family of graphs Hk defined in Section 2 can be modified in order to

answer even more open problems on extending cycles in chordal graphs. In particular, we show that there

exist counterexamples to Hendry’s Conjecture which are P9-free (an improvement on a result from [10])

and counterexamples which have connectivity k for every integer k ≥ 2 (answering a question from [10]).

We also show that Hendry’s Conjecture fails even if the extendability condition is relaxed to only require

that each cycle be extendable by some length in any predefined finite subset of Z+. Finally, we examine

our counterexamples from the point of view of intersection graphs.

3.1 Pk-free graphs

For a graph H ∈ H‖, let H+ be the graph obtained by adding the edge u1u3 to the base graph Gk. It is

easy to check that H+ is still strongly chordal and Hamiltonian. Furthermore, the proof of Lemma 2.5

applies to Gk + u1u3, and so H+ is not cycle extendable.

Theorem 3.1. For any n ≥ 15, there exists a P9-free counterexample to Hendry’s Conjecture on n

vertices.

Proof: Let H ∈ H3 with |V (H)| = n ≥ 15, and let H+ be as defined above. Note that the longest

induced path in G3 + u1u3 has 6 vertices (u1u3zv3v2v1). Since any longest induced path in H+ contains

at most two vertices not in V (G3), H
+ must be P9-free.

In [10], it was asked to determine the smallest positive integer k such that every Pk-free Hamiltonian

chordal graph is cycle extendable. Combined with the results of [10], Theorem 3.1 shows that the smallest

such k satisfies 5 ≤ k ≤ 8.
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3.2 Connectivity

Informally, the following construction involves taking Gk and replacing each ui and vi with a clique of

order k − 1 in a particular way. Heavy edges transform into “heavy cliques” of order k, to which we join

independent sets of order k − 1.

More precisely, let F1, F2, . . . , Fk−1, F
′
1, F

′
2, . . . , F

′
k−2

be isomorphic to Kk−1. We denote their re-

spective vertex sets by V (Fi) = {vi,1, vi,2, . . . , vi,k−1} and V (F ′
i ) = {v′i,1, v

′
i,2, . . . , v

′
i,k−1}. Let Qk−1

be the graph with vertices and edges as follows:

V (Qk−1) =V (F1) ∪ V (F2) ∪ . . . ∪ V (Fk−1) ∪ V (F ′
1) ∪ V (F ′

2) ∪ . . . ∪ V (F ′
k−2) ∪ {z, vk}

E(Qk−1) =

k−1
⋃

i=1

E(Fi) ∪

k−2
⋃

i=1

E(F ′
i ) ∪ {v1,k−1v2,1, v2,k−1v3,1, . . . , vk−2,k−1vk−1,1}∪

{vk−1,k−1z, zvk, vkv
′
k−2,1} ∪ {v′k−2,k−1v

′
k−3,1, v

′
k−3,k−1v

′
k−4,1, . . . , v

′
2,k−1v

′
1,1}

Let Zk−1 be a complete graph on vertices {x1, . . . , xk−1} and let Rk−1 = Zk−1 ∨ Qk−1. Note, at this

point, that contracting each Fi and F ′
i to single vertices yields Gk−1.

For 1 ≤ i ≤ k − 1, let Ti denote an independent set of vertices {ti,1, ti,2, . . . , ti,k−1}. Similarly, for

1 ≤ i ≤ k − 2, let T ′
i denote an independent set of vertices {t′i,1, t

′
i,2, . . . , ti,k−1}. Let Sk−1 be the graph

obtained from Rk−1 by making each Ti (respectively, T ′
i ) complete to Fi ∪ xi (resp., F ′

i ∪ xi). To extend

the point made in the previous paragraph, note that contracting each Fi, F
′
i , Ti, and T ′

i to single vertices

yields a graph in Hk−1 (where the clique pasted to each heavy edge is a triangle).

Proposition 3.2. The graph Sk−1 is chordal, Hamiltonian, and k-connected.

Proof: It is straightforward to confirm that Qk−1 is chordal (as is Zk−1), and thus Rk−1 is the join of

two chordal graphs and is thus chordal itself. Since Sk−1 is obtained from Rk−1 by clique pasting, it is

also chordal. We first note that there is a Hamiltonian cycle C′ in Rk−1 which is obtained from a heavy

Hamiltonian cycle C in Gk−1 in a natural way – each ui and vj in C is replaced with the vertices of Fi

and F ′
j , respectively, in an appropriate order and each heavy edge is replaced with an appropriate edge

from Zk−1 to the corresponding copy of Fi or F ′
j (we still call such edges “heavy”). Now, we obtain a

Hamiltonian cycle C′′ in Sk−1 – for each edge in E(Fi) ∩ E(C′) replace it with a two-edge path whose

centre is a vertex from Ti, for each edge in E(F ′
j)∩E(C′) replace it with a two-edge path whose centre is

a vertex from T ′
j , and replace each heavy edge with a two-edge path containing the only remaining vertex

from the set Ti or T ′
j which is complete to that edge. It is straightforward case analysis to confirm that

there are k internally disjoint paths between any two vertices, which we leave to the reader.

Lemma 3.3. Let k ≥ 3. For y ∈ {z, vk}, the graph Sk−1 has no cycle C such that V (C) = V (S) \ {y}
but has a cycle C′ such that V (C) = V (S) \ {z, vk}.

Proof: It is straightforward to obtain C′ be extending the cycle in H which avoids {vk, z} given by

Lemma 2.4. To see that this is possible, note that if x is a degree two vertex in H which is part of a clique

pasted to a heavy edge, then the two edges in C′ incident to x can be replaced in C by a path tracing all

vertices in the appropriate Gi ∪ Ti ∪ {xi} or G′
i ∪ T ′

i ∪ {x′
i}. An edge of the form uiui+1 is replaced by

the edge vi,k−1vi+1,1 (similar for vivi+1 in H), and any edge from some ui or vi to some xj can replaced

with an edge from xj to whichever vertex in Gi or G′
i is the end of the path tracing the vertices of Ti noted
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above. Now, assume that S has a cycle C such that V (C) = V (S) \ {y} for either choice of y ∈ {z, vk}.

Consider the portion of C induced by Gi∪Ti∪{xi} for some i. There are 2k−2 edges of C incident with

the independent set Ti, and all must have their other ends in Gi ∪ {xi}. This means that C has precisely

two edges each having one end in Gi∪{xi} and other ends outside of Gi∪Ti∪{xi}, and that the portion

of C induced by Gi ∪ Ti ∪ {xi} is a path Pi. A similar argument holds for G′
i ∪ T ′

i ∪ {xi}, yielding a

path through those vertices which we denote P ′
i . Note further that Pi cannot begin and end at vertices in

Gi, as this would leave xi unavailable for use in P ′
i (and conversely). We construct a corresponding cycle

C∗ in Gk−1 by replacing each Pi with the heavy edge uixi and each P ′
i with the heavy edge vixi. By the

arguments in Section 2 it is not possible to have a cycle in Gk−1 which uses every heavy edge and misses

only a vertex in {vk, z}, contradicting our initial claim that C exists.

As consequence of Lemma 3.3, we obtain the following:

Theorem 3.4. For any k ≥ 2, there exists a counterexample to Hendry’s Conjecture with connectivity k.

3.3 S-extendability

Let S ⊂ Z
+ be finite. A cycle C in a graph G is S-extendable if there exists a cycle C′ in G such

that V (C) ⊂ V (C′) and |C′| − |C| ∈ S; G is S-cycle extendable if every cycle of G that could be

S-extendable is S-extendable. This idea was introduced and studied first in [4]. Clearly, being 1-cycle

extendable is equivalent to the original definition of being cycle extendable. Arangno [3] conjectured that

every Hamiltonian chordal graph is {1, 2}-cycle extendable. We refute this with the following theorem.

Theorem 3.5. For any finite S ⊂ Z
+, there exist infinitely many graphs which are chordal and Hamilto-

nian but not S-cycle extendable.

Proof: Let m = max{s : s ∈ S} + 1. Let Gk,m denote the graph obtained from Gk by replacing in

Gk the edge vkz with the path vk, vk+1 · · · vk+mz and making all new vertices complete to {x1, . . . , xk}.

Let Hk,m denote the family of graphs which can be obtained from Gk,m by pasting a clique onto each

heavy edge of Gk,m, and let H be any graph of Hk,m. As before, H is Hamiltonian and has a cycle C

that spans V (H) \ {vk+1, . . . , vk+m}. By an argument similar to Lemma 2.5, C cannot be extended to a

cycle containing any of {vk+1, . . . , vk+m}, and hence C cannot be extended by any length in S.

3.4 Tree structure

One well known characterization of chordal graphs, given by Gavril [8], is that G is chordal if and only if

there exists a tree T and a collection of subtrees of T , say T , such that G is the intersection graph of T .

Note that T gives rise to an optimal tree decomposition of G, where the bags are precisely the maximal

sets of vertices from G which together form a subtree in the collection T . We thus call T a host tree of

G. It has been shown that a Hamiltonian chordal graph G is cycle extendable if it admits a host tree that

is a path [2, 6] or the subdivision of a star [1] (that is, G is a linear interval graph or a spider intersection

graph, respectively).

Given a tree T , we call a vertex v ∈ V (T ) a branch vertex if dT (v) ≥ 3. The aforementioned results on

host trees show that if G is a Hamiltonian chordal graph with host tree T , and if T has at most one branch

vertex, then G is cycle extendable. It easily follows that if G admits a tree decomposition with host tree

T having at most 3 leaves, then G is cycle extendable. Now, given a chordal graph G, G may have many

representations as the intersection graph of some host tree T and collection of subtrees T . However, we
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may consider a host tree for G that is minimal in terms of either the number of branch vertices or the

number of leaves it contains. The following theorems shows that the aforementioned results are almost

best possible in this regard.

Fig. 2: A host tree and subtrees whose intersection graph is in H3

Theorem 3.6. For every t ≥ 5, there exists a counterexample to Hendry’s Conjecture, say G, having a

host tree T with exactly t− 2 branch vertices and t leaves.

Proof: We first show that if H ∈ Hk (k ≥ 3), then there is a host tree for H with 2k−1 leaves and 2k−3
branch vertices. Recall that H is constructed from Gk = Kk ∨ P2k+1, where the vertices of the Kk are

denoted {x1, x2, . . . , xk} and the path P2k+1 has vertices (in order) {u1, u2, . . . uk, z, vk, . . . , v2, v1}.

Let P = p1p2 · · · p2k be a path. To each pi we attach a single leaf qi, except for pk+1 which remains a

degree 2 vertex. Let the resulting tree be T ; we claim that T is a host tree for H . It is easy to verify that

Gk is the intersection graph of the subtrees induced by the following sets of vertices in T :

u1 = {p1} ∪ {q1}
u2 = {p1, p2} ∪ {q2}
...

uk = {pk−1, pk} ∪ {qk}
z = {pk, pk+1}

vk = {pk+1, pk+2}
vk−1 = {pk+2, pk+3} ∪ {qk+2}
...

v2 = {p2k−1, p2k} ∪ {q2k−1}
v1 = {p2k} ∪ {q2k}

x1 = V (P ) ∪ {q1, q2k}
x2 = V (P ) ∪ {q2, q2k−1}
...

xk−1 = V (P ) ∪ {qk−1, qk+2}
xk = V (P ) ∪ {qk}

Figure 2 depicts this construction for k = 3. Now, we note that for every leaf qi of T , exactly two of the

subtrees we have defined intersect at qi and that these are the ends of a heavy edge of Gk. It is then easy

to obtain H as an intersection model; if a copy of Kr is being pasted on to a heavy edge, we add r − 2
distinct copies of the appropriate qi to the intersection model. Clearly T has 2k−1 leaves and, since every

pi is a branch vertex in T except for p1, pk+1, and p2k, T has 2k − 3 branch vertices.

We now modify the construction for Hk (k ≥ 3) to account for the case when t is even. From the graph

Gk, paste a clique onto each heavy edge. In addition, we paste a clique X of order at least k + 3 onto the

clique {x1, x2, . . . , xk, z, vk}. We call the class of graphs which can obtained in this way Jk (note that

such graphs are still strongly chordal). Let J ∈ Jk . Recalling that the heavy Hamiltonian cycle shown to

exist in Gk contains the edge zvk, it follows that J is Hamiltonian. It is easy to verify that J also contains

a non-extendable cycle C whose vertices are V (Gk) \ {z, vk}. We have only now to construct the host

tree. To do this, we modify the construction above by adding the leaf qk+1 to the tree, adjacent only to

pk+1, and modify the definitions of the vertices of Gk as follows:
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u1 = {p1} ∪ {q1}
u2 = {p1, p2} ∪ {q2}
...

uk = {pk−1, pk} ∪ {qk}
z = {pk, pk+1, qk+1}

vk = {pk+1, pk+2, qk+1}
vk−1 = {pk+2, pk+3} ∪ {qk+2}
...

v2 = {p2k−1, p2k} ∪ {q2k−1}
v1 = {p2k} ∪ {q2k}

x1 = V (P ) ∪ {q1, qk+1, q2k}
x2 = V (P ) ∪ {q2, qk+1, q2k−1}
...

xk−1 = V (P )∪{qk−1, qk+1, qk+2}
xk = V (P ) ∪ {qk, qk+1}

For cliques pasted onto heavy edges, we add copies of the appropriate qi’s (i 6= k+1) as before. For each

vertex in X \ {x1, x2, . . . , xk, z, vk}, we use qk+1 to represent it in the intersection model. The resulting

tree has 2k leaves and 2k − 2 branch vertices.

We pose the following natural problem

Question 3.7. Does there exist a counterexample to Hendry’s Conjecture G admitting a tree decompo-

sition with a host tree having four leaves, but not admitting a tree decomposition with host tree having

three leaves? If not, is there a counterexample admitting a tree decomposition with a host tree having two

branch vertices, but not admitting a tree decomposition with host tree having one branch vertex?

In addition, we note that every counterexample that we have constructed has a host tree whose maxi-

mum degree is 3. As mentioned, tree decompositions are certainly not unique; H3 has another decomposi-

tion tree with a vertex of degree 4, which can be obtained by deleting p3q3 and adding p2q3. However, one

may consider among all tree decompositions of a graph those host trees having smallest possible maxi-

mum degree ∆(T ). If min{∆(T ) : (T, T ) is a tree decomposition for G} = 2, then G is a linear interval

graph and thus satisfies Hendry’s Conjecture. If min{∆(T ) : (T, T ) is a tree decomposition for G} = 3,

then G may satisfy Hendry’s Conjecture (if it is a spider intersection graph) or not (if G ∈ Hk). This

leads us to the following question:

Question 3.8. Suppose G is a Hamiltonian chordal graph. Is G cycle extendable if

min{∆(T ) : (T, T ) is a tree decomposition for G} = 4?

4 Concluding remarks

We considered an extremal problem related to Hendry’s Conjecture, motivated by the following theorem

due to Hendry (which is a generalization of classic results of Ore [11] and Bondy [5]):

Theorem 4.1 (Hendry [9]). Let G be a graph with |V (G)| = n. If |E(G)| ≥
(

n−1

2

)

+ 1, then either G is

fully cycle extendable or G is isomorphic to one of the following graphs:

• K1 ∨ (K1 ∪Kn−2)
• K2 ∨K3

• K2 ∨ (K1 ∪Kn−3)

One can further consider this extremal problem by imposing extra conditions on the graph. Let fE(n)
denote the minimum number of edges required to guarantee that an n-vertex Hamiltonian graph is cycle

extendable, and let gE(n) denote the minimum number of edges required to guarantee that an n-vertex

Hamiltonian chordal graph is cycle extendable.

Problem 4.2. Determine upper and lower bounds on fE(n) and gE(n).

It is easy to see that there exist counterexamples to Hendry’s Conjecture with high density. Let

Dn ∈ H3 be the n-vertex graph obtained from G3 where the five cliques pasted consist of four copies of
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K3 and one copy of Kn−12. Since |E(Dn)| =
(

n−12

2

)

+37, we have that n2−25n+230

2
< fE(n) ≤ gE(n),

but this is almost certainly not the best possible lower bound.

Acknowledgements

This work was completed while the first author was affiliated with the Department d’informatique et
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