Approximability results for the p-centdian and the converse centdian problems

Yen Hung Chen

Department of Computer Science, University of Taipei, No.1, Ai-Guo West Road, Taipei, Taiwan

received 3rd Nov. 2020, revised 11th July 2022, accepted 15th Oct. 2022.

Given an undirected graph $G = (V, E)$ with a nonnegative edge length function and an integer $p, 0 < p < |V|$, the p-centdian problem is to find p vertices (called the centdian set) of V such that the eccentricity plus median-distance is minimized, in which the eccentricity is the maximum (length) distance of all vertices to their nearest centdian set and the median-distance is the total (length) distance of all vertices to their nearest centdian set. The eccentricity plus median-distance is called the centdian-distance. The purpose of the p-centdian problem is to find p open facilities (servers) which satisfy the quality-of-service of the minimum total distance (median-distance) and the maximum distance (eccentricity) to their service customers, simultaneously. If we converse the two criteria, that is given the bound of the centdian-distance and the objective function is to minimize the cardinality of the centdian set, this problem is called the converse centdian problem. In this paper, we prove the p-centdian problem is NP-Complete. Then we design the first non-trivial brute force exact algorithms for the p-centdian problem and the converse centdian problem, respectively. Finally, we design two approximation algorithms for both problems.

Keywords: combinatorial optimization, computational complexity, approximation algorithm, NP-Complete; network location, p-centdian problem, converse centdian problem

1 Introduction

The p-center problem [20, 30, 51] and p-median problem [20, 31, 51] are fundamental problems in graph theory and operations research. Let $G = (V, E, \ell)$ be an undirected graph with $\ell : E \to R^+$ on the edges. Given a vertex set $V' \subset V$, for each vertex $v \in V$, we let $d(v, V')$ denote the shortest distance from v to V' (i.e., $d(v, V') = \min_{u \in V'} d(u, v)$, in which $d(u, v)$ is the length of the shortest path of G from u to v). The eccentricity of a vertex set V' is defined as the maximum distance of $d(v, V')$ for all $v \in V$, denoted by $\mathcal{E}_C(V')$ (i.e., $\mathcal{E}_C(V') = \max_{v \in V} d(v, V')$). The median-distance $\mathcal{L}_M(V')$ of V' denotes the total distance of $d(v, V')$ for all v in V (i.e., $\mathcal{L}_M(V') = \sum_{v \in V} d(v, V')$). Given an undirected complete graph $G = (V, E, \ell)$ with a nonnegative edge length function ℓ and an integer
Given a set of customers on the network, the network location theory is concerned with the optimal locations of new facilities (servers) to minimize transportation distances (costs) of serving these customers and consider the population density area. The most fundamental problems of the network location theory are the \(p \)-CP and the \(p \)-MP, respectively. The \(p \)-CP is suitable for emergency services where the objective is to have the farthest customers as close as possible to their facility centers. But this solution of the \(p \)-CP may cause a substantial increase in total distance (cost), thus this result takes a huge loss of the spatial efficiency. The \(p \)-MP is suitable for locating facilities providing a routine service, by minimizing the average distances from customers to these selected facilities. The solution of the \(p \)-MP is beneficial in serving centrally located and high-population density areas but sacrifices the remote and low-population density areas [41, 42, 50]. Motivated by the application of finding \(p \) open facilities (servers) which satisfy the quality-of-service of the minimum total distance (median-distance) and the maximum distance (eccentricity) to their service customers, simultaneously [21, 22, 25, 41, 42, 50], Halpern [21, 22] introduced a convex combination of the 1CP and the 1MP, which he called the \(1 \)-centroid problem. Hooker et al. [25] studied the generalization of the \(1 \)-centroid problem, called the \(p \)-centroid problem. Given an undirected complete graph \(G = (V, E, \ell) \) with a nonnegative edge length function \(\ell \), a real number \(\lambda \), \(0 \leq \lambda \leq 1 \), and an integer \(p \), \(0 < p < |V| \), the \(p \)-centroid problem (\(p \)-DP) is to find a vertex set \(V' \) in \(V \), \(|V'| = p \), such that the eccentricity (respectively, the median-distance) of \(V' \) is minimized [20, 30, 31, 51]. Both problems had been shown to be NP-Complete [16, 30, 31]. Hence, many approximation algorithms [3, 18, 19, 23, 43, 47] and inapproximability results [24, 26, 27] had been proposed for both problems. These two problems have many applications in the network location, clustering, and social networks [1, 8, 13, 14, 15, 20, 23, 30, 31, 38, 40, 45, 46, 48, 49, 51].

Given a set of customers on the network, the network location theory is concerned with the optimal locations of new facilities (servers) to minimize transportation distances (costs) of serving these customers and consider the population density area. The most fundamental problems of the network location theory are the \(p \)-CP and the \(p \)-MP, respectively. The \(p \)-CP is suitable for emergency services where the objective is to have the farthest customers as close as possible to their facility centers. But this solution of the \(p \)-CP may cause a substantial increase in total distance (cost), thus this result takes a huge loss of the spatial efficiency. The \(p \)-MP is suitable for locating facilities providing a routine service, by minimizing the average distances from customers to these selected facilities. The solution of the \(p \)-MP is beneficial in serving centrally located and high-population density areas but sacrifices the remote and low-population density areas [41, 42, 50]. Motivated by the application of finding \(p \) open facilities (servers) which satisfy the quality-of-service of the minimum total distance (median-distance) and the maximum distance (eccentricity) to their service customers, simultaneously [21, 22, 25, 41, 42, 50], Halpern [21, 22] introduced a convex combination of the 1CP and the 1MP, which he called the \(1 \)-centroid problem. Hooker et al. [25] studied the generalization of the \(1 \)-centroid problem, called the \(p \)-centroid problem. Given an undirected complete graph \(G = (V, E, \ell) \) with a nonnegative edge length function \(\ell \), a real number \(\lambda \), \(0 \leq \lambda \leq 1 \), and an integer \(p \), \(0 < p < |V| \), the \(p \)-centroid problem (\(p \)-DP) is to find a vertex set \(V' \) in \(V \), \(|V'| = p \), such that the eccentricity (respectively, the median-distance) of \(V' \) is minimized [20, 30, 31, 51]. Both problems had been shown to be NP-Complete [16, 30, 31]. Hence, many approximation algorithms [3, 18, 19, 23, 43, 47] and inapproximability results [24, 26, 27] had been proposed for both problems. These two problems have many applications in the network location, clustering, and social networks [1, 8, 13, 14, 15, 20, 23, 30, 31, 38, 40, 45, 46, 48, 49, 51].
Approximability results for the p-centdian and the converse centdian problems

proposed [4, 5]. However, the converse version of the p-centdian problem is undefined. Hence, we present the converse version of the p-centdian problem, called the converse centdian problem. Given a graph \(G = (V, E, \ell) \) with a nonnegative edge length function \(\ell \) and two integers \(\lambda \) and \(U \), \(0 \leq \lambda \leq 1, U > 0 \), the converse centdian problem (CDP) is to find a vertex set \(V' \) in \(V \) with minimum cardinality such that \(\lambda \ell_C(V') + \frac{1}{1 - \lambda} \ell_M(V') \leq U \). In this paper, we focus on a special case of the centdian-distance \(\frac{1}{1+\epsilon} \) for the pDP (respectively, CDP) : \(\ell_C(V') + \frac{1}{1+\epsilon} \ell_M(V') \) and discuss the complexity, the non-trivial brute force exact algorithms, and the approximation algorithms for the pDP and CDP, respectively. First, we prove that the pDP is NP-Complete even when the centdian-distance \(\frac{1}{1+\epsilon} \) is less than or equal to \(\frac{1}{1+\epsilon}+(\ln|V|+1)\) and a \((1+\epsilon)(\ln|V|+1) \)-approximation algorithm for the CDP satisfying the centdian-distance \(\frac{1}{1+\epsilon} \) is less than or equal to \((1+\epsilon)U \), in which \(\epsilon > 0 \), respectively.

The rest of this paper is organized as follows. In Section 2, some definitions and notations are given. In Section 3, we prove that the pDP is NP-Complete even when the centdian-distance \(\frac{1}{1+\epsilon} \) is less than or equal to \((1+\epsilon)(\ln|V|+1) \) and a \((1+\epsilon)(\ln|V|+1) \)-approximation algorithm for the CDP satisfying the centdian-distance \(\frac{1}{1+\epsilon} \) is less than or equal to \((1+\epsilon)U \), in which \(\epsilon > 0 \). Finally, we make a conclusion in Section 7.

2 Preliminaries

In this paper, a graph is simple, connected and undirected. By \(G = (V, E, \ell) \), we denote a graph \(G \) with vertex set \(V \), edge set \(E \), and edge length function \(\ell \). The edge length function is assumed to be nonnegative. We use \(|V| \) to denote the cardinality of vertex set \(V \). Let \((v, v') \) denote an edge connecting two vertices \(v \) and \(v' \). For any vertex \(v \in V \) is said to be adjacent to a vertex \(v' \in V \) if vertices \(v \) and \(v' \) share a common edge \((v, v') \).

Definition 1: For \(u, v \in V \), \(SP(u,v) \) denotes a shortest path between \(u \) and \(v \) on \(G \). The shortest path length is denoted by \(d(u, v) = \sum_{e \in SP(u,v)} \ell(e) \).

Definition 2: Let \(H \) be a vertex set of \(V \). For a vertex \(v \in V \), we let \(d(v, H) \) denote the shortest distance from \(v \) to \(H \), i.e., \(d(v, H) = \min_{h \in H} \{d(v, h)\} \).

Definition 3: Let \(H \) be a vertex set of \(V \). The eccentricity of \(H \), denoted by \(L_C(H) \), is the maximum distance of \(d(v, H) \) for all \(v \in V \), i.e., \(L_C(H) = \max_{v \in V} d(v, H) \).

Definition 4: Let \(H \) be a vertex set of \(V \). The median-distance of \(H \), denoted by \(L_M(H) \), is the the total distance of \(d(v, H) \) for all \(v \in V \), i.e., \(L_M(H) = \sum_{v \in V} d(v, H) \).

\(p\text{CP} \) (p-center problem) [20, 30, 51]

Instance: A connected, undirected, complete graph \(G = (V, E, \ell) \) and an integer \(p > 0 \).

Question: Find a vertex set \(V' \) of \(V' \) such that the eccentricity of \(V' \) is minimized.

\(p\text{MP} \) (p-median problem) [20, 31, 51]
Instance: A connected, undirected, complete graph $G = (V, E, \ell)$ and an integer $p > 0$.

Question: Find a vertex set V', $|V'| = p$, such that the median-distance of V' is minimized.

pDP (p-centdian problem) [25]

Instance: A connected, undirected, complete graph $G = (V, E, \ell)$ and an integer $p > 0$.

Question: Find a vertex set V', $|V'| = p$, such that $\mathcal{L}_C(V') + \mathcal{L}_M(V')$ of V' is minimized.

For the pDP, we have two criteria. The first criterion is the cardinality of the vertex set V' and the second is the $\mathcal{L}_C(V') + \mathcal{L}_M(V')$. The vertex set V' is called the centdian set and $\mathcal{L}_C(V') + \mathcal{L}_M(V')$ is called the centdian-distance. Hence, we can converse the two criteria, that is given the bound of the centdian-distance of the centdian set and the objective function is to minimize the cardinality of the centdian set.

CDP (converse centdian problem)

Instance: A connected, undirected graph $G = (V, E, \ell)$ and an integer $U > 0$.

Question: Find a vertex set V' with $\mathcal{L}_C(V') + \mathcal{L}_M(V') \leq U$ such that the cardinality of the V' is minimized.

The following examples illustrate the pDP and the CDP. Consider the instance shown in Fig. 1, in which the graph $G = (V, E, \ell)$ and integers $p = 2$ and $U = 117$. An optimal solution of G for the pDP is shown in Fig. 2, in which the centdian set is $\{A, B, D\}$.

In this paper, we will prove that the pDP is NP-Complete by a reduction from the dominating set problem [7, 11, 44, 52] to the pDP. Hence, we review the definition of the dominating set problem. A dominating set of G, denoted by \mathcal{Z}, is a subset of V such that each vertex in $V \setminus \mathcal{Z}$ is adjacent to a vertex in \mathcal{Z} [7, 11, 44, 52].
Approximability results for the p-centdian and the converse centdian problems

Fig. 2: The optimal solution $\{B, C\}$ for the 2DP. (Note that $L_C(\{B, C\}) + L_M(\{B, C\}) = 252$)

Fig. 3: The optimal solution $\{A, B, D\}$ for the CDP. (Note that $L_C(\{A, B, D\}) + L_M(\{A, B, D\}) = 117$)

DSP (dominating set problem) [7, 11, 44, 52]

Instance: A connected, undirected graph $G = (V, E)$.

Question: Find a dominating set Z' with minimum cardinality.

Note that the DSP had been shown to be NP-Complete [16]. Since our approximation algorithm for the pDP is based on the set cover problem [10, 28, 36]. We also review the definition of the set cover problem. Given a finite set U of elements and a collection S of (non-empty) subsets of U. A set cover [10, 28, 36] is to find a subset $S' \subseteq S$ such that every element in U belongs to at least one element of S'.

SCP (Set cover problem) [10, 28, 36]

Instance: A finite set U of elements, a collection S of (non-empty) subsets of U.

Question: Find a set cover S'' such that the number of sets in S'' is minimized.

3 Hardness Result for the pDP

In this section, we prove that the pDP is NP-Complete. We transform the DSP to the pDP by the reduction. Hence we need to define pDP and DSP decision problems.

pDP Decision Problem
Instance: A connected, undirected complete graph $G = (V, E, \ell)$ and two integers $p > 0$ and $U > 0$.

Question: Does there exist a vertex set $V', |V'| = p$, such that $\mathcal{L}_C(V') + \mathcal{L}_M(V') \leq U$?

DSP Decision Problem

Instance: A connected, undirected graph $G = (V, E)$, and a positive integer κ.

Question: Does there exist a dominated set Z such that $|Z|$ is less than or equal to κ?

Theorem 1: The pDP decision problem is NP-Complete.

Proof: First, it is easy to see that the pDP decision problem is in NP. Then we show the reduction: the transformation from the DSP decision problem to the pDP decision problem.

Let a graph $G = (V, E)$ and a positive integer κ be an instance of the DSP decision problem. We transform it into an instance of the pDP decision problem, say $\overline{G} = (\overline{V}, \overline{E}, \ell)$ and two positive integers p and U, as follows.

$\overline{V} = V$.

$\overline{E} = E$.

For each edge $(u, v) \in \overline{E}$,

$$\ell(u, v) = \begin{cases} 1, & \text{if } (u, v) \in E \\ d(u, v), & \text{otherwise.} \end{cases}$$

(1)

$U = |V| - \kappa + 1$ and $p = \kappa$.

Now, we show that there is a dominating set Z such that $|Z|$ is κ if and only if there is a vertex set \overline{V}' in \overline{G} such that the $|\overline{V}'|$ is p and $\mathcal{L}_C(\overline{V}') + \mathcal{L}_M(\overline{V}')$ is U.

(Only if) If there exists a dominating set Z in G and the cardinality of Z is at most κ. Then we choose the corresponding vertex set \overline{V}' in \overline{G} of the dominating set Z in G. Hence, we have $\mathcal{L}_C(\overline{V}') = 1$ and $\mathcal{L}_M(\overline{V}') = |V| - \kappa$. (If) If there exists a vertex set \overline{V}' in \overline{G} such that $|\overline{V}'|$ is p and $\mathcal{L}_C(\overline{V}') + \mathcal{L}_M(\overline{V}')$ is U. Clearly, each vertex v in $V \setminus \overline{V}'$, $d(v, \overline{V}') = 1$, otherwise $\mathcal{L}_C(\overline{V}') + \mathcal{L}_M(\overline{V}') > U = |V| - p + 1$. Hence, we choose the corresponding vertex set Z in G of the vertex set \overline{V}' in \overline{G} and Z is a dominating set in G with $|Z| = p$. \[\square \]

4 Exact Algorithms for the pDP and CDP

In this section, we show integer programmings to solve the pDP and CDP, respectively. We combine the integer programmings for the pMP and pCP by [13]. Given an undirected complete graph $G = (V, E, \ell)$ with a nonnegative edge length function ℓ, the pDP can be formulated as an integer programming (I) as follows.
Approximability results for the p-centdian and the converse centdian problems

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \in V} \sum_{j \in V} d(i, j)x_{i,j} + C \\
\text{subject to} & \quad \sum_{j \in V} x_{i,j} = 1, \forall i \in V \\
& \quad \sum_{j \in V} y_j = p \\
& \quad x_{i,j} \leq y_j, \forall i, j \in V \\
& \quad \sum_{j \in V} d(i, j)x_{i,j} \leq C, \forall i \in V \\
& \quad x_{i,j}, y_j \in \{0, 1\} \\
& \quad C \geq 0,
\end{align*}
\]

where the variable \(y_j = 1 \) if and only if vertex \(j \) is chosen as a centdian, and the variable \(x_{i,j} = 1 \) if and only if \(y_j = 1 \) and vertex \(i \) is assigned to vertex \(j \), and \(C \) is a feasible eccentricity. For completeness, we list the exact algorithm for the pDP as follows.

Algorithm OPT-pDP

Input: A connected, undirected complete graph \(G = (V, E, \ell) \) with a nonnegative length function \(\ell \) on edges and an integer \(p > 0 \).

Output: A vertex set \(P_{opt} \) with \(|P_{opt}| = p \).

1. Use the integer programming (I) to find all \(y_j = 1 \) and put the corresponding vertex \(j \) of \(y_j \) to \(P_{opt} \).

2. Return \(P_{opt} \).

It is easy to show that Algorithm OPT-pDP is an exact algorithm for the pDP. However, to solve an integer programming is NP-hard [12, 16]. Hence, next section we show \((1 + \epsilon)\)-approximation algorithm for the pDP satisfying the cardinality of centdian set is less than or equal to \((1 + 1/\epsilon)(\ln|V| + 1)p\), \(\epsilon > 0 \).

Next, we modify integer programming (I) to design another integer programming (II) for the CDP with an integer \(U \) as follows.

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in V} y_j \\
\text{subject to} & \quad \sum_{j \in V} x_{i,j} = 1, \forall i \in V
\end{align*}
\]
\[
\sum_{i \in V} \sum_{j \in V} d(i, j)x_{i,j} + C \leq U \tag{11}
\]
\[
x_{i,j} \leq y_j, \forall i, j \in V \tag{12}
\]
\[
\sum_{j \in V} d(i, j)x_{i,j} \leq C, \forall i \in V \tag{13}
\]
\[
x_{i,j}, y_j \in \{0, 1\} \tag{14}
\]
\[
C \geq 0. \tag{15}
\]

For completeness, we list the exact algorithm for the CDP as follows.

Algorithm OPT-CDP

Input: A connected, undirected complete graph \(G = (V, E, \ell)\) with a nonnegative length function \(\ell\) on edges and an integer \(U > 0\).

Output: A vertex set \(P_{\text{opt}}\) with \(\mathcal{L}_C(P_{\text{opt}}) + \mathcal{L}_M(P_{\text{opt}}) \leq U\).

1. Use the integer programming (II) to find all \(y_j = 1\) and put the corresponding vertex \(j\) of \(y_j\) to \(P_{\text{opt}}\).

2. Return \(P_{\text{opt}}\).

5 An Approximation Algorithm for the pDP

In this section, we show \((1 + \epsilon)\)-approximation algorithm for the pDP satisfying the cardinality of *centdian set* is less than or equal to \((1 + 1/\epsilon)(\ln |V| + 1)p\), \(\epsilon > 0\). First, we relax the integer programming (I) for the pDP to the linear programming (IL) to solve the pDP called the fractional pDP as follows.

\[
\text{minimize} \quad \sum_{i \in V} \sum_{j \in V} d(i, j)x_{i,j} + C \tag{16}
\]

subject to

\[
\sum_{j \in V} x_{i,j} = 1, \forall i \in V \tag{17}
\]

\[
\sum_{j \in V} y_j = p \tag{18}
\]

\[
x_{i,j} \leq y_j, \forall i, j \in V \tag{19}
\]

\[
\sum_{j \in V} d(i, j)x_{i,j} \leq C, \forall i \in V \tag{20}
\]

\[
0 \leq x_{i,j}, y_j \leq 1 \tag{21}
\]

\[
C \geq 0. \tag{22}
\]
The main difference between I_L and I is that y_j and $x_{i,j}$ can take rational values between 0 and 1 for I_L. Let \tilde{y} and \tilde{x} be the output values of the linear programming I_L. Then it is clear that the centdian-distance of the optimal solution for the fractional pDP is a lower bound on the centdian-distance of the optimal solution for the pDP. Moreover, the linear programming can be solved in polynomial time [32, 33].

Lemma 2: Given a solution $\tilde{y} = \{\tilde{y}_1, \tilde{y}_2, \ldots, \tilde{y}_{|V|}\}$ for the fractional pDP, we can determine the optimal fractional values for $\tilde{x}_{i,j}$.

Proof: Similar with [2], for each $i \in V$, we sort $d(i, j)$, $j \in V$, so that $d(i, j_1(i)) \leq d(i, j_2(i)) \leq \ldots \leq d(i, j_{|V|}(i))$ and let s be a value such that $\sum_{k=1}^{s-1} \tilde{y}_{j_k}(i) \leq 1 \leq \sum_{k=1}^{s} \tilde{y}_{j_k}(i)$. Then let $\tilde{x}_{i,j} = \tilde{y}_j$ for each $j = j_1(i), j_2(i), \ldots, j_{s-1}(i)$, $\tilde{x}_{i,j_s(i)} = 1 - \sum_{k=1}^{s-1} \tilde{y}_{j_k}(i)$, and otherwise $\tilde{x}_{i,j} = 0$. \hfill \square

Given a fractional solution $\tilde{x}_{i,j}$, for each $i \in V$, let $\tilde{D}(i) = \sum_{j \in V} d(i, j) \tilde{x}_{i,j}$ be the distance of assigning vertex i to its fractional centdian. Given $\epsilon > 0$, we also let the neighborhood set $N(i)$ of vertex i be $N(i) = \{j \in V | d(i, j) \leq (1 + \epsilon)\tilde{D}(i)\}$.

Lemma 3: [35] For each $i \in V$ and $\epsilon > 0$, we have $\sum_{j \in \tilde{N}(i)} \tilde{y}_j \geq \sum_{j \in N(i)} \tilde{x}_{i,j} > \epsilon/(1 + \epsilon)$.

Then we transform the pDP to the SCP. An instance of SCP contains a finite set U of elements, a collection S of (non-empty) subsets of U. We let each vertex $i \in V$ correspond to each element in U, and each vertex $j \in V$ with $\tilde{y}_j > 0$ correspond to each set in S, respectively. Then for each vertex $i \in V$, if $j \in N(i)$, then the corresponding element of i in U belongs to the corresponding set of j in S.

Then we use the greedy approximation algorithm for the SCP whose approximation ratio is $(\ln |U| + 1) [10, 28, 36]$ to find a set cover of U and S. Let A_{SCP} be the greedy approximation algorithm for the SCP. Finally, output the corresponding vertex set for the output set by A_{SCP}. Given a graph $G = (V, E, \ell)$, let P_{APX} be a vertex set in G. Initially, P_{APX} is empty. Now, for clarification, we describe the $(1 + \epsilon)$-approximation algorithm for the pDP as follows.

Algorithm APX-pDP

Input: A connected, undirected complete graph $G = (V, E, \ell)$ with a nonnegative length function ℓ on edges, an integer $p > 0$, and a real number ϵ, $0 < \epsilon < 1$.

Output: A vertex set P_{APX} with $|P_{APX}| \leq (1 + 1/\epsilon)(\ln |V| + 1)p$.

1. Let $P_{APX} \leftarrow \emptyset$.
2. Use linear programming (I_L) to solve the fractional pDP and find the fractional solutions \tilde{y} and \tilde{x}.
3. For each $i \in V$, compute $\tilde{D}(i)$ and find its neighborhood set $N(i) = \{j \in V | d(i, j) \leq (1 + \epsilon)\tilde{D}(i)\}$.
4. For each $i \in V$ do
 create an element u_i in U.
 end for
5. For each $j \in V$ with $\tilde{y}_j > 0$ do
 create a subset $S_j = \{u_i | j \in N(i)\}$ of U in S.
end for

6. Use the greedy approximation algorithm A_{SCP} for the SCP to find a set cover S' of the instance \mathcal{U} and S. Let y_j = 1 if S_j \in S', and then x_{i,j} = 1 if set S_j \in S' and u_i is covered by S_j, and otherwise is 0.

7. Let P_{APX} be the corresponding vertex set of S'.

The result of this section is summarized in the following theorem.

Theorem 4: Algorithm APX-pDP is a \((1 + \epsilon)\)-approximation algorithm for the pDP satisfying \(|P_{APX}| \leq (1 + 1/\epsilon)(\ln|V| + 1)p\), in which \(\epsilon > 0\).

Proof: Let \(P_{OPT}\) be the optimal solution for the pDP. Clearly, by Step 5 and Step 6, a subset S_j contains the element \(u_i\) in \(U\) if \(d(i, j) \leq (1 + \epsilon)\bar{D}(i)\), where \(i\) is the corresponding vertex of \(u_i\) and \(j\) is the corresponding vertex of \(S_j\), and each \(i \in V\), \(\sum_{j \in V} d(i, j) x_{i,j} \leq (1 + \epsilon)\bar{D}(i)\). Hence, we have

\[
\mathcal{L}_M(P_{APX}) + \mathcal{L}_C(P_{APX}) \leq \sum_{i \in V} \sum_{j \in V} d(i, j) x_{i,j} + \max_{i \in V} \sum_{j \in V} d(i, j) x_{i,j} \\
\leq \sum_{i \in V} (1 + \epsilon)\bar{D}(i) + \max_{i \in V} (1 + \epsilon)\bar{D}(i) \\
\leq (1 + \epsilon)\mathcal{L}_M(P_{OPT}) + (1 + \epsilon)\mathcal{L}_C(P_{OPT}),
\]

since the centdian-distance of the fractional pDP is a lower bound on the centdian-distance of the optimal solution for the pDP.

Then we show \(|P_{APX}| \leq (1 + 1/\epsilon)(\ln|V| + 1)p\). By [35] and Lemma 3, we have the cardinality of set for the optimal fractional cover is less than \((1 + 1/\epsilon)p\) and the cardinality of set by the output of the greedy algorithm is at most \((\ln |\mathcal{U}| + 1)\) [10, 36] of the cardinality of set for the optimal fractional cover. Immediately, we have \(|P_{APX}| \leq (1 + 1/\epsilon)(\ln|V| + 1)p\). \(\square\)

6 An Approximation Algorithm for the CDP

In this section, we show a \((1 + 1/\epsilon)(\ln|V| + 1)\)-approximation algorithm for the CDP satisfying the centdian-distance is less than or equal to \((1 + \epsilon)U\), \(\epsilon > 0\). We only run Algorithm APX-pDP for the pDP, for \(p = 1\) to \(|V|\) and find the first centdian set such its centdian-distance is less than or equal to \((1 + \epsilon)U\).

For the completeness, we describe the approximation algorithm for the CDP and obtain the centdian set \(P_\gamma\) as follows.

Algorithm APX-CDP

Input A connected, undirected complete graph \(G = (V, E, \ell)\) with a nonnegative length function \(\ell\) on edges, an integer \(U > 0\) and a real number \(\epsilon\), \(0 < \epsilon < 1\).

Output: A vertex set \(P_\gamma\) with \(\mathcal{L}_C(P_\gamma) + \mathcal{L}_M(P_\gamma) \leq (1 + \epsilon)U\).
Approximability results for the p-centdian and the converse centdian problems

1. Let $p = 1$ and $P_\gamma \leftarrow \emptyset$.

2. Use Algorithm APX-p-DP to find a vertex set P_p that satisfies Theorem 4.

3. If $\mathcal{L}_C(P_p) + \mathcal{L}_M(P_p) > (1 + \epsilon)U$ then
 Let $p = p + 1$ and go to step 2.

4. Let $P_\gamma \leftarrow P_p$.

Theorem 5: Algorithm APX-CDP is a $(1 + 1/\epsilon)(\ln|V| + 1)$-approximation algorithm for the CDP satisfying the centdian-distance is less than or equal to $(1 + \epsilon)U$, in which $\epsilon > 0$.

Proof:

Let P' be the centdian set of optimal solutions for the CDP with an integer U. We have $\mathcal{L}_C(P') + \mathcal{L}_M(P') \leq U$. Let P'' (respectively, P''') be the centdian set of optimal solutions for the pDP with $p = |P'|$ (respectively, $p = \gamma$). Clearly, $\mathcal{L}_C(P'') + \mathcal{L}_M(P'') \leq \mathcal{L}_C(P') + \mathcal{L}_M(P') \leq U$. If $p = |P''|$, Algorithm APX-CDP returns a centdian set $P_{1P''}$ such that $\mathcal{L}_C(P_{1P''}) + \mathcal{L}_M(P_{1P''}) \leq (1 + \epsilon)\mathcal{L}_C(P'') + \mathcal{L}_M(P'') \leq (1 + \epsilon)U$. Since Algorithm APX-CDP returns the first centdian set such its centdian-distance is less than or equal to $(1 + \epsilon)U$, we have that γ is less than or equal to $|P''|$. By Theorem 4, we have

$$|P_\gamma| \leq (1 + 1/\epsilon)(\ln|V| + 1)\gamma \leq (1 + 1/\epsilon)(\ln|V| + 1)|P''| = (1 + 1/\epsilon)(\ln|V| + 1)|P'|,$$

and

$$\mathcal{L}_C(P_\gamma) + \mathcal{L}_M(P_\gamma) \leq (1 + \epsilon)(\mathcal{L}_C(P') + \mathcal{L}_M(P'))$$

$$\leq (1 + \epsilon)(\mathcal{L}_C(P'') + \mathcal{L}_M(P''))$$

$$\leq (1 + \epsilon)\mathcal{L}_C(P') + \mathcal{L}_M(P')$$

$$\leq (1 + \epsilon)U.$$

\[\square\]

7 Conclusion

In this paper, we have investigated the pDP and the CDP and prove that these problems are NP-Complete even when the centdian-distance is $\mathcal{L}_C(V') + \mathcal{L}_M(V')$. Then we have presented non-trivial brute force exact algorithms for the pDP and the CDP, respectively. Moreover, we have designed a $(1 + \epsilon)$-approximation algorithm for the pDP satisfying the cardinality of the centdian set is less than or equal to $(1 + 1/\epsilon)(\ln|V| + 1)p$ and a $(1 + 1/\epsilon)(\ln|V| + 1)$-approximation algorithm for the CDP satisfying the centdian-distance is less than or equal to $(1 + \epsilon)U$, in which $\epsilon > 0$. It would be interesting to find approximation complexities for the pDP and the CDP. Another direction for future research is whether the pDP has a polynomial time exact algorithm for some special graphs.
References

Approximability results for the p-centdian and the converse centdian problems

