We adapt a novel idea of Cichon's related to Approximate Counting to the present instance of Digital Search Trees, by using m (instead of one) such trees. We investigate the level polynomials, which have as coefficients the expected numbers of data on a given level, and the insertion costs. The […]

Section:
Analysis of Algorithms

Miller and Muller (1960) and independently Moon and Moser (1965) determined the maximum number of maximal independent sets in an n-vertex graph. We give a new and simple proof of this result.

Section:
Combinatorics

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that each 1-planar graph of minimum degree 6 contains a copy of 4-cycle with all vertices of degree at most 19. In addition, we also show that the complete graph K 4 […]

Section:
Combinatorics

What today we call digital search tree (DST) is Coffman and Eve's sequence tree introduced in 1970. A digital search tree is a binary tree whose ordering of nodes is based on the values of bits in the binary representation of a node's key. In fact, a digital search tree is a digital tree in which […]

Section:
Analysis of Algorithms

Every k-tree has book thickness at most k + 1, and this bound is best possible for all k \textgreater= 3. Vandenbussche et al. [SIAM J. Discrete Math., 2009] proved that every k-tree that has a smooth degree-3 tree decomposition with width k has book thickness at most k. We prove this result is best […]

Section:
Graph and Algorithms

Given a graph G = (V; E) and a weight function omega : E -\textgreater R, a coloring of vertices of G, induced by omega, is defined by chi(omega) (nu) = Sigma(e(sic)nu) omega (e) for all nu is an element of V. In this paper, we show that determining whether a particular graph has a weighting of the […]

Section:
Graph and Algorithms

We consider exchange of three intervals with permutation (3, 2, 1). The aim of this paper is to count the cardinality of the set 3iet (N) of all words of length N which appear as factors in infinite words coding such transformations. We use the strong relation of 3iet words and words coding exchange […]

Section:
Graph Theory

A 2-packing of a hypergraph H is a permutation sigma on V (H) such that if an edge e belongs to epsilon(H), then sigma(e) does not belong to epsilon(H). Let H be a hypergraph of order n which contains edges of cardinality at least 2 and at most n - 2. We prove that if H has at most n - 2 edges then […]

Section:
Graph and Algorithms

Recently, Deutsch and Elizalde studied the largest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let A (n,k) (t) denote the total weight of partitions on [n + 1] = \1,2,..., n + 1\ with the largest singleton \k + 1\. In this […]

Section:
Combinatorics

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper we study Nordhaus-Gaddum-type results for total domination. We examine the sum and product of γt(G1) and γt(G2) where G1 ⊕G2 = K(s,s), and γt is the total […]

Section:
Graph Theory

A proper vertex coloring of a graphGis called a star-coloring if there is no path on four vertices assigned to two colors. The graph G is L-star-colorable if for a given list assignment L there is a star-coloring c such that c(v) epsilon L(v). If G is L-star-colorable for any list assignment L with […]

Section:
Graph and Algorithms