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We enumerate permutations in the two permutation classes Avn(312, 4321) and Avn(321, 4123) by the number of

cycles each permutation admits.

We also refine this enumeration with respect to several statistics.

Keywords: pattern avoidance, cycles, permutation statistics, fixed points, excedances, inversions, involutions

1 Introduction

Pattern avoidance is inherently a property of a permutation’s one-line notation. For this reason, it can be

difficult at times to enumerate pattern-avoiding permutations with respect to their cycle type or number of

cycles. For example, it remains unknown how many cyclic permutations avoid a single pattern of length

3.

A few results on cycle type or number of cycles have been found for permutations avoiding several

patterns. Among these are unimodal permutations, i.e. those avoiding 312 and 213 [18, 15]; other pairs

of length 3 permutations [10, 6]; almost-increasing permutations, which avoid four length 4 permutations

[11, 2]; and permutations from certain grid classes [16, 8, 1, 3]. In addition the numbers of cyclic permuta-

tions of length n avoiding 123 or 321 as a consecutive pattern are given in [14]. There are also many results

regarding pattern-avoiding involutions and fixed points of pattern-avoiding permutations [17, 13, 7, 5, 12].

In this paper, we consider two permutation classes, namely the set of permutations avoiding 312 and

4321 and the set of permutations avoiding 321 and 4123. The enumeration of each of these pattern classes

by size of the permutation can be found in [4, 19]; they are both enumerated by the Fibonacci numbers of

even index, F2n. The structure of these permutations make them amenable to enumeration by number of

cycles. In Section 2, we enumerate permutations avoiding 312 and 4321 by the number of cycles and then

refine this enumeration with respect to excedances and number of inversions. Finally, we enumerate the

involutions avoiding those two patterns with respect to number of cycles, fixed points, and excedances. In

Section 3, we do the same for permutations avoiding 321 and 4123.
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1.1 Permutations

Let Sn denote the set of permutations of the set [n] = {1, 2, . . . , n}. We write a permutation π ∈ Sn in its

one-line notation as π = π1π2 . . . πn where πi = π(i). Alternatively, we can write the same permutation

in its standard cycle notation as a product of disjoint cycles. For example, the permutation π = 32584167
written here in its one-line notation can also be written in its cycle notation as π = (1354876)(2).

1.2 Pattern avoidance

Given a permutation π ∈ Sn and a permutation, or pattern, σ ∈ Sk , we say that π contains σ if there is

a set of indices i1 < i2 < · · · < ik so that πi1πi2 . . . πik is in the same relative order as σ. If π does not

contain σ, we say that π avoids σ. For example, the permutation π = 31562487 contains σ = 123 (for

example, 356 and 368 are occurrences) and 312 (for example, 312 and 524 are occurrences), but it avoids

the pattern σ = 321.

We denote the set of permutations that avoid a pattern σ by Av(σ) and the set of permutations in

Sn ∩Av(σ) by either Avn(σ) or Sn(σ). We say a permutation π avoids a set of patterns σ1, σ2, . . . , σr if

it avoids each σi for 1 ≤ i ≤ r. In this case, we denote the set of permutations that avoid these patterns by

Av(σ1, σ2, . . . , σr) and the set of permutations in Sn∩Av(σ1, σ2, . . . , σr) by either Avn(σ1, σ2, . . . , σr)
or Sn(σ1, σ2, . . . , σr). We call a set of permutations closed under pattern containment a permutation

class. In particular any set of permutations that can be characterized as avoiding a set of permutations is

a permutation class.

1.3 Permutation statistics

Given a permutation π ∈ Sn, we will denote the number of cycles in the cycle notation of π by cyc(π).
We say that i is a fixed point of π if πi = i. We denote the number of fixed points of π by fp(π). An

element j is an excedance if πj > j and we say it is a nonexcedance otherwise. The number of excedances

is denoted by exc(π). We say that a pair (i, j) is an inversion of π if i < j and πi > πj . For example, if

π = 31642875 = (136852)(4)(7), then cyc(π) = 3, fp(π) = 2, exc(π) = 3, and inv(π) = 9.

We say π is an involution if it is its own algebraic inverse, i.e. if π−1 = π. This is equivalent to π

being comprised of length-2 cycles and fixed points only. For example, the permutation π = 1574263 =
(1)(25)(37)(4)(6) is an involution. Here, we will denote the set of involutions in Sn by In and the set of

involutions that avoid the patterns σ1, σ2, . . . , σr by In(σ1, σ2, . . . , σr).

2 Sn(312, 4321)

In this section, we enumerate permutations that avoid 312 and 4321 with respect to several statistics. In

each case, we find a recurrence and obtain a generating function as a result.

2.1 Number of cycles in S
n
(312, 4321)

The set Av(312, 4321) was found in [19] to be enumerated by F2n, the Fibonacci numbers with even

index. Our first result of this section is Theorem 1 below, where we refine this enumeration with respect

to cycles.

Theorem 1. Let

A(t, z) =
∑

n,k≥1

|{π ∈ Sn(312, 4321) : cyc(π) = k}|tkzn.
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Then

A(t, z) =
tz(1− z2)

1− (1 + t)(z + z2) + tz3
.

The first few terms of this generating function are as follows:

A(t, z) = tz + (t+ t2)z2 + (t+ 3t2 + t3)z3 + (2t+ 5t2 + 5t3 + t4)z4

+ (3t+ 10t2 + 13t3 + 7t4 + t5)z5 + (5t+ 19t2 + 30t3 + 25t4 + 9t5 + t6)z6 + · · · .

As a corollary of this theorem, we enumerate cyclic permutations that avoid 312 and 4321. This follows

from Theorem 1 by extracting the coefficient of t, but will also follow easily from the proof of Theorem 1

below.

Corollary 2. The number of cyclic permutations avoiding the patterns 312 and 4321 is given by the

Fibonacci number Fn for n ≥ 2.

To prove Theorem 1, let us first consider the following lemma.

Lemma 3. For n ≥ 1, if π ∈ Sn(312, 4321), then the entry n must appear in one of the last three entries

of π.

Proof: Suppose π ∈ Sn(312, 4321). Since π avoids 312, any entries that appear after n must be in

decreasing order, and since π avoids 4321, there can be at most two such entries.

Since for any permutation in π ∈ Sn(312, 4321), we need only consider the three cases where πn = n,

πn−1 = n, and πn−2 = n. We will consider these three cases separately. Let an(k) denote the number

of permutations in Sn(312, 4321) that are composed of k cycles. In the language of Theorem 1, we have

A(t, z) =
∑

an(k)t
kzn.

Lemma 4. Let n ≥ 1. The number of permutations π ∈ Sn(312, 4321) composed of k cycles and with

πn = n is given by an−1(k − 1).

Proof: It is clear that by removing the term πn = n, we are left with a permutation in Sn−1(312, 4321).
In this case, since n was a fixed point of π, by removing it, we have removed one cycle. This process is

invertible since adding an n at the end of a permutation cannot introduce a 312 or 4321 pattern.

Lemma 5. Let n ≥ 1. The number of permutations π ∈ Sn(312, 4321) composed of k cycles and with

πn−1 = n is given by an−1(k).

Proof: Suppose π ∈ Sn(312, 4321) with πn−1 = n. Notice that n − 1, n, and πn appear consecutively

in a cycle together. (It could be the case that πn = n − 1, in which case n − 1 and n form a 2-cycle.)

Consider the permutation π′ obtained by removing the value n. In this case, π′ ∈ Sn−1(312, 4321) and

we now have that π′
n−1 = πn, so n− 1 maps directly to πn and no new cycle has been deleted or added.

Given any permutation π′ ∈ Sn−1(312, 4321), we can insert n directly after n− 1 in the cycle notation

of π′ and obtain a permutation π with πn−1 = n. This process does not change the number of cycles and

cannot introduce a 312 or 4321 pattern.

For example, if π = 345268791 = (135689)(24)(7), we could remove n = 9 from the one-line

notation and we have π′ = 34526871 = (13568)(24)(7). The number of cycles stays the same since we

also end up removing 9 from its cycle.
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We now need to consider the number of permutations π ∈ Sn(312, 4321) with πn−2 = n. There are

two subcases to consider as illustrated in the following lemma.

Lemma 6. For n ≥ 1, if π ∈ Sn(312, 4321) with πn−2 = n, then either πn−1 = n− 1 or πn−3 = n− 1.

Proof: Suppose πn−1 6= n − 1. We must have that πn−1 > πn since π avoids 312, so we cannot

have πn = n − 1. If πi = n − 1 for i < n − 3, then either πiπn−3πn−1 is an occurrence of 312

(when πn−3 < πn−1) or πiπn−3πn−1πn is an occurrence of 4321 (when πn−3 > πn−1). Therefore, if

πn−1 6= n− 1, we have to have πn−3 = n− 1.

Lemma 7. Let n ≥ 1. The number of permutations π ∈ Sn(312, 4321) composed of k cycles and with

πn−2 = n and πn−1 = n− 1 is an−2(k − 1).

Proof: Suppose π ∈ Sn(312, 4321) with πn−2 = n and πn−1 = n − 1. Then n − 2, n, and πn appear

consecutively in a cycle together and n−1 is a fixed point. Let π′ be the permutation obtained by deleting

n and n− 1. Then, π′ ∈ Sn−2(312, 4321) with π′
n−2

= πn. In cycle notation, we have taken π, removed

n from its cycle so that n− 2 maps directly to πn, and we have removed the fixed point n− 1. Therefore,

we have decreased the number of cycles by 1. Starting with any permutation π′ ∈ Sn−2(312, 4321), we

can invert this since n(n− 1)π′
n−2

cannot be a 312 pattern.

For example, if π = 245631987 = (1246)(35)(79)(8), then we can remove n = 9 and n− 1 = 8 from

the one-line notation to get π′ = 2456317 = (1246)(35)(7). Since we have removed 9 from its cycle and

have removed the fixed point 8, we are left with exactly one fewer cycle.

Lemma 8. Let n ≥ 1. The number of permutations π ∈ Sn(312, 4321) composed of k cycles and with

πn−2 = n and πn−3 = n− 1 is an−2(k)− an−3(k − 1).

Proof: For a permutation π ∈ Sn(312, 4321) with πn−2 = n and πn−3 = n − 1 we must have that

n−2, n, and πn appear consecutively in a cycle together and n−3, n−1, and πn−1 appear consecutively

in a cycle together. Removing n and n − 1 to get a permutation π′ ∈ Sn−2(312, 4321) with the same

number of cycles. However, we can only obtain permutationsπ′ ∈ Sn−2(312, 4321) so that π′
n−3

> π′
n−2

since π avoided 312. Since π′ itself avoids 312 and 4321, it is the case that π′
n−3 > π′

n−2 exactly when

π′
n−2

6= n − 2 (that is n − 2 is not a fixed point of π′). Therefore, we obtain all permutations in

Sn−2(312, 4321) with the same number of cycles except those where n− 2 is a fixed point.

If a permutation in Sn−2(312, 4321) has k cycles and n− 2 as a fixed point, we can remove that fixed

point and get a permutation in Sn−3(312, 4321) with one fewer cycle. The result follows.

As an example, consider the permutation π = 324168975 = (134)(2)(56879). Removing n and n− 1,

we get π′ = 3241675 = (134)(2)(567), which has the same number of cycles.

Proof Proof of Theorem 1:

Since the theorem is equivalent to

A = zA+ ztA+ z2tA+ z2A− z3tA+ tz − tz3,

is is enough to show that for n ≥ 4, we have the recurrence

an(k) = an−1(k) + an−1(k − 1) + an−2(k − 1) + an−2(k)− an−3(k − 1)
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since this recurrence together with the initial conditions gives us the functional equation. By Lemmas 3

and 6, the set Sn(312, 4321) can be partitioned in four subsets. By Lemmas 4, 5, 7, and 8, an(k) satisfies

the above recurrence.

2.2 Statistics and cycles in S
n
(312, 4321)

In [9], Elizalde enumerated Sn(312, 4321) with respect to excedances and fixed points. In this section we

note that the bijection ϕ can be used to refine the generating function given in Theorem 1 with respect to

several statistics together with the number of cycles.

Let us first enumerate Sn(312, 4321) with respect to cycles, excedances, and inversions and in the

second theorem, we enumerate Sn(312, 4321) with respect to cycles and fixed points.

Theorem 9. Let

B(t, x, y, z) =
∑

n,ℓ,m,j≥0

|{π ∈ Sn(312, 4321) : cyc(π) = k, exc(π) = ℓ, inv(π) = j}|tkxℓyjzn.

Then

B(t, x, y, z) =
tz(1− x2y4z2)

1− z(xy + t)− xy3z2(t+ xy)− x2y4z3(y − t− xy)
.

Proof: Let us suppose n ≥ 4. It is enough to show B satisfies the equation

B = ztB + zxyB + z2txy3B + z3x2y5B + z2x2y4B − z3tB − z3x3y5B + zt− tx2y4z3.

As before, let us consider cases based on the location of n in our permutation.

• If n appears in the last position, it is a fixed point. Deleting that fixed point results in a permutation

with one fewer cycle and no additional excedances or inversions. This contributes the term ztB to

the functional equation above.

• If n appears in the second-to-last position, then by deleting it, we end up with a permutation in

Sn−1(312, 4321) with the same number of cycles, one fewer excedance, and one fewer inversion.

This contributes the term zxyB.

• If n appears in the third-to-last position and n− 1 appears in the second-to-last position, so that our

permutation π ends in n(n− 1)πn, then deleting both n and n− 1 leaves us with a permutation in

Sn−2(312, 4321) with one fewer cycle (since n − 1 was a fixed point), one fewer excedance, and

three fewer inversions. This contributes the term z2txy3B.

• If π ∈ Sn(312, 4321) with πn−2 = n and πn−3 = n− 1, then we can delete n and n− 1 to get π′,

as in the proof of Lemma 8. How the number of excedances and inversions changes depends on the

placement of n− 2 in π′.

– If π′
n−3 = n− 2, then π′ has no extra cycles, one fewer excedance, and four fewer inversions.

Deleting n− 2 from π′ to get π′′, we would lose another excedance and inversion. Since π′′

is now any permutation in Sn−3(312, 4321), we would contribute the term z3x2y5B to the

functional equation.
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– If π′
n−3

6= n−2, then π′ has no extra cycles, two fewer excedances, and four fewer inversions.

We do have to subtract off the cases where n− 2 is a fixed point since, as seen in the proof of

Lemma 8, this cannot happen, and we should subtract off cases where π′
n−3

= n−2 since that

case was covered in the bullet point above. Therefore, we have the terms z2x2y4B − z3tB −
z3x3y5B.

Taken together with the initial conditions (for n < 4) we find that

B = zxyB + ztB + z2txy3B + z3x2y5B + z2x2y4B − z3tB − z3x3y5B + zt− tx2y4z3

which is equivalent to the statement of the theorem.

Next, we will refine the enumeration given by the generating function in Theorem 1 with respect to

fixed points.

Theorem 10. Let

C(t, u, z) =
∑

n,k,m≥0

|{π ∈ Sn(312, 4321) : fp(π) = m, cyc(π) = k}|tkumzn.

Then

C(t, u, z) =
tuz + tz2(1− u) + tuz3(t− tu− 1) + t2z5(1 − u)2

1− z(1 + tu)− z2(1 + t) + tuz3(1 + tu− t) + tz4(u− 1)− t2z5(1− u)2
.

Proof: As before, let us consider cases based on the location of n in our permutation. Let n ≥ 6.

• If n appears in the last position, it is a fixed point. Deleting that fixed point results in a permutation

with one fewer cycle and one fewer fixed point. This contributes ztuC.

• If n appears in the second-to-last position, then by deleting it, we gain no cycles. If n was in a

2-cycle with n − 1, then we gain a fixed point and otherwise do not. Therefore, we obtain z2tC

when πn = n− 1 and zC − z2tuC otherwise.

• If n appears in the third-to-last position and n− 1 appears in the second-to-last position, so that our

permutation π ends in n(n− 1)πn, then deleting both n and n− 1 leaves us with a permutation in

Sn−2(312, 4321) with one fewer cycle and one fewer fixed point (since n− 1 was a fixed point). If

additionally, πn = n − 2, then we gain a fixed point by deleting n and n − 1. Therefore, we get

z3t2uC if πn = n− 2 and (z2tu− z3t2u)C otherwise.

• If π ∈ Sn(312, 4321)with πn−2 = n and πn−3 = n−1, then we can delete n and n−1 to get π′, as

in the proof of Lemma 8. In this case, we add no cycles or fixed points. For π′ ∈ S ′
n−2(312, 4321),

n− 2 is never a fixed point, but n− 3 could be. If n− 3 is a fixed point, then applying the proof of

Lemma 7 to π′ to get π′′, we lose that fixed point. Therefore we get z2u−1(z3t2u+z2tu−z3t2u)C.

If n − 3 is not a fixed point of π′, then we get z2C but we must subtract the case when n − 2 is

fixed (−z3tuC) and the case when n− 3 is fixed, but n− 2 is not (z2(z3t2u+ z2tu− z3t2u)C).

Taken together with the initial conditions (when n < 6), we get a functional equation equivalent to the

statement of the theorem. It is possible to combine Theorems 9 and 10 into one generating function

using these techniques, but the answer is unwieldy. It is omitted here for that reason.
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2.3 Involutions in S
n
(312, 4321)

In this section, we recover and further refine a result in [5] that gives the number of involutions that avoid

312 and 4321 as the Tribonacci numbers. In that article, the authors use Motzkin paths to enumerate these

involutions. Here we enumerate the involutions in Sn(312, 4321)with respect to fixed points, excedances,

and number of cycles using the lemmas from the previous sections.

Theorem 11. For all n ≥ 1 and k, ℓ,m, j ≥ 0, let

dn(m, ℓ, k, j) = |{π ∈ In(312, 4321) : fp(π) = m, exc(π) = ℓ, cyc(π) = k, inv(π) = j}|

and let

D(t, u, x, y, z) =
∑

n,k,ℓ,m,j≥0

dn(k, ℓ,m, j)tkumxℓyjzn.

Then

D(t, u, x, y, z) =
tuz + txyz2 + t2uxy3z3

1− utz − txyz2 − t2uxy3z3
.

Proof: Let n ≥ 4. First notice that for involutions, the number of excedances corresponds exactly to the

number of 2-cycles. As before, let us consider the three cases based on where n is in the permutation.

If n is at the end, then it is a fixed point, and removing it removes one cycle and does not change the

number of excedances or inversions. This contributes ztuD to the functional equation for D.

If n is in the second-to-last place, then it is an inversion only if n− 1 appears in the last position. Then

removing n will leave us with an involution with the same number of cycles. That is, the cycle (n− 1, n)
would become the fixed point (n− 1). We will have one fewer excedance, and one fewer inversion. This

contributes z2txyD.

If n is in the third-to-last place, we must have that (n − 2, n) is a cycle in π. Removing n and n − 1
would leave us with a permutation π′ that has n− 2 as a fixed point. By Lemma 6, we must have n − 1
as a fixed point in π. Therefore, we should consider an involution π′′ ∈ In−3(312, 4321), then attach

n(n− 1)(n− 2) to the end of its one line notation (or equivalently, attach the cycles (n− 2, n)(n− 1) to

its cycle notation). This gives us the term z3t2uxy3D.

Together with the initial conditions, the result follows.

3 Sn(321, 4123)
In this section, we enumerate permutations that avoid 321 and 4123 with respect to several statistics. As

in the previous section, in each case, we find a recurrence and obtain a generating function as a result.

3.1 Number of cycles in S
n
(321, 4123)

The set Av(321, 4123) was shown in [19] to be enumerated by F2n, the Fibonacci numbers with even

index (just as Av(312, 4321) was). Our first result of this section is Theorem 12 below, where we refine

this enumeration with respect to cycles.

Theorem 12. Let

F (t, z) =
∑

n,k≥1

|{π ∈ Sn(321, 4123) : cyc(π) = k}|tkzn.
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Then

F (t, z) =
tz(1− z2)

1− z(1 + t)− 2z2 + z3
.

The first few terms of this generating function are as follows:

F (t, z) = tz + (t+ t2)z2 + (2t+ 2t2 + t3)z3 + (3t+ 6t2 + 3t3 + t4)z4

+ (6t+ 12t2 + 11t3 + 4t4 + t5)z5 + (10t+ 28t2 + 28t3 + 17t4 + 5t5 + t6)z6 + · · · .

To prove Theorem 12, let us first consider the following lemma.

Lemma 13. For n ≥ 1, if π ∈ Sn(321, 4123) then the entry n must appear in one of the last three entries

of π.

Proof: Suppose π ∈ Sn(312, 4321). Since π avoids 321, any entries that appear after n must be in

increasing order, and since π avoids 4123, there can be at most two such entries.

Since for any permutation in π ∈ Sn(321, 4123), we need only consider the three cases where πn = n,

πn−1 = n, and πn−2 = n. As in the last section, we will consider these three cases separately. The

first two cases are very similar to those cases from the last section. Let fn(k) denote the number of

permutations in Sn(321, 4123) that are composed of k cycles. In the language of Theorem 12, we have

F (t, z) =
∑

fn(k)t
kzn.

Lemma 14. Let n ≥ 1. The number of permutations π ∈ Sn(321, 4123) composed of k cycles and with

πn = n is given by fn−1(k − 1).

Proof: Removing the term πn = n from π, we are left with a permutation in Sn−1(321, 4123). In this

case, since n was a fixed point of π, by removing it, we have removed one cycle. This process is invertible

since adding an n at the end of a permutation cannot introduce a 321 or 4123 pattern.

Lemma 15. Let n ≥ 1. The number of permutations π ∈ Sn(321, 4123) composed of k cycles and with

πn−1 = n is given by fn−1(k).

Proof: Suppose π ∈ Sn(321, 4123) with πn−1 = n. Notice that n − 1, n, and πn appear consecutively

in a cycle together. Consider the permutation π′ obtained by removing the value n. In this case, π′ ∈
Sn−1(321, 4123) and we now have that π′

n−1 = πn, so n − 1 maps directly to πn and no new cycle has

been deleted or added. Since this is invertible, we can obtain any π′ ∈ Sn−1(321, 4123) in this way.

Now, let us consider the case when n appears in the (n− 2)nd position.

Lemma 16. For n ≥ 1, if π ∈ Sn(321, 4123) with πn−2 = n, then either πn = n− 1 or πn−3 = n− 1.

Proof: Suppose πn 6= n − 1. We must have that πn−1 < πn since π avoids 321, so we cannot have

πn−1 = n − 1. If πi = n − 1 for i < n − 3, then either πiπn−3πn−1 is an occurrence of 321 (when

πn−3 > πn−1) or πiπn−3πn−1πn is an occurrence of 4123 (when πn−3 < πn−1). Therefore, if πn 6=
n− 1, we have to have πn−3 = n− 1.

Lemma 17. Let n ≥ 1. The number of permutations π ∈ Sn(321, 4123) composed of k cycles and with

πn−2 = n and πn = n− 1 is fn−2(k).
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Proof: Suppose π ∈ Sn(321, 4123) with πn−2 = n and πn = n − 1. Then n − 2, n, n − 1, and πn−1

appear consecutively in a cycle together. Let π′ be the permutation obtained by deleting n and n − 1.

Then, π′ ∈ Sn−2(321, 4123) with π′
n−2

= πn−1. In cycle notation, we have taken π, removed n and

n− 1 from its cycle so that n− 2 maps directly to πn. Therefore, we have have not changed the number

of cycles. Starting with any permutation π′ ∈ Sn−2(321, 4123), we can invert this since nπ′
n−2(n − 1)

cannot be a 321 pattern.

For example if π = 245167938 = (124)(356798), then removing n and n − 1 would give you π′ =
2451673 = (124)(3567). There is no change in the number of cycles.

Lemma 18. Let n ≥ 1. The number of permutations π ∈ Sn(321, 4123) composed of k cycles and with

πn−2 = n and πn−3 = n− 1 is fn−2(k)− fn−3(k).

Proof: For a permutation π ∈ Sn(321, 4123) with πn−2 = n and πn−3 = n − 1 we must have that

n−2, n, and πn appear consecutively in a cycle together and n−3, n−1, and πn−1 appear consecutively

in a cycle together. Removing n and n − 1 to get a permutation π′ ∈ Sn−2(321, 4123) with the same

number of cycles.

However, we can only obtain permutationsπ′ ∈ Sn−2(321, 4123) so that π′
n−3

< π′
n−2

since π avoided

321. Since π′ itself avoids 321 and 4123, it is the case that π′
n−3

< π′
n−2

exactly when π′
n−3

6= n − 2.

Therefore, we obtain all permutations in Sn−2(321, 4123) with the same number of cycles except those

where π′
n−3

= n− 2
If a permutation in Sn−2(321, 4123) has k cycles and π′

n−3
= n − 2, we can remove n − 2 and get a

permutation in Sn−3(321, 4123) with the same number of cycles. Through this process we can get any

permutation in Sn−3(321, 4123), so the result follows.

As an example, consider π = 213478956 = (12)(3)(4)(57968). Removing n = 9 and n− 1 = 8, we

obtain π′ = 2134756 = (12)(3)(4)(576) which has the same number of cycles and π′
6
< π′

7
.

Proof Proof of Theorem 12:

Taken together with the initial conditions, it is enough for us to show that for n ≥ 4, the following

recurrence holds:

fn(k) = fn−1(k) + fn−1(k − 1) + 2fn−2(k)− fn−3(k).

By Lemmas 14, 15, 17, and 18, fn(k) satisfies the above recurrence.

The following corollary regarding the number of cyclic permutations that avoid 321 and 4123 follows

immediately from this proof.

Corollary 19. The number of cyclic permutations f̄n := fn(1) avoiding the patterns 321 and 4123

satisfies the recurrence:

f̄n = f̄n−1 + 2f̄n−2 − f̄n−3

and is given by the OEIS sequence A028495.

3.2 Statistics and cycles in S
n
(321, 4123)

Next, we refine the enumeration from the previous section with respect to several variables, including

excedances, fixed points, and inversions.
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Theorem 20. For all n ≥ 1 and k, ℓ,m, j ≥ 0, let

gn(k, ℓ,m, j) = |{π ∈ Sn(321, 4123) : cyc(π) = k, exc(π) = ℓ, fp(π) = m, inv(π) = j}|

and let

G(t, u, x, y, z) =
∑

n,k,ℓ,m,j≥0

gn(k, ℓ,m, j)tkumxℓyjzn.

Then

G(t, u, x, y, z) =
tz(u+ xyz(1− u) + xy2z2(1− uxy2 − u) + x2y4z3(xy − t)(u− 1))

1− z(xy + tu) + z2g2(t, u, x, y) + z3g3(t, u, x, y) + z4g4(t, u, x, y)

where
g2(t, u, x, y) = xy(t(u − 1)− y − xy3),

g3(t, u, x, y) = xy2(ut− t+ xy2(ut+ xy − t)), and

g4(t, u, x, y) = tx2y4(xy − t)(1− u).

Proof: Let n ≥ 5. As before, let us consider cases based on the location of n in our permutation.

• If n appears in the last position, it is a fixed point. Deleting that fixed point results in a permuta-

tion with one fewer cycle, one few fixed point, and no additional excedances or inversions. This

contributes the term ztuG to the functional equation above.

• If n appears in the second-to-last position, then by deleting it, we end up with a permutation in

Sn−1(321, 4123) with no extra cycles, one fewer excedance, and one fewer inversion. If n is in a

2-cycle with n − 1, then we get the term z2txyG by starting with a permutation of length n − 2
with one fewer cycle and then adding on the cycle (n − 1, n). If n is not in a 2-cycle with n − 1,

deleting n will not change the number of fixed points, and will leave n− 2 in a cycle of size greater

than one, so we get the term (zxy − z2tuxy)G.

• If n appears in the third-to-last position, and n− 1 appears in the last position, then n− 2, n, n− 1,
and πn−1 appear consecutively in a cycle together. Deleting n and n− 1 leaves you with the same

number of cycles, two fewer inversions, and one fewer excedance. If πn−1 = n − 2, then doing

this gains you a fixed point and otherwise the number of fixed points is unchanged. Therefore we

get z3txy2G if πn−1 = n− 2 since we can start with a permutation of length n− 3 and add on the

cycle (n − 2, n, n − 1). If πn−1 6= n − 2, we will not get an extra fixed point by deleting n and

n− 1, so we get z2xy2G− z3tuxy2G.

• If π ∈ Sn(321, 4123) with πn−2 = n and πn−3 = n − 1, then we can delete n and n − 1 to get

π′, as in the proof of Lemma 18. We add four inversions and two excedances. If n − 2 and n − 3
are both fixed points of π, then we obtain z4t2x2y4G. If n − 2 is fixed, but n − 3 is not, then we

obtain z3tx2y4G − z4t2ux2y4G. If n− 2 is not fixed and πn−3 6= n − 2, then we must have that

πn−3 < πn−2, and so πn−3 is not fixed either. Therefore we obtain z2x2y4G. We must subtract off

the case when n − 2 is fixed (which gives us −z3tux2y4) and the case that πn−3 = n − 2, since

we do not allow this. For the latter possibility, there are two subcases: when the permutation has a

two cycle (n− 3, n− 2) or when it does not. In the first subcase, we subtract z4tx3y5G and in the

second subcase, we subtract (z3x3y5 + z4tux3y5)G.



Enumerating two permutation classes by the number of cycles 11

Together with the initial conditions, this gives us a functional equation which is equivalent to the state-

ment of the theorem.

3.3 Involutions in S
n
(321, 4123)

In this section, we enumerate the involutions in Sn(321, 4123) with respect to fixed points, excedances,

number of cycles, and inversions.

Theorem 21. For all n ≥ 1 and k, ℓ,m, j ≥ 0, let

hn(k, ℓ,m, j) = |{π ∈ In(321, 4123) : fp(π) = m, exc(π) = ℓ, cyc(π) = k, inv(π) = j}|

and let

H(x, t, w, y, z) =
∑

n,k,ℓ,m,j≥0

hn(k, ℓ,m, j)tkumxℓyjzn.

Then

H(x, t, u, v, z) =
tuz + txyz2 + t2x2y4z4

1− tuz − txyz2 − t2x2y4z4
.

Proof: As before, notice that for involutions, the number of excedances corresponds exactly to the number

of 2-cycles. Again, let us consider the position of n in the permutation π ∈ In(321, 4123). If n is at the

end, it is a fixed point, and deleting it will give you an involution that has one fewer fixed point and one

fewer cycle. No inversions or excedances are lost. This gives you the term ztuH .

If n is in the second-to-last position, then it must be the case that πn = n− 1. This contributes z2txyH

since you can start with any involution in In−2(321, 4123) and append the 2-cycle (n− 1, n) to the cycle

notation. The adds one cycle, no fixed points, one excedance, and one inversion.

Finally, if n is in the third-to-last position, we must have that πn−3πn−2πn−1πn = (n−1)n(n−3)(n−
2) in order for the permutation to be an involution. Therefore, this part contributes z4t2x2y4H to the

recurrence since we can start with a permutation In−4(321, 4123), attach the two 2-cycles (n− 3, n− 1)
and (n− 2, n) to get π′. This adds two cycles, no fixed points, two excedances, and four inversions.
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