In 1982, Opsut showed that the competition number of a line graph is at most two and gave a necessary and sufficient condition for the competition number of a line graph being one. In this paper, we generalize this result to the competition numbers of generalized line graphs, that is, we show that the competition number of a generalized line graph is at most two, and give necessary conditions and sufficient conditions for the competition number of a generalized line graph being one.

Section:
Graph Theory

The notion of graph powers is a well-studied topic in graph theory and its applications. In this paper, we investigate a bipartite analogue of graph powers, which we call bipartite powers of bigraphs. We show that the classes of bipartite permutation graphs and interval bigraphs are closed under taking bipartite power. We also show that the problem of recognizing bipartite powers is NP-complete in general.

Section:
Graph Theory

An edge colouring of a graph is said to be neighbour-distinguishing if any two adjacent vertices have distinct sets of colours of their incident edges. In this paper the list version of the problem of determining the minimum number of colours in a neighbour-distinguishing colouring of a given graph is considered.

Section:
Graph and Algorithms

We consider the property that in a random definite Horn formula of size-3 clauses over n variables, where every such clause is included with probability p, there is a pair of variables for which forward chaining produces all other variables. We show that with high probability the property does not hold for p <= 1/(11n ln n), and does hold for p >= (5 1n ln n)/(n ln n).

Section:
Combinatorics

This article deals with the Maximum Weight Stable Set (MWS) problem (and some other related NP-hard problems) and the class of P-6-free graphs. The complexity status of MWS is open for P-6-free graphs and is open even for P-5-free graphs (as a long standing open problem). Several results are known for MWS on subclasses of P-5-free: in particular, MWS can be solved for k-colorable P-5-free graphs in polynomial time for every k (depending on k) and more generally for (P-5, K-p)-free graphs […]

Section:
Graph and Algorithms

In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number […]

Section:
Graph Theory

We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.

Section:
Graph Theory

We consider random Cayley digraphs of order n with uniformly distributed generating sets of size k. Specifically, we are interested in the asymptotics of the probability that such a Cayley digraph has diameter two as n -> infinity and k = f(n), focusing on the functions f(n) = left perpendicularn(delta)right perpendicular and f(n) = left perpendicularcnright perpendicular. In both instances we show that this probability converges to 1 as n -> infinity for arbitrary fixed delta is an […]

Section:
Graph Theory

We study a leader election protocol that we call the Swedish leader election protocol. This name comes from a protocol presented by L. Bondesson, T. Nilsson, and G. Wikstrand (2007). The goal is to select one among n > 0 players, by proceeding through a number of rounds. If there is only one player remaining, the protocol stops and the player is declared the leader. Otherwise, all remaining players flip a biased coin; with probability q the player survives to the next round, with probability […]

Section:
Analysis of Algorithms

In the running time analysis of the algorithm Find and versions of it appear as limiting distributions solutions of stochastic fixed points equation of the form X D = Sigma(i) AiXi o Bi + C on the space D of cadlag functions. The distribution of the D-valued process X is invariant by some random linear affine transformation of space and random time change. We show the existence of solutions in some generality via the Weighted Branching Process. Finite exponential moments are connected to […]

Section:
Analysis of Algorithms

The relationship between graph coloring and the immersion order is considered. Vertex connectivity, edge connectivity and related issues are explored. It is shown that a t-chromatic graph G contains either an immersed Kt or an immersed t-chromatic subgraph that is both 4-vertex-connected and t-edge-connected. This gives supporting evidence of our conjecture that if G requires at least t colors, then Kt is immersed in G.

Section:
Graph Theory

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). A graph G is called fully subdivided if it is obtained from another graph H by replacing every edge by a path of length at least two. Fully subdivided graphs are known to be acyclically edge colorable using Δ+1 colors since they are properly […]

Section:
Graph Theory

A 4-valent first-kind Frobenius circulant graph is a connected Cayley graph DLn(1, h) = Cay(Zn, H) on the additive group of integers modulo n, where each prime factor of n is congruent to 1 modulo 4 and H = {[1], [h], −[1], −[h]} with h a solution to the congruence equation x 2 + 1 ≡ 0 (mod n). In [A. Thomson and S. Zhou, Frobenius circulant graphs of valency four, J. Austral. Math. Soc. 85 (2008), 269-282] it was proved that such graphs admit 'perfect ' routing and gossiping schemes in some […]

Section:
Graph Theory

We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a […]

Section:
Automata, Logic and Semantics

For two given graphs G and H , the planar Ramsey number P R ( G; H ) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G , or its complement contains a copy of H . In this paper, we determine all planar Ramsey numbers for a triangle versus wheels.

Section:
Graph Theory

A predicate P: {-1, 1}k →{0, 1} can be associated with a constraint satisfaction problem Max CSP(P). P is called ''approximation resistant'' if Max CSP(P) cannot be approximated better than the approximation obtained by choosing a random assignment, and ''approximable'' otherwise. This classification of predicates has proved to be an important and challenging open problem. Motivated by a recent result of Austrin and Mossel (Computational Complexity, 2009), we consider a natural subclass of […]

Section:
Discrete Algorithms

For any fixed integer R≥2 we characterise the typical structure of undirected graphs with vertices 1,...,n and maximum degree R, as n tends to infinity. The information is used to prove that such graphs satisfy a labelled limit law for first-order logic. If R≥5 then also an unlabelled limit law holds.

This article deals with some stochastic population protocols, motivated by theoretical aspects of distributed computing. We modelize the problem by a large urn of black and white balls from which at every time unit a fixed number of balls are drawn and their colors are changed according to the number of black balls among them. When the time and the number of balls both tend to infinity the proportion of black balls converges to an algebraic number. We prove that, surprisingly enough, not every […]

For a binary code Γ of length v, a v-word w produces by a set of codewords {w1,...,wr}⊆Γ if for all i=1,...,v, we have wi∈{w1i,...,wri} . We call a code r-secure frameproof of size t if |Γ|=t and for any v-word that is produced by two sets C1 and C2 of size at most r then the intersection of these sets is nonempty. A d-biclique cover of size v of a graph G is a collection of v-complete bipartite subgraphs of G such that each edge of G belongs to at least d of these complete bipartite subgraphs. […]

Section:
Graph Theory

For a positive integer k, a k-tuple dominating set of a graph G is a subset S of V (G) such that |N [v] ∩ S| ≥ k for every vertex v, where N [v] = {v} ∪ {u ∈ V (G) : uv ∈ E(G)}. The upper k-tuple domination number of G, denoted by Γ×k (G), is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper bound on Γ×k (G) for r-regular graphs G with r ≥ k, and characterize extremal graphs achieving the upper bound. We also establish an upper bound on Γ×2 (G) […]

Section:
Graph Theory