This work enrols the research line of M. Haiman on the Operator Theorem (the old operator conjecture). This theorem states that the smallest $\mathfrak{S}_n$-module closed under taking partial derivatives and closed under the action of polarization operators that contains the Vandermonde determinant […]

The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a […]

The goal of this paper is to provide a combinatorial expression for the steady state probabilities of the twospecies PASEP. In this model, there are two species of particles, one “heavy” and one “light”, on a one-dimensional finite lattice with open boundaries. Both particles can hop into adjacent […]

We give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes consist of polynomials in the weights. In the formula, Crapo’s $\beta$-invariant appears […]

The Tamari order is a central object in algebraic combinatorics and many other areas. Defined as the transitive closure of an associativity law, the Tamari order possesses a surprisingly rich structure: it is a congruence-uniform lattice. In this work, we consider a larger class of posets, the […]

We study the uniform random graph $\mathsf{C}_n$ with $n$ vertices drawn from a subcritical class of connected graphs. Our main result is that the rescaled graph $\mathsf{C}_n / \sqrt{n}$ converges to the Brownian Continuum Random Tree $\mathcal{T}_{\mathsf{e}}$ multiplied by a constant scaling […]

To each finite subset of a discrete grid $\mathbb{N}×\mathbb{N}$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented […]

We extend the classification of nearest neighbour walks in the quarter plane to models in which multiplicities are attached to each direction in the step set. Our study leads to a small number of infinite families that completely characterize all the models whose associated group is D4, D6, or D8. […]

We show that several of the main structural constants for symmetric functions (Littlewood-Richardsoncoefficients, Kronecker coefficients, plethysm coefficients, and the Kostka–Foulkes polynomials) share invarianceproperties related to the operations of taking complements with respect to rectangles […]

We present a new method to obtain the generating functions for directed convex polyominoes according to several different statistics including: width, height, size of last column/row and number of corners. This method can be used to study different families of directed convex polyominoes: symmetric […]

Given an irreducible well-generated complex reflection group $W$ with Coxeter number $h$, we call a Coxeter element any regular element (in the sense of Springer) of order $h$ in $W$; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter […]

We derive combinatorial identities for variables satisfying specific sets of commutation relations. The identities thus obtained extend corresponding ones for $q$-commuting variables $x$ and $y$ satisfying $yx=qxy$. In particular, we obtain weight-dependent binomial theorems, functional equations […]

We develop a diagrammatic categorification of the polynomial ring $\mathbb{Z} [x]$, based on a geometrically-defined graded algebra and show how to lift various operations on polynomials to the categorified setting. Our categorification satisfies a version of the Bernstein-Gelfand-Gelfand […]

The structure of zero and nonzero minors in the Grassmannian leads to rich combinatorics of matroids. In this paper, we investigate an even richer structure of possible equalities and inequalities between the minors in the positive Grassmannian. It was previously shown that arrangements of equal […]

We provide a new description of the Pieri rule of the homology of the affine Grassmannian and an affineanalogue of the charge statistics in terms of bounded partitions. This makes it possible to extend the formulation ofthe Kostka–Foulkes polynomials in terms of solvable lattice models by […]

We give an exact enumerative formula for the minimal acyclic deterministic finite automata. This formula is obtained from a bijection between a family of generalized parking functions and the transitions functions of acyclic automata.

Let $I_n$ be the set of involutions in the symmetric group $S_n$, and for $A \subseteq \{0,1,\ldots,n\}$, let \[ F_n^A=\{\sigma \in I_n \mid \text{$\sigma$ has $a$ fixed points for some $a \in A$}\}. \] We give a complete characterisation of the sets $A$ for which $F_n^A$, with the order induced by […]

This extended abstract presents some recent (exact and asymptotic) enumerative results concerning rhombustilings of hexagons that have had symmetrically distributed inward pointing triangles of side length 2 removedfrom their interiors. These results form part of a larger article that is currently […]

We study tilings with lozenges of a domain with free boundary conditions on one side. These correspondto boxed symmetric plane partitions. We show that the positions of the horizontal lozenges near the left flatboundary, in the limit, have the same joint distribution as the eigenvalues from a […]

We introduce the Tesler polytope $Tes_n(a)$, whose integer points are the Tesler matrices of size n with hook sums $a_1,a_2,...,a_n in Z_{\geq 0}$. We show that $Tes_n(a)$ is a flow polytope and therefore the number of Tesler matrices is counted by the type $A_n$ Kostant partition function evaluated […]

In the past decade, the use of ordinal patterns in the analysis of time series and dynamical systems has become an important tool. Ordinal patterns (otherwise known as a permutation patterns) are found in time series by taking $n$ data points at evenly-spaced time intervals and mapping them to a […]

It was proved by Rubey that the number of fillings with zeros and ones of a given moon polyomino thatdo not contain a northeast chain of a fixed size depends only on the set of column lengths of the polyomino. Rubey’sproof uses an adaption of jeu de taquin and promotion for arbitrary fillings of […]

Given a permutation $\pi=\pi_1\pi_2\cdots \pi_n \in S_n$, we say an index $i$ is a peak if $\pi_{i-1} < \pi_i > \pi_{i+1}$. Let $P(\pi)$ denote the set of peaks of $\pi$. Given any set $S$ of positive integers, define ${P_S(n)=\{\pi\in S_n:P(\pi)=S\}}$. Billey-Burdzy-Sagan showed that for all fixed […]

Shapiro and Chekhov (2011) have introduced the notion ofgeneralised cluster algebra; we focus on an example in type $C_n$. On the other hand, Chari and Pressley (1997), as well as Frenkel and Mukhin (2002), have studied therestricted integral form$U^{\mathtt{res}}_ε […]

Let $A$ be an $n$-element set. Let $\mathscr{L} ie_2(A)$ be the multilinear part of the free Lie algebra on $A$ with a pair of compatible Lie brackets, and $\mathscr{L} ie_2(A, i)$ the subspace of $\mathscr{L} ie_2(A)$ generated by all the monomials in $\mathscr{L} ie_2(A)$ with $i$ brackets of one […]

Using the powerful machinery available for reduced words of type $B$, we demonstrate a bijection between centrally symmetric $k$-triangulations of a $2(n + k)$-gon and plane partitions of height at most $k$ in a square of size $n$. This bijection can be viewed as the type $B$ analogue of a bijection […]

We introduce genomic tableaux, with applications to Schubert calculus. We report a combinatorial rule for structure coefficients in the torus-equivariant $K$-theory of Grassmannians for the basis of Schubert structure sheaves. This rule is positive in the sense of [Anderson-Griffeth-Miller ’11]. We […]

We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity propertiesof Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomialsis Schubert-positive, and also show a new result that the plethystic composition of a […]

Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and […]

The Ish arrangement was introduced by Armstrong to give a new interpretation of the $q; t$-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether […]

We study the growth rate of the hard squares lattice gas, equivalent to the number of independent sets on the square lattice, and two related models — non-attacking kings and read-write isolated memory. We use an assortment of techniques from combinatorics, statistical mechanics and linear algebra […]

Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. To a TFPL is assigned a triple $(u,v;w)$ of $01$-words encoding its boundary conditions. A necessary […]

In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers, called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a […]

We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation usesvirtual Hilbert series, a new class of symmetric function […]

Aparametrizationof a positroid variety $\Pi$ of dimension $d$ is a regular map $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ which is birational onto a dense subset of $\Pi$. There are several remarkable combinatorial constructions which yield parametrizations of positroid varieties. We […]

Kirillov-Reshetikhin (KR) crystals are colored directed graphs encoding the structure of certain finite-dimensional representations of affine Lie algebras. A tensor product of column shape KR crystals has recently been realized in a uniform way, for all untwisted affine types, in terms […]

We explore the enumeration of some natural classes of graded posets, including $(2 + 2)$-avoiding graded posets, $(3 + 1)$-avoiding graded posets, $(2 + 2)$- and $(3 + 1)$-avoiding graded posets, and the set of all graded posets. As part of this story, we discuss a situation when we can switch […]

We give a new representation-theoretic proof of the branching rule for Macdonald polynomials using the Etingof-Kirillov Jr. expression for Macdonald polynomials as traces of intertwiners of $U_q(gl_n)$. In the Gelfand-Tsetlin basis, we show that diagonal matrix elements of such intertwiners are […]

We give a statistic preserving bijection from rigged configurations to a tensor product of Kirillov–Reshetikhin crystals $\otimes_{i=1}^{N}B^{1,s_i}$ in type $D_4^{(3)}$ by using virtualization into type $D_4^{(1)}$. We consider a special case of this bijection with $B=B^{1,s}$, and we obtain the […]

In the present paper, the relation between the dominant regions in the $m$-Shi arrangement of types $B_n/C_n$, and those of the $m$-Shi arrangement of type $A_{n-1}$ is investigated. More precisely, it is shown explicitly how the sets $R^m(B_n)$ and $R^m(C_n)$, of dominant regions of the $m$-Shi […]

We introduce type $C$ parking functions, encoded as vertically labelled lattice paths and endowed with a statistic dinv'. We define a bijection from type $C$ parking functions to regions of the Shi arrangement of type $C$, encoded as diagonally labelled ballot paths and endowed with a natural […]

The Schur functions in superspace $s_\Lambda$ and $\overline{s}_\Lambda$ are the limits $q=t= 0$ and $q=t=\infty$ respectively of the Macdonald polynomials in superspace. We present the elementary properties of the bases $s_\Lambda$ and $\overline{s}_\Lambda$ (which happen to be essentially dual) […]

In 2008, Han rediscovered an expansion of powers of Dedekind $\eta$ function due to Nekrasov and Okounkov by using Macdonald's identity in type $\widetilde{A}$. In this paper, we obtain new combinatorial expansions of powers of $\eta$, in terms of partition hook lengths, by using Macdonald's […]

If $f(x)$ is an invertible power series we may form the symmetric function $f(f^{-1}(x_1)+f^{-1}(x_2)+...)$ which is called a formal group law. We give a number of examples of power series $f(x)$ that are ordinary generating functions for combinatorial objects with a recursive structure, each of […]

We introduce a new statistic, skip, on rational $(3,n)$-Dyck paths and define a marked rank word for each path when $n$ is not a multiple of 3. If a triple of valid statistics (area; skip; dinv) are given, we have an algorithm to construct the marked rank word corresponding to the triple. By […]

We analyze a general model of weighted graphs, introduced by de Panafieu and Ravelomanana (2014) and similar to the inhomogeneous graph model of Söderberg (2002). We investigate the sum of the weights of those graphs and their structure. Those results allow us to give a new proof in a more general […]

An important combinatorial result in equivariant cohomology and $K$-theory Schubert calculus is represented by the formulas of Billey and Graham-Willems for the localization of Schubert classes at torus fixed points. These formulas work uniformly in all Lie types, and are based on the concept of a […]

The notion of the negative $q$-binomial was recently introduced by Fu, Reiner, Stanton and Thiem. Mirroring the negative $q$-binomial, we show the classical $q$ -Stirling numbers of the second kind can be expressed as a pair of statistics on a subset of restricted growth words. The resulting […]

We give a recursive definition of generalized parking functions that allows them to be viewed as a species. From there we compute a non-commutative characteristic of the generalized parking function module and deduce some enumeration formulas of structures and isomorphism types. We give as well an […]

There are few general results about the coefficients of Ehrhart polynomials. We present a conjecture about their positivity for a certain family of polytopes known as generalized permutohedra. We have verified the conjecture for small dimensions combining perturbation methods with a […]

We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these Hopf algebras give rise to symmetric functions that […]

Let $u$ and $v$ be permutations on $n$ letters, with $u$ ≤ $v$ in Bruhat order. ABruhat interval polytope$Q_{u,v}$ is the convex hull of all permutation vectors $z=(z(1),z(2),...,z(n))$ with $u$ ≤ $z$ ≤ $v$. Note that when $u=e$ and $v=w_0$ are the shortest and longest elements of […]

An important problem from invariant theory is to describe the subspace of a tensor power of a representation invariant under the action of the group. According to Weyl's classic, the first main (later: 'fundamental') theorem of invariant theory states that all invariants are expressible in terms of […]

A combinatorial expression for the coefficient of the Schur function $s_{\lambda}$ in the expansion of the plethysm $p_{n/d}^d \circ s_{\mu}$ is given for all $d$ dividing $n$ for the cases in which $n=2$ or $\lambda$ is rectangular. In these cases, the coefficient $\langle p_{n/d}^d \circ s_{\mu}, […]

Based on the Hermite–Biehler theorem, we simultaneously prove the real-rootedness of Eulerian polynomials of type $D$ and the real-rootedness of affine Eulerian polynomials of type $B$, which were first obtained by Savage and Visontai by using the theory of $s$-Eulerian polynomials. We also confirm […]

Recently, Diaconis, Ram and I created Markov chains out of the coproduct-then-product operator on combinatorial Hopf algebras. These chains model the breaking and recombining of combinatorial objects. Our motivating example was the riffle-shuffling of a deck of cards, for which this Hopf algebra […]

We present complete simplicial fan realizations of any spherical subword complex of type $A_n$ for $n\leq 3$. This provides complete simplicial fan realizations of simplicial multi-associahedra $\Delta_{2k+4,k}$, whose facets are in correspondence with $k$-triangulations of a convex $(2k+4)$-gon. […]

Exceptional sequences are certain ordered sequences of quiver representations. We use noncrossing edge-labeled trees in a disk with boundary vertices (expanding on T. Araya’s work) to classify exceptional sequences of representations of $Q$, the linearly ordered quiver with $n$ vertices. We also […]

We present new combinatorial methods for solving algebraic problems such as computing the Hilbert series of a free $P$-algebra over one generator, or proving the freeness of a $P$-algebra. In particular, we apply these methods to the cases of dendriform algebras, quadrialgebras and tridendriform […]

We define a $K$ -theoretic analogue of Fomin’s dual graded graphs, which we call dual filtered graphs. The key formula in the definition is $DU - UD = D + I$. Our major examples are $K$ -theoretic analogues of Young’s lattice, the binary tree, and the graph determined by the Poirier-Reutenauer […]

We introduce the Dyck path triangulation of the cartesian product of two simplices $\Delta_{n-1}\times\Delta_{n-1}$. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of $\Delta_{r\ n-1}\times\Delta_{n-1}$ using […]

We prove the affine Pieri rule for the cohomology of the affine flag variety conjectured by Lam, Lapointe, Morse and Shimozono. We study the cap operator on the affine nilHecke ring that is motivated by Kostant and Kumar’s work on the equivariant cohomology of the affine flag variety. We show […]

Thetotally nonnegative Grassmannianis the set of $k$-dimensional subspaces $V$ of ℝ^{$n$}whose nonzero Plücker coordinates (i.e. $k × k$ minors of a $k × n$ matrix whose rows span $V$) all have the same sign. Total positivity has been much studied in the past two […]

We consider several counting problems related to Coxeter-Catalan combinatorics and conjecture that the problems all have the same answer, which we call the $W$ -biCatalan number. We prove the conjecture in many cases.

We introduce a rich family of generalizations of the pentagram map sharing the property that each generates an infinite configuration of points and lines with four points on each line. These systems all have a description as $Y$ -mutations in a cluster algebra and hence establish new connections […]

We construct universal geometric coefficients for the cluster algebra associated to the four-punctured sphere and obtain, as a by-product, the $g$ -vectors of cluster variables. We also construct the rational part of the mutation fan. These constructions rely on a classification of the allowable […]

We prove an explicit closed formula, written as a sum of Pfaffians, which describes each equivariant Schubert class for the Grassmannian of isotropic subspaces in a symplectic vector space

We introduce a new combinatorial structure: the metasylvester lattice on decreasing trees. It appears in the context of the $m$-Tamari lattices and other related $m$-generalizations. The metasylvester congruence has been recently introduced by Novelli and Thibon. We show that it defines a sublattice […]

We extend a $T$-path expansion formula for arcs on an unpunctured surface to the case of arcs on a once-punctured polygon and use this formula to give a combinatorial proof that cluster monomials form the atomic basis of a cluster algebra of type $D$.

In this paper we give a sufficient condition for a general stability of Kronecker coefficients, which we call additive stability. Its main ingredient is the property of a matrix of being additive. This notion seems to be an important one: it appears in Discrete Tomography as a sufficient condition […]

Plethysm coefficients are important structural constants in the theory of symmetric functions and in the representations theory of symmetric groups and general linear groups. In 1950, Foulkes observed stability properties: some sequences of plethysm coefficients are eventually constants. Such […]

The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$_{*}($G$) of graded $S_n$-modules, whose graded Frobenius […]

This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity […]

In 1968 and 1969, Andrews proved two partition theorems of the Rogers-Ramanujan type which generalise Schur’s celebrated partition identity (1926). Andrews’ two generalisations of Schur’s theorem went on to become two of the most influential results in the theory of partitions, finding applications […]

Tableau sequences of bounded height have been central to the analysis of $k$-noncrossing set partitions and matchings. We show here that families of sequences that end with a row shape are particularly compelling and lead to some interesting connections. First, we prove that hesitating tableaux of […]

We compute, for each genus $g$ ≥ 0, the generating function $L$_{$g$}≡ $L$_{$g$}($t$;$p$_{1},$p$_{2},...) of (labelled) bipartite maps on the orientable surface of genus $g$, with control on all face degrees. We exhibit an explicit change of variables such […]

We present here a family of posets which generalizes both partition and pointed partition posets. After a short description of these new posets, we show that they are Cohen-Macaulay, compute their Moebius numbers and their characteristic polynomials. The characteristic polynomials are obtained […]

Cambrian trees are oriented and labeled trees which fulfill local conditions around each node generalizing the conditions for classical binary search trees. Based on the bijective correspondence between signed permutations and leveled Cambrian trees, we define the Cambrian Hopf algebra generalizing […]

We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are […]

For any finite path $v$ on the square lattice consisting of north and east unit steps, we construct a poset Tam$(v)$ that consists of all the paths lying weakly above $v$ with the same endpoints as $v$. For particular choices of $v$, we recover the traditional Tamari lattice and the $m$-Tamari […]

We extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, orientable or non-orientable. This general construction requires new ideas and is more delicate than the special […]

We consider generalizations of juggling Markov chains introduced by Ayyer, Bouttier, Corteel and Nunzi. We first study multispecies generalizations of all the finite models therein, namely the MJMC, the add-drop and the annihilation models. We then consider the case of several jugglers exchanging […]

We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$_{$n-1$}, $B$_{$n$}, $Ã$_{$n$}, and the flag weak order on the wreath product […]

We introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices.

The $n$-dimensional associahedron is a polytope whose vertices correspond to triangulations of a convex $(n + 3)$-gon and whose edges are flips between them. It was recently shown that the diameter of this polytope is $2n - 4$ as soon as $n > 9$. We study the diameters of the graphs of relevant […]

We define a $0$-Hecke action on composition tableaux, and then use it to derive $0$-Hecke modules whose quasisymmetric characteristic is a quasisymmetric Schur function. We then relate the modules to the weak Bruhat order and use them to derive a new basis for quasisymmetric functions. We also […]

We revisit a classic partition theorem due to MacMahon that relates partitions with all parts repeated at least once and partitions with parts congruent to $2,3,4,6 \pmod{6}$, together with a generalization by Andrews and two others by Subbarao. Then we develop a unified bijective proof for all four […]

Kuniba, Nakanishi, and Suzuki (1994) have formulated a general conjecture expressing the positive solution of an $\ell$-restricted $Q$-system in terms of quantum dimensions of Kirillov-Reshetikhin modules. After presenting this conjecture, we sketch a proof for the exceptional type $E_6$ following […]

We define an action of the $0$-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their […]

A driving question in (quantum) cohomology of flag varieties is to find non-recursive, positive combinatorial formulas for expressing the quantum product in a particularly nice basis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provide a way to compute quantum products of […]

The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph on strings of symbols. However, instead of requiring the tail of one permutation to equal the head of another for them to be connected by an edge, we require that the head and tail in question have their […]

Let $X$ be a $(d \times N)$-matrix. We consider the variable polytope $\Pi_X(u) = \left\{ w \geq 0 : Xw = u \right\}$. It is known that the function $T_X$ that assigns to a parameter $u \in \mathbb{R}^N$ the volume of the polytope $\Pi_X(u)$ is piecewise polynomial. Formulas of Khovanskii-Pukhlikov […]

We consider a carries process which is a generalization of that by Holte in the sense that (i) we take various digit sets, and (ii) we also consider negative base. Our results are : (i) eigenvalues and eigenvectors of the transition probability matrices, and their connection to combinatorics and […]

We present a beautiful interplay between combinatorial topology and homological algebra for a class of monoids that arise naturally in algebraic combinatorics. We explore several applications of this interplay. For instance, we provide a new interpretation of the Leray number of a clique complex in […]

With a crystallographic root system $\Phi$ , there are associated two Catalan objects, the set of nonnesting partitions $NN(\Phi)$, and the cluster complex $\Delta (\Phi)$. These possess a number of enumerative coincidences, many of which are captured in a surprising identity, first conjectured by […]

\textbfAbstract. We construct supercharacter theories of finite unipotent groups in the orthogonal, symplectic and unitary types. Our method utilizes group actions in a manner analogous to that of Diaconis and Isaacs in their construction of supercharacters of algebra groups. The resulting […]

In the recent study of infinite root systems, fractal patterns of ball packings were observed while visualizing roots in affine space. In fact, the observed fractals are exactly the ball packings described by Boyd and Maxwell. This correspondence is a corollary of a more fundamental result: given a […]

We introduce a new method for showing that the roots of the characteristic polynomial of a finite lattice are all nonnegative integers. Our method gives two simple conditions under which the characteristic polynomial factors. We will see that Stanley's Supersolvability Theorem is a corollary of this […]

We study Newton polytopes of cluster variables in type $A_n$ cluster algebras, whose cluster and coefficient variables are indexed by the diagonals and boundary segments of a polygon. Our main results include an explicit description of the affine hull and facets of the Newton polytope of the Laurent […]

We consider two aspects of Kronecker coefficients in the directions of representation theory and combinatorics. We consider a conjecture of Jan Saxl stating that the tensor square of the $S_n$-irreducible representation indexed by the staircase partition contains every irreducible representation of […]

We present a very simple explicit technique to generate a large family of point configurations with neighborly Delaunay triangulations. This proves that there are superexponentially many combinatorially distinct neighborly $d$-polytopes with $n$ vertices that admit realizations inscribed on the […]

We consider the multivariate generating series $F_P$ of $P-$partitions in infinitely many variables $x_1, x_2, \ldots$ . For some family of ranked posets $P$, it is natural to consider an analog $N_P$ with two infinite alphabets. When we collapse these two alphabets, we trivially recover $F_P$. Our […]

Recently, Kenyon and Wilson introduced Dyck tilings, which are certain tilings of the region between two Dyck paths. The enumeration of Dyck tilings is related with hook formulas for forests and the combinatorics of Hermite polynomials. The first goal of this work is to give an alternative point of […]

Studying the problem of quasicommuting quantum minors, Leclerc and Zelevinsky introduced in 1998 the notion of weakly separated sets in $[n]:=\{1,\ldots, n\}$. Moreover, they raised several conjectures on the purity for this symmetric relation, in particular, on the Boolean cube $2^{[n]}$. In […]

The number of standard Young tableaux of a fixed shape is famously given by the hook-length formula due to Frame, Robinson and Thrall. A bijective proof of Novelli, Pak and Stoyanovskii relies on a sorting algorithm akin to jeu-de-taquin which transforms an arbitrary filling of a partition into a […]

The Rearrangement Conjecture states that if two words over $\mathbb{P}$ are Wilf-equivalent in the factor order on $\mathbb{P}^{\ast}$ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over $\mathbb{P}$ are strongly […]

We introduce a quasisymmetric generalization of Berele and Regev's hook Schur functions and prove that these new quasisymmetric hook Schur functions decompose the hook Schur functions in a natural way. In this paper we examine the combinatorics of the quasisymmetric hook Schur functions, providing […]

We use a recently introduced combinatorial object, the $\textit{interval-poset}$, to describe two bijections on intervals of the Tamari lattice. Both bijections give a combinatorial proof of some previously known results. The first one is an inner bijection between Tamari intervals that exchanges […]

The set of all permutations, ordered by pattern containment, forms a poset. This extended abstract presents the first explicit major results on the topology of intervals in this poset. We show that almost all (open) intervals in this poset have a disconnected subinterval and are thus not shellable. […]

We define the bigraphical arrangement of a graph and show that the Pak-Stanley labels of its regions are the parking functions of a closely related graph, thus proving conjectures of Duval, Klivans, and Martin and of Hopkins and Perkinson. A consequence is a new proof of a bijection between labeled […]

The face numbers of simplicial polytopes that approximate $C^1$-convex bodies in the Hausdorff metric is studied. Several structural results about the skeleta of such polytopes are studied and used to derive a lower bound theorem for this class of polytopes. This partially resolves a conjecture made […]

The number of shortest factorizations into reflections for a Singer cycle in $GL_n(\mathbb{F}_q)$ is shown to be $(q^n-1)^{n-1}$. Formulas counting factorizations of any length, and counting those with reflections of fixed conjugacy classes are also given.

An associahedron is a polytope whose vertices correspond to the triangulations of a convex polygon and whose edges correspond to flips between them. J.-L. Loday gave a particularly elegant realization of the associahedron, which was then generalized in two directions: on the one hand to obtain […]

Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups $(GL_n)$. The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices […]

We prove the conjecture by M. Yip stating that counting genus one partitions by the number of their elements and parts yields, up to a shift of indices, the same array of numbers as counting genus one rooted hypermonopoles. Our proof involves representing each genus one permutation by a four-colored […]

A classical result of MacMahon states that inversion number and major index have the same distribution over permutations of a given multiset. In this work we prove a strengthening of this theorem originally conjectured by Haglund. Our result can be seen as an equidistribution theorem over the […]

Connection matrices for graph parameters with values in a field have been introduced by M. Freedman, L. Lovász and A. Schrijver (2007). Graph parameters with connection matrices of finite rank can be computed in polynomial time on graph classes of bounded tree-width. We introduce join matrices, a […]

Curtis-Ingerman-Morrow studied the space of circular planar electrical networks, and classified all possible response matrices for such networks. Lam and Pylyavskyy found a Lie group $EL_{2n}$ whose positive part $(EL_{2n})_{\geq 0}$ naturally acts on the circular planar electrical network via some […]

The Selberg integral is an important integral first evaluated by Selberg in 1944. Stanley found a combinatorial interpretation of the Selberg integral in terms of permutations. In this paper, new combinatorial objects "Young books'' are introduced and shown to have a connection with the Selberg […]

In the first part of this article we present a realization of the $m$-Tamari lattice $\mathcal{T}_n^{(m)}$ in terms of $m$-tuples of Dyck paths of height $n$, equipped with componentwise rotation order. For that, we define the $m$-cover poset $\mathcal{P}^{\langle m \rangle}$ of an arbitrary bounded […]

The purpose of this work is to initiate a combinatorial study of the Bruhat-Chevalley ordering on certain sets of permutations obtained by omitting the parentheses from their standard cyclic notation. In particular, we show that these sets form bounded, graded, unimodal, rank-symmetric and […]

We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a […]

We introduce a series of conjectured identities that deform Weyl's denominator formula and generalize Tokuyama's formula to other root systems. These conjectures generalize a number of well-known results due to Okada. We also prove a related result for $B'_n$ that generalizes a theorem of Simpson.

We study an extension of the chip-firing game. A given set of admissible moves, called Yamanouchi moves, allows the player to pass from a starting configuration $\alpha$ to a further configuration $\beta$. This can be encoded via an action of a certain group, the toppling group, associated with each […]

We review and introduce several approaches to the study of centralizer algebras of the infinite symmetric group $S_{\infty}$. Our work is led by the double commutant relationship between finite symmetric groups and partition algebras; in the case of $S_{\infty}$, we obtain centralizer algebras that […]

This paper constructs a bijection between irreducible $k$-shapes and surjective pistols of height $k-1$, which carries the "free $k$-sites" to the fixed points of surjective pistols. The bijection confirms a conjecture of Hivert and Mallet (FPSAC 2011) that the number of irreducible $k$-shape is […]

In this paper we improve a method of Robinson and Taulbee for computing Kronecker coefficients and show that for any partition $\overline{ν}$ of $d$ there is a polynomial $k_{\overline{ν}}$ with rational coefficients in variables $x_C$, where $C$ runs over the set of isomorphism classes of connected […]

We apply ideas from crystal theory to affine Schubert calculus and flag Gromov-Witten invariants. By defining operators on certain decompositions of elements in the type-$A$ affine Weyl group, we produce a crystal reflecting the internal structure of Specht modules associated to permutation […]

A Weyl arrangement is the arrangement defined by the root system of a finite Weyl group. When a set of positive roots is an ideal in the root poset, we call the corresponding arrangement an ideal subarrangement. Our main theorem asserts that any ideal subarrangement is a free arrangement and that […]

We define piecewise-linear and birational analogues of toggle-involutions, rowmotion, and promotion on order ideals of a poset $P$ as studied by Striker and Williams. Piecewise-linear rowmotion relates to Stanley's transfer map for order polytopes; piecewise-linear promotion relates to […]

We expose a rule for multiplying a general Schubert polynomial with a power sum polynomial in $k$ variables. A signed sum over cyclic permutations replaces the signed sum over rim hooks in the classical Murgnahan-Nakayama rule. In the intersection theory of flag manifolds this computes all […]

The $\textit{parallel chip-firing game}$ is an automaton on graphs in which vertices "fire'' chips to their neighbors. This simple model, analogous to sandpiles forming and collapsing, contains much emergent complexity and has connections to different areas of mathematics including self-organized […]

In our previous works "Pfaffian decomposition and a Pfaffian analogue of $q$-Catalan Hankel determinants'' (by M.Ishikawa, H. Tagawa and J. Zeng, J. Combin. Theory Ser. A, 120, 2013, 1263-1284) we have proposed several ways to evaluate certain Catalan-Hankel Pffafians and also formulated several […]

We obtain a nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials which holds in complete generality and which is simpler and more explicit than any existing one, and which cannot be linearly simplified. Our proof uses a new basis of the peak subalgebra of the algebra of […]

We establish a simple recurrence formula for the number $Q_g^n$ of rooted orientable maps counted by edges and genus. The formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It gives by far […]

At the end of the 1960s, Knuth characterised in terms of forbidden patterns the permutations that can be sorted using a stack. He also showed that they are in bijection with Dyck paths and thus counted by the Catalan numbers. Subsequently, Pratt and Tarjan asked about permutations that can be sorted […]

In this abstract, I will survey the story of two enumerative miracles that relate certain Coxeter-theoretic objects and other poset-theoretic objects. The first miracle relates reduced words and linear extensions, while the second may be thought of as relating group elements and order ideals. The […]

We study a natural generalization of the noncrossing relation between pairs of elements in $[n]$ to $k$-tuples in $[n]$. We show that the flag simplicial complex on $\binom{[n]}{k}$ induced by this relation is a regular, unimodular and flag triangulation of the order polytope of the poset given by […]

A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an […]

For a random permutation sampled from the stationary distribution of the TASEP on a ring, we show that, conditioned on the event that the first entries are strictly larger than the last entries, the $\textit{order}$ of the first entries is independent of the $\textit{order}$ of the last entries. The […]

Partition the rows of a board into sets of $m$ rows called levels. An $m$-level rook placement is a subset of squares of the board with no two in the same column or the same level. We construct explicit bijections to prove three theorems about such placements. We start with two bijections between […]

We investigate the role that non-crossing partitions play in the study of positroids, a class of matroids introduced by Postnikov. We prove that every positroid can be constructed uniquely by choosing a non-crossing partition on the ground set, and then freely placing the structure of a connected […]

Sweep maps are a family of maps on words that, while simple to define, are not yet known to be injective in general. This family subsumes many of the "zeta maps" that have arisen in the study of q,t-Catalan numbers in the course of relating the three statistics of area, bounce and dinv. A sweep map […]

We describe a new uniform generation tree for permutations with the specific property that, for most permutations, all of their descendants in the generation tree have the same number of fixed points. Our tree is optimal for the number of permutations having this property. We then use this tree to […]

We present a generalization of the chromatic polynomial, and chromatic symmetric function, arising in the study of combinatorial species. These invariants are defined for modules over lattice rings in species. The primary examples are graphs and set partitions. For these new invariants, we present […]

There are numerous combinatorial objects associated to a Grassmannian permutation $w_λ$ that index cells of the totally nonnegative Grassmannian. We study some of these objects (rook placements, acyclic orientations, various restricted fillings) and their q-analogues in the case of permutations […]

We show that an element $\mathcal{w}$ of a finite Weyl group W is rationally smooth if and only if the hyperplane arrangement $\mathcal{I} (\mathcal{w})$ associated to the inversion set of \mathcal{w} is inductively free, and the product $(d_1+1) ...(d_l+1)$ of the coexponents $d_1,\ldots,d_l$ is […]

This paper uses the theory of dual equivalence graphs to give explicit Schur expansions to several families of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and modified Hall-Littlewood polynomials indexed by any diagram $δ ⊂ \mathbb{Z} […]

This paper considers the representation theory of towers of algebras of $\mathcal{J} -trivial$ monoids. Using a very general lemma on induction, we derive a combinatorial description of the algebra and coalgebra structure on the Grothendieck rings $G_0$ and $K_0$. We then apply our theory to some […]

Various authors have studied a natural operation (under various names) on the order ideals (equivalently antichains) of a finite poset, here called \emphrowmotion. For certain posets of interest, the order of this map is much smaller than one would naively expect, and the orbits exhibit unexpected […]

The study of rhomboid-shaped fully packed loop configurations (RFPLs) is inspired by the work of Fischer and Nadeau on triangular fully packed loop configurations (TFPLs). By using the same techniques as they did some nice combinatorics for RFPLs arise. To each RFPL and to each oriented RFPL a […]

We discuss arrangements of equal minors in totally positive matrices. More precisely, we would like to investigate the structure of possible equalities and inequalities between the minors. We show that arrangements of equals minors of largest value are in bijection withsorted sets, which […]

The Classical Shuffle Conjecture of Haglund et al. (2005) has a symmetric function side and a combinatorial side. The combinatorial side $q,t$-enumerates parking functions in the $n ×n$ lattice. The symmetric function side may be simply expressed as $∇ e_n$ , where $∇$ is the Macdonald […]

Astabilized-interval-free(SIF) permutation on [n], introduced by Callan, is a permutation that does not stabilize any proper interval of [n]. Such permutations are known to be the irreducibles in the decomposition of permutations along non-crossing partitions. That is, if $s_n$ denotes the […]

We introduce a poset structure on the reduced galleries in a supersolvable arrangement of hyperplanes. In particular, for Coxeter groups of type A or B, we construct a poset of reduced words for the longest element whose Hasse diagram is the graph of reduced words. Using Rambau's Suspension Lemma, […]

We define and enumerate a new class of self-avoiding walks on the square lattice, which we callweakly prudent bridges. Their definition is inspired by two previously-considered classes of self-avoiding walks, and can be viewed as a combination of those two models. We consider several methods […]

We study permutation patterns from an algebraic combinatorics point of view. Using analogues of the classical shuffle and infiltration products for word, we define two new Hopf algebras of permutations related to the notion of permutation pattern. We show several remarkable properties of permutation […]

Many combinatorial and topological invariants of a hyperplane arrangement can be computed in terms of its Tutte polynomial. Similarly, many invariants of a hypertoric arrangement can be computed in terms of itsarithmeticTutte polynomial. We compute the arithmetic Tutte polynomials of the […]

Bott-Samelson varieties factor the flag variety $G/B$ into a product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational; however in this paper we study fibers of this map when it is not birational. We will see […]

A Peterson variety is a subvariety of the flag variety $G/B$ defined by certain linear conditions. Peterson varieties appear in the construction of the quantum cohomology of partial flag varieties and in applications to the Toda flows. Each Peterson variety has a one-dimensional torus $S^1$ acting […]

We introduce a new approach to the enumeration of rational slope parking functions with respect to thearea and a generalizeddinv statistics, and relate the combinatorics of parking functions to that of affine permutations. We relate our construction to two […]

Knutson and Tao's work on the Horn conjectures used combinatorial invariants called hives and honeycombs to relate spectra of sums of Hermitian matrices to Littlewood-Richardson coefficients and problems in representation theory, but these relationships remained implicit. Here, let $M$ and $N$ be […]

The family of Buchsbaum simplicial posets generalizes the family of simplicial cell manifolds. The $h'-$vector of a simplicial complex or simplicial poset encodes the combinatorial and topological data of its face numbers and the reduced Betti numbers of its geometric realization. Novik and Swartz […]

Define theinterval rank$r_[i,j] : Gr_k(\mathbb C^n) →\mathbb{N}$ of a k-plane V as the dimension of the orthogonal projection $π _[i,j](V)$ of V to the $(j-i+1)$-dimensional subspace that uses the coordinates $i,i+1,\ldots,j$. By measuring all these ranks, we define theinterval rank […]

Given an odd prime p, we give an explicit factorization over the ring of formal power series with integer coefficients for certain reducible polynomials whose constant term is of the form $p^w$ with $w>1$. Our formulas are given in terms of partial Bell polynomials and rely on the inversion formula […]

Given an underlying undirected simple graph, we consider the set of all acyclic orientations of its edges. Each of these orientations induces a partial order on the vertices of our graph, and therefore we can count the number of linear extensions of these posets. We want to know which choice of […]

In a recent paper, Diaconis, Ram and I constructed Markov chains using the coproduct-then-product map of a combinatorial Hopf algebra. We presented an algorithm for diagonalising a large class of these "Hopf-power chains", including the Gilbert-Shannon-Reeds model of riffle-shuffling of a deck of […]

We provide exact and asymptotic counting formulas for five singular lattice path models in the quarter plane. Furthermore, we prove that these models have a non D-finite generating function.

Root-theoretic Young diagrams are a conceptual framework to discuss existence of a root-system uniform and manifestly non-negative combinatorial rule for Schubert calculus. Our main results use them to obtain formulas for (co)adjoint varieties of classical Lie type. This case is the simplest after […]

We show that given a poset $P$ and and a subposet $Q$, the integer points obtained by restricting linear extensions of $P$ to $Q$ can be explained via integer lattice points of a generalized permutohedron.

For an arbitrary Coxeter group $W$, David Speyer and Nathan Reading defined Cambrian semilattices $C_{\gamma}$ as certain sub-semilattices of the weak order on $W$. In this article, we define an edge-labelling using the realization of Cambrian semilattices in terms of $\gamma$-sortable elements, and […]

We give an intrinsic proof of a conjecture of Brenti that all the roots of the Eulerian polynomial of type $D$ are real and a proof of a conjecture of Dilks, Petersen, and Stembridge that all the roots of the affine Eulerian polynomial of type $B$ are real, as well.

We consider a deformation of Kerov character polynomials, linked to Jack symmetric functions. It has been introduced recently by M. Lassalle, who formulated several conjectures on these objects, suggesting some underlying combinatorics. We give a partial result in this direction, showing that some […]

The Hecke algebra of the pair $(\mathcal{S}_{2n}, \mathcal{B}_n)$, where $\mathcal{B}_n$ is the hyperoctahedral subgroup of $\mathcal{S}_{2n}$, was introduced by James in 1961. It is a natural analogue of the center of the symmetric group algebra. In this paper, we give a polynomiality property of […]

We give noncommutative versions of the Redfield-Pólya theorem in $\mathrm{WSym}$, the algebra of word symmetric functions, and in other related combinatorial Hopf algebras.

The action of the symmetric group $S_n$ on the set $\mathrm{Park}_n$ of parking functions of size $n$ has received a great deal of attention in algebraic combinatorics. We prove that the action of $S_n$ on $\mathrm{Park}_n$ extends to an action of $S_{n+1}$. More precisely, we construct a graded […]

We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type $q$ in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such […]

Let $\mathcal{A}$ be a minor-closed class of labelled graphs, and let $G_n$ be a random graph sampled uniformly from the set of n-vertex graphs of $\mathcal{A}$. When $n$ is large, what is the probability that $G_n$ is connected? How many components does it have? How large is its biggest component? […]

We describe edge labelings of the increasing flip graph of a subword complex on a finite Coxeter group, and study applications thereof. On the one hand, we show that they provide canonical spanning trees of the facet-ridge graph of the subword complex, describe inductively these trees, and present […]

We study the statistics $\mathsf{area}$, $\mathsf{bounce}$ and $\mathsf{dinv}$ associated to polyominoes in a rectangular box $m$ times $n$. We show that the bi-statistics ($\mathsf{area}$,$\mathsf{bounce}$) and ($\mathsf{area}$,$\mathsf{dinv}$) give rise to the same $q,t-$analogue of Narayana […]

In a recent paper with Bousquet-Mélou, de Gier, Duminil-Copin and Guttmann (2012), we proved that a model of self-avoiding walks on the honeycomb lattice, interacting with an impenetrable surface, undergoes an adsorption phase transition when the surface fugacity is 1+√2. Our proof used a […]

In a recent work, the combinatorial interpretation of the polynomial $\alpha (n; k_1,k_2,\ldots,k_n)$ counting the number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ was extended to weakly decreasing sequences $k_1 ≥k_2 ≥⋯≥k_n$. In this case the evaluation of the polynomial is equal […]

We consider the parameter rank introduced for graph configurations by M. Baker and S. Norine. We focus on complete graphs and obtain an efficient algorithm to determine the rank for these graphs. The analysis of this algorithm leads to the definition of a parameter on Dyck words, which we call […]

We study sorting operators $\textrm{A}$ on permutations that are obtained composing Knuth's stack sorting operator \textrmS and the reverse operator $\textrm{R}$, as many times as desired. For any such operator $\textrm{A}$, we provide a bijection between the set of permutations sorted by […]

We introduce the notion of $\textit{pattern}$ in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the $\textit{Dyck […]

A function $g$, with domain the natural numbers, is a quasi-polynomial if there exists a period $m$ and polynomials $p_0,p_1,\ldots,p_m-1$ such that $g(t)=p_i(t)$ for $t\equiv i\bmod m$. Quasi-polynomials classically – and ``reasonably'' – appear in Ehrhart theory and in other contexts where one […]

We study variants of Gale-Robinson sequences, as motivated by cluster algebras with principal coefficients. For such cases, we give combinatorial interpretations of cluster variables using brane tilings, as from the physics literature.

Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n×n$ determinant $\det ((a+j-i)Γ (b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $\mathrm{Pf}((j-i)Γ (b+j+i))$ with an application to the two dimensional dimer system in 2011. […]

We prove that the Mahonian-Stirling pairs of permutation statistics $(sor, cyc)$ and $(∈v , \mathrm{rlmin})$ are equidistributed on the set of permutations that correspond to arrangements of $n$ non-atacking rooks on a fixed Ferrers board with $n$ rows and $n$ columns. The proofs are combinatorial […]

The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, […]

Many results involving Schur functions have analogues involving $k-$Schur functions. Standard strong marked tableaux play a role for $k-$Schur functions similar to the role standard Young tableaux play for Schur functions. We discuss results and conjectures toward an analogue of the hook length […]

Originally motivated by algebraic invariant theory, we present an algorithm to enumerate integer vectors modulo the action of a permutation group. This problem generalizes the generation of unlabeled graph up to an isomorphism. In this paper, we present the full development of a generation engine by […]

We study the $\textit{diagrams}$ of affine permutations and their $\textit{balanced}$ labellings. As in the finite case, which was investigated by Fomin, Greene, Reiner, and Shimozono, the balanced labellings give a natural encoding of reduced decompositions of affine permutations. In fact, we show […]

Erdős and Rényi conjectured in 1960 that the limiting probability $p$ that a random graph with $n$ vertices and $M=n/2$ edges is planar exists. It has been shown that indeed p exists and is a constant strictly between 0 and 1. In this paper we answer completely this long standing question by finding […]

We define a subclass of totally symmetric self-complementary plane partitions (TSSCPPs) which we show is in direct bijection with permutation matrices. This bijection maps the inversion number of the permutation, the position of the 1 in the last column, and the position of the 1 in the last row to […]

In this article, we study some quotient sets on permutations built from peaks, valleys, double rises and double descents. One part is dedicated to the enumeration of the cosets using the bijection of Francon-Viennot which is a bijection between permutations and the so-called Laguerre histories. Then […]

After extending classical results on simple varieties of trees to trees counted by their number of leaves, we describe a filtration of the set of permutations based on their strong interval trees. For each subclass we provide asymptotic formulas for number of trees (by leaves), average number of […]

A Gelfand model for a semisimple algebra $\mathsf{A}$ over $\mathbb{C}$ is a complex linear representation that contains each irreducible representation of $\mathsf{A}$ with multiplicity exactly one. We give a method of constructing these models that works uniformly for a large class of […]

Given a reconfigurable system $X$, such as a robot moving on a grid or a set of particles traversing a graph without colliding, the possible positions of $X$ naturally form a cubical complex $\mathcal{S}(X)$. When $\mathcal{S}(X)$ is a CAT(0) space, we can explicitly construct the shortest path […]

The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism […]

The periodic patterns of a map are the permutations realized by the relative order of the points in its periodic orbits. We give a combinatorial description of the periodic patterns of an arbitrary signed shift, in terms of the structure of the descent set of a certain transformation of the pattern. […]

We study the binomial and monomial ideals arising from linear equivalence of divisors on graphs from the point of view of Gröbner theory. We give an explicit description of a minimal Gröbner basis for each higher syzygy module. In each case the given minimal Gröbner basis is also a minimal […]

Let $\alpha$ be a string over $\mathbb{Z}_q$, where $q = 2^d$. The $j$-th elementary symmetric function evaluated at $\alpha$ is denoted $e_j(\alpha)$ . We study the cardinalities $S_q(m;\mathcal{T} _1,\mathcal{T} _2,\ldots,\mathcal{T} _t)$ of the set of length $m$ strings for which $e_j(\alpha) = […]

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms […]

In 2007 Sami Assaf introduced dual equivalence graphs as a method for demonstrating that a quasisymmetric function is Schur positive. The method involves the creation of a graph whose vertices are weighted by Ira Gessel's fundamental quasisymmetric functions so that the sum of the weights of a […]

Each positive rational number $x>0$ can be written $\textbf{uniquely}$ as $x=a/(b-a)$ for coprime positive integers 0<$a$<$b$. We will identify $x$ with the pair $(a,b)$. In this extended abstract we use $\textit{rational Dyck paths}$ to define for each positive rational $x>0$ a simplicial complex […]

Many cyclic actions $τ$ on a finite set $\mathcal{S}$ ; of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit ``homomesy'': the average of $f$ over each $τ$-orbit in $\mathcal{S} $ is the same as the average of $f$ over the whole set $\mathcal{S} $. This phenomenon […]

We consider the set $\mathcal{L}_n<$ of n-letters long Lyndon words on the alphabet $\mathcal{A}=\{0,1\}$. For a random uniform element ${L_n}$ of the set $\mathcal{L}_n$, the binary tree $\mathfrak{L} (L_n)$ obtained by successive standard factorization of $L_n$ and of the factors produced by these […]

We prove an analogue of the Murnaghan-Nakayama rule to express the product of a power symmetric function and a generalized Demazure atom in terms of generalized Demazure atoms.

Using an analogue of the Robinson-Schensted-Knuth (RSK) algorithm for semi-skyline augmented fillings, due to Sarah Mason, we exhibit expansions of non-symmetric Cauchy kernels $∏_(i,j)∈\eta (1-x_iy_j)^-1$, where the product is over all cell-coordinates $(i,j)$ of the stair-type partition shape […]

We construct a divided difference operator using GKM theory. This generalizes the classical divided difference operator for the cohomology of the complete flag variety. This construction proves a special case of a recent conjecture of Shareshian and Wachs. Our methods are entirely combinatorial and […]

In this article, we show how the compositional refinement of the ``Shuffle Conjecture'' due to Jim Haglund, Jennifer Morse, and Mike Zabrocki can be used to express the image of a Schur function under the Bergeron-Garsia Nabla operator as a weighted sum of a suitable collection of ``Parking […]

The set of $n$ by $n$ upper-triangular nilpotent matrices with entries in a finite field $F_q$ has Jordan canonical forms indexed by partitions $λ \vdash n$. We study a connection between these matrices and non-attacking q-rook placements, which leads to a combinatorial formula for the number$ F_λ […]

In this extended abstract we consider the poset of weighted partitions Π _n^w, introduced by Dotsenko and Khoroshkin in their study of a certain pair of dual operads. The maximal intervals of Π _n^w provide a generalization of the lattice Π _n of partitions, which we show possesses many of the […]

We study height fluctuations around the limit shape of a measure on strict plane partitions. It was shown in our earlier work that this measure is a Pfaffian process. We show that the height fluctuations converge to a pullback of the Green's function for the Laplace operator with Dirichlet boundary […]

We study convolution powers $\mathtt{id}^{\ast n}$ of the identity of graded connected Hopf algebras $H$. (The antipode corresponds to $n=-1$.) The chief result is a complete description of the characteristic polynomial - both eigenvalues and multiplicity - for the action of the operator […]

This paper studies the coefficients of algebraic functions. First, we recall the too-little-known fact that these coefficients $f_n$ have a closed form. Then, we study their asymptotics, known to be of the type $f_n \sim C A^n n^{\alpha}$. When the function is a power series associated to a […]

This paper is devoted to the computation of the number of ordered factorizations of a long cycle in the symmetric group where the number of factors is arbitrary and the cycle structure of the factors is given. Jackson (1988) derived the first closed form expression for the generating series of these […]

For irreducible characters $\{ \chi_q^{\lambda} | \lambda \vdash n\}$ and induced sign characters $\{\epsilon_q^{\lambda} | \lambda \vdash n\}$ of the Hecke algebra $H_n(q)$, and Kazhdan-Lusztig basis elements $C'_w(q)$ with $w$ avoiding the pattern 312, we combinatorially interpret the polynomials […]

We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for $k$-ary words avoiding any vincular pattern that has only ones. We also give […]

A convex polyomino is $k$-$\textit{convex}$ if every pair of its cells can be connected by means of a $\textit{monotone path}$, internal to the polyomino, and having at most $k$ changes of direction. The number $k$-convex polyominoes of given semi-perimeter has been determined only for small values […]

We introduce two families of symmetric functions with an extra parameter $t$ that specialize to Schubert representatives for cohomology and homology of the affine Grassmannian when $t=1$. The families are defined by a statistic on combinatorial objects associated to the type-$A$ affine Weyl group […]

In a first part, we formalize the construction of combinatorial Hopf algebras from plactic-like monoids using polynomial realizations. Thank to this construction we reveal a lattice structure on those combinatorial Hopf algebras. As an application, we construct a new combinatorial Hopf algebra on […]

For a given sequence $\alpha = [\alpha_1,\alpha_2,\ldots , \alpha_N, \alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(\alpha)(t)$ that counts the nonnegative integer solutions of the equation $\alpha_1x_1+\alpha_2 x_2+ \ldots+ \alpha_Nx_N+ \alpha_{N+1}x_{N+1}=t$, […]

We prove that the complement of a complexified toric arrangement has the homotopy type of a minimal CW-complex, and thus its homology is torsion-free. To this end, we consider the toric Salvetti complex, a combinatorial model for the arrangement's complement. Using diagrams of acyclic categories we […]

In a recently proposed graphical compression algorithm by Choi and Szpankowski (2009), the following tree arose in the course of the analysis. The root contains n balls that are consequently distributed between two subtrees according to a simple rule: In each step, all balls independently move down […]

Approximate counting is an algorithm that provides a count of a huge number of objects within an error tolerance. The first detailed analysis of this algorithm was given by Flajolet. In this paper, we propose a new analysis via the Poisson-Laplace-Mellin approach, a method devised for analyzing […]

We use death processes and embeddings into continuous time in order to analyze several urn models with a diminishing content. In particular we discuss generalizations of the pill's problem, originally introduced by Knuth and McCarthy, and generalizations of the well known sampling without […]

The purpose of this article is to present a general method to find limiting laws for some renormalized statistics on random permutations. The model considered here is Ewens sampling model, which generalizes uniform random permutations. We describe the asymptotic behavior of a large family of […]

Let $k≥2$ be a fixed integer. Given a bounded sequence of real numbers $(a_n:n≥k)$, then for any sequence $(f_n:n≥1)$ of real numbers satisfying the divide-and-conquer recurrence $f_n = (k-mod(n,k))f_⌊n/k⌋+mod(n,k)f_⌈n/k⌉ + a_n, n ≥k$, there is a unique continuous periodic function […]

Many parameters of trees are additive in the sense that they can be computed recursively from the sum of the branches plus a certain toll function. For instance, such parameters occur very frequently in the analysis of divide-and-conquer algorithms. Here we are interested in the situation that the […]

no abstract

In this paper, we study the shuffle operator on concurrent processes (represented as trees) using analytic combinatorics tools. As a first result, we show that the mean width of shuffle trees is exponentially smaller than the worst case upper-bound. We also study the expected size (in total number […]

We prove a total variation approximation for the distribution of component vector of a weakly logarithmic random assembly. The proof demonstrates an analytic approach based on a comparative analysis of the coefficients of two power series.

Enumeration of planar lattice walks is a classical topic in combinatorics, at the cross-roads of several domains (e.g., probability, statistical physics, computer science). The aim of this paper is to propose a new approach to obtain some exact asymptotics for walks confined to the quarter plane.

This paper is devoted to the construction of Boltzmann samplers according to various distributions, and uses stochastic bias on the parameter of a Boltzmann sampler, to produce a sampler with a different distribution for the size of the output. As a significant application, we produce Boltzmann […]

We study transversals in random trees with n vertices asymptotically as n tends to infinity. Our investigation treats the average number of transversals of fixed size, the size of a random transversal as well as the probability that a random subset of the vertex set of a tree is a transversal for […]

We consider a generalization of the uniform word-based distribution for finitely generated subgroups of a free group. In our setting, the number of generators is not fixed, the length of each generator is determined by a random variable with some simple constraints and the distribution of words of a […]

We give simple probabilistic algorithms that approximately maximize the volume of overlap of two solid, i.e. full-dimensional, shapes under translations and rigid motions. The shapes are subsets of $ℝ^d$ where $d≥ 2$. The algorithms approximate with respect to an pre-specified additive error and […]

In the paper we discuss a technology based on Bernstein polynomials of asymptotic analysis of a class of binomial sums that arise in information theory. Our method gives a quick derivation of required sums and can be generalized to multinomial distributions. As an example we derive a formula for the […]

The space requirements of an $m$-ary search tree satisfies a well-known phase transition: when $m\leq 26$, the second order asymptotics is Gaussian. When $m\geq 27$, it is not Gaussian any longer and a limit $W$ of a complex-valued martingale arises. We show that the distribution of $W$ has a square […]

This paper sheds light on universal coding with respect to classes of memoryless sources over a countable alphabet defined by an envelope function with finite and non-decreasing hazard rate. We prove that the auto-censuring (AC) code introduced by Bontemps (2011) is adaptive with respect to the […]

This paper develops an analytic theory for the study of some Pólya urns with random rules. The idea is to extend the isomorphism theorem in Flajolet et al. (2006), which connects deterministic balanced urns to a differential system for the generating function. The methodology is based upon […]

We define the notion of $t$-free for locally restricted compositions, which means roughly that if such a composition contains a part $c_i$ and nearby parts are at least $t$ smaller, then $c_i$ can be replaced by any larger part. Two well-known examples are Carlitz and alternating compositions. We […]

We consider the word collector problem, i.e. the expected number of calls to a random weighted generator before all the words of a given length in a language are generated. The originality of this instance of the non-uniform coupon collector lies in the, potentially large, multiplicity of the […]

We assign a uniform probability to the set consisting of partitions of a positive integer $n$ such that the multiplicity of each summand is less than a given number $d$ and we study the limiting distribution of the number of summands in a random partition. It is known from a result by Erdős and […]

We consider Euclid’s gcd algorithm for two integers $(p, q)$ with $1 \leq p \leq q \leq N$, with the uniform distribution on input pairs. We study the distribution of the total cost of execution of the algorithm for an additive cost function $d$ on the set of possible digits, asymptotically for $N […]

String complexity is defined as the cardinality of a set of all distinct words (factors) of a given string. For two strings, we define $\textit{joint string complexity}$ as the set of words that are common to both strings. We also relax this definition and introduce $\textit{joint semi-complexity}$ […]

In this paper, we show that data streams can sometimes usefully be studied as random permutations. This simple observation allows a wealth of classical and recent results from combinatorics to be recycled, with minimal effort, as estimators for various statistics over data streams. We illustrate […]

Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that […]

In a continuous-time setting, Fill (2012) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by $\texttt{QuickSort}$, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution, but proved little about that limiting […]

Consider a pair of $\textit{interlacing regular convex polygons}$, each with $2(n + 2)$ vertices, which we will be referring to as $\textit{red}$ and $\textit{black}$ ones. One can place these vertices on the unit circle $|z | = 1$ in the complex plane; the vertices of the red polygon at […]

In the paper, bike sharing systems with stations having a finite capacity are studied as stochastic networks. The inhomogeneity is modeled by clusters. We use a mean field limit to compute the limiting stationary distribution of the number of bikes at the stations. This method is an alternative to […]

In the paper "How to select a looser'' Prodinger was analyzing an algorithm where $n$ participants are selecting a leader by flippingfair coins, where recursively, the 0-party (those who i.e. have tossed heads) continues until the leader is chosen. We give an answer to the […]

We use probabilistic and combinatorial tools on strings to discover the average number of 2-protected nodes in tries and in suffix trees. Our analysis covers both the uniform and non-uniform cases. For instance, in a uniform trie with $n$ leaves, the number of 2-protected nodes is approximately […]

Extending an idea of Suppakitpaisarn, Edahiro and Imai, a dynamic programming approach for computing digital expansions of minimal weight is transformed into an asymptotic analysis of minimal weight expansions. The minimal weight of an optimal expansion of a random input of length $\ell$ is shown to […]

Given a planar triangulation, a 3-orientation is an orientation of the internal edges so all internal vertices have out-degree three. Each 3-orientation gives rise to a unique edge coloring known as a $\textit{Schnyder wood}$ that has proven useful for various computing and combinatorics […]

Consider a countable alphabet $\mathcal{A}$. A multi-modular hidden pattern is an $r$-tuple $(w_1,\ldots , w_r)$, where each $w_i$ is a word over $\mathcal{A}$ called a module. The hidden pattern is said to occur in a text $t$ when the later admits the decomposition $t = v_0 w_1v_1 \cdots v_{r−1}w_r […]

In this paper infinite systems of functional equations in finitely or infinitely many random variables arising in combinatorial enumeration problems are studied. We prove sufficient conditions under which the combinatorial random variables encoded in the generating function of the system tend to a […]

We give a unified treatment of the limit, as the size tends to infinity, of random simply generated trees, including both the well-known result in the standard case of critical Galton-Watson trees and similar but less well-known results in the other cases (i.e., when no equivalent critical […]

We present a family of simplicial complexes called \emphmulti-cluster complexes. These complexes generalize the concept of cluster complexes, and extend the notion of multi-associahedra of types ${A}$ and ${B}$ to general finite Coxeter groups. We study combinatorial and geometric properties of […]

The Ram–Yip formula for Macdonald polynomials (at t=0) provides a statistic which we call charge. In types ${A}$ and ${C}$ it can be defined on tensor products of Kashiwara–Nakashima single column crystals. In this paper we show that the charge is equal to the (negative of the) energy function on […]

Let $P$ be a poset and let $P^*$ be the set of all finite length words over $P$. Generalized subword order is the partial order on $P^*$ obtained by letting $u≤ w$ if and only if there is a subword $u'$ of $w$ having the same length as $u$ such that each element of $u$ is less than or equal to the […]

We provide a Hopf algebra structure on the supercharacter theory for the unipotent upper triangular group of type {D} over a finite field. Also, we make further comments with respect to types {B} and {C}. Type {A} was explored by M. Aguiar et. al (2010), thus this extended abstract is a contribution […]

In their paper on Wilf-equivalence for singleton classes, Backelin, West, and Xin introduced a transformation $\phi^*$, defined by an iterative process and operating on (all) full rook placements on Ferrers boards. Bousquet-Mélou and Steingrimsson proved the analogue of the main result of Backelin, […]

The notion of (3+1)-avoidance appears in many places in enumerative combinatorics, but the natural goal of enumerating all (3+1)-avoiding posets remains open. In this paper, we enumerate \emphgraded (3+1)-avoiding posets. Our proof consists of a number of structural theorems followed by some […]

The degree chromatic polynomial $P_m(G,k)$ of a graph $G$ counts the number of $k$ -colorings in which no vertex has m adjacent vertices of its same color. We prove Humpert and Martin's conjecture on the leading terms of the degree chromatic polynomial of a tree.

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn […]

We study integral ratios of hook products of quotient partitions. This question is motivated by an analogous question in number theory concerning integral factorial ratios. We prove an analogue of a theorem of Landau that already applied in the factorial case. Under the additional condition that the […]

We generalize the symmetry on Young's lattice, found by Suter, to a symmetry on the $k$-bounded partition lattice of Lapointe, Lascoux and Morse.

In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials $\nabla C_{p1}\dots C_{pk}1$ , where $p=(p_1,\ldots,p_k)$ is a composition, $\nabla$ is the Bergeron-Garsia Macdonald operator and the $C_\alpha$ are certain slightly modified Hall-Littlewood vertex operators. They […]

This paper is devoted to the explicit computation of generating series for the connection coefficients of two commutative subalgebras of the group algebra of the symmetric group, the class algebra and the double coset algebra. As shown by Hanlon, Stanley and Stembridge (1992), these series gives the […]

Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of tropical hyperplanes – in much the same way as the covectors of (classical) […]

In a recent paper, Duane, Garsia, and Zabrocki introduced a new statistic, "ndinv'', on a family of parking functions. The definition was guided by a recursion satisfied by the polynomial $\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle$, for $\Delta_{h_m}$ a Macdonald eigenoperator, $C_{p_i}$ a […]

We introduce a certain class of algebras associated to matroids. We prove the Lefschetz property of the algebras for some special cases. Our result implies the Sperner property for the Boolean lattice and the vector space lattice.

Based on the notion of colored and absolute excedances introduced by Bagno and Garber we give an analogue of the derangement polynomials. We obtain some basic properties of these polynomials. Moreover, we define an excedance statistic for the affine Weyl groups of type $\widetilde{B}_n, \widetilde […]

Bergman complexes are polyhedral complexes associated to matroids. Faces of these complexes are certain matroids, called matroid types, too. In order to understand the structure of these faces we decompose matroid types into direct summands. Ardila/Klivans proved that the Bergman Complex of a […]

We investigate the combinatorial Hopf algebra based on uniform block permutations and we realize this algebra in terms of noncommutative polynomials in inﬁnitely many bi-letters.

A $d$-polytope $P$ is neighborly if every subset of $\lfloor\frac{d}{2}\rfloor $vertices is a face of $P$. In 1982, Shemer introduced a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neighborly polytope. With this, he constructed […]

We consider unicellular maps, or polygon gluings, of fixed genus. In FPSAC '09 the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that […]

We introduce a functorial construction which, from a monoid, produces a set-operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operad obtained from the additive monoid. These involve various familiar combinatorial objects: parking functions, packed words, planar […]

We give in a particular case a combinatorial proof of a recent algebraicity result of Kontsevich; the proof uses generalized one-sided and two-sided Dyck words, or equivalently, excursions and bridges. We indicate a noncommutative version of these notions, which could lead to a full proof. We show […]

We use the cluster method in order to enumerate permutations avoiding consecutive patterns. We reprove and generalize in a unified way several known results and obtain new ones, including some patterns of length 4 and 5, as well as some infinite families of patterns of a given shape. Our main tool […]

Arc permutations and unimodal permutations were introduced in the study of triangulations and characters. In this paper we describe combinatorial properties of these permutations, including characterizations in terms of pattern avoidance, connections to Young tableaux, and an affine Weyl group […]

We present an equivariant bijection between two actions—promotion and rowmotion—on order ideals in certain posets. This bijection simultaneously generalizes a result of R. Stanley concerning promotion on the linear extensions of two disjoint chains and certain cases of recent work of D. Armstrong, […]

We investigate the Zariski closure of the projective equivalence class of a matrix. New results are presented regarding the matrices in this variety and their matroids, and we give equations for the variety. We also discuss the K-polynomial of the closure of a projective equivalence class, and two […]

We give a multivariate analog of the type B Eulerian polynomial introduced by Brenti. We prove that this multivariate polynomial is stable generalizing Brenti's result that every root of the type B Eulerian polynomial is real. Our proof combines a refinement of the descent statistic for signed […]

The symmetric edge polytopes of odd cycles (del Pezzo polytopes) are known as smooth Fano polytopes. In this extended abstract, we show that if the length of the cycle is 127, then the Ehrhart polynomial has a root whose real part is greater than the dimension. As a result, we have a smooth Fano […]

The number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given by a polynomial $\alpha (n; k_1,\ldots,k_n)$ in $n$ variables. The evaluation of this polynomial at weakly decreasing sequences $k_1 ≥k_2 ≥⋯≥k_n $turns out to be interpretable as signed enumeration of new combinatorial […]

We introduce the notion of arithmetic matroid, whose main example is provided by a list of elements in a finitely generated abelian group. We study the representability of its dual, and, guided by the geometry of toric arrangements, we give a combinatorial interpretation of the associated arithmetic […]

We give a polyomino characterisation of recurrent configurations of the sandpile model on the complete bipartite graph $K_{m,n}$ in which one designated vertex is the sink. We present a bijection from these recurrent configurations to decorated parallelogram polyominoes whose bounding box is a $m×n$ […]

An $m$-ballot path of size $n$ is a path on the square grid consisting of north and east unit steps, starting at (0,0), ending at $(mn,n)$, and never going below the line $\{x=my\}$. The set of these paths can be equipped with a lattice structure, called the $m$-Tamari lattice and denoted by […]

Recently, Kenyon and Wilson introduced a certain matrix M in order to compute pairing probabilities of what they call the double-dimer model. They showed that the absolute value of each entry of the inverse matrix $M^-1$ is equal to the number of certain Dyck tilings of a skew shape. They […]

It is well-known that the derivation modules of Coxeter arrangements are free. Holm began to study the freeness of modules of differential operators on hyperplane arrangements. In this paper, we study the cases of the Coxter arrangements of type A, B and D. In this case, we prove that the modules of […]

We study the fluctuations of models of random partitions $(\mathbb{P}_n,ω )_n ∈\mathbb{N}$ stemming from the representation theory of the infinite symmetric group. Using the theory of polynomial functions on Young diagrams, we establish a central limit theorem for the values of the irreducible […]

The pentagram map, introduced by R. Schwartz, is a birational map on the configuration space of polygons in the projective plane. We study the singularities of the iterates of the pentagram map. We show that a ``typical'' singularity disappears after a finite number of iterations, a confinement […]

We describe a generating tree approach to the enumeration and exhaustive generation of k-nonnesting set partitions and permutations. Unlike previous work in the literature using the connections of these objects to Young tableaux and restricted lattice walks, our approach deals directly with […]

We investigate the combinatorics and geometry of permutation polytopes associated to cyclic permutation groups, i.e., the convex hulls of cyclic groups of permutation matrices. In the situation that the generator of the group consists of at most two orbits, we can give a complete combinatorial […]

We prove that the Lam-Shimozono ``down operator'' on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of ``near […]

The well-known Gilbert-Shannon-Reeds model for riffle shuffles assumes that the cards are initially cut `about in half' and then riffled together. We analyze a natural variant where the initial cut is biased. Extending results of Fulman (1998), we show a sharp cutoff in separation and L-infinity […]

We produce skew Pieri Rules for Hall–Littlewood functions in the spirit of Assaf and McNamara (FPSAC, 2010). The first two were conjectured by the first author (FPSAC, 2011). The key ingredients in the proofs are a q-binomial identity for skew partitions that are horizontal strips and a Hopf […]

Cayley polytopes were defined recently as convex hulls of Cayley compositions introduced by Cayley in 1857. In this paper we resolve Braun's conjecture, which expresses the volume of Cayley polytopes in terms of the number of connected graphs. We extend this result to a two-variable deformations, […]

Let $G=(V,E)$ be a finite acyclic directed graph. Being motivated by a study of certain aspects of cluster algebras, we are interested in a class of triangulations of the cone of non-negative flows in $G, \mathcal F_+(G)$. To construct a triangulation, we fix a raming at each inner vertex $v$ of […]

Motivated by a result of Fiebig (2007), we categorify some properties of Kazhdan-Lusztig polynomials via sheaves on Bruhat moment graphs. In order to do this, we develop new techniques and apply them to the combinatorial data encoded in these moment graphs.

We will discuss some recent theorems relating the space of weighted phylogenetic trees to the tropical varieties of each flag variety of type A. We will also discuss the tropicalizations of the functions corresponding to semi-standard tableaux, in particular we relate them to familiar functions from […]

We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, […]

In this article we prove that the poset of m-divisible noncrossing partitions is EL-shellable for every well-generated complex reflection group. This was an open problem for type G(d,d,n) and for the exceptional types, for which a proof is given case-by-case.

A chromatic root is a zero of the chromatic polynomial of a graph. At a Newton Institute workshop on Combinatorics and Statistical Mechanics in 2008, two conjectures were proposed on the subject of which algebraic integers can be chromatic roots, known as the ``$α +n$ conjecture'' and the ``$nα$ […]

We evaluate induced sign characters of $H_n(q)$ at certain elements of $H_n(q)$ and conjecture an interpretation for the resulting polynomials as generating functions for $P$-tableaux by a certain statistic. Our conjecture relates the quantum chromatic symmetric functions of Shareshian and Wachs to […]

We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and […]

We study the problem of expanding the product of two Stanley symmetric functions $F_w·F_u$ into Stanley symmetric functions in some natural way. Our approach is to consider a Stanley symmetric function as a stabilized Schubert polynomial $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, and study the behavior of […]

Let $δ (\mathcal{P} )=(δ _0,δ _1,\ldots,δ _d)$ be the $δ$ -vector of an integral convex polytope $\mathcal{P}$ of dimension $d$. First, by using two well-known inequalities on $δ$ -vectors, we classify the possible $δ$ -vectors with $\sum_{i=0}^d δ _i ≤3$. Moreover, by means of Hermite normal forms […]

We introduce an algorithm to determine when a sorting operation, such as stack-sort or bubble-sort, outputs a given pattern. The algorithm provides a new proof of the description of West-2-stack-sortable permutations, that is permutations that are completely sorted when passed twice through a stack, […]

We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di […]

We give a new description of the combinatorics of triangulations of even-dimensional cyclic polytopes, and of their bistellar flips. We show that the tropical exchange relation governing the number of intersections between diagonals of a polygon and a lamination (which generalizes to arbitrary […]

We obtain several properties of extremal statistics in non-crossing configurations with n vertices. We prove that the maximum degree and the largest component are of logarithmic order, and the diameter is of order $\sqrt{n}$. The proofs are based on singularity analysis, an application of the first […]

We study random lozenge tilings of a certain shape in the plane called the Novak half-hexagon, and compute the correlation functions for this process. This model was introduced by Nordenstam and Young (2011) and has many intriguing similarities with a more well-studied model, domino tilings of the […]

\textbfAbstract. The purpose of this paper is to present an algorithm which generates linear extensions for a non-simply-laced d-complete poset with uniform probability. ≠wline

We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for representable arithmetic matroids, with applications to arithmetic colorings and […]

We give a combinatorial proof of Goulden and Jackson's formula for the number of minimal transitive factorizations of a permutation when the permutation has two cycles. We use the recent result of Goulden, Nica, and Oancea on the number of maximal chains of annular noncrossing partitions of type B.

The q-semicircular law as introduced by Bożejko and Speicher interpolates between the Gaussian law and the semicircular law, and its moments have a combinatorial interpretation in terms of matchings and crossings. We prove that the cumulants of this law are, up to some factor, polynomials in q with […]

The Hilbert series of the Garsia-Haiman module can be written as a generating function of standard fillings of Ferrers diagrams. It is conjectured by Haglund and Loehr that the Hilbert series of the diagonal harmonics can be written as a generating function of parking functions. In this paper we […]

Given a fan $\Delta$ and a cone $\sigma \in \Delta$ let $star^1(\sigma )$ be the set of cones that contain $\sigma$ and are one dimension bigger than $\sigma$ . In this paper we study two cones of piecewise linear functions defined on $\delta$ : the cone of functions which are convex on […]

Baxter numbers are known to count several families of combinatorial objects, all of which come equipped with natural involutions. In this paper, we add a combinatorial family to the list, and show that the known bijections between these objects respect these involutions. We also give a formula for […]

Using the expansion of the inverse of the Kostka matrix in terms of tabloids as presented by Eğecioğlu and Remmel, we show that the fusion coefficients can be expressed as an alternating sum over cylindric tableaux. Cylindric tableaux are skew tableaux with a certain cyclic symmetry. When the skew […]

We characterize by pattern avoidance the Schubert varieties for $\mathrm{GL}_n$ which are local complete intersections (lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations cutting out their neighbourhoods at the identity. Although […]

We examine the sets of permutations that are sorted by two passes through a stack with a $D_8$ operation performed in between. From a characterization of these in terms of generalized excluded patterns, we prove two conjectures on their enumeration, that can be refined with the distribution of some […]

Dyck tilings were introduced by Kenyon and Wilson in their study of double-dimer pairings. They are certain kinds of tilings of skew Young diagrams with ribbon tiles shaped like Dyck paths. We give two bijections between "cover-inclusive'' Dyck tilings and linear extensions of tree posets. The first […]

This article presents a methodology that automatically derives a combinatorial specification for the permutation class $\mathcal{C} = Av(B)$, given its basis $B$ of excluded patterns and the set of simple permutations in $\mathcal{C}$, when these sets are both finite. This is achieved considering […]

Cylindric plane partitions may be thought of as a natural generalization of reverse plane partitions. A generating series for the enumeration of cylindric plane partitions was recently given by Borodin. As in the reverse plane partition case, the right hand side of this identity admits a simple […]

We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of […]

Given a graph $G$, the number of nowhere-zero $\mathbb{Z}_q$-flows $\phi _G(q)$ is known to be a polynomial in $q$. We extend the definition of nowhere-zero $\mathbb{Z} _q$-flows to simplicial complexes $\Delta$ of dimension greater than one, and prove the polynomiality of the corresponding function […]

We prove that on the set of lattice paths with steps $N=(0,1)$ and $E=(1,0)$ that lie between two boundaries $B$ and $T$, the two statistics `number of $E$ steps shared with $B$' and `number of $E$ steps shared with $T$' have a symmetric joint distribution. We give an involution that switches these […]

We present a new edge selection heuristic and vertex ordering heuristic that together enable one to compute the Tutte polynomial of much larger sparse graphs than was previously doable. As a specific example, we are able to compute the Tutte polynomial of the truncated icosahedron graph using our […]

Let $W$ be an infinite Coxeter group, and $\Phi$ be the root system constructed from its geometric representation. We study the set $E$ of limit points of "normalized'' roots (representing the directions of the roots). We show that $E$ is contained in the isotropic cone $Q$ of the bilinear form […]

The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed […]

The alcove model of the first author and Postnikov describes highest weight crystals of semisimple Lie algebras. We present a generalization, called the quantum alcove model, and conjecture that it uniformly describes tensor products of column shape Kirillov-Reshetikhin crystals, for all untwisted […]

Let $M$ be a finite monoid. In this paper we describe how the Cartan invariant matrix of the monoid algebra of $M$ over a field $\mathbb{K}$ of characteristic zero can be expressed using characters and some simple combinatorial statistic. In particular, it can be computed efficiently from the […]

This paper discusses a surprising relationship between the quantum cohomology of the variety of complete flags and the partially ordered set of Newton polygons associated to an element in the affine Weyl group. One primary key to establishing this connection is the fact that paths in the quantum […]

The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with $\delta$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $q$, which are conjecturally equal, for large $d$. At $q=1$, one of the refinements, the […]

We introduce a "lifting'' construction for generalized permutohedra, which turns an $n$-dimensional generalized permutahedron into an $(n+1)$-dimensional one. We prove that this construction gives rise to Stasheff's multiplihedron from homotopy theory, and to the more general "nestomultiplihedra,'' […]

We give a new description of the Pieri rule for $k$-Schur functions using the Bruhat order on the affine type-$A$ Weyl group. In doing so, we prove a new combinatorial formula for representatives of the Schubert classes for the cohomology of affine Grassmannians. We show how new combinatorics […]

We establish the relationship between volumes of flow polytopes associated to signed graphs and the Kostant partition function. A special case of this relationship, namely, when the graphs are signless, has been studied in detail by Baldoni and Vergne using techniques of residues. In contrast with […]

We describe a perturbation method that can be used to compute the multivariate generating function (MGF) of a non-simple polyhedron, and then construct a perturbation that works for any transportation polytope. Applying this perturbation to the family of central transportation polytopes of order $kn […]

We consider two recent open problems stating that certain statistics on various sets of combinatorial objects are equidistributed. The first, posed by Anders Claesson and Svante Linusson, relates nestings in matchings on $\{1,2,\ldots,2n\}$ to occurrences of a certain pattern in permutations in […]

We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, […]

We prove Lagrange's theorem for Hopf monoids in the category of connected species. We deduce necessary conditions for a given subspecies $\textrm{k}$ of a Hopf monoid $\textrm{h}$ to be a Hopf submonoid: each of the generating series of $\textrm{k}$ must divide the corresponding generating series of […]

Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P […]

In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on […]

This paper is about two arrangements of hyperplanes. The first — the Shi arrangement — was introduced by Jian-Yi Shi to describe the Kazhdan-Lusztig cells in the affine Weyl group of type A. The second — the Ish arrangement — was recently defined by the first author who used the two arrangements […]

In this work we introduce and study tree-like tableaux, which are certain fillings of Ferrers diagrams in simple bijection with permutation tableaux and alternative tableaux. We exhibit an elementary insertion procedure on our tableaux which gives a clear proof that tableaux of size n are counted by […]

We show that the # product of binary trees introduced by Aval and Viennot (2008) is in fact defined at the level of the free associative algebra, and can be extended to most of the classical combinatorial Hopf algebras.

Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach […]

We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in […]

We study the enumeration of \emphcolumn-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads […]

We construct a recursive formula for a complete system of primitive orthogonal idempotents for any R-trivial monoid. This uses the newly proved equivalence between the notions of R-trivial monoid and weakly ordered monoid.

We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version.

Projective reflection groups have been recently defined by the second author. They include a special class of groups denoted G(r,p,s,n) which contains all classical Weyl groups and more generally all the complex reflection groups of type G(r,p,n). In this paper we define some statistics analogous to […]

In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets […]

The study of Schubert varieties in G/B has led to numerous advances in algebraic combinatorics and algebraic geometry. These varieties are indexed by elements of the corresponding Weyl group, an affine Weyl group, or one of their parabolic quotients. Often times, the goal is to determine which of […]

Any continuous map of an $N$-dimensional simplex $Δ _N$ with colored vertices to a $d$-dimensional manifold $M$ must map $r$ points from disjoint rainbow faces of $Δ _N$ to the same point in $M$, assuming that $N≥(r-1)(d+1)$, no $r$ vertices of $Δ _N$ get the same color, and our proof needs that $r$ […]

Let $[u,v]$ be a Bruhat interval and $B(u,v)$ be its corresponding Bruhat graph. The combinatorial and topological structure of the longest $u-v$ paths of $B(u,v)$ has been extensively studied and is well-known. Nevertheless, not much is known of the remaining paths. Here we describe combinatorial […]

We generalize the recent work of Fomin and Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties […]

Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-Ramanujan Identities. The linking object is the Hilbert-Poincaré series of […]

This paper introduces two matrix analogues for set partitions; partition and composition matrices. These two analogues are the natural result of lifting the mapping between ascent sequences and integer matrices given in Dukes & Parviainen (2010). We prove that partition matrices are in one-to-one […]

Let $χ ^λ$ be the irreducible $S_n$-character corresponding to the partition $λ$ of $n$, equivalently, the preimage of the Schur function $s_λ$ under the Frobenius characteristic map. Let $\phi ^λ$ be the function $S_n →ℂ$ which is the preimage of the monomial symmetric function $m_λ$ under the […]

We give a simple bijection between some staircase tableaux and tables of inversion. Some nice properties of the bijection allows us to define some q-Eulerian polynomials related to the staircase tableaux. We also give a combinatorial interpretation of these q-Eulerian polynomials in terms of […]

We study the class of functions on the set of (generalized) Young diagrams arising as the number of embeddings of bipartite graphs. We give a criterion for checking when such a function is a polynomial function on Young diagrams (in the sense of Kerov and Olshanski) in terms of combinatorial […]

We generalize the theory of critical groups from graphs to simplicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these […]

For each composition $\vec{c}$ we show that the order complex of the poset of pointed set partitions $Π ^• _{\vec{c}}$ is a wedge of $β\vec{c}$ spheres of the same dimensions, where $β\vec{c}$ is the number of permutations with descent composition ^$\vec{c}$. Furthermore, the action of the symmetric […]

For a real number $β >1$, we say that a permutation $π$ of length $n$ is allowed (or realized) by the $β$-shift if there is some $x∈[0,1]$ such that the relative order of the sequence $x,f(x),\ldots,f^n-1(x)$, where $f(x)$ is the fractional part of $βx$, is the same as that of the entries of $π$ . […]

We study polytopes that are convex hulls of vectors of subgraph densities. Many graph theoretical questions can be expressed in terms of these polytopes, and statisticians use them to understand exponential random graph models. Relations among their Ehrhart polynomials are described, their duals are […]

In this paper we establish a new combinatorial formula for zonal polynomials in terms of power-sums. The proof relies on the sign-reversing involution principle. We deduce from it formulas for zonal characters, which are defined as suitably normalized coefficients in the expansion of zonal […]

We establish several properties of an algorithm defined by Mason and Remmel (2010) which inserts a positive integer into a row-strict composition tableau. These properties lead to a Littlewood-Richardson type rule for expanding the product of a row-strict quasisymmetric Schur function and a […]

To every matroid, we associate a class in the K-theory of the Grassmannian. We study this class using the method of equivariant localization. In particular, we provide a geometric interpretation of the Tutte polynomial. We also extend results of the second author concerning the behavior of such […]

Athanasiadis introduced separating walls for a region in the extended Shi arrangement and used them to generalize the Narayana numbers. In this paper, we fix a hyperplane in the extended Shi arrangement for type A and calculate the number of dominant regions which have the fixed hyperplane as a […]

We develop the notion of the composition of two coalgebras, which arises naturally in higher category theory and the theory of species. We prove that the composition of two cofree coalgebras is cofree and give conditions which imply that the composition is a one-sided Hopf algebra. These conditions […]

We study the combinatorics of weighted trees from the point of view of tropical algebraic geometry and tropical linear spaces. The set of dissimilarity vectors of weighted trees is contained in the tropical Grassmannian, so we describe here the tropical linear space of a dissimilarity vector and its […]

We give a new construction of a Hopf subalgebra of the Hopf algebra of Free quasi-symmetric functions whose bases are indexed by objects belonging to the Baxter combinatorial family (\emphi.e. Baxter permutations, pairs of twin binary trees, \emphetc.). This construction relies on the definition of […]

The pentagram map, introduced by R. Schwartz, is defined by the following construction: given a polygon as input, draw all of its ``shortest'' diagonals, and output the smaller polygon which they cut out. We employ the machinery of cluster algebras to obtain explicit formulas for the iterates of the […]

C. Merino [Electron. J. Combin. 15 (2008)] showed that the Tutte polynomial of a complete graph satisfies $t(K_{n+2};2,-1)=t(K_n;1,-1)$. We first give a bijective proof of this identity based on the relationship between the Tutte polynomial and the inversion polynomial for trees. Next we move to our […]

We consider the family of 3D minimal polyominoes inscribed in a rectanglar prism. These objects are polyominos and so they are connected sets of unitary cubic cells inscribed in a given rectangular prism of size $b\times k \times h$ and of minimal volume equal to $b+k+h-2$. They extend the concept […]

A non-crossing connected graph is a connected graph on vertices arranged in a circle such that its edges do not cross. The count for such graphs can be made naturally into a q-binomial generating function. We prove that this generating function exhibits the cyclic sieving phenomenon, as conjectured […]

A special case of Haiman's identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions in $q,t$. In this paper we show […]

We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the […]

We consider a Markov chain Monte Carlo approach to the uniform sampling of meanders. Combinatorially, a meander $M = [A:B]$ is formed by two noncrossing perfect matchings, above $A$ and below $B$ the same endpoints, which form a single closed loop. We prove that meanders are connected under […]

We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as Stanley's pair of toric polynomials, but allows different algebraic manipulations. Stanley's intertwined recurrence may be replaced by a single recurrence, in which the […]

In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi numbers. This new model called irreducible k-shapes has a strong algebraic background in the theory of symmetric functions and leads to seemingly new features on the theory of Genocchi numbers. In […]

By investigating the action of the 0-Hecke algebra on the coinvariant algebra and the complete flag variety, we interpret generating functions counting the permutations with fixed inverse descent set by their inversion number and major index.

The graph algebra is a commutative, cocommutative, graded, connected incidence Hopf algebra, whose basis elements correspond to finite simple graphs and whose Hopf product and coproduct admit simple combinatorial descriptions. We give a new formula for the antipode in the graph algebra in terms of […]

We present an insertion algorithm of Robinson–Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a […]

In this paper, we first derive an explicit formula for the generating function that counts unlabeled interval orders (a.k.a. (2+2)-free posets) with respect to several natural statistics, including their size, magnitude, and the number of minimal and maximal elements. In the second part of the […]

In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of permutations in the […]

We give a combinatorial proof of a Touchard-Riordan-like formula discovered by the first author. As a consequence we find a connection between his formula and Jacobi's triple product identity. We then give a combinatorial analog of Jacobi's triple product identity by showing that a finite sum can be […]

In this paper we study topological properties of the poset of injective words and the lattice of classical non-crossing partitions. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This extends the well-known result […]

In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur […]

We give explicit formulas for the number $U_n(N)$ of closed polygonal paths of length $N$ (starting from the origin) whose steps are $n^{\textrm{th}}$ roots of unity, as well as asymptotic expressions for these numbers when $N \rightarrow \infty$. We also prove that the sequences $(U_n(N))_{N \geq […]

Realisations of associahedra can be obtained from the classical permutahedron by removing some of its facets and the set of facets is determined by the diagonals of certain labeled convex planar $n$-gons as shown by Hohlweg and Lange (2007). Ardila, Benedetti, and Doker (2010) expressed polytopes of […]

Zonotopal algebra deals with ideals and vector spaces of polynomials that are related to several combinatorial and geometric structures defined by a finite sequence of vectors. Given such a sequence $X$, an integer $k \geq -1$ and an upper set in the lattice of flats of the matroid defined by $X$, […]

We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently […]

We study the functions that count matrices of given rank over a finite field with specified positions equal to zero. We show that these matrices are $q$-analogues of permutations with certain restricted values. We obtain a simple closed formula for the number of invertible matrices with zero […]

Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the $\textit{quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse […]

We show that the shapes of integer partitions chosen randomly according to Schur-Weyl measures of parameter $\alpha =1/2$ and Gelfand measures satisfy Kerov's central limit theorem. Thus, there is a gaussian process $\Delta$ such that under Plancherel, Schur-Weyl or Gelfand measures, the deviations […]

This paper is devoted to the evaluation of the generating series of the connection coefficients of the double cosets of the hyperoctahedral group. Hanlon, Stanley, Stembridge (1992) showed that this series, indexed by a partition $ν$, gives the spectral distribution of some random matrices that are […]

We interpret the coefficients of the cyclotomic polynomial in terms of simplicial homology.

Stanley has conjectured that the h-vector of a matroid complex is a pure O-sequence. We will prove this for cotransversal matroids by using generalized permutohedra. We construct a bijection between lattice points inside a $r$-dimensional convex polytope and bases of a rank $r$ transversal matroid.

Develin and Sturmfels showed that regular triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of $\Delta_{n-1} \times […]

For an affine algebra of nonexceptional type in the large rank we show the fermionic formula depends only on the attachment of the node 0 of the Dynkin diagram to the rest, and the fermionic formula of not type $A$ can be expressed as a sum of that of type $A$ with Littlewood–Richardson […]

Words $a_1 a_2 \ldots a_n$ with independent letters $a_k$ taken from the set of natural numbers, and a weight (probability) attached via the geometric distribution $pq^{i-1}(p+q=1)$ are considered. A consecutive record (motivated by the analysis of a skip list structure) can only advance from $k$ to […]

We consider a new kind of straight and shifted plane partitions/Young tableaux — ones whose diagrams are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right ends. We find formulas for the number of standard tableaux in certain cases, namely a shifted […]

We continue a study of the equivalence class induced on $S_n$ when one is permitted to replace a consecutive set of elements in a permutation with the same elements in a different order. For each possible set of allowed replacements, we characterise and/or enumerate the set of permutations reachable […]

The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud and Pocchiola in their study of pseudoline arrangements with […]

We prove the cyclic sieving phenomenon for non-crossing forests and non-crossing graphs. More precisely, the cyclic group acts on these graphs naturally by rotation and we show that the orbit structure of this action is encoded by certain polynomials. Our results confirm two conjectures of Alan Guo.

The spinor variety is cut out by the quadratic Wick relations among the principal Pfaffians of an $n \times n$ skew-symmetric matrix. Its points correspond to $n$-dimensional isotropic subspaces of a $2n$-dimensional vector space. In this paper we tropicalize this picture, and we develop a […]

When $W$ is a finite reflection group, the noncrossing partition lattice $NC(W)$ of type $W$ is a very rich combinatorial object, extending the notion of noncrossing partitions of an $n$-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given […]

Let $\textbf{as}_n$ denote the length of a longest alternating subsequence in a uniformly random permutation of order $n$. Stanley studied the distribution of $\textbf{as}_n$ using algebraic methods, and showed in particular that $\mathbb{E}(\textbf{as}_n) = (4n+1)/6$ and […]

We show that maximal 0-1-fillings of moon polynomials, with restricted chain lengths, can be identified with certain rc-graphs, also known as pipe dreams. In particular, this exhibits a connection between maximal 0-1-fillings of Ferrers shapes and Schubert polynomials. Moreover, it entails a […]

We derive in this paper the asymptotics of several-partition Hurwitz numbers, relying on a theorem of Kazarian for the one-partition case and on an induction carried on by Zvonkine. Essentially, the asymptotics for several partitions is the same as the one-partition asymptotics obtained by […]

There is a close connection between Demazure crystals and tensor products of Kirillov–Reshetikhin crystals. For example, certain Demazure crystals are isomorphic as classical crystals to tensor products of Kirillov–Reshetikhin crystals via a canonically chosen isomorphism. Here we show that this […]

Schrijver introduced the stable Kneser graph $SG_{n,k}, n \geq 1, k \geq 0$. This graph is a vertex critical graph with chromatic number $k+2$, its vertices are certain subsets of a set of cardinality $m=2n+k$. Björner and de Longueville have shown that its box complex is homotopy equivalent to a […]

We exhibit a canonical connection between maximal $(0,1)$-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable and thus […]

We prove a $q$-analog of a classical binomial congruence due to Ljunggren which states that $\binom{ap}{bp} \equiv \binom{a}{b}$ modulo $p^3$ for primes $p \geq 5$. This congruence subsumes and builds on earlier congruences by Babbage, Wolstenholme and Glaisher for which we recall existing […]

We combinatorially construct the complex cohomology (equivariant and ordinary) of a family of algebraic varieties called regular semisimple Hessenberg varieties. This construction is purely in terms of the Bruhat order on the symmetric group. From this a representation of the symmetric group on the […]

Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to […]

We investigate a conjecture of Haglund that asserts that certain graph polynomials have only real roots. We prove a multivariate generalization of this conjecture for the special case of threshold graphs.

Philippe Flajolet, mathematician and computer scientist extraordinaire, suddenly passed away on March 22, 2011, at the prime of his career. He is celebrated for opening new lines of research in analysis of algo- rithms, developing powerful new methods, and solving difficult open problems. His […]

We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are […]

We discuss a close link between two seemingly different topics studied in the cellular automata literature: additive conservation laws and invariant probability measures. We provide an elementary proof of a simple correspondence between invariant full-support Bernoulli measures and interaction-free […]

We study the projective subdynamics of two-dimensional shifts of finite type, which is the set of one-dimensional configurations that appear as columns in them. We prove that a large class of one-dimensional shifts can be obtained as such, namely the effective subshifts which contain […]

LFSR and NFSR are the basic building blocks in almost all the state of the art stream ciphers like Trivium and Grain-128. However, a number of attacks are mounted on these type of ciphers. Cellular Automata (CA) has recently been chosen as a suitable structure for crypto-primitives. In this work, a […]

In this paper we define products of one-dimensional Number Conserving Cellular Automata (NCCA) and show that surjective NCCA with 2 blocks (i.e radius 1/2) can always be represented as products of shifts and identites. In particular, this shows that surjective 2-block NCCA are injective.

We study iterations of the Bernoulli measure under nearest-neighbour asynchronous binary cellular automata (CA) with a single transition. For these CA, we show that a coarse-level description of the orbit of the Bernoulli measure can be obtained, that is, one can explicitly compute measures of short […]

We study intrinsic simulations between cellular automata and introduce a new necessary condition for a CA to simulate another one. Although expressed for general CA, this condition is targeted towards surjective CA and especially linear ones. Following the approach introduced by the first author in […]

Sand Pile Models are discrete dynamical systems emphasizing the phenomenon of $\textit{Self-Organized Criticality}$. From a configuration composed of a finite number of stacked grains, we apply on every possible positions (in parallel) two grain moving transition rules. The transition rules permit […]

This paper characterizes the attractor structure of synchronous and asynchronous Boolean networks induced by bi-threshold functions. Bi-threshold functions are generalizations of standard threshold functions and have separate threshold values for the transitions $0 \rightarrow $1 (up-threshold) and […]

This work considers a cellular automaton (CA) with two particles: a stationary particle $1$ and left-going one $\overline{1}$. When a $\overline{1}$ encounters a $1$, both particles annihilate. We derive asymptotic distribution of appearence of particles at a given site when the CA is initialized […]

Studying cellular automata with methods from communication complexity appears to be a promising approach. In the past, interesting connections between communication complexity and intrinsic universality in cellular automata were shown. One of the last extensions of this theory was its generalization […]

We are interested in fixed points in Boolean networks, $\textit{i.e.}$ functions $f$ from $\{0,1\}^n$ to itself. We define the subnetworks of $f$ as the restrictions of $f$ to the hypercubes contained in $\{0,1\}^n$, and we exhibit a class $\mathcal{F}$ of Boolean networks, called even or odd […]

In this paper, we significantly improve a previous result by the same author showing the existence of a weakly universal cellular automaton with five states living in the hyperbolic $3D$-space. Here, we get such a cellular automaton with three states only.

We discuss a very close relation between minimal recurrent configurations of Chip Firing Games and Directed Acyclic Graphs and demonstrate the usefulness of this relation by giving a lower bound for the number of minimal recurrent configurations of the Abelian Sandpile Model as well as a lower bound […]

We study how hard is to determine some fundamental properties of dynamics of certain types of network automata. We address the computational complexity of determining how many different possible dynamic evolutions can arise from some structurally very simple, deterministic and sparsely connected […]

We investigate the descriptional complexity of basic operations on real-time one-way cellular automata with an unbounded as well well as a fixed number of cells. The size of the automata is measured by their number of states. Most of the bounds shown are tight in the order of magnitude, that is, the […]

It is a well-known fact that the spacetime diagrams of some cellular automata have a fractal structure: for instance Pascal's triangle modulo $2$ generates a Sierpinski triangle. Explaining the fractal structure of the spacetime diagrams of cellular automata is a much explored topic, but virtually […]

Expander graphs are useful in the design and analysis of communication networks. Mukhopadhyay et al. introduced a method to generate a family of expander graphs based on nongroup two predecessor single attractor Cellular Automata(CA). In this paper we propose a method to generate a family of […]

We present a method of solving of the probabilistic initial value problem for cellular automata (CA) using CA rule 172 as an example. For a disordered initial condition on an infinite lattice, we derive exact expressions for the density of ones at arbitrary time step. In order to do this, we analyze […]

Our work is set in the framework of complex dynamical systems and, more precisely, that of Boolean automata networks modeling regulation networks. We study how the choice of an update schedule impacts on the dynamics of such a network. To do this, we explain how studying the dynamics of any network […]

The biggest obstacle to the efficient discovery of conserved energy functions for cellular auotmata is the elimination of the trivial functions from the solution space. Once this is accomplished, the identification of nontrivial conserved functions can be accomplished computationally through […]

We analyse the average number of buckets in a Linear Bucket tree created by $n$ points uniformly dispatched on an interval of length $y$. A new bucket is created when a point does not fall in an existing bucket. The bucket is the interval of length 2 centered on the point. We illustrate this concept […]

We give a survey of a number of simple applications of renewal theory to problems on random strings, in particular to tries and Khodak and Tunstall codes.

We study the maximum of a Brownian motion with a parabolic drift; this is a random variable that often occurs as a limit of the maximum of discrete processes whose expectations have a maximum at an interior point. This has some applications in algorithmic and data structures analysis. We give series […]

We propose a new strategy for universal best choice problem for partially ordered sets. We present its partial analysis which is sufficient to prove that the probability of success with this strategy is asymptotically strictly greater than 1/4, which is the value of the best universal strategy known […]

The method of types is one of the most popular techniques in information theory and combinatorics. Two sequences of equal length have the same type if they have identical empirical distributions. In this paper, we focus on Markov types, that is, sequences generated by a Markov source (of order one). […]

The analysis of probabilistic algorithms has proved to be very successful for finding asymptotic bounds on parameters of random regular graphs. In this paper, we show that similar ideas may be used to obtain deterministic bounds for one such parameter in the case of regular graphs with large girth. […]

The Bernoulli sieve is a version of the classical balls-in-boxes occupancy scheme, in which random frequencies of infinitely many boxes are produced by a multiplicative random walk, also known as the residual allocation model or stick-breaking. We give an overview of the limit theorems concerning […]

Using standard methods of analytic combinatorics we elaborate critical points (thresholds) of phase transitions from provability to unprovability of arithmetical well-partial-ordering assertions in several familiar theories occurring in the reverse mathematics program.

Generalizing an idea used by Alonso to generate uniformly at random Motzkin words, we outline an approach to build efficient random generators using binomial distributions and rejection algorithms. As an application of this method, we present random generators, both efficient and easy to implement, […]

We study the random variable $X_n^k$, counting the number of vertices of degree $k$ in a randomly chosen $2$-connected graph of given families. We prove a central limit theorem for $X_n^k$ with expected value $\mathbb{E}X_n^k \sim \mu_kn$ and variance $\mathbb{V}X_n^k \sim \sigma_k^2n$, both […]

The analysis of pattern occurrences has numerous applications, in particular in biology. In this article, a symbolic method is proposed to compute the distribution associated to the number of occurences of a specific pattern in a random text generated by a stochastic 0L-system. To that purpose, a […]

We consider a (random permutation model) binary search tree with $n$ nodes and give asymptotics on the $\log$ $\log$ scale for the height $H_n$ and saturation level $h_n$ of the tree as $n \to \infty$, both almost surely and in probability. We then consider the number $F_n$ of particles at level […]

The difference between ordinary tries and Patricia tries lies in the fact that all unary nodes are removed in the latter. Their average number is thus easily determined from earlier results on the size of tries/Patricia tries. In a well-known contention resolution algorithm, whose probabilistic […]

The webpage of Herbert Wilf describes eight Unsolved Problems. Here, we completely resolve the third of these eight problems. The task seems innocent: find the first term of the asymptotic behavior of the coefficients of an ordinary generating function, whose coefficients naturally yield rational […]

We introduce a random graph model based on $k$-trees, which can be generated by applying a probabilistic preferential attachment rule, but which also has a simple combinatorial description. We carry out a precise distributional analysis of important parameters for the network model such as the […]

We prove a limit theorem for the total Steiner $k$-distance of a random $b$-ary recursive tree with weighted edges. The total Steiner $k$-distance is the sum of all Steiner $k$-distances in a tree and it generalises the Wiener index. The limit theorem is obtained by using a limit theorem in the […]

Building on the ideas of Flajolet and Martin (1985), Alon et al. (1987), Bar-Yossef et al. (2002), Giroire (2005), we develop a new algorithm for cardinality estimation, based on order statistics which, according to Chassaing and Gerin (2006), is optimal among similar algorithms. This algorithm has […]

Partial Quicksort sorts the $l$ smallest elements in a list of length $n$. We provide a complete running time analysis for this combination of Find and Quicksort. Further we give some optimal adapted versions, called Partition Quicksort, with an asymptotic running time $c_1l\ln l+c_2l+n+o(n)$. The […]

Infinite systems of equations appear naturally in combinatorial counting problems. Formally, we consider functional equations of the form $\mathbf{y} (x)=F(x,\mathbf{y} (x))$, where $F(x,\mathbf{y} ):\mathbb{C} \times \ell^p \to \ell^p$ is a positive and nonlinear function, and analyze the behavior […]

We build and analyze in this paper Markov chains for the random sampling of some one-dimensional lattice paths with constraints, for various constraints. These chains are easy to implement, and sample an "almost" uniform path of length $n$ in $n^{3+\epsilon}$ steps. This bound makes use of a certain […]

The Shannon effect states that "almost all'' Boolean functions have a complexity close to the maximal possible for the uniform probability distribution. In this paper we use some probability distributions on functions, induced by random expressions, and prove that this model does not exhibit the […]

Consider the following weighted digital sum (WDS) variant: write integer $n$ as $n=2^{i_1} + 2^{i_2} + \cdots + 2^{i_k}$ with $i_1 > i_2 > \cdots > i_k \geq 0$ and set $W_M(n) := \sum_{t=1}^k t^M 2^{i_t}$. This type of weighted digital sum arises (when $M=1$) in the analysis of bottom-up mergesort […]

In this paper we present a simple theory, based on the notion of group action on a set, which explains why processes of throwing random sets of points and throwing random lines are similar up to the second moment of counting functions connected with them. We also discuss other applications of this […]

In this paper we obtain the expectation and variance of the number of Euler tours of a random $d$-in/$d$-out directed graph, for $d \geq 2$. We use this to obtain the asymptotic distribution and prove a concentration result. We are then able to show that a very simple approach for uniform sampling […]

We study depth properties of a general class of random recursive trees where each node $n$ attaches to the random node $\lfloor nX_n \rfloor$ and $X_0, \ldots , X_n$ is a sequence of i.i.d. random variables taking values in $[0,1)$. We call such trees scaled attachment random recursive trees […]

We state and prove new properties about Doeblin's ergodicity coefficient for finite Markov chains. We show that this coefficient satisfies a sub-multiplicative type inequality (analogous to the Markov-Dobrushin's ergodicity coefficient), and provide a novel but elementary proof of Doeblin's […]

We show that the diameter $D(G_n)$ of a random (unembedded) labelled connected planar graph with $n$ vertices is asymptotically almost surely of order $n^{1/4}$, in the sense that there exists a constant $c>0$ such that $P(D(G_n) \in (n^{1/4-\epsilon} ,n^{1/4+\epsilon})) \geq 1-\exp […]

We consider a stochastic version of the $k$-server problem in which $k$ servers move on a circle to satisfy stochastically generated requests. The requests are independent and identically distributed according to an arbitrary distribution on a circle, which is either discrete or continuous. The cost […]

This article tackles the enumeration and asymptotics of directed lattice paths (that are isomorphic to unidimensional paths) of bounded height (walks below one wall, or between two walls, for $\textit{any}$ finite set of jumps). Thus, for any lattice paths, we give the generating functions of […]

We address the uniform random generation of words from a context-free language (over an alphabet of size $k$), while constraining every letter to a targeted frequency of occurrence. Our approach consists in a multidimensional extension of Boltzmann samplers. We show that, under mostly […]

We consider pyramids made of one-dimensional pieces of fixed integer length $a$ and which may have pairwise overlaps of integer length from $1$ to $a$. We give a combinatorial proof that the number of pyramids of size $m$, i.e., consisting of $m$ pieces, equals $\binom{am-1}{m-1}$ for each $a \geq […]

Given a simple directed graph $D = (V,A)$, let the size of the largest induced directed acyclic graph $\textit{(dag)}$ be denoted by $mas(D)$. Let $D \in \mathcal{D}(n,p)$ be a $\textit{random}$ instance, obtained by choosing each of the $\binom{n}{2}$ possible undirected edges independently with […]

The variance of partial match queries in $k$-dimensional tries was investigated in a couple of papers in the mid-nineties, the resulting analysis being long and complicated. In this paper, we are going to re-derive these results with a much easier approach. Moreover, our approach works for […]

We enumerate rooted 3-connected (2-connected) planar triangulations with respect to the vertices and 3-cuts (2-cuts). Consequently, we show that the distribution of the number of 3-cuts in a random rooted 3-connected planar triangulation with $n+3$ vertices is asymptotically normal with mean […]

We consider the multiset construction of decomposable structures with component generating function $C(z)$ of alg-log type, $\textit{i.e.}$, $C(z) = (1-z)^{-\alpha} (\log \frac{1}{ 1-z})^{\beta}$. We provide asymptotic results for the number of labeled objects of size $n$ in the case when $\alpha$ […]

Digital trees, also known as $\textit{"tries''}$, are fundamental to a number of algorithmic schemes, including radix-based searching and sorting, lossless text compression, dynamic hashing algorithms, communication protocols of the tree or stack type, distributed leader election, and so on. This […]

Most previous studies of the sorting algorithm $\mathtt{QuickSort}$ have used the number of key comparisons as a measure of the cost of executing the algorithm. Here we suppose that the $n$ independent and identically distributed (iid) keys are each represented as a sequence of symbols from a […]

We consider lattice walks in $\mathbb{R}^k$ confined to the region $0 < x_1 < x_2 \ldots < x_k$ with fixed (but arbitrary) starting and end points. The walks are required to be "reflectable", that is, we assume that the number of paths can be counted using the reflection principle. The main result […]

In the hidden clique problem, one needs to find the maximum clique in an $n$-vertex graph that has a clique of size $k$ but is otherwise random. An algorithm of Alon, Krivelevich and Sudakov that is based on spectral techniques is known to solve this problem (with high probability over the random […]

This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as […]

In this paper we establish the cover time of a random graph $G(\textbf{d})$ chosen uniformly at random from the set of graphs with vertex set $[n]$ and degree sequence $\textbf{d}$. We show that under certain restrictions on $\textbf{d}$, the cover time of $G(\textbf{d})$ is with high probability […]

A permutation is separable if it can be generated from the permutation 1 by successive sums and skew sums or, equivalently, if it avoids the patterns 2413 and 3142. Using the notion of separating tree, we give a computationally efficient formula for the Möbius function of an interval $(q,p)$ in the […]

Based on constant term evaluation, we present a new method to compute a closed form of the summation $∑_k=0^n-1 ∏_j=1^r F_j(a_jn+b_jk+c_j)$, where ${F_j(k)} are $C$-finite sequences and $a_j$ and $a_j+b_j$ are nonnegative integers. Our algorithm is much faster than that of Greene and Wilf.

We study equations in groups $G$ with unique $m$-th roots for each positive integer $m$. A word equation in two letters is an expression of the form$ w(X,A) = B$, where $w$ is a finite word in the alphabet ${X,A}$. We think of $A,B ∈G$ as fixed coefficients, and $X ∈G$ as the unknown. Certain word […]

We introduce a new family of polyominos that are inscribed in a rectangle of given size for which we establish a number of exact formulas and generating functions. In particular, we study polyominos inscribed in a rectangle with minimum area and minimum area plus one. These results are then used for […]

We provide the unique affine crystal structure for type $E_6^{(1)}$ Kirillov―Reshetikhin crystals corresponding to the multiples of fundamental weights $s\Lambda _1, s\Lambda _2$, and $s\Lambda _6$ for all $s≥ 1$ (in Bourbaki's labeling of the Dynkin nodes, where 2 is the adjoint node). Our methods […]

We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie superalgebra for a distinguished set of positive roots. \par

We prove a closed character formula for the symmetric powers $S^N V(λ )$ of a fixed irreducible representation $V(λ )$ of a complex semi-simple Lie algebra $\mathfrak{g}$ by means of partial fraction decomposition. The formula involves rational functions in rank of $\mathfrak{g}$ many variables […]

A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ […]

We give combinatorial proofs of the formulas for the number of multichains in the $k-divisible$ noncrossing partitions of classical types with certain conditions on the rank and the block size due to Krattenthaler and Müller. We also prove Armstrong's conjecture on the zeta polynomial of the poset […]

We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals $[T_0, T_1]$ where $T_0$ and $T_1$ are balanced trees are isomorphic as posets to a hypercube. We introduce tree patterns and synchronous grammars to get a functional equation […]

We look at the number of permutations $\beta$ of $[N]$ with $m$ cycles such that $(1 2 \ldots N) \beta^{-1}$ is a long cycle. These numbers appear as coefficients of linear monomials in Kerov's and Stanley's character polynomials. D. Zagier, using algebraic methods, found an unexpected connection […]

Motivated by the classical Frobenius problem, we introduce the Frobenius poset on the integers $\mathbb{Z}$, that is, for a sub-semigroup $\Lambda$ of the non-negative integers $(\mathbb{N},+)$, we define the order by $n \leq_{\Lambda} m$ if $m-n \in \Lambda$. When $\Lambda$ is generated by two […]

We show that there are $n!$ matchings on $2n$ points without, so called, left (neighbor) nestings. We also define a set of naturally labelled $(2+2)$-free posets, and show that there are $n!$ such posets on $n$ elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. […]

Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A $\textit{partial permutation of length n with k holes}$ is a sequence of symbols $\pi = \pi_1 \pi_2 \cdots \pi_n$ in which each of the symbols from the set $\{1,2,\ldots,n-k\}$ appears exactly […]

In this paper we study pattern avoidance for affine permutations. In particular, we show that for a given pattern $p$, there are only finitely many affine permutations in $\widetilde{S}_n$ that avoid $p$ if and only if $p$ avoids the pattern $321$. We then count the number of affine permutations […]

We construct and study an embedded weighted balanced graph in $\mathbb{R}^{n+1}$ parametrized by a strictly increasing sequence of $n$ coprime numbers $\{ i_1, \ldots, i_n\}$, called the $\textit{tropical secant surface graph}$. We identify it with the tropicalization of a surface in […]

Building on the work of P.N. Norton, we give combinatorial formulae for two maximal decompositions of the identity into orthogonal idempotents in the $0$-Hecke algebra of the symmetric group, $\mathbb{C}H_0(S_N)$. This construction is compatible with the branching from $H_0(S_{N-1})$ to $H_0(S_N)$.

We take a geometric point of view on the recent result by Brenti and Welker, who showed that the roots of the $f$-polynomials of successive barycentric subdivisions of a finite simplicial complex $X$ converge to fixed values depending only on the dimension of $X$. We show that these numbers are […]

We present a simple technique to compute moments of derivatives of unitary characteristic polynomials. The first part of the technique relies on an idea of Bump and Gamburd: it uses orthonormality of Schur functions over unitary groups to compute matrix averages of characteristic polynomials. In […]

The classical quadratically convergent Newton-Raphson iterative scheme for successive approximations of a root of an equation $f(t)=0$ has been extended in various ways by different authors, going from cubical convergence to convergence of arbitrary orders. We introduce two such extensions, using […]

The well-known R-polynomials in ℤ[q], which appear in Hecke algebra computations, are closely related to certain modified R-polynomials in ℕ[q] whose coefficients have simple combinatorial interpretations. We generalize this second family of polynomials, providing combinatorial interpretations for […]

In this extended abstract, we investigate bijections on various classes of set partitions of classical types that preserve openers and closers. On the one hand we present bijections for types $B$ and $C$ that interchange crossings and nestings, which generalize a construction by Kasraoui and Zeng […]

The polynomial ring $\mathbb{Z}[x_{11}, . . . , x_{33}]$ has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group $U_q(\mathfrak{sl}3(\mathbb{C}))$. On the other hand, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ inherits a basis from the […]

We show that the set $R(w_0)$ of reduced expressions for the longest element in the hyperoctahedral group exhibits the cyclic sieving phenomenon. More specifically, $R(w_0)$ possesses a natural cyclic action given by moving the first letter of a word to the end, and we show that the orbit structure […]

We prove a formula for the number of permutations in $S_n$ such that their first $n-k$ entries are increasing and their longest increasing subsequence has length $n-k$. This formula first appeared as a consequence of character polynomial calculations in recent work of Adriano Garsia and Alain […]

Let $G$ be a simple graph with $n$ vertices. The coloring complex$ Δ (G)$ was defined by Steingrímsson, and the homology of $Δ (G)$ was shown to be nonzero only in dimension $n-3$ by Jonsson. Hanlon recently showed that the Eulerian idempotents provide a decomposition of the homology group […]

The classical Thom―Porteous formula expresses the homology class of the degeneracy locus of a generic map between two vector bundles as an alternating sum of Schur polynomials. A proof of this formula was given by Pragacz by expressing this alternating sum as the Euler characteristic of a Schur […]

We prove new connections between permutation patterns and singularities of Schubert varieties, by giving a new characterization of factorial and Gorenstein varieties in terms of so called bivincular patterns. These are generalizations of classical patterns where conditions are placed on the location […]

The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is […]

In 2004, Condon and coauthors gave a hierarchical classification of exact RNA structure prediction algorithms according to the generality of structure classes that they handle. We complete this classification by adding two recent prediction algorithms. More importantly, we precisely quantify the […]

We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the […]

We consider the real and complex noncentral Wishart distributions. The moments of these distributions are shown to be expressed as weighted generating functions of graphs associated with the Wishart distributions. We give some bijections between sets of graphs related to moments of the real Wishart […]

We show that toric ideals of flow polytopes are generated in degree $3$. This was conjectured by Diaconis and Eriksson for the special case of the Birkhoff polytope. Our proof uses a hyperplane subdivision method developed by Haase and Paffenholz. It is known that reduced revlex Gröbner bases of the […]

Let $I_n$ be the (big) diagonal ideal of $(\mathbb{C}^2)^n$. Haiman proved that the $q,t$-Catalan number is the Hilbert series of the graded vector space $M_n=\bigoplus_{d_1,d_2}(M_n)_{d_1,d_2}$ spanned by a minimal set of generators for $I_n$. We give simple upper bounds on $\textrm{dim} […]

We study the crystal structure on categories of graded modules over algebras which categorify the negative half of the quantum Kac-Moody algebra associated to a symmetrizable Cartan data. We identify this crystal with Kashiwara's crystal for the corresponding negative half of the quantum Kac-Moody […]

The standard supercharacter theory of the finite unipotent upper-triangular matrices $U_n(q)$ gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of $U_m(q) \subseteq U_n(q)$ for $m \leq n$ lead to branching rules. […]

We consider a large family of equivalence relations on permutations in $S_n$ that generalise those discovered by Knuth in his study of the Robinson-Schensted correspondence. In our most general setting, two permutations are equivalent if one can be obtained from the other by a sequence of […]

We present examples of flag homology spheres whose $\gamma$-vectors satisfy the Kruskal-Katona inequalities. This includes several families of well-studied simplicial complexes, including Coxeter complexes and the simplicial complexes dual to the associahedron and to the cyclohedron. In these cases, […]

The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given […]

We show the $q$-analog of a well-known result of Farahat and Higman: in the center of the Iwahori-Hecke algebra $\mathscr{H}_{n,q}$, if $(a_{\lambda \mu}^ν (n,q))_ν$ is the set of structure constants involved in the product of two Geck-Rouquier conjugacy classes $\Gamma_{\lambda, n}$ and […]

We establish a stronger symmetry between the numbers of northeast and southeast chains in the context of $01$-fillings of moon polyominoes. Let $\mathcal{M}$ be a moon polyomino. Consider all the $01$-fillings of $\mathcal{M}$ in which every row has at most one $1$. We introduce four mixed […]

We prove several conjectures of Eriksen regarding the joint distribution on permutations of the number of adjacencies (descents with consecutive values in consecutive positions), descents and some Mahonian statistics. We also prove Eriksen's conjecture that a certain bistatistic on Viennot's […]

A tropical curve $\Gamma$ is a metric graph with possibly unbounded edges, and tropical rational functions are continuous piecewise linear functions with integer slopes. We define the complete linear system $|D|$ of a divisor $D$ on a tropical curve $\Gamma$ analogously to the classical counterpart. […]

It is well-known that Catalan numbers $C_n = \frac{1}{ n+1} \binom{2n}{n}$ count the number of dominant regions in the Shi arrangement of type $A$, and that they also count partitions which are both n-cores as well as $(n+1)$-cores. These concepts have natural extensions, which we call here the […]

Many important invariants for matroids and polymatroids, such as the Tutte polynomial, the Billera-Jia-Reiner quasi-symmetric function, and the invariant $\mathcal{G}$ introduced by the first author, are valuative. In this paper we construct the $\mathbb{Z}$-modules of all $\mathbb{Z}$-valued […]

The famous hook-length formula is a simple consequence of the branching rule for the hook lengths. While the Greene-Nijenhuis-Wilf probabilistic proof is the most famous proof of the rule, it is not completely combinatorial, and a simple bijection was an open problem for a long time. In this […]

For any finite Coxeter group $W$, we introduce two new objects: its cutting poset and its biHecke monoid. The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a lattice on $W$. The construction of the biHecke monoid relies on the usual […]

Let $G$ be a connected reductive linear algebraic group over $ℂ$ with an involution $θ$ . Denote by $K$ the subgroup of fixed points. In certain cases, the $K-orbits$ in the flag variety $G/B$ are indexed by the twisted identities $ι (θ ) = {θ (w^{-1})w | w∈W}$ in the Weyl group $W$. Under this […]

We use Hopf algebras to prove a version of the Littlewood―Richardson rule for skew Schur functions, which implies a conjecture of Assaf and McNamara. We also establish skew Littlewood―Richardson rules for Schur $P-$ and $Q-$functions and noncommutative ribbon Schur functions, as well as skew Pieri […]

We give an interpretation of the $t=1$ specialization of the modified Macdonald polynomial as a generating function of the energy statistics defined on the set of paths arising in the context of Box-Ball Systems (BBS-paths for short). We also introduce one parameter generalizations of the energy […]

We consider a three-parameter PASEP model on $N$ sites. A closed formula for the partition function was obtained analytically by Blythe et al. We give a new formula which generalizes the one of Blythe et al, and is proved in two combinatorial ways. Moreover the first proof can be adapted to give the […]

Motivated by juggling sequences and bubble sort, we examine permutations on the set${1, 2, \ldots, n}$ with $d$ descents and maximum drop size $k$. We give explicit formulas for enumerating such permutations for given integers $k$ and $d$. We also derive the related generating functions and prove […]

Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations $P(n) = nP$ is a quasi-polynomial in $n$. We generalize this theorem by allowing the vertices of $P(n)$ to be arbitrary rational functions in $n$. In this case we […]

We identify a subalgebra $\widehat{\mathscr{H}}^+_n$ of the extended affine Hecke algebra $\widehat{\mathscr{H}}_n$ of type $A$. The subalgebra $\widehat{\mathscr{H}}^+_n$ is a u-analogue of the monoid algebra of $\mathcal{S}_n ⋉ℤ_≥0^n$ and inherits a canonical basis from that of […]

A unicellular map is the embedding of a connected graph in a surface in such a way that the complement of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a non-orientable surface to unicellular maps of a lower topological type, with […]

A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion of stable Grassmannian Grothendieck polynomials into monomials was first given […]

According to the Göttsche conjecture (now a theorem), the degree $N^{d, \delta}$ of the Severi variety of plane curves of degree $d$ with $\delta$ nodes is given by a polynomial in $d$, provided $d$ is large enough. These "node polynomials'' $N_{\delta} (d)$ were determined by Vainsencher and […]

We study the expected distance of a two-dimensional walk in the plane with unit steps in random directions. A series evaluation and recursions are obtained making it possible to explicitly formulate this distance for small number of steps. Formulae for all the moments of a 2-step and a 3-step walk […]

Double Hurwitz numbers count covers of the sphere by genus $g$ curves with assigned ramification profiles over $0$ and $\infty$, and simple ramification over a fixed branch divisor. Goulden, Jackson and Vakil (2005) have shown double Hurwitz numbers are piecewise polynomial in the orders of […]

A finite subgroup $G$ of $GL(n,\mathbb{C})$ is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements $g \in G$ such that $g \bar{g}=1$, where the bar denotes complex conjugation. A uniform […]

We introduce and study three different notions of tropical rank for symmetric matrices and dissimilarity matrices in terms of minimal decompositions into rank 1 symmetric matrices, star tree matrices, and tree matrices. Our results provide a close study of the tropical secant sets of certain nice […]

We prove that the subset of quasisymmetric polynomials conjectured by Bergeron and Reutenauer to be a basis for the coinvariant space of quasisymmetric polynomials is indeed a basis. This provides the first constructive proof of the Garsia―Wallach result stating that quasisymmetric polynomials form […]

We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph $G$ and its directed line graph $\mathcal{L} G$. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case […]

In the late 30's, Maurits Cornelis Escher astonished the artistic world by producing some puzzling drawings. In particular, the tesselations of the plane obtained by using a single tile appear to be a major concern in his work, drawing attention from the mathematical community. Since a tile in the […]

Based on a construction of the first author, we present a general bijection between certain decorated plane trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g. Eulerian maps, simple triangulations,...) are in bijection with a subset of […]

Let $\mathcal{B}_n$ be the hyperoctahedral group acting on a complex vector space $\mathcal{V}$. We present a combinatorial method to decompose the tensor algebra $T(\mathcal{V})$ on $\mathcal{V}$ into simple modules via certain words in a particular Cayley graph of $\mathcal{B}_n$. We then give […]

Steingrímsson (2001) showed that the chromatic polynomial of a graph is the Hilbert function of a relative Stanley-Reisner ideal. We approach this result from the point of view of Ehrhart theory and give a sufficient criterion for when the Ehrhart polynomial of a given relative polytopal complex is […]

In the late 1930's Murnaghan discovered the existence of a stabilization phenomenon for the Kronecker product of Schur functions. For $n$ large enough, the values of the Kronecker coefficients appearing in the product of two Schur functions of degree $n$ do not depend on the first part of the […]

We introduce $k$-crossings and $k$-nestings of permutations. We show that the crossing number and the nesting number of permutations have a symmetric joint distribution. As a corollary, the number of $k$-noncrossing permutations is equal to the number of $k$-nonnesting permutations. We also provide […]

We use a quantum analog of the polynomial ring $\mathbb{Z}[x_{1,1},\ldots, x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $H_n(q)$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math.}$ $\textbf{53}$ […]

We take a geometric view of lecture hall partitions and anti-lecture hall compositions in order to settle some open questions about their enumeration. In the process, we discover an intrinsic connection between these families of partitions and certain quadratic permutation statistics. We define some […]

We explore in this paper the spaces of common zeros of several deformations of Steenrod operators. Proofs are omitted in view of pages limitation for the extended abstract. \par

We study the poset of Borel congruence classes of symmetric matrices ordered by containment of closures. We give a combinatorial description of this poset and calculate its rank function. We discuss the relation between this poset and the Bruhat poset of involutions of the symmetric group. Also we […]

We introduce a multiplicity Tutte polynomial $M(x,y)$, which generalizes the ordinary one and has applications to zonotopes and toric arrangements. We prove that $M(x,y)$ satisfies a deletion-restriction recurrence and has positive coefficients. The characteristic polynomial and the Poincaré […]

A factorization of a permutation into transpositions is called "primitive'' if its factors are weakly ordered.We discuss the problem of enumerating primitive factorizations of permutations, and its place in the hierarchy of previously studied factorization problems. Several formulas enumerating […]

We give bijective proofs of pattern-avoidance results for a class of permutations generalizing alternating permutations. The bijections employed include a modified form of the RSK insertion algorithm and recursive bijections based on generating trees. As special cases, we show that the sets […]

We are interested in Fully Packed Loops in a triangle (TFPLs), as introduced by Caselli at al. and studied by Thapper. We show that for Fully Packed Loops with a fixed link pattern (refined FPL), there exist linear recurrence relations with coefficients computed from TFPL configurations. We then […]

The $k$-parabolic subspace arrangement, introduced by Barcelo, Severs and White, is a generalization of the well known $k$-equal arrangements of type-$A$ and type-$B$. In this paper we use the discrete Morse theory of Forman to study the homology of the complements of $k$-parabolic subspace […]

We define a new family of self-avoiding walks (SAW) on the square lattice, called $\textit{weakly directed walks}$. These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine their generating function. This series has a complex singularity […]

In recent work on nonequilibrium statistical physics, a certain Markovian exclusion model called an asymmetric annihilation process was studied by Ayyer and Mallick. In it they gave a precise conjecture for the eigenvalues (along with the multiplicities) of the transition matrix. They further […]

We investigate the probability that a random composition (ordered partition) of the positive integer $n$ has no parts occurring exactly $j$ times, where $j$ belongs to a specified finite $\textit{`forbidden set'}$ $A$ of multiplicities. This probability is also studied in the related case of samples […]

The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row Schur function in terms of skew Schur functions. Like the classical rule, our […]

Given a sequence $(a_k)=a_0,a_1,a_2,\ldots$ of real numbers, define a new sequence $\mathcal{L}(a_k)=(b_k)$ where $b_k=a_k^2-a_{k-1}a_{k+1}$. So $(a_k)$ is log-concave if and only if $(b_k)$ is a nonnegative sequence. Call $(a_k)$ $\textit{infinitely log-concave}$ if $\mathcal{L}^i(a_k)$ is […]

This document is an extended abstract of the paper `Hopf algebras and the logarithm of the S-transform in free probability' in which we introduce a Hopf algebraic approach to the study of the operation $\boxtimes$ (free multiplicative convolution) from free probability.

The election is a classical problem in distributed algorithmic. It aims to design and to analyze a distributed algorithm choosing a node in a graph, here, in a tree. In this paper, a class of randomized algorithms for the election is studied. The election amounts to removing leaves one by one until […]

The type $A_n$ root polytope $\mathcal{P}(A_n^+)$ is the convex hull in $\mathbb{R}^{n+1}$ of the origin and the points $e_i-e_j$ for $1 \leq i < j \leq n+1$. Given a tree $T$ on vertex set $[n+1]$, the associated root polytope $\mathcal{P}(T)$ is the intersection of $\mathcal{P}(A_n^+)$ with the […]

We derive a new formula for the number of factorizations of a full cycle into an ordered product of two permutations of given cycle types. For the first time, a purely combinatorial argument involving a bijective description of bicolored maps of specified vertex degree distribution is used. All the […]

A $k$-triangulation of the $n$-gon is a maximal set of diagonals of the $n$-gon containing no subset of $k+1$ mutually crossing diagonals. The number of $k$-triangulations of the $n$-gon, determined by Jakob Jonsson, is equal to a $k \times k$ Hankel determinant of Catalan numbers. This determinant […]

The purpose of this paper is to present the $q$-hook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a far-reaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, we give […]

We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of perfect matchings of a certain graph $G_{T,\gamma}$ that is constructed […]

The total number of noncrossing partitions of type $\Psi$ is the $n$th Catalan number $\frac{1}{ n+1} \binom{2n}{n}$ when $\Psi =A_{n-1}$, and the binomial coefficient $\binom{2n}{n}$ when $\Psi =B_n$, and these numbers coincide with the correspondent number of nonnesting partitions. For type $A$, […]

We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an […]

Let $P$ be a partially ordered set and consider the free monoid $P^{\ast}$ of all words over $P$. If $w,w' \in P^{\ast}$ then $w'$ is a factor of $w$ if there are words $u,v$ with $w=uw'v$. Define generalized factor order on $P^{\ast}$ by letting $u \leq w$ if there is a factor $w'$ of $w$ having […]

The absolute order on the hyperoctahedral group $B_n$ is investigated. It is shown that every closed interval in this order is shellable, those closed intervals which are lattices are characterized and their zeta polynomials are computed. Moreover, using the notion of strong constructibility, it is […]

The $\mathtt{polymake}$ software system deals with convex polytopes and related objects from geometric combinatorics. This note reports on a new implementation of a subclass for lattice polytopes. The features displayed are enabled by recent changes to the $\mathtt{polymake}$ core, which will be […]

A $\textit{composition}$ $\sigma =a_1 a_2 \ldots a_m$ of $n$ is an ordered collection of positive integers whose sum is $n$. An element $a_i$ in $\sigma$ is a strong (weak) $\textit{record}$ if $a_i> a_j (a_i \geq a_j)$ for all $j=1,2,\ldots,i-1$. Furthermore, the position of this record is $i$. We […]

In this paper we analyze O'Hara's partition bijection. We present three type of results. First, we see that O'Hara's bijection can be viewed geometrically as a certain scissor congruence type result. Second, we present a number of new complexity bounds, proving that O'Hara's bijection is efficient […]

The devil's staircase ― a continuous function on the unit interval $[0,1]$ which is not constant, yet is locally constant on an open dense set ― is the sort of exotic creature a combinatorialist might never expect to encounter in "real life.'' We show how a devil's staircase arises from the […]

Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq […]

A breakthrough in the theory of (type $A$) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of fillings of Young diagrams. Recently, Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of […]

In this article, we investigate the asymptotic occurrence rates of specific subwords in any infinite binary word. We prove that the asymptotic occurrence rate for the subwords is upper- and lower-bounded in the same way for every infinite binary word, in terms of the asymptotic occurrence rate of […]

Recently Postnikov gave a combinatorial description of the cells in a totally-nonnegative Grassmannian. These cells correspond to a special class of matroids called positroids. There are many interesting combinatorial objects associated to a positroid. We introduce some recent results, including the […]

It is becoming increasingly clear that the supercharacter theory of the finite group of unipotent upper-triangular matrices has a rich combinatorial structure built on set-partitions that is analogous to the partition combinatorics of the classical representation theory of the symmetric group. This […]

We aim to generalize a theorem on the number of rooted spanning forests of a highly symmetric graph to the case of asymmetric graphs. We show that this can be achieved by means of an identity between the minor determinants of a Laplace matrix, for which we provide two different (combinatorial as […]

The recent work of Bonnafé et al. (2007) shows through two conjectures that $r$-domino tableaux have an important role in Kazhdan-Lusztig theory of type $B$ with unequal parameters. In this paper we provide plactic relations on signed permutations which determine whether given two signed […]

We show that if the cardinality of a subset of the $(2k-1)$-dimensional vector space over a finite field with $q$ elements is $\gg q^{2k-1-\frac{1}{ 2k}}$, then it contains a positive proportional of all $k$-simplexes up to congruence.

In a recent paper, Schilling proposed an operator $\overline{\mathrm{pr}}$ on unrestricted rigged configurations $RC$, and conjectured it to be the promotion operator of the type $A$ crystal formed by $RC$. In this paper we announce a proof for this conjecture.

We show that dual canonical basis elements of the quantum polynomial ring in $n^2$ variables can be expressed as specializations of dual canonical basis elements of $0$-weight spaces of other quantum polynomial rings. Our results rely upon the natural appearance in the quantum polynomial ring of […]

We introduce a combinatorial way of calculating the Hilbert series of bigraded $S_n$-modules as a weighted sum over standard Young tableaux in the hook shape case. This method is based on Macdonald formula for Hall-Littlewood polynomial and extends the result of $A$. Garsia and $C$. Procesi for the […]

Using resolutions of singularities introduced by Cortez and a method for calculating Kazhdan-Lusztig polynomials due to Polo, we prove the conjecture of Billey and Braden characterizing permutations w with Kazhdan-Lusztig polynomial$ P_id,w(q)=1+q^h$ for some $h$.

Postnikov constructed a decomposition of a totally nonnegative Grassmannian $(Gr _{kn})_≥0$ into positroid cells. We provide combinatorial formulas that allow one to decide which cell a given point in $(Gr _{kn})_≥0$ belongs to and to determine affine coordinates of the point within this cell. This […]

Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or -1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals of subposets of a certain poset, proving that they are in bijection with a variety […]

We introduce a shifted analog of the plactic monoid of Lascoux and Schützenberger, the \emphshifted plactic monoid. It can be defined in two different ways: via the \emphshifted Knuth relations, or using Haiman's mixed insertion. Applications include: a new combinatorial derivation (and a new […]

We define a new lattice structure (W,\preceq ) on the elements of a finite Coxeter group W. This lattice, called the \emphshard intersection order, is weaker than the weak order and has the noncrossing partition lattice \NC (W) as a sublattice. The new construction of \NC (W) yields a new proof that […]

This work is devoted to the study of typical properties of random graphs from classes with structural constraints, like for example planar graphs, with the additional restriction that the average degree is fixed. More precisely, within a general analytic framework, we provide sharp concentration […]

In this paper, we study k-parabolic arrangements, a generalization of the k-equal arrangement for any finite real reflection group. When k=2, these arrangements correspond to the well-studied Coxeter arrangements. Brieskorn (1971) showed that the fundamental group of the complement of the type W […]

The associahedron is an object that has been well studied and has numerous applications, particularly in the theory of operads, the study of non-crossing partitions, lattice theory and more recently in the study of cluster algebras. We approach the associahedron from the point of view of discrete […]

We consider Buch's rule for K-theory of the Grassmannian, in the Schur multiplicity-free cases classified by Stembridge. Using a result of Knutson, one sees that Buch's coefficients are related to Möbius inversion. We give a direct combinatorial proof of this by considering the product expansion for […]

For a fixed sequence of $n$ positive integers $(a,\bar{b}) := (a, b, b,\ldots, b)$, an $(a,\bar{b})$-parking function of length $n$ is a sequence $(p_1, p_2, \ldots, p_n)$ of positive integers whose nondecreasing rearrangement $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfies $q_i \leq a+(i-1)b$ for any […]

Surveying the results of three recent papers and some currently ongoing research, we show how a generalization of Brylawski's tensor product formula to colored graphs may be used to compute the Jones polynomial of some fairly complicated knots and, in the future, even virtual knots.

Algebraic complexes whose "faces'' are indexed by partitions and plane partitions are introduced, and their homology is proven to be concentrated in even dimensions with homology basis indexed by fixed points of an involution, thereby explaining topologically two quite important instances of […]

In this paper, we introduce a new model of the crystal $B(\Lambda _0)$ of $\widehat{\mathfrak{sl}_{\ell}}$. We briefly describe some of the properties of this crystal and compare it to the combinatorial model of Misra and Miwa.

A shuffle of two words is a word obtained by concatenating the two original words in either order and then sliding any letters from the second word back past letters of the first word, in such a way that the letters of each original word remain spelled out in their original relative order. Examples […]

Let $W$ be a finite crystallographic reflection group, with root system $\Phi$. Associated to $W$ there is a positive integer, the generalized Catalan number, which counts the clusters in the associated cluster algebra, the noncrossing partitions for $W$, and several other interesting sets. […]

Let $V$ be a complex vector space with basis $\{x_1,x_2,\ldots,x_n\}$ and $G$ be a finite subgroup of $GL(V)$. The tensor algebra $T(V)$ over the complex is isomorphic to the polynomials in the non-commutative variables $x_1, x_2, \ldots, x_n$ with complex coefficients. We want to give a […]

We define a poset using the shortest paths in the Bruhat graph of a finite Coxeter group $W$ from the identity to the longest word in $W, w_0$. We show that this poset is the union of Boolean posets of rank absolute length of $w_0$; that is, any shortest path labeled by reflections $t_1,\ldots,t_m$ […]

To a word $w$, we associate the rational function $\Psi_w = \prod (x_{w_i} - x_{w_{i+1}})^{-1}$. The main object, introduced by C. Greene to generalize identities linked to Murnaghan-Nakayama rule, is a sum of its images by certain permutations of the variables. The sets of permutations that we […]

We present statistic-preserving bijections between four classes of combinatorial objects. Two of them, the class of unlabeled $(\textrm{2+2})$-free posets and a certain class of chord diagrams (or involutions), already appeared in the literature, but were apparently not known to be equinumerous. The […]

We propose an $\textit{experimental mathematics approach}$ leading to the computer-driven $\textit{discovery}$ of various conjectures about structural properties of generating functions coming from enumeration of restricted lattice walks in 2D and in 3D.

Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bijective proof of the Littlewood―Richardson coefficient conjugation symmetry, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Tableau―switching provides an algorithm to produce such a […]

The aim of this work is to enumerate alternating sign matrices (ASM) that are quasi-invariant under a quarter-turn. The enumeration formula (conjectured by Duchon) involves, as a product of three terms, the number of unrestrited ASm's and the number of half-turn symmetric ASM's.

We define a universal cycle for a class of $n$-permutations as a cyclic word in which each element of the class occurs exactly once as an $n$-factor. We give a general result for cyclically closed classes, and then survey the situation when the class is defined as the avoidance class of a set of […]

In this article we study a class of monoids that includes Garside monoids, and give a simple combinatorial proof of a formula for the formal sum of all elements of the monoid. This leads to a formula for the growth function of the monoid in the homogeneous case, and can also be lifted to a […]

We construct unital extensions of the higher order peak algebras defined by Krob and the third author in [Ann. Comb. 9 (2005), 411―430], and show that they can be obtained as homomorphic images of certain subalgebras of the Mantaci-Reutenauer algebras of type $B$. This generalizes a result of […]

A new class of functions is studied. We define the Brauer-Schur functions $B^{(p)}_{\lambda}$ for a prime number $p$, and investigate their properties. We construct a basis for the space of symmetric functions, which consists of products of $p$-Brauer-Schur functions and Schur functions. We will see […]

The $\textit{hiring problem}$ has been recently introduced by Broder et al. in last year's ACM-SIAM Symp. on Discrete Algorithms (SODA 2008), as a simple model for decision making under uncertainty. Candidates are interviewed in a sequential fashion, each one endowed with a quality score, and […]

In the early 1990s, Garsia and Haiman conjectured that the dimension of the Garsia-Haiman module $R_{\mu}$ is $n!$, and they showed that the resolution of this conjecture implies the Macdonald Positivity Conjecture. Haiman proved these conjectures in 2001 using algebraic geometry, but the question […]

We study the Gilbert-Shannon-Reeds model for riffle shuffles and ask 'How many times must a deck of cards be shuffled for the deck to be in close to random order?'. In 1992, Bayer and Diaconis gave a solution which gives exact and asymptotic results for all decks of practical interest, e.g. a deck […]

We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian $Gr_{k,n}$. We then derive analogous results for […]

We show that the Kronecker coefficients indexed by two two―row shapes are given by quadratic quasipolynomial formulas whose domains are the maximal cells of a fan. Simple calculations provide explicitly the quasipolynomial formulas and a description of the associated fan. These new formulas are […]

We use the polynomial ring $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $S_n$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], but does not employ […]

We present $\textit{type preserving}$ bijections between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis and Reiner. The bijections for the abstract Coxeter types $B$, $C$ and $D$ are new in the literature. To find them we define, for […]

We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive several explicit formulas. To this end, we consider fixed point $\lambda$-coloured permutations, which are […]

The median problem seeks a permutation whose total distance to a given set of permutations (the base set) is minimal. This is an important problem in comparative genomics and has been studied for several distance measures such as reversals. The transposition distance is less relevant biologically, […]

The multiplihedra $\mathcal{M}_{\bullet} = (\mathcal{M}_n)_{n \geq 1}$ form a family of polytopes originating in the study of higher categories and homotopy theory. While the multiplihedra may be unfamiliar to the algebraic combinatorics community, it is nestled between two families of polytopes […]

For nonexceptional types, we prove a conjecture of Hatayama et al. about the prefectness of Kirillov―Reshetikhin crystals.

Let $\Gamma$ be a quiver on $n$ vertices $v_1, v_2, \ldots , v_n$ with $g_{ij}$ edges between $v_i$ and $v_j$, and let $\boldsymbol{\alpha} \in \mathbb{N}^n$. Hua gave a formula for $A_{\Gamma}(\boldsymbol{\alpha}, q)$, the number of isomorphism classes of absolutely indecomposable representations […]

We discuss some recent progress on the Monotone Column Permanent (MCP) conjecture. We use a general method for proving that a univariate polynomial has real roots only, namely by showing that a corresponding multivariate polynomial is stable. Recent connections between stability of polynomials and […]

We refine the classical Littlewood-Richardson rule in several different settings. We begin with a combinatorial rule for the product of a Demazure atom and a Schur function. Building on this, we also describe the product of a quasisymmetric Schur function and a Schur function as a positive sum of […]

A permutation $\pi$ is realized by the shift on $N$ symbols if there is an infinite word on an $N$-letter alphabet whose successive left shifts by one position are lexicographically in the same relative order as $\pi$. The set of realized permutations is closed under consecutive pattern containment. […]

We define and consider $k$-distant crossings and nestings for matchings and set partitions, which are a variation of crossings and nestings in which the distance between vertices is important. By modifying an involution of Kasraoui and Zeng (Electronic J. Combinatorics 2006, research paper 33), we […]

We give a bijective operation that relates unicellular maps of given genus to unicellular maps of lower genus, with distinguished vertices. This gives a new combinatorial identity relating the number $\epsilon_g(n)$ of unicellular maps of size $n$ and genus $g$ to the numbers $\epsilon _j(n)$'s, for […]

We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of complex reflection groups find a natural description in this wider setting.

Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group $\mathrm{GL}(n,\mathbb{C})$. They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and […]

A permutation $a_1a_2 \ldots a_n$ is $\textit{indecomposable}$ if there does not exist $p \lt n$ such that $a_1a_2 \ldots a_p$ is a permutation of $\{ 1,2, \ldots ,p\}$. We compute the asymptotic probability that a permutation of $\mathbb{S}_n$ with $m$ cycles is indecomposable as $n$ goes to […]

We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths and rook placements. This gives two (mostly) combinatorial proofs of a new enumeration formula for the partition function of the PASEP. Besides other interpretations, this formula gives the […]

Free cumulants are nice and useful functionals of the shape of a Young diagram, in particular they give the asymptotics of normalized characters of symmetric groups $\mathfrak{S}(n)$ in the limit $n \to \infty$. We give an explicit combinatorial formula for normalized characters of the symmetric […]

We consider the class of bases $B$ of tropical Plücker functions on the Boolean $n$-cube such that $B$ can be obtained by a series of flips from the basis formed by the intervals of the ordered set of $n$ elements. We show that these bases are representable by special wiring diagrams and by certain […]

In this article, we propose a generalization of the notion of chordal graphs to signed graphs, which is based on the existence of a perfect elimination ordering for a chordal graph. We give a special kind of filtrations of the generalized chordal graphs, and show a characterization of those graphs. […]

We discuss scaling limits of random planar maps chosen uniformly over the set of all $2p$-angulations with $n$ faces. This leads to a limiting space called the Brownian map, which is viewed as a random compact metric space. Although we are not able to prove the uniqueness of the distribution of the […]

Analytic information theory aims at studying problems of information theory using analytic techniques of computer science and combinatorics. Following Hadamard's precept, these problems are tackled by complex analysis methods such as generating functions, Mellin transform, Fourier series, saddle […]

We provide an overview of stabilization methods for point processes and apply these methods to deduce a central limit theorem for statistical estimators of dimension.

We provide normal approximation error bounds for sums of the form $\sum_x \xi_x$, indexed by the points $x$ of a Poisson process (not necessarily homogeneous) in the unit $d$-cube, with each term $\xi_x$ determined by the configuration of Poisson points near to $x$ in some sense. We consider […]

We consider Markovian models on graphs with local dynamics. We show that, under suitable conditions, such Markov chains exhibit both rapid convergence to equilibrium and strong concentration of measure in the stationary distribution. We illustrate our results with applications to some known chains […]

This extended abstract is dedicated to the analysis of the height of non-plane unlabelled rooted binary trees. The height of such a tree chosen uniformly among those of size $n$ is proved to have a limiting theta distribution, both in a central and local sense. Moderate as well as large deviations […]

The register function for binary trees is the minimal number of extra registers required to evaluate the tree. This concept is also known as Horton-Strahler numbers. We extend this definition to lattice paths, built from steps $\pm 1$, without positivity restriction. Exact expressions are derived […]

We develop a combinatorial structure to serve as model of random real world networks. Starting with plane oriented recursive trees we substitute the nodes by more complex graphs. In such a way we obtain graphs having a global tree-like structure while locally looking clustered. This fits with […]

We prove that for each $k \geq 0$, the probability that a root vertex in a random planar graph has degree $k$ tends to a computable constant $d_k$, and moreover that $\sum_k d_k =1$. The proof uses the tools developed by Gimènez and Noy in their solution to the problem of the asymptotic enumeration […]

We consider a component of the word statistics known as clump; starting from a finite set of words, clumps are maximal overlapping sets of these occurrences. This object has first been studied by Schbath with the aim of counting the number of occurrences of words in random texts. Later work with […]

We study the number of encryptions necessary to revoke a set of users in the complete subtree scheme (CST) and the subset-difference scheme (SD). These are well-known tree based broadcast encryption schemes. Park and Blake in: Journal of Discrete Algorithms, vol. 4, 2006, pp. 215―238, give the mean […]

Severini and Mansour introduced $\textit{square polygons}$, as graphical representations of $\textit{square permutations}$, that is, permutations such that all entries are records (left or right, minimum or maximum), and they obtained a nice formula for their number. In this paper we give a […]

Polynomial bounds and tail estimates are derived for additive random recursive sequences, which typically arise as functionals of recursive structures, of random trees, or in recursive algorithms. In particular they arise as parameters of divide and conquer type algorithms. We mainly focuss on […]

Sampling from a random discrete distribution induced by a 'stick-breaking' process is considered. Under a moment condition, it is shown that the asymptotics of the sequence of occupancy numbers, and of the small-parts counts (singletons, doubletons, etc) can be read off from a limiting model […]

Continuing the line of research initiated in Iksanov and Möhle (2008) and Negadajlov (2008) we investigate the asymptotic (as $n \to \infty$) behaviour of $V_n$ the number of zero increments before the absorption in a random walk with the barrier $n$. In particular, when the step of the unrestricted […]

This paper makes use of the recently introduced technique of $\gamma$-operators to evaluate the Hankel determinant with binomial coefficient entries $a_k = (3 k)! / (2k)! k!$. We actually evaluate the determinant of a class of polynomials $a_k(x)$ having this binomial coefficient as constant term. […]

We study the number of records in random split trees on $n$ randomly labelled vertices. Equivalently the number of random cuttings required to eliminate an arbitrary random split tree can be studied. After normalization the distributions are shown to be asymptotically $1$-stable. This work is a […]

The Recoil Growth algorithm, proposed in 1999 by Consta $\textit{et al.}$, is one of the most efficient algorithm available in the literature to sample from a multi-polymer system. Such problems are closely related to the generation of self-avoiding paths. In this paper, we study a variant of the […]

The paper deals with the problem of catching the elephants in the Internet traffic. The aim is to investigate an algorithm proposed by Azzana based on a multistage Bloom filter, with a refreshment mechanism (called $\textit{shift}$ in the present paper), able to treat on-line a huge amount of flows […]

For the class of haploid exchangeable population models with non-overlapping generations and population size $N$ it is shown that, as $N$ tends to infinity, convergence of the time-scaled ancestral process to Kingman's coalescent and convergence in distribution of the scaled times back to the most […]

If the interest of stochastic L-systems for plant growth simulation and visualization is broadly acknowledged, their full mathematical potential has not been taken advantage of. In this article, we show how to link stochastic L-systems to multitype branching processes, in order to characterize the […]

We give a functional limit law for the normalized profile of random plane-oriented recursive trees. The proof uses martingale convergence theorems in discrete and continuous-time. This complements results of Hwang (2007).

This paper is concerned with the analysis of the worst case behavior of Hopcroft's algorithm for minimizing deterministic finite state automata. We extend a result of Castiglione, Restivo and Sciortino. They show that Hopcroft's algorithm has a worst case behavior for the automata recognizing […]

It is well known that a planar map is bipartite if and only if all its faces have even degree (what we call an even map). In this paper, we show that rooted even maps of positive genus $g$ chosen uniformly at random are bipartite with probability tending to $4^{−g}$ when their size goes to infinity. […]

Let $Z_n,n=0,1,\ldots,$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s),\ldots,$ and let $S_0=0$, $S_k=X_1+ \ldots +X_k,k \geq 1$, be the associated random walk with $X_i=\log f_{i-1}^{\prime}(1), \tau (m,n)$ be the […]

We investigate a multi-type Galton-Watson process in a random environment generated by a sequence of independent identically distributed random variables. Suppose that the associated random walk constructed by the logarithms of the Perron roots of the reproduction mean matrices has negative mean and […]

We consider random walks on the set of all words over a finite alphabet such that in each step only the last two letters of the current word may be modified and only one letter may be adjoined or deleted. We assume that the transition probabilities depend only on the last two letters of the current […]

Gantert and Müller (2006) proved that a critical branching random walk (BRW) on the integer lattice is transient by analyzing this problem within the more general framework of branching Markov chains and making use of Lyapunov functions. The main purpose of this note is to show how the same result […]

Let $P_k(f)$ denote the density of and/or trees defining a boolean function $f$ within the set of and/or trees with fixed number of variables $k$. We prove that there exists constant $B_f$ such that $P_k(f) \sim B_f \cdot k^{-L(f)-1}$ when $k \to \infty$, where $L(f)$ denote the complexity of $f$ […]

In this paper we focus on the intuitionistic propositional logic with one propositional variable. More precisely we consider the standard fragment $\{ \to ,\vee ,\bot \}$ of this logic and compute the proportion of tautologies among all formulas. It turns out that this proportion is different from […]

Within the language of propositional formulae built on implication and a finite number of variables $k$, we analyze the set of formulae which are classical tautologies but not intuitionistic (we call such formulae - Peirce's formulae). We construct the large family of so called simple Peirce's […]

Boltzmann random generation applies to well-deﬁned systems of recursive combinatorial equations. It relies on oracles giving values of the enumeration generating series inside their disk of convergence. We show that the combinatorial systems translate into numerical iteration schemes that provide […]

We introduce a recursive algorithm generating random trees, which we identify as skeletons of a continuous, stable tree. We deduce a representation of a fragmentation process on these trees.

According to the by now established theory developed in order to define a Laplacian or ― equivalently ― a Brownian motion on a nested fractal, one has to solve certain renormalization problems. In this paper, we present a Markov chain algorithm solving the problem for certain classes of simple […]

Two processes of random fragmentation of an interval are investigated. For each of them, there is a splitting probability at each step of the fragmentation process whose overall effect is to stabilize the global number of splitting events. More precisely, we consider two models. In the first model, […]

We asymptotically analyse the volume random variables of general, symmetric and cyclically symmetric plane partitions fitting inside a box. We consider the respective symmetry class equipped with the uniform distribution. We also prove area limit laws for two ensembles of Ferrers diagrams. Most […]

We exploit a bijection between plane recursive trees and Stirling permutations; this yields the equivalence of some results previously proven separately by different methods for the two types of objects as well as some new results. We also prove results on the joint distribution of the numbers of […]

The Mabinogion urn is a simple model of the spread of influences amongst versatile populations. It corresponds to a non-standard urn with balls of two colours: each time a ball is drawn, it causes a ball of the other kind to switch its colour. The process stops once unanimity has been reached. This […]

The factorization theorem by King, Tollu and Toumazet gives four different reduction formulae of Littlewood-Richardson coefficients. One of them is the classical reduction formula of the first type while others are new. Moreover, the classical reduction formula of the second type is not a special […]

We give a combinatorial proof of the factorization formula of modified Macdonald polynomials $\widetilde{H}_{\lambda} (X;q,t)$ when $t$ is specialized at a primitive root of unity. Our proof is restricted to the special case where $\lambda$ is a two columns partition. We mainly use the combinatorial […]

It is well-known, and was first established by Knuth in 1969, that the number of 321-avoiding permutations is equal to that of 132-avoiding permutations. In the literature one can find many subsequent bijective proofs confirming this fact. It turns out that some of the published bijections can […]

We give a compact expression for the number of factorizations of any permutation into a minimal number of transpositions of the form $(1 i)$. Our result generalizes earlier work of Pak ($\textit{Reduced decompositions of permutations in terms of star transpositions, generalized catalan numbers and […]

Pak and Vallejo have defined fundamental symmetry map as any Young tableau bijection for the commutativity of the Littlewood-Richardson coefficients $c_{\mu,\nu}^{\lambda}=c_{\nu, \mu}^{\lambda}$. They have considered four fundamental symmetry maps and conjectured that they are all equivalent […]

We introduce non-commutative analogs of $k$-Schur functions and prove that their images by the non-commutative nabla operator $\blacktriangledown$ is ribbon Schur positive, up to a global sign. Inspired by these results, we define new filtrations of the usual $(q,t)$-Catalan polynomials by computing […]

We show that the set of cluster monomials for the cluster algebra of type $D_4$ contains a basis of the $\mathbb{Z}$-module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. We also show that the transition matrices relating this cluster basis to the natural and the dual canonical bases are unitriangular and […]

We construct an $n$-dimensional polytope whose boundary complex is compressed and whose face numbers for any pulling triangulation are the coefficients of the powers of $(x-1)/2$ in the $n$-th Legendre polynomial. We show that the non-central Delannoy numbers count all faces in the lexicographic […]

We prove a collection of conjectures due to Abuzzahab-Korson-Li-Meyer, Reiner, and White regarding the cyclic sieving phenomenon as it applies to jeu-de-taquin promotion on rectangular tableaux. To do this, we use Kazhdan-Lusztig theory and a characterization of the dual canonical basis of […]

We prove that a $q$-deformation $\mathfrak{D}_k(\mathbb{X};q)$ of the powers of the discriminant is equal, up to a normalization, to a specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expansion of $\mathfrak{D}_k(\mathbb{X};q)$ on different bases of […]

Let $(W,S)$ be an arbitrary Coxeter system. For each sequence $\omega =(\omega_1,\omega_2,\ldots) \in S^{\ast}$ in the generators we define a partial order― called the $\omega \mathsf{-sorting order}$ ―on the set of group elements $W_{\omega} \subseteq W$ that occur as finite subwords of $\omega$ . […]

We show that the category of representations of the Euclidean group $E(2)$ is equivalent to the category of representations of the preprojective algebra of the quiver of type $A_{\infty}$. Furthermore, we consider the moduli space of $E(2)$-modules along with a set of generators. We show that these […]

In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in most cluster algebras of finite type. In particular, we provide a family of graphs such that a weighted enumeration of their perfect matchings encodes the numerator of the associated Laurent […]

We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a […]

We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we […]

We describe a combinatorial model for the $q$-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these $q$-analogs. We give a weight preserving bijective […]

For each infinite series of the classical Lie groups of type $B$, $C$ or $D$, we introduce a family of polynomials parametrized by the elements of the corresponding Weyl group of infinite rank. These polynomials represent the Schubert classes in the equivariant cohomology of the corresponding flag […]

We consider the graded Hopf algebra $NCSym$ of symmetric functions with non-commutative variables, which is analogous to the algebra $Sym$ of the ordinary symmetric functions in commutative variables. We give formulaes for the product and coproduct on some of the analogues of the $Sym$ bases and […]

A $\textit{grid shape}$ is a set of boxes chosen from a square grid; any Young diagram is an example. This paper considers a notion of pattern-avoidance for $0-1$ fillings of grid shapes, which generalizes permutation pattern-avoidance. A filling avoids some patterns if none of its sub-shapes equal […]

We present a simple bijective proof of the fact that matchings of $[2n]$ with N nestings are equinumerous to $\textit{partially directed self avoiding walks}$ confined to the symmetric wedge defined by $y= \pm x$, with $n$ east steps and $N$ north steps. A very similar construction connects […]

A combinatorial construction of Gelfand models for the symmetric group, for its Iwahori-Hecke algebra and for the hyperoctahedral group is presented.

Schützenberger's theorem for the ordinary RSK correspondence naturally extends to Chen et. al's correspondence for matchings and partitions. Thus the counting of bilaterally symmetric $k$-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for […]

In this paper we construct a bijection for partitioned 3-cacti that gives raise to a new formula for enumeration of factorizations of the long cycle into three permutations with given number of cycles.

We give another construction of a permutation tableau from its corresponding permutation and construct a permutation-preserving bijection between $1$-hinge and $0$-hinge tableaux. We also consider certain alignment and crossing statistics on permutation tableaux that have previously been shown to be […]

Let $G$ be a perfectly oriented planar graph. Postnikov's boundary measurement construction provides a rational map from the set of positive weight functions on the edges of $G$ onto the appropriate totally nonnegative Grassmann cell. We establish an explicit combinatorial formula for Postnikov's […]

We study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give several explicit formulas for the Möbius function. The last formula is expressed in terms of the permanent of a matrix and is given by a bijective proof.

The sandpile group of a graph $G$ is an abelian group whose order is the number of spanning trees of $G$. We find the decomposition of the sandpile group into cyclic subgroups when $G$ is a regular tree with the leaves are collapsed to a single vertex. This result can be used to understand the […]

For $m$ a non-negative integer and $G$ a Coxeter group, we denote by $\mathbf{QI_m}(G)$ the ring of $m$-quasiinvariants of $G$, as defined by Chalykh, Feigin, and Veselov. These form a nested series of rings, with $\mathbf{QI_0}(G)$ the whole polynomial ring, and the limit $\mathbf{QI}_{\infty}(G)$ […]

The Hecke group algebra $\operatorname{H} \mathring{W}$ of a finite Coxeter group $\mathring{W}$, as introduced by the first and last author, is obtained from $\mathring{W}$ by gluing appropriately its $0$-Hecke algebra and its group algebra. In this paper, we give an equivalent alternative […]

A theorem of Goulden and Jackson which gives interesting formulae for character immanants also implies MacMahon's Master Theorem. We quantize Goulden and Jackson's theorem to give formulae for quantum character immanants in such a way as to obtain a known quantization of MacMahon's Master Theorem […]

Kronecker coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the symmetric group $S_n$. They can also be interpreted as the coefficients of the expansion of the internal product of two Schur polynomials in the basis of Schur polynomials. We […]

Using growth diagrams, we define a skew domino Schensted algorithm which is a domino analogue of the "Robinson-Schensted algorithm for skew tableaux'' due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for […]

We study two enumeration problems for $\textit{up-down alternating trees}$, i.e., rooted labelled trees $T$, where the labels $ v_1, v_2, v_3, \ldots$ on every path starting at the root of $T$ satisfy $v_1 < v_2 > v_3 < v_4 > \cdots$. First we consider various tree families of interest in […]

We extend the Billera―Ehrenborg―Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky's fundamental results on the number of regions.

For any polynomial representation of the special linear group, the nodes of the corresponding crystal may be indexed by semi-standard Young tableaux. Under certain conditions, the standard Young tableaux occur, and do so with weight $0$. Standard Young tableaux also parametrize the vertices of dual […]

A self-avoiding walk on the square lattice is $\textit{prudent}$, if it never takes a step towards a vertex it has already visited. Préa was the first to address the enumeration of these walks, in 1997. For 4 natural classes of prudent walks, he wrote a system of recurrence relations, involving the […]

This article describes new bijective links on planar maps, which are of incremental complexity and present original features. The first two bijections $\Phi _{1,2}$ are correspondences on oriented planar maps. They can be considered as variations on the classical edge-poset construction for bipolar […]

Kerov's polynomials give irreducible character values of the symmetric group in term of the free cumulants of the associated Young diagram. Using a combinatorial approach with maps, we prove in this article a positivity result on their coefficients, which extends a conjecture of S. Kerov.

We present a generalisation of the famous Selberg integral. This confirms the $\mathfrak{g}=A_n$ case of a conjecture by Mukhin and Varchenko concerning the existence of a Selberg integral for each simple Lie algebra $\mathfrak{g}$.

Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the […]

In this paper we propose a new bijection between permutation tableaux and permutations. This bijection shows how natural statistics on the tableaux are equidistributed to classical statistics on permutations: descents, RL-minima and pattern enumerations. We then use the bijection, and a related […]

In this paper we explore the combinatorics of the non-negative part $(G/P)_{\geq 0}$ of a cominuscule Grassmannian. For each such Grassmannian we define Le-diagrams ― certain fillings of generalized Young diagrams which are in bijection with the cells of $(G/P)_{\geq 0}$. In the classical cases, we […]

Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras $\bigoplus_{n \geq 0}A_n$ can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from […]

Orbits generated by discrete-time dynamical systems have some interesting combinatorial properties. In this paper we address the existence of forbidden order patterns when the dynamics is generated by piecewise monotone maps on one-dimensional closed intervals. This means that the points belonging […]

In this paper we study the tangent spaces of the smooth nested Hilbert scheme $\mathrm{Hilb}^{n,n-1}(\mathbb{A}^2)$ of points in the plane, and give a general formula for computing the Euler characteristic of a $\mathbb{T}^2$-equivariant locally free sheaf on $\mathrm{Hilb}^{n,n-1}(\mathbb{A}^2)$. […]

We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed involutions. New general equivalences of patterns are given which prove Jaggard's conjectures concerning involutions in the symmetric group avoiding certain patterns of length 5 and 6. In this […]

A permutomino of size n is a polyomino determined by particular pairs $(\pi_1, \pi_2)$ of permutations of length $n$, such that $\pi_1(i) \neq \pi_2(i)$, for $1 \leq i \leq n$. In this paper we consider the class of convex permutominoes which are symmetric with respect to the diagonal $x = y$. We […]

In type $A$, the $q,t$-Fuß-Catalan numbers $\mathrm{Cat}_n^{(m)}(q,t)$ can be defined as a bigraded Hilbert series of a module associated to the symmetric group $\mathcal{S}_n$. We generalize this construction to (finite) complex reflection groups and exhibit some nice conjectured algebraic and […]

In this paper, we study flag structures of matroid base polytopes. We describe faces of matroid base polytopes in terms of matroid data, and give conditions for hyperplane splits of matroid base polytopes. Also, we show how the $\textbf{cd}$-index of a polytope can be expressed when a polytope is […]

In this paper, we study the distribution of distances in random Apollonian network structures (RANS), a family of graphs which has a one-to-one correspondence with planar ternary trees. Using multivariate generating functions that express all information on distances, and singularity analysis for […]

A $k$-triangulation of a convex polygon is a maximal set of diagonals so that no $k+1$ of them mutually cross. $k$-triangulations have received attention in recent literature, with motivation coming from several interpretations of them. We present a new way of looking at $k$-triangulations, where […]

We define two classes of multiple basic hypergeometric series $V_{k,t}(a,q)$ and $W_{k,t}(a,q)$ which generalize multiple series studied by Agarwal, Andrews, and Bressoud. We show how to interpret these series as generating functions for special restricted lattice paths and for $n$-color […]

We present new conjectures on the distribution of link patterns for fully-packed loop (FPL) configurations that are invariant, or almost invariant, under a quarter turn rotation, extending previous conjectures of Razumov and Stroganov and of de Gier. We prove a special case, showing that the link […]

The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in […]

We study graph weights (i.e., graph invariants) which arise naturally in Mayer's theory and Ree-Hoover's theory of virial expansions in the context of a non-ideal gas. We give special attention to the Second Mayer weight $w_M(c)$ and the Ree-Hoover weight $w_{RH}(c)$ of a $2$-connected graph $c$ […]

In this paper we solve the known V.A. Liskovets problem (1996) on the enumeration of orientable coverings over a non-orientable manifold with an arbitrary finitely generated fundamental group. As an application we obtain general formulas for the number of chiral and reflexible coverings over the […]

We prove the conjecture of A. Postnikov that ($\mathrm{A}$) the number of regions in the inversion hyperplane arrangement associated with a permutation $w \in \mathfrak{S}_n$ is at most the number of elements below $w$ in the Bruhat order, and ($\mathrm{B}$) that equality holds if and only if $w$ […]

Motivated by the theory of operads, we introduce new combinatorial objects, called shrubs, that generalize forests of rooted trees. We show that the species of shrubs is isomorphic to the species of series-parallel posets.

In this paper we give an alternate combinatorial description of the "$(\ell,0)$-Carter partitions''. Our main theorem is the equivalence of our combinatoric and the one introduced by James and Mathas ($\textit{A q-analogue of the Jantzen-Schaper theorem}$). The condition of being an […]

Since singletons are the connected sets, the species $X$ of singletons can be considered as the combinatorial logarithm of the species $E(X)$ of finite sets. In a previous work, we introduced the (rational) species $\widehat{X}$ of pseudo-singletons as the analytical logarithm of the species of […]

Let $\Gamma$ be a simplicial complex with $n$ vertices, and let $\Delta (\Gamma)$ be either its exterior algebraic shifted complex or its symmetric algebraic shifted complex. If $\Gamma$ is a simplicial sphere, then it is known that (a) $\Delta (\Gamma)$ is pure and (b) $h$-vector of $\Gamma$ is […]

Permutation tableaux are new objects that were introduced by Postnikov in the context of enumeration of the totally positive Grassmannian cells. They are known to be in bijection with permutations and recently, they have been connected to PASEP model used in statistical physics. Properties of […]

In this work we analyze a class of diminishing 2×2 Pólya-Eggenberger urn models with ball replacement matrix M given by $M= \binom{ -a \,0}{c -d}, a,d∈\mathbb{N}$ and $c∈\mathbb{N} _0$. We obtain limit laws for this class of 2×2 urns by giving estimates for the moments of the considered random […]

The minimal length of a plateau (a sequence of horizontal steps, preceded by an up- and followed by a down-step) in a Motzkin path is known to be of interest in the study of secondary structures which in turn appear in mathematical biology. We will treat this and the related parametersmaximal […]

Random Apollonian networks have been recently introduced for representing real graphs. In this paper we study a modified version: random Apollonian network structures (RANS), which preserve the interesting properties of real graphs and can be handled with powerful tools of random generation. We […]

One-sided variations on path length in a trie (a sort of digital trees) are investigated: They include imbalance factors, climbing under different strategies, and key sampling. For the imbalance factor accurate asymptotics for the mean are derived for a randomly chosen key in the trie via […]

We consider samples of n geometric random variables $(Γ _1, Γ _2, \dots Γ _n)$ where $\mathbb{P}\{Γ _j=i\}=pq^{i-1}$, for $1≤j ≤n$, with $p+q=1$. The parameter we study is the position of the first occurrence of the maximum value in a such a sample. We derive a probability generating function for […]

Upper and lower bounds for the tail probabilities of the Wiener index of random binary search trees are given. For upper bounds the moment generating function of the vector of Wiener index and internal path length is estimated. For the lower bounds a tree class with sufficiently large probability […]

We study a random walk with positive drift in the first quadrant of the plane. For a given connected region $\mathcal{C}$ of the first quadrant, we analyze the number of paths contained in $\mathcal{C}$ and the first exit time from $\mathcal{C}$. In our case, region $\mathcal{C}$ is bounded by two […]

In our previous work [paper1], we derived an asymptotic expression for the probability that a random decomposable combinatorial structure of size n in the \exp -\log class has a given restricted pattern. In this paper, under similar conditions, we provide the probability that a random decomposable […]

This paper deals with some very simple interacting particle systems, \emphelementary cellular automata, in the fully asynchronous dynamics: at each time step, a cell is randomly picked, and updated. When the initial configuration is simple, we describe the asymptotic behavior of the random walks […]

It is well known that many distributions that arise in the analysis of algorithms have an asymptotically fluctuating behaviour in the sense that we do not have 'full' convergence, but only convergence along suitable subsequences as the size of the input to the algorithm tends to infinity. We are […]

Let $P(z)$ and $Q(y)$ be polynomials of the same degree $k \geq 1$ in the complex variables $z$ and $y$, respectively. In this extended abstract we study the non-linear functional equation $P(z)=Q(y(z))$, where $y(z)$ is restricted to be analytic in a neighborhood of $z=0$. We provide sufficient […]

We consider the following stochastic bin packing process: the items arrive continuously over time to a server and are packed into bins of unit size according to an online algorithm. The unpacked items form a queue. The items have random sizes with symmetric distribution. Our first contribution […]

Let $\sum_{\mathbf{n} \in \mathbb{N}^d} F_{\mathbf{n}} \mathbf{x}^{\mathbf{n}}$ be a multivariate generating function that converges in a neighborhood of the origin of $\mathbb{C}^d$. We present a new, multivariate method for computing the asymptotics of the diagonal coefficients […]

We derive asymptotics for the moments of the height distribution of watermelons with $p$ branches with wall. This generalises a famous result by de Bruijn, Knuth and Rice on the average height of planted plane trees, and a result by Fulmek on the average height of watermelons with two branches.

We analyze nearest neighbor one-dimensional quantum random walks with arbitrary unitary coin-flip matrices. Using a multivariate generating function analysis we give a simplified proof of a known phenomenon, namely that the walk has linear speed rather than the diffusive behavior observed in […]

Let $\sigma$ be a random permutation chosen uniformly over the symmetric group $\mathfrak{S}_n$. We study a new "process-valued" statistic of $\sigma$, which appears in the domain of computational biology to construct tests of similarity between ordered lists of genes. More precisely, we consider […]

We study the average behavior of variants of the UNION-FIND algorithm to maintain partitions of a finite set under the random spanning tree model. By applying the method of moments we can characterize the limiting distribution of the total costs of the algorithms "Quick Find Weighted'' and "Quick […]

We characterize the asymptotics of heights of the trees of de la Briandais and the ternary search trees (TST) of Bentley and Sedgewick. Our proof is based on a new analysis of the structure of tries that distinguishes the bulk of the tree, called the $\textit{core}$, and the long trees hanging down […]

An $f(n)$ $\textit{dominance bound}$ on a heuristic for some problem is a guarantee that the heuristic always returns a solution not worse than at least $f(n)$ solutions. In this paper, we analyze several heuristics for $\textit{Vertex Cover}$, $\textit{Set Cover}$, and $\textit{Knapsack}$ for […]

Finding a satisfying assignment for a $k$-CNF formula $(k \geq 3)$, assuming such exists, is a notoriously hard problem. In this work we consider the uniform distribution over satisfiable $k$-CNF formulas with a linear number of clauses (clause-variable ratio greater than some constant). We […]

For a large number of random Boolean constraint satisfaction problems, such as random $k$-SAT, we study how the number of locally maximal solutions evolves when constraints are added. We give the exponential order of the expected number of these distinguished solutions and prove it depends on the […]

In 1999, Chan proposed an algorithm to solve a given optimization problem: express the solution as the minimum of the solutions of several subproblems and apply the classical randomized algorithm for finding the minimum of $r$ numbers. If the decision versions of the subproblems are easier to solve […]

In this paper, we study a restricted version of the position restricted pattern matching problem introduced and studied by Mäkinen and Navarro [Position-Restricted Substring Searching, LATIN 2006]. In the problem handled in this paper, we are interested in those occurrences of the pattern that lies […]

In 1992, A. Ehrenfeucht and J. Mycielski defined a seemingly pseudorandom binary sequence which has since been termed the EM-sequence. The balance conjecture for the EM-sequence, still open, is the conjecture that the sequence of EM-sequence initial segment averages converges to $1/2$. In this […]

In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the […]

We propose and analyze an algorithm to approximate distribution functions and densities of perpetuities. Our algorithm refines an earlier approach based on iterating discretized versions of the fixed point equation that defines the perpetuity. We significantly reduce the complexity of the earlier […]

This extended abstract describes and analyses a near-optimal probabilistic algorithm, HYPERLOGLOG, dedicated to estimating the number of \emphdistinct elements (the cardinality) of very large data ensembles. Using an auxiliary memory of m units (typically, "short bytes''), HYPERLOGLOG performs a […]

Message passing algorithms are popular in many combinatorial optimization problems. For example, experimental results show that \emphsurvey propagation (a certain message passing algorithm) is effective in finding proper k-colorings of random graphs in the near-threshold regime. In 1962 Gallager […]

We answer an old question: what are possible growth rates of the expected number of vector-maximal points in a uniform sample from a polytope.

We study the space requirements of a sorting algorithm where only items that at the end will be adjacent are kept together. This is equivalent to the following combinatorial problem: Consider a string of fixed length n that starts as a string of 0's, and then evolves by changing each 0 to 1, with […]

The Gaussian algorithm for lattice reduction in dimension 2 is precisely analysed under a class of realistic probabilistic models, which are of interest when applying the Gauss algorithm "inside'' the LLL algorithm. The proofs deal with the underlying dynamical systems and transfer operators. All […]

We study the Hamming distance from polynomials to classes of polynomials that share certain properties of irreducible polynomials. The results give insight into whether or not irreducible polynomials can be effectively modeled by these more general classes of polynomials. For example, we prove that […]

A two-parameter family of random permutations of $[n]$ is introduced, with distribution conditionally uniform given the counts of upper and lower records. The family interpolates between two versions of Ewens' distribution. A distinguished role of the family is determined by the fact that every […]

This work is devoted to the understanding of properties of random graphs from graph classes with structural constraints. We propose a method that is based on the analysis of the behaviour of Boltzmann sampler algorithms, and may be used to obtain precise estimates for the maximum degree and maximum […]

We consider words with letters from a $q-ary$ alphabet $\mathcal{A}$. The kth subword complexity of a word $w ∈\mathcal{A}^*$ is the number of distinct subwords of length $k$ that appear as contiguous subwords of $w$. We analyze subword complexity from both combinatorial and probabilistic […]

For a skip list variant, introduced by Cho and Sahni, we analyse what is the analogue of horizontal plus vertical search cost in the original skip list model. While the average in Pugh's original version behaves like $Q \log_Q n$, with $Q = \frac{1}{q}$ a parameter, it is here given by $(Q+1) \log_Q […]

We study a multi-type branching process in i.i.d. random environment. Assuming that the associated random walk satisfies the Doney-Spitzer condition, we find the asymptotics of the survival probability at time $n$ as $n \to \infty$.

In this paper we consider the class of $\textit{permutominoes}$, i.e. a special class of polyominoes which are determined by a pair of permutations having the same size. We give a characterization of the permutations associated with convex permutominoes, and then we enumerate various classes of […]

For a class of random partitions of an infinite set a de Finetti-type representation is derived, and in one special case a central limit theorem for the number of blocks is shown.

Let $S$ be a set of $d$-dimensional row vectors with entries in a $q$-ary alphabet. A matrix $M$ with entries in the same $q$-ary alphabet is $S$-constrained if every set of $d$ columns of $M$ contains as a submatrix a copy of the vectors in $S$, up to permutation. For a given set $S$ of […]

This paper tackles the enumeration and asymptotics of the area below directed lattice paths (walks on $\mathbb{N}$ with a finite set of jumps). It is a nice surprise (obtained via the "kernel method'') that the generating functions of the moments of the area are algebraic functions, expressible as […]

Grown simple families of increasing trees are a subclass of increasing trees, which can be constructed by an insertion process. Three such tree families contained in the grown simple families of increasing trees are of particular interest: $\textit{recursive trees}$, $\textit{plane-oriented […]

An example is given which shows that, in general, conditioned Galton-Watson trees cannot be obtained by adding vertices one by one, while this can be done in some important but special cases, as shown by Luczak and Winkler.

We analyse the distribution of the root pattern of randomly grown multidimensional point quadtrees. In particular, exact, recursive and asymptotic formulas are given for the expected arity of the root.

A classification strategy based on $\delta$-patterns is developed via a combinatorial optimization problem related with the maximal clique generation problem on a graph. The proposed solution uses the cross entropy method and has the advantage to be particularly suitable for large datasets. This […]

The aim of this paper is to extend the analysis of Cuckoo Hashing of Devroye and Morin in 2003. In particular we make several asymptotic results much more precise. We show, that the probability that the construction of a hash table succeeds, is asymptotically $1-c(\varepsilon)/m+O(1/m^2)$ for some […]

We present a combinatorial approach of the variance for the number of maxima in hypercubes. This leads to an explicit expression, in terms of Multiple Zeta Values, of the dominant term in the asymptotic expansion of this variance.Moreover, we get an algorithm to compute this expansion, and show that […]

We present a software package that guesses formulas for sequences of, for example, rational numbers or rational functions, given the first few terms. Thereby we extend and complement Christian Krattenthaler’s program $\mathtt{Rate}$ and the relevant parts of Bruno Salvy and Paul Zimmermann’s […]

Consider random graph with $N+ 1$ vertices as follows. The degrees of vertices $1,2,\ldots, N$ are the independent identically distributed random variables $\xi_1, \xi_2, \ldots , \xi_N$ with distribution $\mathbf{P}\{\xi_1 \geq k\}=k^{− \tau},$ $k= 1,2,\ldots,$ $\tau \in (1,2)$,(1) and the vertex […]

We investigate the probability that a sample $\Gamma=(\Gamma_1,\Gamma_2,\ldots,\Gamma_n)$ of independent, identically distributed random variables with a geometric distribution has no elements occurring exactly $j$ times, where $j$ belongs to a specified finite $\textit{'forbidden set'}$ $A$ of […]

We consider growing random recursive trees in random environment, in which at each step a new vertex is attached according to a probability distribution that assigns the tree vertices masses proportional to their random weights.The main aim of the paper is to study the asymptotic behavior of the […]

Giroire has recently proposed an algorithm which returns the $\textit{approximate}$ number of distinct elements in a large sequence of words, under strong constraints coming from the analysis of large data bases. His estimation is based on statistical properties of uniform random variables in […]

In this paper we study a variant of the Sand Piles Model, where the evolution rule consists of the falling down of one grain to a random column and an avalanche to reach a stable configuration. We prove that the infinite set of all stable configurations have a lattice structure which is a sublattice […]

We show that the number of spanning trees in the finite Sierpiński graph of level $n$ is given by $\sqrt[4]{\frac{3}{20}} (\frac{5}{3})^{-n/2} (\sqrt[4]{540})^{3^n}$. The proof proceeds in two steps: First, we show that the number of spanning trees and two further quantities satisfy a […]

We consider extended binary trees and study the common right and left depth of leaf $j$, where the leaves are labelled from left to right by $0, 1, \ldots, n$, and the common right and left external pathlength of binary trees of size $n$. Under the random tree model, i.e., the Catalan model, we […]

Random sequences from alphabet $\{1, \ldots,r\}$ are examined where repeated letters are allowed. Binary search trees are formed from these, and the average left-going depth of the first $1$ is found. Next, the right-going depth of the first $r$ is examined, and finally a merge (or 'shuffle') […]

A tree is called $k$-decomposable if it has a spanning forest whose components are all of size $k$. Analogously, a tree is called $T$-decomposable for a fixed tree $T$ if it has a spanning forest whose components are all isomorphic to $T$. In this paper, we use a generating functions approach to […]

We investigate class of well-poised basic hypergeometric series $\tilde{J}_{k,i}(a;x;q)$, interpreting these series as generating functions for overpartitions defined by multiplicity conditions. We also show how to interpret the $\tilde{J}_{k,i}(a;1;q)$ as generating functions for overpartitions […]

We present a bijection between the set $\mathcal{A}_n$ of deterministic and accessible automata with $n$ states on a $k$-letters alphabet and some diagrams, which can themselves be represented as partitions of the set $[\![ 1..(kn+1) ]\!]$ into $n$ non-empty parts. This combinatorial construction […]

The aim of this paper is counting the probability that a random modal formula is a tautology. We examine $\{ \to,\Box \}$ fragment of two modal logics $\mathbf{S5}$ and $\mathbf{S4}$ over the language with one propositional variable. Any modal formula written in such a language may be interpreted as […]

Given an integer $m \geq 1$, let $\| \cdot \|$ be a norm in $\mathbb{R}^{m+1}$ and let $\mathbb{S}_+^m$ denote the set of points $\mathbf{d}=(d_0,\ldots,d_m)$ in $\mathbb{R}^{m+1}$ with nonnegative coordinates and such that $\| \mathbf{d} \|=1$. Consider for each $1 \leq j \leq m$ a function […]

In computational biology, a large amount of problems, such as pattern discovery, deals with the comparison of several sequences (of nucleotides, proteins or genes for instance). Very often, algorithms that address this problem use score functions that reflect a notion of similarity between the […]

In this paper, we discuss the problem of estimating the number of "elephants'' in a stream of IP packets. First, the problem is formulated in the context of multisets. Next, we explore some of the theoretical space complexity of this problem, and it is shown that it cannot be solved with less than […]

We explore a similarity between the $n$ by $n$ random assignment problem and the random shortest path problem on the complete graph on $n+1$ vertices. This similarity is a consequence of the proof of the Parisi formula for the assignment problem given by C. Nair, B. Prabhakar and M. Sharma in 2003. […]

We show a new invariance principle for the radius and other functionals of a class of conditioned `Boltzmann-Gibbs'-distributed random planar maps. It improves over the more restrictive case of bipartite maps that was discussed in Marckert and Miermont (2006). As in the latter paper, we make use of […]

We establish a fundamental isomorphism between discrete-time balanced urn processes and certain ordinary differential systems, which are nonlinear, autonomous, and of a simple monomial form. As a consequence, all balanced urn processes with balls of two colours are proved to be analytically solvable […]

We determine the spectral dimensions of a variety of ensembles of infinite trees. Common to the ensembles considered is that sample trees have a distinguished infinite spine at whose vertices branches can be attached according to some probability distribution. In particular, we consider a family of […]

An ordered partition of $[n]:=\{1,2,\ldots, n\}$ is a sequence of disjoint and nonempty subsets, called blocks, whose union is $[n]$. The aim of this paper is to compute some generating functions of ordered partitions by the transfer-matrix method. In particular, we prove several conjectures of […]

A composition of a positive integer $n$ is a finite sequence of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+ \cdots +a_k=n$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more at position $i$, if $a_{i+1}\geq a_i+d$. We study the average […]

We solve a problem by V. I. Arnold dealing with "how random" modular arithmetic progressions can be. After making precise how Arnold proposes to measure the randomness of a modular sequence, we show that this measure of randomness takes a simplified form in the case of arithmetic progressions. This […]

A result of Foata and Schützenberger states that two statistics on permutations, the number of inversions and the inverse major index, have the same distribution on a descent class. We give a multivariate generalization of this property: the sorted vectors of the Lehmer code, of the inverse majcode, […]

Building on theoretical insights and rich experimental data of our preprints, we present here new theoretical and experimental results in three interrelated approaches to the Collatz problem and its generalizations: \emphalgorithmic decidability, random behavior, and Diophantine representation of […]

Let $X_1,\ldots,X_{n\choose 2}$ be independent identically distributed weights for the edges of $K_n$. If $X_i \neq X_j$ for$ i \neq j$, then there exists a unique minimum weight spanning tree $T$ of $K_n$ with these edge weights. We show that the expected diameter of $T$ is $Θ (n^{1/3})$. This […]

We show that a family of generalized meta-Fibonacci sequences arise when counting the number of leaves at the largest level in certain infinite sequences of k-ary trees and restricted compositions of an integer. For this family of generalized meta-Fibonacci sequences and two families of related […]

In this article, we study a variant of the coupon collector's problem introducing a notion of a \emphbonus. Suppose that there are c different types of coupons made up of bonus coupons and ordinary coupons, and that a collector gets every coupon with probability 1/c each day. Moreover suppose that […]

A leader election algorithm is an elimination process that divides recursively into tow subgroups an initial group of n items, eliminates one subgroup and continues the procedure until a subgroup is of size 1. In this paper the biased case is analyzed. We are interested in the cost of the algorithm […]

The purpose of this survey is to present recent results concerning concentration properties of extremal parameters of random discrete structures. A main emphasis is placed on the height and maximum degree of several kinds of random trees. We also provide exponential tail estimates for the height […]

We consider the number of nodes in the levels of unlabeled rooted random trees and show that the joint distribution of several level sizes (where the level number is scaled by $\sqrt{n}$) weakly converges to the distribution of the local time of a Brownian excursion evaluated at the times […]

We introduce a new class of algorithms to estimate the cardinality of very large multisets using constant memory and doing only one pass on the data. It is based on order statistics rather that on bit patterns in binary representations of numbers. We analyse three families of estimators. They attain […]

We show an asymptotic estimate for the number of labelled planar graphs on $n$ vertices. We also find limit laws for the number of edges, the number of connected components, and other parameters in random planar graphs.

We consider two probability distributions on Boolean functions defined in terms of their representations by $\texttt{and/or}$ trees (or formulas). The relationships between them, and connections with the complexity of the function, are studied. New and improved bounds on these probabilities are […]

We consider simply generated trees, where the nodes are equipped with weakly monotone labellings with elements of $\{1, 2, \ldots, r\}$, for $r$ fixed. These tree families were introduced in Prodinger and Urbanek (1983) and studied further in Kirschenhofer (1984), Blieberger (1987), and Morris and […]

We give several examples for Poisson approximation of quantities of interest in the analysis of algorithms: the distribution of node depth in a binary search tree, the distribution of the number of losers in an election algorithm and the discounted profile of a binary search tree. A simple and […]

We consider a sequence of $n$ geometric random variables and interpret the outcome as an urn model. For a given parameter $m$, we treat several parameters like what is the largest urn containing at least (or exactly) $m$ balls, or how many urns contain at least $m$ balls, etc. Many of these […]

Let $\mathcal{T}_n$ denote the set of unrooted unlabeled trees of size $n$ and let $\mathcal{M}$ be a particular (finite) tree. Assuming that every tree of $\mathcal{T}_n$ is equally likely, it is shown that the number of occurrences $X_n$ of $\mathcal{M}$ as an induced sub-tree satisfies […]

Renewed interest in caching techniques stems from their application to improving the performance of the World Wide Web, where storing popular documents in proxy caches closer to end-users can significantly reduce the document download latency and overall network congestion. Rules used to update the […]

We summarize several limit results for the profile of random plane-oriented recursive trees. These include the limit distribution of the normalized profile, asymptotic bimodality of the variance, asymptotic approximations of the expected width and the correlation coefficients of two level sizes. We […]

This extended abstract introduces a new algorithm for the random generation of labelled planar graphs. Its principles rely on Boltzmann samplers as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a judicious use of rejection, a new combinatorial […]

On modern computers memory access patterns and cache utilization are as important, if not more important, than operation count in obtaining high-performance implementations of algorithms. In this work, the memory behavior of a large family of algorithms for computing the Walsh-Hadamard transform, an […]

The problem of finding the convex hull of the intersection points of random lines was studied in Devroye and Toussaint, 1993 and Langerman, Golin and Steiger, 2002, and algorithms with expected linear time were found. We improve the previous results of the model in Devroye and Toussaint, 1993 by […]

The Additive-Increase-Multiplicative Decrease (AIMD) algorithm is an effective technique for controlling competitive access to a shared resource. Let $N$ be the number of users and let $x_i(t)$ be the amount of the resource in possession of the $i$-th user. The allocations $x_i(t)$ increase linearly […]

Consider a set $S$ of points in the plane in convex position, where each point has an integer label from $\{0,1,\ldots,n-1\}$. This naturally induces a labeling of the edges: each edge $(i,j)$ is assigned label $i+j$, modulo $n$. We propose the algorithms for finding large non―crossing […]

As a sequel to [arch04], the position of the maximum in a geometrically distributed sample is investigated. Samples of length n are considered, where the maximum is required to be in the first d positions. The probability that the maximum occurs in the first $d$ positions is sought for $d$ dependent […]

New cache-oblivious and cache-aware algorithms for simple dynamic programming based on Valiant's context-free language recognition algorithm are designed, implemented, analyzed, and empirically evaluated with timing studies and cache simulations. The studies show that for large inputs the […]

Ordinary generating series of multiple harmonic sums admit a full singular expansion in the basis of functions $\{(1-z)^α \log^β (1-z)\}_{α ∈ℤ, β ∈ℕ}$, near the singularity $z=1$. A constructive proof of this result is given, and, by combinatoric aspects, an explicit evaluation of Taylor […]

Using recent results on singularity analysis for Hadamard products of generating functions, we obtain the limiting distributions for additive functionals on $m$-ary search trees on $n$ keys with toll sequence $(i) n^α$ with $α ≥ 0 (α =0$ and $α =1$ correspond roughly to the space requirement and […]

In this report, we prove that under a Markovian model of order one, the average depth of suffix trees of index n is asymptotically similar to the average depth of tries (a.k.a. digital trees) built on n independent strings. This leads to an asymptotic behavior of $(\log{n})/h + C$ for the average of […]

We study a gcd algorithm directed by Least Significant Bits, the so―called LSB algorithm, and provide a precise average―case analysis of its main parameters [number of iterations, number of shifts, etc...]. This analysis is based on a precise study of the dynamical systems which provide a continuous […]

We investigate distances between pairs of nodes in digital trees (digital search trees (DST), and tries). By analytic techniques, such as the Mellin Transform and poissonization, we describe a program to determine the moments of these distances. The program is illustrated on the mean and variance. […]

In this paper, we are concerned with random sampling of an n dimensional integral point on an $(n-1)$ dimensional simplex according to a multivariate discrete distribution. We employ sampling via Markov chain and propose two "hit-and-run'' chains, one is for approximate sampling and the other is for […]

In this paper we show that the CSMA IEEE 802.11 protocol (Wifi) provides packet access delays asymptotics in power law. This very feature allows us to specify optimal routing via polynomial algorithm while the general case is NP-hard.

For the tree algorithm introduced by [Cap79] and [TsMi78] let $L_N$ denote the expected collision resolution time given the collision multiplicity $N$. If $L(z)$ stands for the Poisson transform of $L_N$, then we show that $L_N - L(N) ≃ 1.29·10^-4 \cos (2 π \log _2 N + 0.698)$.

It has become customary to prove binomial identities by means of the method for automated proofs as developed by Petkovšek, Wilf and Zeilberger. In this paper, we wish to emphasize the role of "human'' and constructive proofs in contrast with the somewhat lazy attitude of relaying on "automated'' […]

A tight upper bound of the size of the antidictionary of a binary string is presented. And it is shown that the size of the antidictionary of a binary sting is always smaller than or equal to that of its dictionary. Moreover, an algorithm to reconstruct its dictionary from its antidictionary is […]

The aim of this paper is threefold: firstly, to explain a certain segment of ordinals in terms which are familiar to the analytic combinatorics community, secondly to state a great many of associated problems on resulting count functions and thirdly, to provide some weak asymptotic for the resulting […]

We show that data compression methods (or universal codes) can be applied for hypotheses testing in a framework of classical mathematical statistics. Namely, we describe tests, which are based on data compression methods, for the three following problems: i) identity testing, ii) testing for […]

Given a set $\mathcal{S}$ with real-valued members, associated with each member one of two possible types; a multi-partitioning of $\mathcal{S}$ is a sequence of the members of $\mathcal{S}$ such that if $x,y \in \mathcal{S}$ have different types and $x < y$, $x$ precedes $y$ in the […]

We consider words or strings of characters $a_1a_2a_3 \ldots a_n$ of length $n$, where the letters $a_i \in \mathbb{Z}$ are independently generated with a geometric probability $\mathbb{P} \{ X=k \} = pq^{k-1}$ where $p+q=1$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of […]

We consider the $\textit{master ring problem (MRP)}$ which often arises in optical network design. Given a network which consists of a collection of interconnected rings $R_1, \ldots, R_K$, with $n_1, \ldots, n_K$ distinct nodes, respectively, we need to find an ordering of the nodes in the network […]

This article deals with Pólya generalized urn models with constant balance in any dimension. It is based on the algebraic approach of Pouyanne (2005) and classifies urns having "large'' eigenvalues in five classes, depending on their almost sure asymptotics. These classes are described in terms of […]

For a given matrix of size $n \times m$ over a finite alphabet $\mathcal{A}$, a bicluster is a submatrix composed of selected columns and rows satisfying a certain property. In microarrays analysis one searches for largest biclusters in which selected rows constitute the same string (pattern); in […]

This paper presents the first distributional analysis of a linear probing hashing scheme with buckets of size $b$. The exact distribution of the cost of successful searches for a $b \alpha$ -full table is obtained, and moments and asymptotic results are derived. With the use of the Poisson transform […]

In a suffix tree, the multiplicity matching parameter (MMP) $M_n$ is the number of leaves in the subtree rooted at the branching point of the $(n+1)$st insertion. Equivalently, the MMP is the number of pointers into the database in the Lempel-Ziv '77 data compression algorithm. We prove that the MMP […]

An $\textit{anticoloring}$ of a graph is a coloring of some of the vertices, such that no two adjacent vertices are colored in distinct colors. We deal with the anticoloring problem with two colors for planar graphs, and, using Lipton and Tarjan's separation algorithm, provide an algorithm with some […]

The machinery of Riordan arrays has been used recently by several authors. We show how meromorphic singularity analysis can be used to provide uniform bivariate asymptotic expansions, in the central regime, for a generalization of these arrays. We show how to do this systematically, for various […]

We build upon previous work of Fayolle (2004) and Park and Szpankowski (2005) to study asymptotically the average internal profile of tries and of suffix-trees. The binary keys and the strings are built from a Bernoulli source $(p,q)$. We consider the average number $p_{k,\mathcal{P}}(\nu)$ of […]

Let $D$ be a finite set of integers. The distance graph $G(D)$ has the set of integers as vertices and two vertices at distance $d ∈D$ are adjacent in $G(D)$. A conjecture of Xuding Zhu states that if the chromatic number of $G (D)$ achieves its maximum value $|D|+1$ then the graph has a clique of […]

We consider the maps $f:\mathbb{F}_{2^n} →\mathbb{F}_{2^n}$ with the property that the set $\{ f(x+a)+ f(x): x ∈F_{2^n}\}$ is a hyperplane or a complement of hyperplane for every $a ∈\mathbb{F}_{2^n}^*$. The main goal of the talk is to show that almost all maps $f(x) = Σ_{b ∈B}c_b(x+b)^d$, where $B […]

Let $H=(V,E)$ be a hypergraph and let $k≥ 1$ and$ l≥ 0$ be fixed integers. Let $\mathcal{M}$ be the matroid with ground-set $E s.t. a$ set $F⊆E$ is independent if and only if each $X⊆V$ with $k|X|-l≥ 0$ spans at most $k|X|-l$ hyperedges of $F$. We prove that if $H$ is dense enough, then […]

A multi-graph $G$ on n vertices is $(k,l)$-sparse if every subset of $n'≤n$ vertices spans at most $kn'-l$ edges, $0 ≤l < 2k$. $G$ is tight if, in addition, it has exactly $kn - l$ edges. We characterize $(k,l)$-sparse graphs via a family of simple, elegant and efficient algorithms called the […]

Grone and Merris [GM94] conjectured that the Laplacian spectrum of a graph is majorized by its conjugate vertex degree sequence. We prove that this conjecture holds for a class of graphs including trees. We also show that this conjecture and its generalization to graphs with Dirichlet boundary […]

The windy postman problem is the NP-hard problem of finding the minimum cost of a tour traversing all edges of an undirected graph, where the cost of traversal of an edge depends on the direction. Given an undirected graph $G$, we consider the polyhedron $O(G)$ induced by the linear programming […]

A hypergraph $\mathscr{H}$ is $τ$ -critical if $τ (\mathscr{H}-E) < τ (\mathscr{H})$ for every edge $E ∈\mathscr{H}$, where $τ (\mathscr{H})$ denotes the transversal number of $\mathscr{H}$. It can be shown that a connected $τ$ -critical hypergraph $\mathscr{H}$ has at least $2τ (\mathscr{H})-1$ […]

A graph is called (matching-)immune if it has no edge cut that is also a matching. Farley and Proskurowski proved that for all immune graphs $G=(V,E)$, $|E|≥\lceil 3(|V|-1)/2\rceil$ , and constructed a large class of immune graphs that attain this lower bound for every value of $|V(G)|$, called […]

In this paper we present an algorithmic approach to packing A-paths. It is regarded as a generalization of Edmonds' matching algorithm, however there is the significant difference that here we do not build up any kind of alternating tree. Instead we use the so-called 3-way lemma, which either […]

Rhombus tilings are tilings of zonotopes with rhombohedra. We study a class of \emphlexicographic rhombus tilings of zonotopes, which are deduced from higher Bruhat orders relaxing the unitarity condition. Precisely, we fix a sequence $(v_1, v_2,\dots, v_D)$ of vectors of $ℝ^d$ and a sequence $(m_1, […]

It was conjectured by Reed [reed98conjecture] that for any graph $G$, the graph's chromatic number $χ (G)$ is bounded above by $\lceil Δ (G) +1 + ω (G) / 2\rceil$ , where $Δ (G)$ and $ω (G)$ are the maximum degree and clique number of $G$, respectively. In this paper we prove that this bound holds […]

For any graph $G$, the $k$-improper chromatic number $χ ^k(G)$ is the smallest number of colours used in a colouring of $G$ such that each colour class induces a subgraph of maximum degree $k$. We investigate the ratio of the $k$-improper chromatic number to the clique number for unit disk graphs […]

Let $K_ℓ^-$ denote the graph obtained from $K_ℓ$ by deleting one edge. We show that for every $γ >0$ and every integer $ℓ≥4$ there exists an integer $n_0=n_0(γ ,ℓ)$ such that every graph $G$ whose order $n≥n_0$ is divisible by $ℓ$ and whose minimum degree is at least $(\frac{ℓ^2-3ℓ+1}{/ ℓ(ℓ-2)}+γ […]

The deep theorem of Mader concerning the number of internally disjoint H-paths is a very powerfull tool. Nevertheless its use is very difficult, because one has to deal with a very reach family of separators. This paper shows several ways to strengthen Mader's theorem by certain additional […]

Due to some intractability considerations, reasonable formulation of necessary and sufficient conditions for decomposability of a general multigraph G into a fixed connected multigraph H, is probably not feasible if the underlying simple graph of H has three or more edges. We study the case where H […]

Barabási and Albert [1] suggested modeling scale-free networks by the following random graph process: one node is added at a time and is connected to an earlier node chosen with probability proportional to its degree. A recent empirical study of Newman [5] demonstrates existence of […]

A class of graphs $\mathcal{C}$ ordered by the homomorphism relation is universal if every countable partial order can be embedded in $\mathcal{C}$. It was shown in [ZH] that the class $\mathcal{C_k}$ of $k$-colorable graphs, for any fixed $k≥3$, induces a universal partial order. In [HN1], a […]

We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation guarantee known so far for these problems has ratio $3/2 + ɛ$, a result that follows […]

We are looking for the maximum number of subsets of an n-element set not containing 4 distinct subsets satisfying $A ⊂B, C ⊂B, C ⊂D$. It is proved that this number is at least the number of the $\lfloor \frac{n }{ 2}\rfloor$ -element sets times $1+\frac{2}{ n}$, on the other hand an upper bound is […]

We study infinite limits of graphs generated by the duplication model for biological networks. We prove that with probability 1, the sole nontrivial connected component of the limits is unique up to isomorphism. We describe certain infinite deterministic graphs which arise naturally from the model. […]

A strong stable set in a graph $G$ is a stable set that contains a vertex of every maximal clique of $G$. A Meyniel obstruction is an odd circuit with at least five vertices and at most one chord. Given a graph $G$ and a vertex $v$ of $G$, we give a polytime algorithm to find either a strong stable […]

We introduce a notion of a $\textit{broken circuit}$ and an $\textit{NBC complex}$ for an (abstract) convex geometry. Based on these definitions, we shall show the analogues of the Whitney-Rota's formula and Brylawski's decomposition theorem for broken circuit complexes on matroids for convex […]

In our paper we consider the $P_3$-packing problem in subcubic graphs of different connectivity, improving earlier results of Kelmans and Mubayi. We show that there exists a $P_3$-packing of at least $\lceil 3n/4\rceil$ vertices in any connected subcubic graph of order $n>5$ and minimum vertex […]

A graph $G=(V,E)$ is said to be $\textit{magic}$ if there exists an integer labeling $f: V \cup E \to [1, |V \cup E|]$ such that $f(x)+f(y)+f(xy)$ is constant for all edges $xy \in E$. Enomoto, Masuda and Nakamigawa proved that there are magic graphs of order at most $3n^2+o(n^2)$ which contain a […]

A vertex coloring of a graph $G$ is $k \textit{-nonrepetitive}$ if one cannot find a periodic sequence with $k$ blocks on any simple path of $G$. The minimum number of colors needed for such coloring is denoted by $\pi _k(G)$ . This idea combines graph colorings with Thue sequences introduced at the […]

A double $2$-$(v,k,2 \lambda)$ design is a design which is reducible into two $2$-$(v,k,\lambda)$ designs. It is called uniquely reducible if it has, up to equivalence, only one reduction. We present properties of uniquely reducible double designs which show that their total number can be determined […]

An $L(2,1)$-labeling of a graph is a mapping $c:V(G) \to \{0,\ldots,K\}$ such that the labels assigned to neighboring vertices differ by at least $2$ and the labels of vertices at distance two are different. Griggs and Yeh [SIAM J. Discrete Math. 5 (1992), 586―595] conjectured that every graph $G$ […]

Let $\mathcal{F}\subseteq 2^{[n]}$ be a intersecting Sperner family (i.e. $A \not\subset B, A \cap B \neq \emptyset$ for all $A,B \in \mathcal{F}$) with profile vector $(f_i)_{i=0 \ldots n}$ (i.e. $f_i=|\mathcal{F} \cap \binom{[n]}{i}|$). We present quadratic inequalities in the $f_i$'s which […]

Let $G$ be an $n$-vertex $m$-edge graph with weighted vertices. A pair of vertex sets $A,B \subseteq V(G)$ is a $\frac{2}{3} - \textit{separation}$ of $\textit{order}$ $|A \cap B|$ if $A \cup B = V(G)$, there is no edge between $A \backslash B$ and $B \backslash A$, and both $A \backslash B$ and $B […]

In the maximum constraint satisfaction problem ($\mathrm{Max \; CSP}$), one is given a finite collection of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign values from a given finite domain to the variables so as to maximise the number (or the total […]

We consider permutations of $1,2,...,n^2$ whose longest monotone subsequence is of length $n$ and are therefore extremal for the Erdős-Szekeres Theorem. Such permutations correspond via the Robinson-Schensted correspondence to pairs of square $n \times n$ Young tableaux. We show that all the bumping […]

In a weak positional game, two players, Maker and Breaker, alternately claim vertices of a hypergraph until either Maker wins by getting a complete edge or all vertices are taken without this happening, a Breaker win. For the class of almost-disjoint hypergraphs of rank three (edges with up to three […]

Let $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in […]

We study the notion of hypertree-width of hypergraphs. We prove that, up to a constant factor, hypertree-width is the same as a number of other hypergraph invariants that resemble graph invariants such as bramble-number, branch-width, linkedness, and the minimum number of cops required to win […]

Let $T_t$ denote the $t$-threshold function on the $n$-cube: $T_t(x) = 1$ if $|\{i : x_i=1\}| \geq t$, and $0$ otherwise. Define the distance between Boolean functions $g$ and $h$, $d(g,h)$, to be the number of points on which $g$ and $h$ disagree. We consider the following extremal problem: Over a […]

Let $f_m(a,b,c,d)$ denote the maximum size of a family $\mathcal{F}$ of subsets of an $m$-element set for which there is no pair of subsets $A,B \in \mathcal{F}$ with $|A \cap B| \geq a$, $|\bar{A} \cap B| \geq b$, $|A \cap \bar{B}| \geq c$, and $|\bar{A} \cap \bar{B}| \geq d$. By symmetry we can […]

In this note we prove Sterboul's conjecture, that provides a sufficient condition for the bicolorability of hypergraphs.

Using a fixed set of colors $C$, Ann and Ben color the edges of a graph $G$ so that no monochromatic cycle may appear. Ann wins if all edges of $G$ have been colored, while Ben wins if completing a coloring is not possible. The minimum size of $C$ for which Ann has a winning strategy is called the […]

We identify the class of directed one-trees and prove the so-called min-max theorem for them. As a consequence, we establish the equality of directed tree-width and a new measure, $d$-width, on this class of graphs. In addition, we prove a property of all directed one-trees and use this property to […]

An edge in a drawing of a graph is called $\textit{even}$ if it intersects every other edge of the graph an even number of times. Pach and Tóth proved that a graph can always be redrawn such that its even edges are not involved in any intersections. We give a new, and significantly simpler, proof of […]

In this paper we concern ourself with the question, whether there exists a fix-free code for a given sequence of codeword lengths. We focus mostly on results which shows the $\frac{3 }{ 4}$-conjecture for special kinds of lengths sequences.

The present paper connects sharpenings of Sauer's bound on forbidden configurations with color critical hypergraphs. We define a matrix to be \emphsimple if it is a $(0,1)-matrix$ with no repeated columns. Let $F$ be $a k× l (0,1)-matrix$ (the forbidden configuration). Assume $A$ is an $m× n$ simple […]

The minor crossing number of a graph $G$, $rmmcr(G)$, is defined as the minimum crossing number of all graphs that contain $G$ as a minor. We present some basic properties of this new minor-monotone graph invariant. We give estimates on mmcr for some important graph families using the topological […]

A proper vertex coloring of a non oriented graph $G=(V,E)$ is linear if the graph induced by the vertices of two color classes is a forest of paths. A graph $G$ is $L$-list colorable if for a given list assignment $L=\{L(v): v∈V\}$, there exists a proper coloring $c$ of $G$ such that $c(v)∈L(v)$ for […]

Before this work, at least 762 inequivalent Hadamard matrices of order 36 were known. We found 7238 Hadamard matrices of order 36 and 522 inequivalent [72,36,12] double-even self-dual codes which are obtained from all 2-(35,17,8) designs with an automorphism of order 3 and 2 fixed points and blocks.

We analyze the one-dimensional version of Jim Propp's $P$-machine, a simple deterministic process that simulates a random walk on $\mathbb{Z}$. The "output'' of the machine is astonishingly close to the expected behavior of a random walk, even on long intervals of space and time.

We consider a new type of extremal hypergraph problem: given an $r$-graph $\mathcal{F}$ and an integer $k≥2$ determine the maximum number of edges in an $\mathcal{F}$-free, $k$-colourable $r$-graph on $n$ vertices. Our motivation for studying such problems is that it allows us to give a new upper […]

In this paper we improve the best known bound for the $L(p,1)$-labelling of graphs with given maximal degree.

Let $\mathcal{P}$ be a collection of nontrivial simple paths in a tree $T$. The edge intersection graph of $\mathcal{P}$, denoted by EPT($\mathcal{P}$), has vertex set that corresponds to the members of $\mathcal{P}$, and two vertices are joined by an edge if the corresponding members of […]

A random geometric graph $G_n$ is obtained as follows. We take $X_1, X_2, \ldots, X_n ∈\mathbb{R}^d$ at random (i.i.d. according to some probability distribution ν on $\mathbb{R}^d$). For $i ≠j$ we join $X_i$ and $X_j$ by an edge if $║X_i - X_j ║< r(n)$. We study the properties of the chromatic […]

Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number $k$ is at most $k2^{k-1}$. We prove that this bound is tight for $k \geq 3$. We also show that some improper and/or acyclic colorings are $\mathrm{NP}$-complete on a class $\mathcal{C}$ of planar […]

Given a family $\{u_i,v_i\}_{i=1}^k$ of pairwise distinct vertices of the $n$-dimensional hypercube $Q_n$ such that the distance of $u_i$ and $v_i$ is odd and $k \leq n-1$, there exists a family $\{P_i\}_{i=1}^k$ of paths such that $u_i$ and $v_i$ are the endvertices of $P_i$ and […]

A family $\mathcal{P} = \{\pi_1, \ldots , \pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is $\textit{completely}$ $k$-$\textit{scrambling}$ [Spencer, 1972; Füredi, 1996] if for any distinct $k$ points $x_1,\ldots,x_k \in [n]$, permutations $\pi_i$'s in $\mathcal{P}$ produce all $k!$ possible […]

Hamiltionian chain is a generalisation of hamiltonian cycles for hypergraphs. Among the several possible ways of generalisations this is probably the most strong one, it requires the strongest structure. Since there are many interesting questions about hamiltonian cycles in graphs, we can try to […]

We show that any graph of maximum degree at most $3$ has a two-coloring, such that one color-class is an independent set while the other color induces monochromatic components of order at most $189$. On the other hand for any constant $C$ we exhibit a $4$-regular graph, such that the deletion of any […]

We improve the lower bounds on Klarner's constant, which describes the exponential growth rate of the number of polyominoes (connected subsets of grid squares) with a given number of squares. We achieve this by analyzing polyominoes on a different surface, a so-called $\textit{twisted cylinder}$ by […]

The local chromatic number of a graph, introduced by Erdős et al., is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk would like to survey some of our recent results on this parameter. We give a lower bound for […]

We establish sufficient conditions for a toric lattice $T_{m,n}$ to be Hamiltonian. Also, we give some asymptotics for the number of Hamiltonian cycles in $T_{m,n}$.

We enumerate walks in the plane $\mathbb{R}^2$, with steps East and North, that stop as soon as they reach a given line; these walks are counted according to the distance of the line to the origin, and we study the asymptotic behavior when the line has a fixed slope and moves away from the origin. […]

An acyclic coloring of a graph $G$ is a coloring of its vertices such that: (i) no two neighbors in $G$ are assigned the same color and (ii) no bicolored cycle can exist in $G$. The acyclic chromatic number of $G$ is the least number of colors necessary to acyclically color $G$, and is denoted by […]

We show that the number $g_n$ of labelled series-parallel graphs on $n$ vertices is asymptotically $g_n \sim g \cdot n^{-5/2} \gamma^n n!$, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random series-parallel graphs is asymptotically normal with linear […]

Thomassen conjectured that every $4$-connected line graph is hamiltonian. A vertex cut $X$ of $G$ is essential if $G-X$ has at least two nontrivial components. We prove that every $3$-connected, essentially $11$-connected line graph is hamiltonian. Using Ryjáček's line graph closure, it follows that […]

We find the formula for the cardinality of maximal set of integers from $[1,\ldots,n]$ which does not contain $k+1$ pairwise coprimes and has divisors from a specified set of primes. This formula is defined by the set of multiples of the generating set, which does not depend on $n$.

We introduce and study balanced online graph avoidance games on the random graph process. The game is played by a player we call Painter. Edges of the complete graph with $n$ vertices are revealed two at a time in a random order. In each move, Painter immediately and irrevocably decides on a […]

The Road Coloring Conjecture is an old and classical conjecture e posed in Adler and Weiss (1970); Adler et al. (1977). Let $G$ be a strongly connected digraph with uniform out-degree $2$. The Road Coloring Conjecture states that, under a natural (necessary) condition that $G$ is "aperiodic'', the […]

Given positive integers $q$, $n$ and $d$, denote by $A_q(n,d)$ the maximum size of a $q$-ary code of length $n$ and minimum distance $d$. The famous Gilbert-Varshamov bound asserts that $A_q(n,d+1) \geq q^n / V_q(n,d)$, where $V_q(n,d)=\sum_{i=0}^d \binom{n}{i}(q-1)^i$ is the volume of a $q$-ary […]

It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: […]

We define an infinite permutation as a sequence of reals taken up to the order, or, equivalently, as a linear ordering of a finite or countable set. Then we introduce and characterize periodic permutations; surprisingly, for each period $t$ there is an infinite number of distinct $t$-periodic […]

For convex bodies $K$ with $\mathcal{C}^2$ boundary in $\mathbb{R}^d$, we provide results on the volume of random polytopes with vertices chosen along the boundary of $K$ which we call $\textit{random inscribing polytopes}$. In particular, we prove results concerning the variance and higher moments […]

It is proved that any graph of order $14n/3 + O(1)$ contains a family of n induced subgraphs of order $3$ such that they are vertex-disjoint and equivalent to each other.

We consider an extremal problem on labelled directed trees and applications to database theory. Among others, we will show explicit keysystems on an underlying set of size $n$, that cannot be represented by a database of less than $2^{n(1-c\cdot \log \log n / \log n)}$ rows.

Given $k$ natural numbers $\{a_1, \ldots ,a_k\} \subset \mathbb{N}$ with $1 \leq a_1 < a_2 < \ldots < a_k$ and $\mathrm{gcd} (a_1, \ldots ,a_k)=1$, let be $R(a_1, \ldots ,a_k) = \{ \lambda_1 a_1+ \cdots + \lambda_k a_k | \space \lambda_i \in \mathbb{N}, i=1 \div k\}$ and $\overline{R}(a_1, \ldots […]

For a hypergraph $\mathcal{H} = (V,\mathcal{E})$, its $d$―fold symmetric product is $\Delta^d \mathcal{H} = (V^d,\{ E^d | E \in \mathcal{E} \})$. We give several upper and lower bounds for the $c$-color discrepancy of such products. In particular, we show that the bound $\textrm{disc}(\Delta^d […]

We prove the existence of many complete graphs in almost all sufficiently dense partitions obtained by an application of Szemerédi's Regularity Lemma. More precisely, we consider the number of complete graphs $K_{\ell}$ on $\ell$ vertices in $\ell$-partite graphs where each partition class consists […]

We prove that every cubic bridgeless graph $G$ contains a $2$-factor which intersects all (minimal) edge-cuts of size $3$ or $4$. This generalizes an earlier result of the authors, namely that such a $2$-factor exists provided that $G$ is planar. As a further extension, we show that every graph […]

The generalized quadrangle $Q(4,q)$ arising from the parabolic quadric in $PG(4,q)$ always has an ovoid. It is not known whether a minimal blocking set of size smaller than $q^2 + q$ (which is not an ovoid) exists in $Q(4,q)$, $q$ odd. We present results on smallest blocking sets in $Q(4,q)$, $q$ […]

A kernel $N$ of a digraph $D$ is an independent set of vertices of $D$ such that for every $w \in V(D)-N$ there exists an arc from $w$ to $N$. If every induced subdigraph of $D$ has a kernel, $D$ is said to be a kernel perfect digraph. Minimal non-kernel perfect digraph are called critical kernel […]

In sequential games of traditional game theory, backward induction guarantees existence of Nash equilibrium by yielding a sub-game perfect equilibrium. But if payoffs range over a partially ordered set instead of the reals, then the backward induction predicate does no longer imply the Nash […]

Combinatory logic shows that bound variables can be eliminated without loss of expressiveness. It has applications both in the foundations of mathematics and in the implementation of functional programming languages. The original combinatory calculus corresponds to minimal implicative logic written […]

In this paper, we introduce the $λ μ ^{∧∨}$ - call-by-value calculus and we give a proof of the Church-Rosser property of this system. This proof is an adaptation of that of Andou (2003) which uses an extended parallel reduction method and complete development.

In this paper we prove that the question whether a language presented by a context free grammar has density, is undecidable. Moreover we show that there is no algorithm which, given two unambiguous context free grammars on input, decides whether the language defined by the first grammar has a […]

An on-line vertex coloring algorithm receives vertices of a graph in some externally determined order. Each new vertex is presented together with a set of the edges connecting it to the previously presented vertices. As a vertex is presented, the algorithm assigns it a color which cannot be changed […]

We analyze on-line chain partitioning problem and its variants as a two-person game. One person (Spoiler) builds an on-line poset presenting one point at time. The other one (Algorithm) assigns new point to a chain. Kierstead gave a strategy for Algorithm showing that width w posets can be on-line […]

We consider the problem of solving a system of polynomial equations over fixed algebra $A$ which we call MPolSat($A$). We restrict ourselves to unary algebras and give a partial characterization of complexity of MPolSat($A$). We isolate a preorder $P(A)$ to show that when $A$ has at most 3 elements […]

We examine how we can define several probability distributions on the set of Boolean functions on a fixed number of variables, starting from a representation of Boolean expressions by trees. Analytic tools give us a systematic way to prove the existence of probability distributions, the main […]

This paper is a survey on our recent results about number conserving cellular automata. First, we prove the linear time decidability of the property of number conservation. The sequel focuses on dynamical evolutions of number conserving cellular automata.

Equicontinuity classification is a popular classification of cellular automata based on their dynamical behavior. In this paper we prove that most of its classes are undecidable.

In an effort to continue the pioneering work of Harary in USA and Flament in France, we have undertaken to develop, on an experimental basis, a formalized theory of systems of beliefs and their modifications. This theory uses the psycho-social concepts of theories of cognitive consistency and of the […]

Classifying cellular automata in order to capture the notion of chaos algorithmically is a challenging problem than can be tackled in many ways.We here give a classification based on the computation of a macroscopic parameter, the $d$-spectrum, and show how our classifying scheme can be used to […]

The problem of counting monomer-dimer coverings of a lattice is a longstanding problem in statistical mechanics.It has only been exactly solved for the special case of dimer coverings in two dimensions ([Ka61], [TF61]). In earlier work, Stanley [St85] proved a reciprocity principle governing the […]

This paper provides a definition of a cellular line in a cellular array that is independent of the notion of a line in $\mathfrak{R}^2$.It also presents a way of determining whether or not a cell set is a cellular line.Brief statements about existence, uniqueness, and properties of cellular lines […]

ECO is a method for the enumeration of classes of combinatorial objects based on recursive constructions of such classes. In the first part of this paper we present a construction for the class of convex polyominoes based on the ECO method. Then we translate this construction into a succession rule. […]

In this paper we study the identity of the Abelian Sandpile Model on a rectangular lattice.This configuration can be computed with the burning algorithm, which, starting from the empty lattice, computes a sequence of configurations, the last of which is the identity.We extend this algorithm to an […]

We present a lattice gas technique for simulating molecular self-assembly of amphiphilic polymers in aqueous environments. Water molecules, hydrocarbons tail-groups and amphiphilic head-groups are explicitly represented on a three dimensional discrete lattice. Molecules move on the lattice […]

It is increasingly common to encounter time-varying random fields on networks (metabolic networks, sensor arrays, distributed computing, etc.).This paper considers the problem of optimal, nonlinear prediction of these fields, showing from an information-theoretic perspective that it is formally […]

This paper studies a conservative transformation defined on families of finite sets. It consists in removing one element from each set and adding a new set composed of the removed elements. This transformation is conservative in the sense that the union of all sets of the family always remains the […]

The Langton's ant is studied from the point of view of topological dynamical systems. A new approach which associate a subshift to the system is proposed.The transition rule is generalized to the family of bi-regular graphs $\Gamma(k,d)$ and the dependence of the dynamical system on $k$ and $d$ is […]

A polycube in dimension $d$ is a finite union of unit $d$-cubes whose vertices are on knots of the lattice $\mathbb{Z}^d$. We show that, for each family of polycubes $E$, there exists a finite set $F$ of bricks (parallelepiped rectangles) such that the bricks which can be tiled by $E$ are exactly […]

A class of finite discrete dynamical systems, called Sequential Dynamical Systems (SDSs), was introduced in [BR99] as a formal model for analyzing simulation systems. Here, we address the complexity of two basic problems and their generalizations for SDSs.Given an SDS $\mathcal{S}$ and a […]

We present the first experimental demonstration of intermittency in a granular medium. The medium consists of magnets embedded within spheres. These spheres are placed in a horizontal Petri dish where they roll by virtue of an alternating, homogenous magnetic field. Due to collisions with the wall, […]

We consider random paths on a square lattice which take a left or a right turn at every vertex. The possible turns are taken with equal probability, except at a vertex which has been visited before. In such case the vertex is left via the unused edge. When the initial edge is reached the path is […]

This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.

Words of fixed size q are commonly referred to as $q$-grams. We consider the problem of $q$-gram filtration, a method commonly used to speed upsequence comparison. We are interested in the statistics of the number of $q$-grams common to two random texts (where multiplicities are not counted) in the […]

We study some lattice paths related to the concept ofgenerating trees. When the matrix associated to this kind of trees is a Riordan array $D=(d(t),h(t))$, we are able to find the generating function for the total area below these paths expressed in terms of the functions $d(t)$ and $h(t)$.

We report on the asymptotic behaviour of a new model of random walk, we term the bindweed model, evolving in a random environment on an infinite multiplexed tree.The term multiplexed means that the model can be viewed as a nearest neighbours random walk on a tree whose vertices carry an internal […]

We consider themodel of broadcasting on a tree, with binary state space, on theinfinite rooted tree $T^k$ in which each node has $k$ children. The root of the tree takesa random value $0$ or $1$, and then each node passes a value independently to each of its children according to a $2x2$ transition […]

We study annihilating random walks on $\mathbb{Z}$ using techniques of P.W. Kasteleyn and $R$. Kenyonon perfect matchings of planar graphs. We obtain the asymptotic of the density of remaining particles and the partition function of the underlying statistical mechanical model.

Here we consider two parameters for random non-crossing trees: $\textit{(i)}$ the number of random cuts to destroy a size-$n$ non-crossing tree and $\textit{(ii)}$ the spanning subtree-size of $p$ randomly chosen nodes in a size-$n$ non-crossing tree. For both quantities, we are able to characterise […]

We review some recent results for a system of simple random walks on graphs, known as \emphfrog model. Also, we discuss several modifications of this model, and present a few open problems. A simple version of the frog model can be described as follows: There are active and sleeping particles living […]

The study of thermodynamic properties of classical spin models on infinite graphs naturally leads to consider the new combinatorial problems of random-walks and percolation on the average. Indeed, spinmodels with O(n) continuous symmetry present spontaneous magnetization only on transient on the […]

Given $\epsilon _i ∈ [0,1)$ for each $1 < i < n$, a particle performs the following random walk on $\{1,2,...,n\:\}$par If the particle is at $n$, it chooses a point uniformly at random (u.a.r.) from $\{1,...,n-1\}$. If the current position of the particle is $m (1 < m < n)$, with probability […]

A continuous time branching random walk on the lattice $\mathbb{Z}$ is considered in which individuals may produce children at the origin only. Assuming that the underlying random walk is symmetric and the offspring reproduction law is critical we prove a conditional limit theorem for the number of […]

The distribution function of the integral of the absolute value of the Brownian motion was expressed by L.Takács in the form of various series. In the present paper we determine the exact tail asymptotics of this distribution function. The proposed method is applicable to a variety of other Wiener […]

Understanding reflection is one of the key competences in graphic arts industry. A very popular approach was given by Kubelka andMunk [1931] who derived a simple relationship between the scattering and absorption coefficients and the overall reflectance. This paper presents an alternative approach […]

This paper presents necessary and sufficient conditions for on- and off-diagonal transition probability estimates for random walks on weighted graphs. On the integer lattice and on may fractal type graphs both the volume of a ball and the mean exit time from a ball are independent of the center, […]

We give an algorithm which constructs recursively a sequence of simple random walks on $\mathbb{Z}$ converging almost surely to a Brownian motion. One obtains by the same method conditional versions of the simple random walk converging to the excursion, the bridge, the meander or the normalized […]

We present the main results of a study for the existence of vacant and occupied unbounded connected components in a non-homogeneous Poisson blob process. The method used in the proofs is a multi-scale percolation comparison.

Consider a simple symmetric random walk on the line. The parts of the random walk between consecutive returns to the origin are called excursions. The heights and lengths of these excursions can be arranged in decreasing order. In this paper we give the exact and limiting distributions of these […]

A discrete space-filling curve provides a linear traversal/indexing of a multi-dimensional grid space.This paper presents an application of random walk to the study of inter-clustering of space-filling curves and an analytical study on the inter-clustering performances of 2-dimensional Hilbert and […]

Consider the single server queue with an infinite buffer and a FIFO discipline, either of type M/M/1 or Geom/Geom/1. Denote by $\mathcal{A}$ the arrival process and by $s$ the services. Assume the stability condition to be satisfied. Denote by $\mathcal{D}$ the departure process in equilibrium and […]

Benjamini, Lyons and Schramm (1999) considered properties of an infinite graph $G$, and the simple random walk on it, that are preserved by random perturbations. To address problems raised by those authors, we study simple random walk on the infinite percolation cluster in Cayley graphs of certain […]

Using a transfer matrix method, we present some results for directed lattice walkers in a horizontal strip of finite width. Some cases with two walkers in a small width are solved exactly, as are a couple of cases with vicious walkers in a small width; a conjecture is made for a case with three […]

The random stirring process is a natural random walk on the set of permutations of the vertex set of a graph. The cyclic time random walk is a self interacting random walk on a graph. It is influenced by its past, in that it is constrained to repeat its past choices if it returns to a previously […]

Our work is motivated by Bourque-Pevzner's simulation study of the effectiveness of the parsimony method in studying genome rearrangement, and leads to a surprising result about the random transposition walk in continuous time on the group of permutations on $n$ elements starting from the identity. […]

In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three […]

We study the phase transition in a random graph in which vertices and edges are added at constant rates. Two recent papers in Physical Review E by Callaway, Hopcroft, Kleinberg, Newman, and Strogatz, and Dorogovstev, Mendes, and Samukhin have computed the critical value of this model, shown that the […]

In these expository paper we describe the role of the rooted trees as a base for convenient tools in studies ofrandom matrices. Regarding the Wigner ensemble of random matrices, we represent main ingredients ofthis approach. Also werefine our previous result on the limit of the spectral norm of […]

Random compositions of integers are used as theoretical models for many applications. The degree of distinctness of a composition is a natural and important parameter. A possible measure of distinctness is the number $X$ of distinct parts (or components). This parameter has been analyzed in several […]

We obtain a new result concerning harmonic functions on infinite Cayley graphs $X$: either every nonconstant harmonic function has infinite radial variation in a certain uniform sense, or there is a nontrivial boundary with hyperbolic properties at infinity of $X$. In the latter case, relying on a […]

A new approach is used to determine the transient probability functions of Markov processes. This new solution method is a sample path counting approach and uses dual processes and randomization. The approach is illustrated by determining transient probability functions for a three-state Markov […]

We consider the motion of a discrete d-dimensional random surface interacting by exclusion with a rarefied wall. The dynamics is given by the serial harness process. We prove that the process delocalizes iff the mean number of visits to the set of sites where the wall is present by some random walk […]

Our model is a generalized linear programming relaxation of a much studied random K-SAT problem. Specifically, a set of linear constraints $C$ on $K$ variables is fixed. From a pool of $n$ variables, $K$ variables are chosen uniformly at random and a constraint is chosen from $C$ also uniformly at […]

The Chip Firing Game (CFG) is a discrete dynamical model used in physics, computer science and economics. It is known that the set of configurationsreachable from an initial configuration (this set is called the \textitconfiguration space) can be ordered as a lattice. We first present a structural […]

In this paper we construct from a cographic matroid M, a pure multicomplex whose degree sequence is the h―vector of the the matroid complex of M. This result provesa conjecture of Richard Stanley [Sta96] in the particular case of cographic matroids. We also prove that the multicomplexes constructed […]

In this paper, we use a simple discrete dynamical model to study partitions of integers into powers of another integer. We extend and generalize some known results about their enumeration and counting, and we give new structural results. In particular, we show that the set of these partitions can be […]

This paper provides a combinatorial approach for analyzing the performance of demodulation methods used in GSM. We also show how to obtain combinatorially a nice specialization of an important performance evaluation formula, using its connection with a classical bijection of Knuth between pairs of […]

The distribution for the number of searches needed to find k of n lost objects is expressed in terms of a refinement of the q-Eulerian polynomials, for which formulae are developed involving homogeneous symmetric polynomials. In the case when k=n and the find probability remains constant, relatively […]