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Let D be an oriented graph. The inversion of a set X of vertices in D consists in reversing the direction of all arcs
with both ends in X . The inversion number of D, denoted by inv(D), is the minimum number of inversions needed
to make D acyclic. Denoting by τ(D), τ ′(D), and ν(D) the cycle transversal number, the cycle arc-transversal
number and the cycle packing number of D respectively, one shows that inv(D) ≤ τ ′(D), inv(D) ≤ 2τ(D) and
there exists a function g such that inv(D) ≤ g(ν(D)). We conjecture that for any two oriented graphs L and R,
inv(L → R) = inv(L) + inv(R) where L → R is the dijoin of L and R. This would imply that the first two
inequalities are tight. We prove this conjecture when inv(L) ≤ 1 and inv(R) ≤ 2 and when inv(L) = inv(R) = 2
and L and R are strongly connected. We also show that the function g of the third inequality satisfies g(1) ≤ 4.

We then consider the complexity of deciding whether inv(D) ≤ k for a given oriented graph D. We show that it
is NP-complete for k = 1, which together with the above conjecture would imply that it is NP-complete for every
k. This contrasts with a result of Belkhechine et al. which states that deciding whether inv(T ) ≤ k for a given
tournament T is polynomial-time solvable.

Keywords: some, well classifying, words

1 Introduction
Notation not given below is consistent with [BJG09]. We denote by [k] the set {1, 2, . . . , k}.

Making a digraph acyclic by either removing a minimum cardinality set of arcs or vertices are impor-
tant and heavily studied problems, known under the names CYCLE ARC TRANSVERSAL or FEEDBACK
ARC SET and CYCLE TRANSVERSAL or FEEDBACK VERTEX SET. A cycle transversal or feedback
vertex set (resp. cycle arc-transversal or feedback arc set) in a digraph is a set of vertices (resp. arcs)
whose deletion results in an acyclic digraph. The cycle transversal number (resp. cycle arc-transversal
number) is the minimum size of a cycle transversal (resp. cycle arc-transversal) of D and is denoted by
τ(D) (resp. τ ′(D)). It is well-known that a digraph is acyclic if and only if it admits an acyclic ordering,
that is an ordering (v1, . . . , vn) of its vertices such that there is no backward arc (i.e. an arc vjvi with
i < j). It follows that a minimum cycle arc-transversal F in a digraph D consists only of backward arcs
with respect to any acyclic ordering of D \F . Thus the digraph D′ obtained from D by reversing the arcs

∗A preliminary version of this paper was published in the proceedings of the 1st International Conference on Algebras, Graphs
and Ordered Sets (ALGOS 2020).
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of F is also acyclic. Conversely, if the digraph D′ obtained from D by reversing the arcs of F is acyclic,
then D \ F is also trivially acyclic. Therefore the cycle arc-transversal number of a digraph is also the
minimum size of a set of arcs whose reversal makes the digraph acyclic.

It is well-known and easy to show that τ(D) ≤ τ ′(D) (just take one end-vertex of each arc in a
minimum cycle arc-transversal).

Computing τ(D) and τ ′(D) are two of the first problems shown to be NP-hard listed by Karp in [Kar72].
They also remain NP-complete in tournaments as shown by Bang-Jensen and Thomassen [BJT92] and
Speckenmeyer [Spe89] for τ , and by Alon [Alo06] and Charbit, Thomassé, and Yeo [CTY07] for τ ′.

In this paper, we consider another operation, called inversion, where we reverse all arcs of an induced
subdigraph. Let D be a digraph. The inversion of a set X of vertices consists in reversing the direction
of all arcs of D〈X〉. We say that we invert X in D. The resulting digraph is denoted by Inv(D;X).
If (Xi)i∈I is a family of subsets of V (D), then Inv(D; (Xi)i∈I) is the digraph obtained after inverting
the Xi one after another. Observe that this is independent of the order in which we invert the Xi :
Inv(D; (Xi)i∈I) is obtained from D by reversing the arcs such that an odd number of the Xi contain its
two end-vertices.

Since an inversion preserves the directed cycles of length 2, a digraph can be made acyclic only if it has
no directed cycle of length 2, that is if it is an oriented graph. Reciprocally, observe that in an oriented
graph, reversing an arc a = uv is the same as inverting Xa = {u, v}. Hence if F is a minimum cycle
arc-transversal of D, then Inv(D; (Xa)a∈F ) is acyclic.

A decycling family of an oriented graph D is a family of subsets (Xi)i∈I of subsets of V (D) such
that Inv(D; (Xi)i∈I) is acyclic. The inversion number of an oriented graph D, denoted by inv(D), is
the minimum number of inversions needed to transform D into an acyclic digraph, that is, the minimum
cardinality of a decycling family. By convention, the empty digraph (no vertices) is acyclic and so has
inversion number 0.

1.1 Inversion versus cycle (arc-) transversal and cycle packing
One can easily obtain the following upper bounds on the inversion number in terms of the cycle transversal
number and the cycle arc-transversal number. See Section 2.

Theorem 1.1. inv(D) ≤ τ ′(D) and inv(D) ≤ 2τ(D) for all oriented graph D.

A natural question is to ask whether these bounds are tight or not.
We denote by ~C3 the directed cycle of length 3 and by TTn the transitive tournament of order n. The

vertices of TTn are v1, . . . , vn and its arcs {vivj | i < j}. The lexicographic product of a digraph D by
a digraph H is the digraph D[H] with vertex set V (D) × V (H) and arc set A(D[H]) = {(a, x)(b, y) |
ab ∈ A(D), or a = b and xy ∈ A(H)}. It can be seen as blowing up each vertex of D by a copy of H .
Using boolean dimension, Pouzet et al. [PKT21] proved the following.

Theorem 1.2 (Pouzet et al. [PKT21]). inv(TTn[ ~C3]) = n.

Since τ ′(TTn[ ~C3]) = n, this shows that the inequality inv(D) ≤ τ ′(D) of Theorem 1.1 is tight.

Pouzet asked for an elementary proof of Theorem 1.2. Let L and R be two oriented graphs. The dijoin
from L to R is the oriented graph, denoted by L → R, obtained from the disjoint union of L and R by
adding all arcs from L to R. Observe that TTn[ ~C3] = ~C3 → TTn−1[ ~C3]. So an elementary way to prove
Theorem 1.2 would be to prove that inv( ~C3 → T ) = inv(T ) + 1 for all tournament T .
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First inverting inv(L) subsets of V (L) to make L acyclic and then inverting inv(R) subsets of V (R)
to make R acyclic, makes L→ R acyclic. Therefore we have the following inequality.

Proposition 1.3. inv(L→ R) ≤ inv(L) + inv(R).

In fact, we believe that equality always holds.

Conjecture 1.4. For any two oriented graphs, L and R, inv(L→ R) = inv(L) + inv(R).

As observed in Proposition 2.5, this conjecture is equivalent to its restriction to tournaments. If
inv(L) = 0 (resp. inv(R) = 0), then Conjecture 1.4 holds has any decycling family of R (resp. L)
is also a decycling family of L → R. In Section 3, we prove Conjecture 1.4 when inv(L) = 1 and
inv(R) ∈ {1, 2}. We also prove it when inv(L) = inv(R) = 2 and both L and R are strongly connected.

Let us now consider the inequality inv(D) ≤ 2τ(D) of Theorem 1.1. One can see that is tight for
τ(D) = 1. Indeed, let Vn be the tournament obtained from a TTn−1 by adding a vertex x such that
N+(x) = {vi | i is odd} (and so N−(x) = {vi | i is even}. Clearly, τ(Vn) = 1 because Vn − x is
acyclic, and one can easily check that inv(Vn) ≥ 2 for n ≥ 5. Observe that V5 is strong, so by the above
results, we have inv(V5 → V5) = 4 while τ(V5 → V5) = 2, so the inequality inv(D) ≤ 2τ(D) is
also tight for τ(D) = 2. More generally, Conjecture 1.4 would imply that inv(TTn[V5]) = 2n, while
τ(TTn[V5]) = n and thus that the second inequality of Theorem 1.1 is tight. Hence we conjecture the
following.

Conjecture 1.5. For every positive integer n, there exists an oriented graph D such that τ(D) = n and
inv(D) = 2n.

A cycle packing in a digraph is a set of vertex disjoint cycles. The cycle packing number of a digraph
D, denoted by ν(D), is the maximum size of a cycle packing in D. We have ν(D) ≤ τ(D) for every
digraph D. On the other hand, Reed et al. [RRST96] proved that there is a (minimum) function f such
that τ(D) ≤ f(ν(D)) for every digraph D. With Theorem 1.1, this implies inv(D) ≤ 2 · f(ν(D)).

Theorem 1.6. There is a (minimum) function g such that inv(D) ≤ g(ν(D)) for all oriented graph D
and g ≤ 2f .

A natural question is then to determine this function g or at least obtain good upper bounds on it.
Note that the upper bound on f given by the proof of Reed et al. [RRST96] is huge (a multiply iterated
exponential, where the number of iterations is also a multiply iterated exponential). The only known value
has been established by McCuaig [McC91] who proved f(1) = 3. As noted in [RRST96], the best lower
bound on f due to Alon (unpublished) is f(k) ≥ k log k. It might be that f(k) = O(k log k). This would
imply the following conjecture.

Conjecture 1.7. For all k, g(k) = O(k log k): there is an absolute constant C such that inv(D) ≤
C · ν(D) log(ν(D)) for all oriented graph D.

Note that for planar digraphs, combining results of Reed and Sheperd [RS96] and Goemans and
Williamson [GW96], we get τ(D) ≤ 63 · ν(D) for every planar digraph D. This implies that τ(D) ≤
126 · ν(D) for every planar digraph D and so Conjecture 1.7 holds for planar oriented graphs.

Another natural question is whether or not the inequality g ≤ 2f is tight. In Section 5, we show that
it is not the case. We show that g(1) ≤ 4, while f(1) = 3 as shown by McCuaig [McC91]. However we
do not know if this bound 4 on g(1) is attained. Furthermore can we characterize the intercyclic digraphs
with small inversion number ?
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Problem 1.8. For any k ∈ [4], can we characterize the intercyclic oriented graphs with inversion number
k ?

In contrast to Theorems 1.1 and 1.6, the difference between inv and ν, τ , and τ ′ can be arbitrarily large
as for every k, there are tournaments Tk for which inv(Tk) = 1 and ν(Tk) = k. Consider for example
the tournament Tk obtained from three transitive tournaments A, B, C of order k by adding all arcs form
A to B, B to C and C to A. One easily sees that ν(Tk) = k and so τ ′(Tk) ≥ τ(Tk) ≥ k; moreover
Inv(Tk;A ∪B) is a transitive tournament, so inv(Tk) = 1.

1.2 Maximum inversion number of an oriented graph of order n
For any positive integer n, let inv(n) = max{inv(D) | D oriented graph of order n}. Since the inversion
number is monotone (see Proposition 2.1), we have inv(n) = max{inv(T ) | T tournament of order n}.
Remark 1.9. inv(n) ≤ inv(n− 1) + 1 for all positive integer n.

Proof: Let T be a tournament of order n. Pick a vertex x of T . It is a sink in D′ = Inv(T ;N+[x]). So
inv(D′) = inv(D′ − x) ≤ inv(n− 1) by Lemma 2.2. Hence inv(T ) ≤ inv(n− 1) + 1.

Every oriented graph on at most two vertices is acyclic, so inv(1) = inv(2) = 0. Every tournament of
order at most 4 has a cycle arc-transversal of size at most 1, so inv(3) = inv(4) = 1. As observed by
Belkhechine et al. [BBBP], every tournament of order at most 6 has inversion number at most 2.

inv(n) ≤ n− 4 for all n ≥ 6. (1)

Moreover, Belkhechine et al. [BBBP10] observed that since there are n! labelled transitive tournaments
of order n, the number of labelled tournaments of order n with inversion number less than p is at most
n!2n(p−1), while there are 2

n(n−1)
2 labelled tournaments of order n. So for all n such that 2

n(n−1)
2 >

n!2n(p−1), there is a tournament T of order n such that inv(T ) ≥ p. Hence

inv(n) ≥ n− 1

2
− log2 n for all n. (2)

However, it is believed that Equation (2) is not tight.

Conjecture 1.10 (Belkhechine et al. [BBBP]). inv(n) ≥ bn−12 c.
Furthermore, some explicit tournaments have been conjectured to have inversion number at least bn−12 c.

Let Qn be the tournament obtained from the transitive tournament by reversing the arcs of its unique
directed hamiltonian path (v1, v2, . . . , vn).

Conjecture 1.11 (Belkhechine et al. [BBBP]). inv(Qn) = bn−12 c.
A possible way to prove Conjecture 1.11 would be via augmentations. Let D be an oriented graph

and z a vertex of D. The z-augmentation of D is the digraph, denoted by σ(z,D), obtained from D by
adding two new vertices y and x, the arc zy, yx and xz and all the arcs from {x, y} to V (D) \ {z}. We
let σi(z,D) be the z-augmentation of D on which the vertices added are denoted by xi and yi.

Observe that Qn is isomorphic to σ(v1, Qn−2). Moreover for every oriented graph D and vertex z of
D, inv(σ(z,D)) ≤ inv(D) + 1, because Inv(σ(z,D), {y, z}) = (y → x)→ D.

In Section 4, we prove that ifD is an oriented graph with inv(D) = 1, then inv(σ(z,D)) = 2 for every
z ∈ V (D) (Lemma 4.1). In particular, inv(Q5) = 2.
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D

x

y

z

Fig. 1: The z-augmentation σ(z,D) of a digraph D.

Unfortunately, for larger values of inv(D), it is not true that inv(σ(z,D)) = inv(D) + 1 for every
z ∈ V (D). For example, take the directed 3-cycle ~C3 with vertex set {a, b, c} and consider H1 =

σ1(a, ~C3), and H2 = σ2(a,H1). See Figure 2. By Lemma 4.1, we have inv(H1) = 2 but inv(H2) = 2
as ({y1, y2, b}, {y1, y2, a, b}) is a decycling family of H2.

a

b

c

x1

y1

x2

y2

H1

Fig. 2: The digraph H2.

However, we prove in Theorem 4.2 that if inv(D) = 1, then inv(σ1(x2, σ2(z,D))) = 3 for every
z ∈ V (D). This directly implies inv(Q7) = 3.

1.3 Complexity of computing the inversion number
We also consider the complexity of computing the inversion number of an oriented graph and the following
associated problem.
k-INVERSION.
Input: An oriented graph D.
Question: inv(D) ≤ k ?

We also study the complexity of the restriction of this problem to tournaments.
k-TOURNAMENT-INVERSION.
Input: A tournament.
Question: inv(T ) ≤ k ?

Note that 0-INVERSION is equivalent to deciding whether an oriented graph D is acyclic. This can be
done in O(|V (D)|2) time.
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Let k be a positive integer. A tournament T is k-inversion-critical if inv(T ) = k and inv(T − x) <
k for all x ∈ V (T ). We denote by ICk the set of k-inversion-critical tournaments. Observe that a
tournament T has inversion number at least k if and only if T has a subtournament in ICk ∪ ICk+1 (by
Lemma 2.3).

Theorem 1.12 (Belkhechine et al. [BBBP10]). For any positive integer k, the set ICk is finite.

Checking whether the given tournament T contains I for every element I in ICk+1 ∪ ICk, one can
decide whether inv(T ) ≥ k in O(|V (T )|max{mk+1,mk}) time, where mk is the maximum order of an
element of ICk.

Corollary 1.13. For any non-negative integer k, k-TOURNAMENT-INVERSION is polynomial-time solv-
able.

The proof of Theorem 1.12 neither explicitly describes ICk nor gives upper bound on mk. So the
degree of the polynomial in Corollary 1.13 is unknown. This leaves open the following questions.

Problem 1.14. Explicitly describe ICk or at least find an upper bound on mk.
What is the minimum real number rk such that k-TOURNAMENT-INVERSION can be solved inO(|V (T )|rk)
time ?

As observed in [BBBP10], IC1 = { ~C3}, so m1 = 3. This implies that 0-TOURNAMENT-INVERSION
can be done in O(n3). However, deciding whether a tournament is acyclic can be solved in O(n2)-time.
Belkhechine et al. [BBBP10] also proved that IC2 = {A6, B6, D5, T5, V5} where A6 = TT2[ ~C3] =
Inv(TT6; ({v1, v3}, {v4, v6})),B6 = Inv(TT6; ({v1, v4, v5}, {v2, v5, v6})),D5 = Inv(TT5; ({v2, v4}, {v1, v5})),
R5 = Inv(TT5; ({v1, v3, v5}, {v2, v4})), and V5 = Inv(TT5; ({v1, v5}, {v3, v5})). See Figure 3.

v1

v2v3

v4

v5v6

A6

v3

v4v2

v5

v1

D5

v1

v2v3

v4

v5 v6

B6

v1

v4v2

v5

v3

R5

v1 v2 v3 v4

v5

V5

Fig. 3: The 2-inversion-critical tournaments

Hencem2 = 6, so 1-TOURNAMENT-INVERSION can be solved inO(n6)-time. This is not optimal: we
show in Subsection 6.2 that it can be solved in O(n3)-time, and that 2-TOURNAMENT-INVERSION can
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be solved in O(n6)-time.

There is no upper bound on mk so far. Hence since the inversion number of a tournament can be linear
in its order (See e.g. tournament Tk described at the end of the introduction), Theorem 1.12 does not
imply that one can compute the inversion number of a tournament in polynomial time. In fact, we believe
that it cannot be calculated in polynomial time.

Conjecture 1.15. Given a tournament and an integer k, deciding whether inv(T ) = k is NP-complete.

In contrast to Corollary 1.13, we show in Subsection 6.1 that 1-INVERSION is NP-complete. Note
that together with Conjecture 1.4, this would imply that k-INVERSION is NP-complete for every positive
integer k.

Conjecture 1.16. k-INVERSION is NP-complete for all positive integer k.

As we proved Conjecture 1.4. when inv(L) = inv(R) = 1, we get that 2-INVERSION is NP-complete.

Because of its relations with τ ′, τ , and ν, (see Subsection 1.1), it is natural to ask about the complexity
of computing the inversion number when restricted to oriented graphs (tournaments) for which one of
these parameters is bounded. Recall that inv(D) = 0 if and only if D is acyclic, so if and only if
τ ′(D) = τ(D) = ν(D) = 0.

Problem 1.17. Let k be a positive integer and γ be a parameter in {τ ′, τ, ν}. What is the complexity of
computing the inversion number of an oriented graph (tournament) D with γ(D) ≤ k ?

Conversely, it is also natural to ask about the complexity of computing any of τ ′, τ , and ν, when
restricted to oriented graphs with bounded inversion number. In Subsection 6.3, we show that computing
any of these parameters is NP-hard even for oriented graphs with inversion number 1. However, the
question remains open when we restrict to tournaments.

Problem 1.18. Let k be a positive integer and γ be a parameter in {τ ′, τ, ν}. What is the complexity of
computing γ(T ) for a tournament T with inv(T ) ≤ k ?

2 Properties of the inversion number
In this section, we establish easy properties of the inversion number and deduce from them Theorem 1.1
and the fact that Conjecture 1.4 is equivalent to its restriction to tournaments.

The inversion number is monotone :

Proposition 2.1. If D′ is a subdigraph of an oriented graph D, then inv(D′) ≤ inv(D).

Proof: Let D′ be a subdigraph of D. If (Xi)i∈I is a decycling family of D, then (Xi ∩ V (D′))i∈I is a
decycling family of D′.

Lemma 2.2. Let D be an oriented graph. If D has a source (a sink) x, then inv(D) = inv(D − x).

Proof: Every decycling family of D − x is also a decycling family of D since adding a source (sink) to
an acyclic digraph results in an acyclic digraph.

Lemma 2.3. Let D be an oriented graph and let x be a vertex of D. Then inv(D) ≤ inv(D − x) + 2.
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Proof: Let N+[x] be the closed out-neighbourhood of x, that is {x} ∪ N+(x). Observe that D′ =
Inv(D; (N+[x], N+(x))) is the oriented graph obtained from D by reversing the arc between x and its
out-neighbours. Hence x is a sink in D′ and D′ − x = D − x. Thus, by Lemma 2.2, inv(D) ≤
inv(D′) + 2 ≤ inv(D − x) + 2.

Proof Proof of Theorem 1.1: As observed in the introduction, if F is a minimum cycle arc-transversal,
then the family of sets of end-vertices of arcs of F is a decycling family. So inv(D) ≤ τ ′(D).

Let S = {x1, . . . , xk} be a cycle transversal with k = τ(D). Lemma 2.3 and a direct induction imply
inv(D) ≤ inv(D − {x1, . . . , xi}) + 2i for all i ∈ [k]. Hence inv(D) ≤ inv(D − S) + 2k. But, since S
is a cycle transversal, D − S is acyclic, so inv(D − S) = 0. Hence inv(D) ≤ 2k = 2τ(D).

Let D be an oriented graph. An extension of D is any tournament T such that V (D) = V (T ) and
A(D) ⊆ A(T ).

Lemma 2.4. Let D be an oriented graph. There is an extension T of D such that inv(T ) = inv(D).

Proof: Set p = inv(D) and let (Xi)i∈[p] be a decycling family of D. Then D∗ = Inv(D; (Xi)i∈[p]) is
acyclic and so admits an acyclic ordering (v1, . . . , vn).

Let T be the extension of D constructed as follows: For every 1 ≤ k < ` ≤ n such that vkv` /∈ A(D∗),
let n(k, `) be the number of Xi, i ∈ [p], such that {vk, v`} ⊆ Xi. If n(k, `) is even then the arc vkv`
is added to A(T ), and if n(k, `) is odd then the arc v`vk is added to A(T ). Note that in the first case,
vkv` is reversed an even number of times by (Xi)i∈[p], and in the second v`vk is reversed an odd number
of times by (Xi)i∈[p]. Thus, in both cases, vkv` ∈ A(Inv(T ; (Xi)i∈[p])). Consequently, (v1, . . . , vn)
is also an acyclic ordering of Inv(T ; (Xi)i∈[p]). Hence inv(T ) ≤ inv(D), and so, by Proposition 2.1,
inv(T ) = inv(D).

Proposition 2.5. Conjecture 1.4 is equivalent to its restriction to tournaments.

Proof: Suppose there are oriented graphs L,R that form a counterexample to Conjecture 1.4, that is such
that inv(L → R) < inv(L) + inv(R). By Lemma 2.4, there is an extension T of L → R such that
inv(T ) = inv(L → R) and let TL = T 〈V (L)〉 and TR = T 〈V (R)〉. We have T = TL → TR and by
Proposition 2.1, inv(L) ≤ inv(TL) and inv(R) ≤ inv(TR). Hence inv(T ) < inv(TL) + inv(TR), so TL
and TR are two tournaments that form a counterexample to Conjecture 1.4.

3 Inversion number of dijoins of oriented graphs
In this section, we give some evidence for Conjecture 1.4 to be true. We prove that it holds when inv(L)
and inv(R) are small.

Proposition 3.1. Let L and R be two oriented graphs. If inv(L), inv(R) ≥ 1, then inv(L→ R) ≥ 2.

Proof: Assume inv(L), inv(R) ≥ 1. Then L and R are not acyclic, so let CL and CR be directed cycles
in L and R respectively. Assume for a contradiction that there is a set X such that inverting X in L→ R
results in an acyclic digraph D′. There must be an arc xy in A(CL) such that x ∈ X and y /∈ X , and
there must be z ∈ X ∩ V (CR). But then (x, y, z, x) is a directed cycle in D′, a contradiction.

Propositions 1.3 and 3.1 directly imply that Conjecture 1.4 holds when inv(L) = inv(R) = 1.
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Corollary 3.2. Let L and R be two oriented graphs. If inv(L) = inv(R) = 1, then inv(L→ R) = 2.

Further than Proposition 3.1, the following result gives some property of a minimum decycling family
of L→ R when inv(L) = inv(R) = 1.

Theorem 3.3. Let D = (L → R), where L and R are two oriented graphs with inv(L) = inv(R) = 1.
Then, for any decycling family (X1, X2) of D, either X1 ⊂ V (L), X2 ⊂ V (R) or X1 ⊂ V (R), X2 ⊂
V (L).

Proof: Let (X1, X2) be a decycling family ofD and letD∗ be the acyclic digraph obtained after inverting
X1 and X2 (in symbols D∗ = Inv(D; (X1, X2))).

Let us define some sets. See Figure 4.

• For i ∈ [2], XL
i = Xi ∩ V (L) and XR

i = Xi ∩ V (R).

• ZL = V (L) \ (XL
1 ∪XL

2 ) and ZR = V (R) \ (XR
1 ∪XR

2 ).

• XL
12 = XL

1 ∩XL
2 and XR

12 = XR
1 ∩XR

2 .

• for {i, j} = {1, 2}, XL
i−j = (XL

i \XL
j ) and XR

i−j = (XR
i \XR

j ).

XL
1

XL
2

XR
1

XR
2

XL
1−2

XL
12

XL
2−1

XR
1−2

XR
12

XR
2−1

ZL ZR

Fig. 4: The oriented graph D∗

Observe that at least one of the sets XL
1−2, X

R
2−1, X

L
2−1 and XR

1−2 must be empty, otherwise D∗ is not
acyclic. By symmetry, we may assume that it isXR

1−2 orXR
2−1. Observe moreover thatXR

1−2∪XR
2−1 6= ∅

for otherwise XR
1 = XR

2 = XR
12 and D∗〈V (R)〉 = R is not acyclic.

Assume first that XR
1−2 = ∅ and so XR

2−1 6= ∅.
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Suppose for a contradiction that XR
12 6= ∅ and let a ∈ XR

2−1, b ∈ XR
12. Let C be a directed cycle in L.

Note that V (C) cannot be contained in one of the sets XL
1−2, X

L
12, XL

2−1 or ZL. If V (C)∩ZL 6= ∅, there
is an arc cd ∈ A(L) such that c ∈ XL

1−2 ∪XL
12 ∪XL

2−1 and d ∈ ZL. Then, either (c, d, a, c) or (c, d, b, c)
is a directed cycle in D∗, a contradiction. Thus, V (C) ⊆ XL

1−2 ∪XL
12 ∪XL

2−1. If V (C) ∩XL
12 6= ∅, then

there is an arc cd ∈ A(L) such that c ∈ XL
12 and d ∈ XL

1−2 ∪XL
2−1 which means that dc ∈ A(D∗) and

(d, c, b, d) is a directed cycle in D∗, a contradiction. Hence V (C) ⊆ XL
1−2 ∪XL

2−1 and there exists an arc
cd ∈ A(L) such that c ∈ XL

2−1, d ∈ XL
1−2 and (c, d, a, c) is a directed cycle in D∗, a contradiction.

Therefore XR
12 = ∅ and every directed cycle of R has its vertices in XR

2−1 ∪ ZR. Then, there is an arc
ea ∈ A(R) with a ∈ XR

2−1 and e ∈ ZR. Note that, in this case, ea ∈ A(D∗) and (e, a, c, e) is a directed
cycle in D∗ for any c ∈ XL

12 ∪XL
2−1. Thus, XL

12 = XL
2−1 = ∅ and X1 ⊂ V (L), X2 ⊂ V (R).

If XR
2−1 = ∅, we can symmetrically apply the same arguments to conclude that X1 ⊂ V (R) and

X2 ⊂ V (L).

Theorem 3.4. Let L and R be two oriented graphs. If inv(L) = 1 and inv(R) = 2, then inv(L→ R) =
3.

Proof: Let D = (L→ R). By Propositions 1.3 and 3.1, we know that 2 ≤ inv(D) ≤ 3.

Assume for a contradiction that inv(D) = 2. Let (X1, X2) be a decycling family of D and let D∗ =
Inv(D; (X1, X2)). Let L∗ = D∗〈V (L)〉 and R∗ = D∗〈V (F )〉. We define the sets XL

1 , XL
2 , XR

1 , XR
2 ,

ZL, ZR, XL
12, XR

12, XL
1−2, XL

2−1, XR
1−2, and XR

2−1 as in Theorem 3.3. See Figure 4. Note that each of
these sets induces an acyclic digraph in D∗ and thus also in D. For i ∈ [2], let Di = Inv(D;Xi), let
Li = Inv(L,XL

i ) = Inv(L∗;XL
j−i) where {j} = [2] \ {i}, and Ri = Inv(R,XR

i ) = Inv(R∗;XR
j−i)

where {j} = [2] \ {i}. Since inv(D) = 2, inv(D1) = inv(D2) = 1. Since inv(R) = 2, R1 and R2 are
both non-acyclic, so inv(R1) = inv(R2) = 1.

Claim 1: XL
i , X

R
i 6= ∅ for all i ∈ [2].

Proof. Since inv(R) = 2, necessarily, XR
1 , X

R
2 6= ∅.

Suppose now that XL
i = ∅ for some i ∈ [2]. Then Di = L→ Ri. As inv(L) ≥ 1 and inv(Ri) ≥ 1, by

Proposition 3.1 inv(Di) ≥ 2, a contradiction. ♦

Claim 2: XL
1 6= XL

2 and XR
1 6= XR

2 .
Proof. If XL

1 = XL
2 , then L∗ = L, so L∗ is not acyclic, a contradiction. Similarly, If XR

1 = XR
2 , then

R∗ = R, so R∗ is not acyclic, a contradiction. ♦

In particular, Claim 2 implies that XL
1−2 ∪XL

2−1 6= ∅.

In the following, we denote by A; B the fact that there is no arc from B to A.

Assume first that XR
1−2 = ∅. By Claim 1, XR

1 6= ∅, so XR
12 6= ∅ and by Claim 2 , XR

1 6= XR
2 , so

XR
2−1 6= ∅.
If XL

2−1 6= ∅, then, in D∗, XR
2−1 ∪ XR

12 ; ZR because XR
2−1 ∪ XR

12 → XL
2−1 → ZR. But then

R1 = Inv(R∗;XR
2 ) would be acyclic, a contradiction. Thus, XL

2−1 = ∅.
Then by Claims 1 and 2, we get XL

12, X
L
1−2 6= ∅. Hence, as XR

12 → XL
1−2 → XR

2−1 → XL
12 → XR

12 in
D∗, there is a directed cycle in D∗, a contradiction. Therefore XR

1−2 6= ∅.
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In the same way, one shows that XR
2−1 6= ∅. As XR

1−2 → XL
1−2 → XR

2−1 → XL
2−1 → XR

1−2 in D∗,
and D∗ is acyclic, one of XL

1−2 and XL
2−1 must be empty. Without loss of generality, we may assume

XL
1−2 = ∅.
Then by Claims 1 and 2, we have XL

12, X
L
2−1 6= ∅. Furthermore XR

12 = ∅ because XR
12 → XL

2−1 →
XR

1−2 → XL
12 → XR

12 in D∗. Now in D∗, XR
2−1 ; XR

1−2 ∪ ZR because XR
2−1 → XL

2−1 → XR
1−2 ∪ ZR,

and XR
1−2 ; ZR because XR

1−2 → XL
12 → ZR. Thus, in D, we also have XR

2−1 ; XR
1−2 ∪ ZR and

XR
1−2 ; ZR. So R is acyclic, a contradiction to inv(R) ≥ 2.

Therefore inv(D) ≥ 3. So inv(D) = 3.

Corollary 3.5. Let D be an oriented graph. Then inv(D) = 1 if and only if inv(D → D) = 2.

Proof: Assume first that inv(D) = 1. Then by Corollary 3.2, inv(D → D) = 2.
Assume now that inv(D) 6= 1.

If inv(D) = 0, then D is acyclic, and so is D → D. Hence inv(D → D) = 0.
If inv(D) ≥ 3, then inv(D → D) ≥ inv(D) (by Proposition 2.1 because D is a subdigraph of D → D)
and so inv(D → D) ≥ 3.
If inv(D) = 2, then D contains a directed cycle C. Now C → D is a subdigraph of D → D, so by
Proposition 2.1 inv(D → D) ≥ inv(C → D). Clearly, inv(C) = 1, thus, by Theorem 3.4, inv(C →
D) = 3 and so inv(D → D) ≥ 3.

3.1 Dijoin of oriented graphs with inversion number 2
Theorem 3.6. Let L and R be strong oriented graphs such that inv (L), inv (R) ≥ 2. Then inv (L →
R) ≥ 4.

Proof: Assume for a contradiction that there are two strong oriented graphsL andR such that inv (L), inv (R) ≥
2 and inv (L → R) ≤ 3. By Lemma 2.4 and Proposition 2.1, we can assume that L and R are strong
tournaments.

Hence L contains ~C3. By Theorem 3.4, inv ( ~C3 → R) ≥ 3. But ~C3 → R is a subtournament of
L → R. Thus, by Proposition 2.1, inv (L → R) ≥ 3 and so inv (L → R) = 3. Let (X1, X2, X3) be
a decycling sequence of D = L → R and denote the resulting acyclic (transitive) tournament by T . We
will use the following notation. Below and in the whole proof, whenever we use subscripts i, j, k together
we have {i, j, k} = {1, 2, 3}.

• XL
i = Xi ∩ V (L), XR

i = Xi ∩ V (R) for all i ∈ [3].

• ZL = V (L) \ (XL
1 ∪XL

2 ∪XL
3 ) and ZR = V (R) \ (XR

1 ∪XR
2 ∪XR

3 ).

• XL
123 = XL

1 ∩XL
2 ∩XL

3 , XR
123 = XR

1 ∩XR
2 ∩XR

3 .

• XL
ij−k = (XL

i ∩XL
j ) \XL

k and XR
ij−k = (XR

i ∩XR
j ) \XR

k .

• XL
i−jk = XL

i \ (XL
j ∪XL

k ) and XR
i−jk = XR

i \ (XR
j ∪XR

k ).
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For any two (possibly empty) sets Q,W , we write Q → W to indicate that every q ∈ Q has an arc to
every w ∈W . Unless otherwise specified, we are always referring to the arcs of T below. When we refer
to arcs of the original digraph we will use the notation u⇒ v, whereas we use u→ v for arcs in T .

Claim A: XL
i , X

R
i 6= ∅ for all i ∈ [3].

Proof. Suppose w.l.o.g. that XR
1 = ∅ and let D′ = Inv(D;X1). Then D′ contains ~C3 → R as a

subtournament since reversing XL
1 does not make L acyclic so there is still a directed 3-cycle (by Moon’s

theorem). ♦

Claim B: In T the following holds, implying that at least one of the involved sets is empty (as T is acyclic).

(a) XR
123 → XL

123 → XR
ij−k → XL

ik−j → XR
123.

(b) XL
ij−k → XR

ij−k → XL
ik−j → XR

ik−j → XL
ij−k.

Proof. This follows from the fact that and arc of D is inverted if and only if it belongs to an odd number
of the sets X1, X2, X3. ♦

Claim C: For all i 6= j, we have XL
i 6= XL

j and XR
i 6= XR

j .
Proof. Suppose this is not true, then without loss of generality XL

3 = XL
2 but this contradicts that

(XL
1 , X

L
2 , X

L
3 ) is a decycling sequence of L as inverting XL

2 and XL
3 leaves every arc unchanged and we

have inv(L) ≥ 2. ♦

Now we are ready to obtain a contradiction to the assumption that (X1, X2, X3) is a decycling sequence
for D = L→ R. We divide the proof into five cases. In order to increase readability, we will emphasize
partial conclusions in blue, assumptions in orange, and indicate consequences of assumptions in red.

Case 1: XL
i−jk = ∅ = XR

i−jk for all i, j, k.

By Claim C, at least two of the sets XL
12−3, X

L
13−2, X

L
23−1 are non-empty and at least two of the sets

XR
12−3, X

R
13−2, X

R
23−1 are non-empty. Without loss of generality, XL

12−3, X
L
13−2 6= ∅. Now Claim B (b)

implies that one of XR
12−3, X

R
13−2 must be empty. By interchanging the names of X2, X3 if necessary, we

may assume that XR
13−2 = ∅ and hence, by Claim C, XR

12−3, X
R
23−1 6= ∅. By Claim B (a), this implies

XL
23−1 = ∅. Now XR

23−1 → XL
12−3 → XR

12−3, so XR
23−1 → XR

13−2. As XL
12−3 → XR

12−3 → XL
13−2,

we must have XL
12−3 → XL

13−2. By Claim B (a), XL
123 → XR

12−3 → XL
13−2 → XR

123 → XL
123, so one of

XL
123 andXR

123 is empty. W.l.o.g. we may assumeXR
123 = ∅. AsR is strong andXR

23−1 dominatesXR
12−3

in R (these arcs are reversed by X2), we must have ZR 6= ∅. Moreover the arcs incident to ZR are not
reversed, so the set ZR has an out-neighbour in XR

12−3 ∪XR
23−1. But XR

12−3 ∪XR
23−1 → XL

13−2 → ZR

so T has a directed 3-cycle, contradiction. This completes the proof of Case 1.

Case 2: Exactly one of XL
1−23, X

L
2−13, X

L
3−12, X

R
1−23, X

R
2−13, X

R
3−12 is non-empty.

By reversing all arcs and switching the names of L and R if necessary, we may assume w.l.o.g that
XL

1−23 6= ∅. As XR
2 6= XR

3 we have XR
12−3 ∪XR

13−2 6= ∅. By symmetry, we can assume that XR
12−3 6= ∅.



On the inversion number of oriented graphs. 13

Suppose for a contradiction that XR
23−1 = ∅. Then Claims A and C imply XR

13−2 6= ∅. Now, by
Claim B (b), one of XL

12−3, X
L
13−2 is empty. By symmetry, we can assume XL

13−2 = ∅. Now, by Claim
C, XL

2 6= XL
3 , so XL

12−3 6= ∅. Note that XL
12−3 → XR

12−3 → XL
1−23, thus XL

12−3 → XL
1−23 be-

cause T is acyclic. We also have XL
123 → XL

12−3 as XL
123 → XR

13−2 → XL
12−3, and XL

12−3 → XL
23−1 as

XL
12−3 → XR

12−3 → XL
23−1. This implies that inL all arcs betweenXL

12−3 andXL
23−1∪XL

123∪XL
1−23 are

enteringXL
12−3 (the arcs betweenXL

123 andXL
12−3 were reversed twice and those betweenXL

1−23∪XL
23−1

and XL
12−3 were reversed once). Hence, as L is strong, we must have an arc uz from XL

12−3 to ZL. But
ZL → XR

13−2 → XL
12−3 so together with uz we have a directed 3-cycle in T , contradiction. Hence

XR
23−1 6= ∅.

Observe that XR
12−3 ∪XR

13−2 → XR
23−1 as XR

12−3 ∪XR
13−2 → XL

1−23 → XR
23−1.

If XL
12−3 6= ∅, then XR

23−1 → XL
12−3 → XR

12−3 → XR
23−1, a contradiction. So XL

12−3 = ∅. But
XL

2 6= XL
3 by Claim C. Thus XL

13−2 6= ∅. As XR
23−1 → XL

13−2 → XR
123, we have XR

23−1 → XR
123. This

implies that in R all the arcs between XR
23−1 and XR

13−2 ∪XR
123 ∪XR

12−3 are leaving XR
23−1. So as R is

strong there must be an arc in R from ZR to XR
23−1. This arc is not reversed, so it is also an arc in T . But

since XR
23−1 → XL

13−2 → ZR, this arc is in a directed 3-cycle, a contradiction. This completes Case 2.

Case 3: Exactly one of XL
1−23, X

L
2−13, X

L
3−12 is non-empty and exactly one of XR

1−23, X
R
2−13, X

R
3−12 is

non-empty.

By symmetry we can assume XL
1−23 6= ∅.

Subcase 3.1: XR
1−23 6= ∅.

By Claim C, XL
2 6= XL

3 , so one of XL
12−3 and XL

13−2 is non-empty. By symmetry we may assume
XL

12−3 6= ∅.

Suppose XR
12−3 6= ∅. Then XR

23−1 = ∅ as XL
1−23 → XR

23−1 → XL
12−3 → XR

12−3 → XL
1−23, and

XL
23−1 = ∅ as XR

1−23 → XL
12−3 → XR

12−3 → XL
23−1 → XR

1−23.
By Claim B (b), one of XL

13−2, X
R
13−2 is empty. By symmetry, we may assume XR

13−2 = ∅.
Observe that V (R)\ZR = XR

123∪XR
12−3∪XR

1−23, so V (R)\ZR → XL
1−23 → ZR, so V (R)\ZR →

ZR. But all the arcs incident to ZR are not inversed, so in R, there is no arc from ZR to V (R) \ ZR.
Since R is strong, ZR = ∅.

NowXR
1−23 → XR

12−3 ∪XR
123 because XR

1−23 → XL
12−3 → XR

12−3 ∪XR
123. But all the arcs between

XR
1−23 and XR

12−3 ∪XR
123 = V (R) \XR

1−23 are inversed from R to T . Hence in R, no arcs leaves XR
1−23

in R, a contradiction to R being strong.
Hence XR

12−3 = ∅. As XR
2 6= XR

3 this implies XR
13−2 6= ∅.

Suppose that XR
23−1 = ∅, then XR

123 6= ∅ because XR
2 6= ∅ by Claim A. Furthermore XR

13−2 → XR
123

as XR
13−2 → XL

12−3 → XR
123, and XL

12−3 → XL
1−23 as XL

12−3 → XR
123 → XL

1−23. This implies that
XL

123 = ∅ as XL
123 → XR

13−2 → XR
123 → XL

123.
Since L is strong, there must be an arc uv leaving XL

12−3 in L. But v cannot be in XL
1−23 since all

vertices of this set dominate XL
12−3 in L. Moreover v cannot be in ZL for otherwise (u, v, w, u) would be
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a directed 3-cycle in T for any w ∈ XR
1−23 since ZL → XR

1−23 → XL
12−3. Hence v ∈ XL

13−2 ∪XL
23−1,

so XL
13−2 ∪XL

23−1 6= ∅.
As XL

13−2 → XR
13−2 → XL

23−1 → XR
1−23 → XL

13−2, precisely one of XL
13−2, X

L
23−1 is non-empty.

If XL
13−2 6= ∅ and XL

23−1 = ∅, then XL
13−2 → XR

13−2 → XL
1−23 ∪ XL

12−3 implies that XL
13−2 →

XL
1−23 ∪ XL

12−3. As d+L(XL
13−2) > 0 there exists z ∈ ZL such that there is an arc uz from XL

13−2 to
ZL, but then z → XR

1−23 → u → z is a contradiction. Hence XL
13−2 = ∅ and XL

23−1 6= ∅. Then
XL

23−1 → XL
1 as XL

23−1 → XR
1−23 → XL

1 .
Note that ZL = ∅ as every vertex in V (L) \ZL has an in-neighbour in V (R) in T , implying that there

can be no arc from V (L) \ ZL to ZL in L. Thus V (L) = XL
1−23 ∪XL

12−3 ∪XL
23−1 where each of these

sets induces an acyclic subtournament of L and we have XL
1−23 ⇒ XL

12−3 ⇒ XL
23−1 ⇒ XL

1−23 in L. But
now inverting the set XL

1−23 ∪XL
23−1 makes L acyclic, a contradiction to inv(L) ≥ 2. Thus XR

23−1 6= ∅.

Suppose XL
23−1 = ∅. As above ZL = ∅, so V (L) = XL

1 . As XL
1−23 → XR

23−1 → XL
12−3 ∪ XL

13−2
we have XL

1−23 → XL
12−3 ∪ XL

13−2. Thus, using d+L(XL
1−23) > 0, we get XL

123 6= ∅. As XR
123 →

XL
123 → XR

23−1 → XL
12−3 → XR

123, we have XR
123 = ∅. Moreover XR

1 → XR
23−1 because XR

1 →
XL

1−23 → XR
23−1. We also have XR

1−23 → XR
13−2 as XR

1−23 → XL
123 → XR

13−2. Now V (R) \ ZR =
XR

1−23 ∪XR
13−2 ∪XR

23−1 → XL
12−3 → ZR. Thus ZR = ∅ and V (R) = XR

1−23 ∪XR
13−2 ∪XR

23−1 where
each of these sets induces an acyclic subtournament inR andXR

1−23 ⇒ XR
23−1 ⇒ XR

13−2 ⇒ XR
1−23 inD.

But then inverting XR
1−23 ∪XR

23−1 we make R acyclic, a contradiction to inv(R) ≥ 2. Thus XL
23−1 6= ∅.

Therefore XL
13−2 = ∅ as XL

13−2 → XR
13−2 → XL

23−1 → XR
23−1 → XL

13−2. As XL
1−23 → XR

23−1 →
XL

12−3 we have XL
1−23 → XL

12−3; as XL
23−1 → XR

1−23 → XL
1−23 ∪XL

12−3 we have XL
23−1 → XL

1−23 ∪
XL

12−3; As XR
1−23 → XL

1−23 → XR
23−1 we have XR

1−23 → XR
23−1; as XR

13−2 → XL
23−1 → XR

1−23 ∪
XR

23−1 we have XR
13−2 → XR

1−23 ∪XR
23−1.

Because XR
13−2 ∪XR

23−1 ∪XR
1−23 → XL

12−3 and XR
123 → XL

1−23, every vertex in V (R) \ ZR has an
out-neighbour in V (L). As above, we derive ZR = ∅. Similarly, because XR

13−2 → XL
12−3 ∪ XL

23−1,
XR

1−23 → XL
123, and XR

123 → XL
1−23, every vertex in V (L) \ ZL has in-neighbour in V (R), and so

ZL = ∅. Next observe that at least one of the sets XR
123, X

L
123 must be empty as XR

123 → XL
123 →

XR
23−1 → XL

12−3 → XR
123. If XR

123 = ∅ then V (R) = XR
1−23 ∪ XR

13−2 ∪ XR
23−1 where each of these

sets induces an acyclic subtournament of R and XR
1−23 ⇒ XR

23−1 ⇒ XR
13−2 and XR

1−23 ⇒ XR
13−2.

Thus R is acyclic, contradicting inv(R) ≥ 2. So XR
123 6= ∅ and XL

123 = ∅. As above we obtain a contra-
diction by observing that L is acyclic, contradicting inv(L) ≥ 2. This completes the proof of Subcase 3.1.

Subcase 3.2 XR
1−23 = ∅.

By symmetry, we can assume XR
2−13 = ∅ and XR

3−12 6= ∅. Hence XL
1−23 → XL

3 because XL
1−23 →

XR
3−12 → XL

3 , and XR
1 → XR

3−12 because XR
1 → XL

1−23 → XR
3−12. Note that one of XL

13−2, X
R
13−2

is empty since XL
13−2 → XR

13−2 → XL
1−23 → XR

3−12 → XL
13−2. By symmetry we can assume that

XL
13−2 = ∅. By Claim C, XL

2 6= XL
3 , so XL

12−3 6= ∅.

Suppose first that XR
123 6= ∅. Then XL

23−1 = ∅ since XL
23−1 → XR

123 → XL
1−23 → XL

23−1. Now, by
Claim A, XL

3 6= ∅ so XL
123 6= ∅. Now XL

123 → XR
13−2 → XL

1−23 → XL
123, so XR

13−2 = ∅. Furthermore,
XR

23−1 → XL
12−3 → XR

123 → XL
1−23 → XR

23−1 so XR
23−1 = ∅. Therefore XR

1 = XR
2 , a contradiction to

Claim C. Thus XR
123 = ∅.



On the inversion number of oriented graphs. 15

Next suppose XL
123 6= ∅. Then XR

12−3 = ∅ because XR
12−3 → XR

3−12 → XL
123 → XR

12−3. By Claim A,
XR

1 , X
R
2 6= ∅, so XR

13−2 6= ∅ and XR
23−1 6= ∅. As XR

13−2 → XL
1−23 → XR

3−12 ∪ XR
23−1 we have

XR
13−2 → XR

3−12 ∪XR
23−1. Since d+R(XR

13−2) > 0 we have ZR 6= ∅. However, there can be no arcs from
ZR to XR

3 = V (R) \ ZR, because XR
3 → XL

123 → ZR. This contradicts the fact that R is strong. Thus
XL

123 = ∅.

By Claim A, XL
3 6= ∅, so XL

23−1 6= ∅. Thus XR
23−1 = ∅ because XR

23−1 → XL
12−3 → XR

3−12 →
XL

23−1 → XR
23−1. By Claim A, XR

2 6= ∅ so XR
12−3 6= ∅. By Claim C, XR

1 6= XR
2 , so XR

13−2 6= ∅.
As XL

12−3 → XR
12−3 → XL

1−23 ∪ XL
23−1, we have XL

12−3 → XL
1−23 ∪ XL

23−1. Thus the fact that
d+L(XL

12−3) > 0 implies that there is an arc vz from XL
12−3 to ZL. But then for any u ∈ XR

13−2,
(u, v, z, u) is directed 3-cycle, a contradiction.

This completes Subcase 3.2.

Case 4: All three of XL
1−23, X

L
2−13, X

L
3−12 or all three of XR

1−23, X
R
2−13, X

R
3−12 are non-empty.

By symmetry, we can assume that XL
1−23, X

L
2−13, X

L
3−12 6= ∅. There do not exist i 6= j ∈ [3] such that

XR
i \XR

j , X
R
j \XR

i 6= ∅, for otherwise XL
i−jk → (XR

j \XR
i ) → XL

j−ik → (XR
i \XR

j ) → XL
i−jk, a

contradiction. Hence we may assume by symmetry that XR
2 \ XR

1 , X
R
3 \ XR

1 , X
R
2 \ XR

3 = ∅. This
implies that XR

2 = XR
123, XR

3 = XR
123 ∪ XR

13−2 and XR
1 = XR

123 ∪ XR
13−2 ∪ XR

1−23. Moreover,
XR

1−23, X
R
123, X

R
13−2 6= ∅ by Claim C. As XR

3 → XL
3−12 → XR

1−23 we have XR
3 → XR

1−23, so since
d−R(XR

1−23) > 0 we must have an arc from ZR to XR
1−23 and now XR

1−23 → XL
1−23 → ZR gives a

contradiction. This completes Case 4.

Case 5: Exactly two of XL
1−23, X

L
2−13, X

L
3−12 or two of XR

1−23, X
R
2−13, X

R
3−12 are non-empty.

By symmetry we can assume that XL
1−23, X

L
2−13 6= ∅ and XL

3−12 = ∅.

Subcase 5.1: XR
1−23, X

R
2−13, X

R
3−12 = ∅.

As XL
1−23 → XR

23−1 → XL
2−13 → XR

13−2 → XL
1−23, one of XR

13−2, X
R
23−1 is empty. By symmetry we

may assume that XR
23−1 = ∅. By Claim C, XR

1 6= XR
2 and XR

1 6= XR
3 , so XR

13−2 6= ∅ and XR
12−3 6= ∅.

Now V (R) \ ZR = XR
1 → XL

1−23 → ZR, thus there is no arc leaving ZR. As R is strong, we get
ZR = ∅.

As XR
12−3 → XL

2−13 → XR
13−2, we have XR

12−3 → XR
13−2. Hence as R is strong, necessarily XR

123 6=
∅. If XL

123 6= ∅, then XR
123 → XR

12−3 ∪XR
13−2 as XR

123 → XL
123 → XR

12−3 ∪XR
13−2. This contradicts the

fact thatR is strong since d+R(XR
123) = 0. HenceXL

123 = ∅. By Claim A,XL
3 6= ∅, soXL

13−2∪XL
23−1 6= ∅.

Since XR
123 → XL

2−13 → XR
13−2, we have XR

123 → XR
13−2. We also have XR

12−3 → XR
123 because

XR
12−3 → XL

13−2 ∪ XL
23−1 → XR

123. Hence V (R) = XR
12−3 ∪ XR

13−2 ∪ XR
123 where each of these

sets induces an acyclic subtournament of R and XR
13−2 ⇒ XR

12−3 ⇒ XR
123 ⇒ XR

13−2. Thus inverting
XR

12−3 ∪XR
13−2 makes R acyclic, contradicting inv(R) ≥ 2.

This completes Subcase 5.1

Subcase 5.2: XR
1−23 6= ∅ and XR

2−13 ∪XR
3−12 = ∅.
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We first observe that since XL
2−13 ∪XL

23−1 → XR
1−23 → XL

1 we can conclude that XL
2−13 → XL

1 and
XL

23−1 → XL
1 . As XR

23−1 → XL
2−13 → XL

1−23 → XR
23−1, we have XR

23−1 = ∅. Now V (R) \ ZR = XR
1

and XR
1 → XL

1−23 → ZR. So V (R) \ ZR → ZR. Since R is strong, ZR = ∅. Now Claims A and C
imply that at least two of the sets XR

13−2, X
R
123, X

R
12−3 are non-empty. This implies that every vertex of

V (L) has an in-neighbour in V (R) (as XR
1−23 → XL

1 , XR
13−2 ∪XR

12−3 → XL
23−1 and XR

2 → XL
2−13) so

we must have ZL = ∅.
Suppose first thatXR

12−3 = ∅. By Claim A,XR
2 6= ∅, soXR

123 6= ∅. Moreover, by Claim C,XR
2 6= XR

3 ,
soXR

13−2 6= ∅. SinceXL
12−3∪XL

13−2 → XR
123 → XL

2−13 → XL
12−3∪XL

13−2 we haveXL
12−3∪XL

13−2 = ∅.
If XL

23−1 6= ∅, then XL
123 = ∅ as XL

23−1 → XL
123 → XR

13−2 → XL
23−1 and we have XL

2−13 → XL
23−1 as

XL
2−13 → XR

13−2 → XL
23−1. Now we see that d−L (XL

23−1) = 0, a contradiction. Hence XL
23−1 = ∅ and

XL
123 6= ∅ because XL

3 6= ∅ by Claim A. Moreover XL
123 → XL

1−23 because XL
123 → XR

13−2 → XL
1−23.

Now V (L) = XL
1−23 ∪ XL

2−13 ∪ XL
123 where each of these sets induces an acyclic subtournament in L

and XL
1−23 ⇒ XL

123 ⇒ XL
2−13 ⇒ XL

1−23. Then inverting the set XL
1−23 ∪ XL

2−13 makes L acyclic, a
contradiction to inv(L) ≥ 2. Thus XR

12−3 6= ∅.

Note that XR
12−3 → XR

1−23 ∪XR
13−2 as XR

12−3 → XL
2−13 → XR

1−23 ∪XR
13−2. Thus XL

123 = ∅ because
XL

123 → XR
12−3 → XR

1−23 → XL
123. Furthermore the fact that d+R(XR

12−3) > 0 implies thatXR
123 6= ∅ and

that there is at least one arc from XR
12−3 to XR

123 in T (and in R). We saw before that XR
12−3 → XR

1−23
and by the same reasoning XR

123 → XR
1−23, hence, as ZR = ∅ and d−R(XR

1−23) > 0, there is at least one
arc from XR

1−23 to XR
13−2. Hence XR

13−2 6= ∅ and XL
23−1 = ∅ as XR

13−2 → XL
23−1 → XR

1−23. We have
XL

12−3 = ∅ since XL
12−3 → XR

123 → XL
2−13 → XR

1−23 → XL
12−3. Finally, as XL

2−13 → XR
1−23 → XL

1

we have XL
2−13 → XL

1 . But now d+L(XL
1 ) = 0 (recall that ZL = ∅), a contradiction. This completes

Subcase 5.2

Subcase 5.3: XR
3−12 6= ∅ and XR

1−23 ∪XR
2−13 = ∅.

As XR
23−1 → XL

2−13 → XR
13−2 → XL

1−23 → XR
23−1 one of the sets XR

13−2, X
R
23−1 must be empty. By

symmetry we may assume that XR
23−1 = ∅.

Suppose first that XR
12−3 = ∅. Then, by Claim A, XR

2 6= ∅, so XR
123 6= ∅, and by Claim C,

XR
1 6= XR

2 , so XR
13−2 6= ∅. Now XL

123 = ∅ because XL
123 → XR

13−2 → XL
1−23 → XR

3−12 → XL
123. As

XR
123 → XL

2−13 → XR
13−2 ∪XR

3−12, we have XR
123 → XR

13−2 ∪XR
3−12. Next we observe that XL

13−2 = ∅
since XL

13−2 → XR
123 → XR

3−12 → XL
13−2. Now, as XL

3 6= ∅ by Claim C, we have XL
23−1 6= ∅ but that

contradicts that XL
23−1 → XR

123 → XR
3−12 → XL

23−1. So we must have XR
12−3 6= ∅.

First observe that XL
123 = ∅ as XL

123 → XR
12−3 → XL

1−23 → XR
3−12 → XL

123. As XR
1 6= XR

2 by
Claim C, we have XR

13−2 6= ∅. Now XL
13−2 = ∅ as XL

13−2 → XR
13−2 → XL

1−23 → XR
3−12 → XL

13−2.
As XL

3 6= ∅ by Claim A, we have XL
23−1 6= ∅. Since XL

12−3 → XR
12−3 → XL

2−13 → XR
13−2 → XL

12−3
we have XL

12−3 = ∅. As XL
1−23 → XR

3−12 → XL
23−1, we have XL

1−23 → XL
23−1. Moreover XL

2−13 →
XR

13−2 → XL
23−1 ∪XL

1−23 implies XL
2−13 → XL

23−1 ∪XL
1−23. We also have ZL = ∅ since every vertex

in XL
1−23 ∪ XL

23−1 ∪ XL
2−13 has an in-neighbour in R, implying that there can be no arc entering ZL.

Now V (L) = XL
1−23 ∪XL

23−1 ∪XL
2−13 where each of these sets induces a transitive subtournament in L

and XL
1−23 ⇒ XL

23−1 ⇒ XL
2−13 ⇒ XL

1−23. However this implies that inverting XL
1−23 ∪XL

2−13 makes
L acyclic, a contradiction to inv(L) ≥ 2. This completes the proof of Subcase 5.3.
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Subcase 5.4: XR
1−23, X

R
2−13 6= ∅ and XR

3−12 = ∅.

This case is trivial as XL
1−23 → XR

2−13 → XL
2−13 → XR

1−23 → XL
1−23 contradicts that T is acyclic.

By symmetry the only remaining case to consider is the following.

Subcase 5.5: XR
1−23, X

R
3−12 6= ∅ and XR

2−13 = ∅.

As XL
23−1 → XR

1−23 → XL
1−23 → XR

3−12 → XL
23−1 we have XL

23−1 = ∅ and as XR
23−1 → XL

2−13 →
XR

1−23 → XL
1−23 → XR

23−1 we have XR
23−1 = ∅. Note that every vertex in V (L) has an in-neighbour in

V (R) (as XR
1−23 → XL

1 and XR
2 → XL

2−13) and every vertex in V (R) has an out-neighbour in V (L) (as
XR

1 → XL
1−23 and XR

3−12 → XL
3 ). This implies that ZL = ∅ and ZR = ∅. At least one of XL

13−2, X
R
13−2

is empty as XL
13−2 → XR

13−2 → XL
1−23 → XR

3−12 → XL
13−2 and at least one of XL

12−3, X
R
12−3 is empty

as XL
12−3 → XR

12−3 → XL
2−13 → XR

1−23 → XL
12−3.

Suppose first that XR
12−3 = ∅ = XR

13−2. Then XR
2 6= ∅ by Claim A, so XR

123 6= ∅.
Moreover XR

123 → XR
1−23 ∪ XR

3−12 because XR
123 → XL

2−13 → XR
1−23 ∪ XR

3−12. This implies that
d+R(XR

123) = 0, a contradiction.

Suppose next that XL
12−3 = ∅ = XL

13−2. Then XL
3 6= ∅ by Claim A, so XL

123 6= ∅. Moreover
XL

1−23 ∪ XL
2−13 → XL

123 as XL
1−23 ∪ XL

2−13 → XR
3−12 → XL

123. This implies that d−L (XL
123) = 0, a

contradiction.

Now assume that XR
12−3 = ∅ = XL

13−2 and XR
13−2 6= ∅ 6= XL

12−3. Then XL
123 6= ∅ as XL

3 6= ∅ by
Claim A and now we get the contradiction XL

123 → XR
13−2 → XL

1−23 → XR
3−12 → XL

123.

The final case is XR
12−3 6= ∅ 6= XL

13−2 and XR
13−2 = ∅ = XL

12−3. We first observe that XR
123 = ∅

as XR
123 → XL

1−23 → XR
3−12 → XL

13−2 → XR
123. As XR

12−3 → XL
2−13 → XR

1−23 we have XR
12−3 →

XR
1−23 and as XR

1−23 → XL
1−23 → XR

3−12 we have XR
1−23 → XR

3−12. This implies that d−R(XR
1−23) = 0,

a contradiction. This completes the proof of Subcase 5.5 and the proof of the theorem.

Corollary 3.7. Let L and R be strong oriented graphs such that inv (L), inv (R) = 2. Then inv (L →
R) = 4.

4 Inversion number of augmentations of oriented graphs
Lemma 4.1. Let D be an oriented graph with inv(D) = 1. Then inv(σ(z,D)) = 2 for every z ∈ V (D).

Proof: Recall that inv(σ(z,D)) ≤ inv(D) + 1 = 2 for every vertex z ∈ V (D).
Suppose for a contradiction that there is a vertex z of D such that inv(σ(z,D)) = 1. Let X be a set

whose inversion in σ(z,D) results in an acyclic digraph D∗.
As D has inversion number 1 it has a directed cycle C. The set X contains an arc uu+ of C, for

otherwise C would be a directed cycle in D∗. Moreover, X does not contain all vertices of C, for
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otherwise the inversion of X transforms C in the directed cycle in the opposite direction. Hence, without
loss of generality, we may assume that u−, the in-neighbour of u in C is not in X .

Note also that C ′ = (z, y, x, z) is a directed cycle in σ(z,D) so X must contain exactly two vertices
of C ′. In particular, there is a vertex, say w, in {x, y} ∩X .

• If z /∈ {u−, u}, then (w, u−, u, w) is a directed 3-cycle, a contradiction.

• If z = u, then either X ∩ V (C ′) = {x, z} and (z, x, u−, z) is a directed 3-cycle in D∗, or X ∩
V (C ′) = {y, z} and (x, u+, y, x) is a directed 3-cycle in D∗, a contradiction.

• If z = u−, then X ∩ V (C ′) = {x, y} and (z, u, x, z) is a directed 3-cycle in D∗, a contradiction.

Recall that σi(z,D) denotes the z-augmentation of D on which the vertices added are denoted by xi
and yi.

Theorem 4.2. Let D be an oriented graph with inv(D) = 1 and let H = σ1(x2, σ2(z,D)). Then,
inv(H) = 3.

Proof: By Lemma 4.1, inv(σ2(z,D)) = 2. In addition, σ2(z,D) is a subdigraph of H , so by Proposi-
tion 2.1, inv(H) ≥ 2. Moreover, inv(H) ≤ inv(σ2(z,D)) + 1 = 3.

Assume for a contradiction that inv(H) = 2. Let (X1, X2) be a decycling family of H . For i ∈ [2], let
Hi = Inv(H;Xi). Note that inv(Hi) ≤ 1 for i ∈ [2], because (X1, X2) is a decycling family.

Then (X1 \ {y2}, X2 \ {y2}) is a decycling family of H − y2. But H − y2 is isomorphic to ~C3 → D
with (y1, x1, x2, y1) dominating D. Thus, by Proposition 3.1, inv(H − y2) ≥ 2 and furthermore, by
Theorem 3.3, we may assume that X1 ⊆ {x1, y1, x2, y2}. Observe that X1 ∩ |{x1, y1, x2}| = 2, for
otherwise H1 − y2 = H − y2 and inv(H1) ≥ inv(H1 − y2) ≥ 2 by Proposition 2.1. Hence, there
is a vertex v ∈ {y1, x1, x2} such that y2v ∈ A(H1). This implies that H1〈{v, y2} ∪ V (D)〉 is a z-
augmentation of D. Therefore, by Lemma 4.1, we must have inv(H1〈{v, y2} ∪ V (D)〉) = 2, and so by
Proposition 2.1, inv(H1) ≥ 2, a contradiction.

Thus, we have shown that inv(H) = 3.

Recall that Qn is the tournament we obtain from the transitive tournament on n vertices by reversing
the arcs of the unique hamiltonian path (v1, . . . , vn). Hence Q7 is the oriented graph σ1(v3, σ2(v5, ~C3),
where ~C3 is the directed 3-cycle (v5, v7, v6, v5), x2 = v3, y2 = v4, x1 = v1 and y1 = v2. Thus
Theorem 4.2 yields the following.

Corollary 4.3. inv(Q7) = 3.

5 Inversion number of intercyclic oriented graphs
A digraph D is intercyclic if ν(D) = 1. The aim of this subsection is to prove the following theorem.

Theorem 5.1. If D is an intercyclic oriented graph, then inv(D) ≤ 4.

In order to prove this theorem, we need some preliminaries.
LetD be an oriented graph. An arc uv is weak inD if min{d+(u), d−(v)} = 1. An arc is contractable

inD if it is weak and in no directed 3-cycle. If a is a contractable arc, then letD/a is the digraph obtained
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by contracting the arc a and D̃/a be the oriented graph obtained from D by removing one arc from every
pair of parallel arcs created in D/a.

Lemma 5.2. LetD be a strong oriented graph and let a be a contractable arc inD. ThenD/a is a strong
intercyclic oriented graph and inv(D̃/a) ≥ inv(D).

Proof: McCuaig proved that D/a is strong and intercyclic. Let us prove that inv(D) ≤ inv(D̃/a).
Observe that inv(D̃/a) = inv(D/a).

Set a = uv, and let w be the vertex corresponding to both u and v in D/a. Let (X ′1, . . . , X
′
p) be a

decycling family of D′ = D̃/a that result in an acyclic oriented graph R′. For i ∈ [p], let Xi = X ′i if
w /∈ X ′i and Xi = (X ′i \ {w}) ∪ {u, v} if w ∈ X ′i . Let a∗ = uv if w is in an even number of X ′i and
a∗ = vu otherwise, and let R = Inv(D; (X1, . . . , Xp)). One easily shows that R = R′/a∗. Therefore R
is acyclic since the contraction of an arc transforms a directed cycle into a directed cycle.

Lemma 5.3. Let D be an intercyclic oriented graph. If there is a non-contractable weak arc, then
inv(D) ≤ 4.

Proof: Let uv be a non-contractable weak arc. By directional duality, we may assume that d−(v) = 1.
Since uv is non-contractable, uv is in a directed 3-cycle (u, v, w, u). Since D is intercyclic, we have
D \ {u, v, w} is acyclic. Consequently, {w, u} is a cycle transversal of D, because every directed cycle
containing v also contains u. Hence, by Theorem 1.1, inv(D) ≤ 2τ(D) ≤ 4.

The description below follows [BJK11]. A digraph D is in reduced form if it is strong, and it has no
weak arc, that is min{δ−(D), δ+(D)} ≥ 2.

Intercyclic digraphs in reduced form were characterized by Mc Cuaig [McC91]. In order to restate his
result, we need some definitions. Let P(x1, . . . , xs; y1, . . . , yt) be the class of acyclic digraphs D such
that x1, . . . , xs, s ≥ 2, are the sources of D, y1, . . . , yt, t ≥ 2, are the sinks of D, every vertex which is
neither a source nor a sink has in- and out-degree at least 2, and, for 1 ≤ i < j ≤ s and 1 ≤ k < ` ≤ t,
every (xi, y`)-path intersects every (xj , yk)-path. By a theorem of Metzlar [Met89], such a digraph can be
embedded in a disk such that x1, x2, . . . , xs, yt, yt−1, . . . , y1 occur, in this cyclic order, on its boundary.
Let T be the class of digraphs with minimum in- and out-degree at least 2 which can be obtained from a
digraph in P(x+, y+;x−, y−) by identifying x+ = x− and y+ = y−. Let D7 be the digraph from Figure
5(a).

LetK be the class of digraphsD with τ(D) ≥ 3 and δ0(D) ≥ 2 (Recall that δ0(D) = min{δ+(D), δ−(D)}.)
which can be obtained from a digraph KH from P(w0, z0; z1, w1) by adding at most one arc connecting
w0, z0, adding at most one arc connecting w1, z1, adding a directed 4-cycle (x0, x1, x2, x3, x0) disjoint
from KH and adding eight single arcs w1x0, w1x2, z1x1, z1x3, x0w0, x2w0, x1z0 ,x3z0 (see Figure
6). Let H be the class of digraphs D with τ(D) ≥ 3 and δ0(D) ≥ 2 such that D is the union of three
arc-disjoint digraphs Hα ∈ P(y4, y3, y1; y5, y2), Hβ ∈ P(y4, y5; y3, y1, y2), and Hγ ∈ P(y1, y2; y3, y4),
where y1, y2, y3, y4, y5 are the only vertices in D occurring in more than one of Hα, Hβ , Hγ (see Figure
7).

Theorem 5.4 (McCuaig [McC91]). The class of intercyclic digraphs in reduced form is T ∪{D7}∪K∪H.

Using this characterization we can now prove the following.

Corollary 5.5. If D is an intercyclic oriented graph in reduced form, then inv(D) ≤ 4.
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Fig. 5: (a): the digraphD7; (b): the digraphD′7 obtained fromD7 by inverting the set {y, y2, y4, y6}; (c): the acyclic
digraph D′′7 obtained from D′7 by inverting the set {y2, y3, y5, y6}.
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Fig. 6: The digraphs from K. The arrow in the grey area symbolizing the acyclic (plane) digraph KH indicates that
z0, w0 are its sources and z1, w1 are its sinks. (This figure is a courtesy of [BJK11]).
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Fig. 7: The digraphs fromH. (This figure is a courtesy of [BJK11]).
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Proof: LetD be an intercyclic oriented graph in reduced form. By Theorem 5.4, it is in T ∪{D7}∪K∪H.

If D ∈ T , then it is obtained from a digraph D′ in P(x+, y+;x−, y−) by identifying x+ = x− and
y+ = y−. Thus D − {x+, y+} = D′ − {x+, y+, x−, y−} is acyclic. Hence τ(D) ≤ 2, and so by
Theorem 1.1, inv(D) ≤ 4.

IfD = D7, then invertingX1 = {y, y2, y4, y6} so that y becomes a sink and then inverting {y2, y3, y5, y6},
we obtain an acyclic digraph with acyclic ordering (y3, y6, y4, y5, y1, y2, y). (See Figure 5.) Hence
inv(D7) ≤ 2.

IfD ∈ K, then inverting {x0, x3} and {x0, x1, x2, x3, w1, z1}, we convertD to an acyclic digraph with
acyclic ordering (x3, x2, x1, x0, v1, . . . , vp) where (v1, . . . , vp) is an acyclic ordering of KH .

If D ∈ H, then consider D′ = Inv(D,V (Hγ)). The oriented graph D′ is the union of Hα ∈
P(y4, y3, y1; y5, y2),Hβ ∈ P(y4, y5; y3, y1, y2), and

←
Hγ , the converse ofHγ . AsHγ ∈ P(y1, y2; y3, y4),

we have
←
Hγ∈ P(y4, y3; y2, y1). Set Y = {y1, y2, y3, y4, y5}.

We claim that every directed cycleC ′ ofD′ contains y5. SinceD′−Y is acyclic,C ′ is the concatenation
of directed paths P1, P2, . . . , Pq with both end-vertices in Y and no internal vertex in Y . Now let C be
the directed cycle obtained from C ′ by replacing each Pi by an arc from its initial vertex to its terminal
vertex. Clearly, C contains y5 if and only if C ′ does. But C is a directed cycle in J the digraph with
vertex set Y in which {y4, y3, y1} → {y5, y2}, {y4, y5} → {y3, y1, y2}, and {y4, y3} → {y1, y2}. One
easily checks that J − v5 is acyclic with acyclic ordering (y4, y3, y1, y2), so C contains y5 and so does
C ′.

Consequently, {y5} is a cycle transversal ofD′. Hence, by Theorem 1.1, we have inv(D′) ≤ 2τ(D′) ≤
2. As D′ is obtained from D by inverting one set, we get inv(D) ≤ 3.

We can now prove Theorem 5.1.

Proof: By induction on the number of vertices of D, the result holding trivially if |V (D)| = 3, that is
D = ~C3.

Assume now that |V (D)| > 3.
IfD is not strong, then it has a unique non-trivial strong component C and any decycling family of C is

a decycling family of D, so inv(C) = inv(D). By the induction hypothesis, inv(C) ≤ 4, so inv(D) ≤ 4.
Henceforth, we may assume that D is strong.

Assume now that D has a weak arc a. If a is non-contractable, then inv(D) ≤ 4 by Lemma 5.3. If a
is contractable, then consider D̃/a. As observed by McCuaig [McC91], D/a is also intercyclic. So by
Lemma 5.2 and the induction hypothesis, inv(D) ≤ inv(D/a) ≤ 4. Henceforth, we may assume that D
has no weak arc.

Thus D is in a reduced form and by Corollary 5.5, inv(D) ≤ 4.

6 Complexity results
6.1 NP-hardness of 1-INVERSION and 2-INVERSION

Theorem 6.1. 1-INVERSION is NP-complete even when restricted to strong oriented graphs.

In order to prove this theorem, we need some preliminaries.
Let J be the oriented graph depicted in Figure 8.
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a b c

d e

Fig. 8: The oriented graph J

Lemma 6.2. The only sets whose inversion can make J acyclic are {a, b, e} and {b, c, d}.

Proof: Assume that an inversion on X makes J acyclic. Then X must contain exactly two vertices of
each of the directed 3-cycles (a, b, c, a), (a, b, d, a), and (e, b, c, e), and cannot be {a, c, d, e} for otherwise
(e, b, d, e) is a directed cycle in the resulting oriented graph. Hence X must be either {a, b, e} or {b, c, d}.
One can easily check that an inversion on any of these two sets makes J acyclic.

Proof Proof of Theorem 6.1: Reduction from MONOTONE 1-IN-3 SAT which is well-known to be
NP-complete.

Let Φ be a monotone 3-SAT formula with variables x1, . . . , xn and clauses C1, . . . , Cm. Let D be
the oriented graph constructed as follows. For every i ∈ [n], let us construct a variable digraph Ki as
follows: for every j ∈ [m], create a copy Jji of J , and then identify all the vertices cji into one vertex ci as
depicted in Figure 9. Then, for every clause Cj = xi1 ∨ xi2 ∨ xi3 , we add the arcs of the directed 3-cycle
Dj = (aji1 , a

j
i2
, aji3).

J2
i

J1
i

J3
i

. . . Jmi

ci

Fig. 9: The variable gadget Ki

Observe that D is strong. We shall prove that inv(D) = 1 if and only if Φ admits a 1-in-3-SAT
assignment.

Assume first that inv(D) = 1. Let X be a set whose inversion makes D acyclic. By Lemma 6.2,
and the vertices cji are identified in ci, for every i ∈ [n], either X ∩ V (Ki) =

⋃m
j=1{a

j
i , b

j
i , e

j
i} or
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X ∩V (Ki) =
⋃m
j=1{b

j
i , ci, d

j
i}. Let ϕ be the truth assignment defined by ϕ(xi) = true if X ∩V (Ki) =⋃m

j=1{b
j
i , ci, d

j
i}, and ϕ(xi) = false if X ∩ V (Ki) =

⋃m
j=1{a

j
i , b

j
i , e

j
i}.

Consider a clause Cj = xi1 ∨ xi2 ∨ xi3 . Because Dj is a directed 3-cycle, X contains exactly two
vertices in V (Dj). Let `1 and `2 be the two indices of {i1, i2, i3} such that aj`1 and aj`2 are in X and `3 be
the third one. By our definition of ϕ, we have ϕ(x`1) = ϕ(x`2) = false and ϕ(x`3) = true. Therefore,
ϕ is a 1-in-3 SAT assignment.

Assume now that Φ admits a 1-in-3 SAT assignment ϕ. For every i ∈ [n], let Xi =
⋃m
j=1{b

j
i , ci, d

j
i} if

ϕ(xi) = true and Xi =
⋃m
j=1{a

j
i , b

j
i , e

j
i} if ϕ(xi) = false, and set X =

⋃n
i=1Xi.

Let D′ be the graph obtained from D by the inversion on X . We shall prove that D is acyclic, which
implies inv(D) = 1.

Assume for a contradiction that D′ contains a directed cycle C. By Lemma 6.2, there is no directed
cycle in any variable gadget Ki, so C must contain an arc with both ends in V (Dj) for some j. Let
Cj = xi1 ∨ xi2 ∨ xi3 . Now since ϕ is a 1-in-3-SAT assignment, w.l.o.g., we may assume that ϕ(xi1) =

ϕ(xi2) = false and ϕ(xi3) = true. Hence in D′, aji2 → aji1 , aji2 → aji3 and aji3 → aji1 . Moreover,
in D′〈V (Jji1)〉, aji1 is a sink, so aji1 is a sink in D′. Therefore C does not goes through aji1 , and thus C
contains the arc aji2a

j
i3

, and then enters Jji3 . But in D′〈V (Jji3)〉, aji3 has a unique out-neighbour, namely
bji3 , which is a sink. This is a contradiction.

Corollary 6.3. 2-INVERSION is NP-complete.

Proof: By Corollary 3.5, we have inv(D → D) = 2 if and only inv(D) = 1, so the statement follows
from Theorem 6.1.

6.2 Solving k-TOURNAMENT-INVERSION for k ∈ {1, 2}
Proposition 6.4. 1-TOURNAMENT-INVERSION can be solved in O(n3) time.

Proof:
Let T be a tournament. For every vertex v one can check whether there is an inversion that transforms

T into a transitive tournament with source v. Indeed the unique possibility inversion is the one on the
closed in-neighbourhood of v, N−[v] = N−(v) ∪ {v}. So one can make inversion on N−[v] and check
whether the resulting tournament is transitive. This can obviously be done in O(n2) time

Doing this for every vertex v yields an algorithm which solves 1-TOURNAMENT-INVERSION in O(n3)
time.

Theorem 6.5. 2-TOURNAMENT-INVERSION can be solved in in O(n6) time.

The main idea to prove this theorem is to consider every pair (s, t) of distinct vertices and to check
whether there are two sets X1, X2 such that the inversion of X1 and X2 results in a transitive tournament
with source s and sink t. We need some definitions and lemmas.

The symmetric difference of two sets A and B is A4B = (A \B) ∪ (B \A).
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Let T be a tournament and let s and t be two distinct vertices of T . We define the following four sets

A(s, t) = N+(s) ∩N−(t)

B(s, t) = N−(s) ∩N+(t)

C(s, t) = N+(s) ∩N+(t)

D(s, t) = N−(s) ∩N−(t)

Lemma 6.6. Let T be a tournament and let s and t be two distinct vertices of T . Assume there are two
sets X1, X2 such that the inversion of X1 and X2 results in a transitive tournament with source s and
sink t.

(1) If {s, t} ⊆ X1 \X2, then ts ∈ A(T ), C(s, t) = D(s, t) = ∅ and X1 = {s, t} ∪B(s, t).

(2) If s ∈ X1\X2, t ∈ X2\X1, then st ∈ A(T ),A(s, t)∩(X1∪X2) = ∅,X1 = {s}∪B(s, t)∪D(s, t),
and X2 = {t} ∪B(s, t) ∪ C(s, t).

(3) If s ∈ X1 ∩ X2 and t ∈ X1 \ X2, then ts ∈ A(T ), X1 = {s, t} ∪ B(s, t) ∪ C(s, t), and
X2 = {s} ∪ C(s, t) ∪D(s, t).

(4) If {s, t} ⊆ X1 ∩X2, then st ∈ A(T ), C(s, t) = ∅, D(s, t) = ∅, X1 ∩X2 ⊆ A(s, t) ∪ {s, t}, and
B(s, t) = X14X2.

Proof: (1) The arc between s and t is reversed once, so ts ∈ A(T ).
Assume for a contradiction, that there is a vertex c ∈ C(S, t). The arc tc must be reversed, so c ∈ X1,

but then the arc sc is reversed contradicting the fact that s becomes a source. HenceC(s, t) = ∅. Similarly
D(s, t) = ∅.

The arcs from t to B(s, t) and from B(s, t) to s are reversed so B(s, t) ⊆ X1. The arcs from s to
A(s, t) and from A(s, t) to t are not reversed so A(s, t) ∩X1 = ∅. Therefore X1 = {s, t} ∪B(s, t).

(2) The arc between s and t is not reversed, so st ∈ A(T ). The arcs from s to A(s, t) and from A(s, t)
to t are not reversed so A(s, t) ∩ X1 = ∅ and A(s, t) ∩ X2 = ∅. The arcs from t to B(s, t) and from
B(s, t) to s are reversed so B(s, t) ⊆ X1 and B(s, t) ⊆ X2. The arcs from s to C(s, t) are not reversed
so C(s, t) ∩X1 = ∅ and the arcs from t to C(s, t) are reversed so C(s, t) ⊆ X2. The arcs from D(s, t)
to s are reversed so D(s, t) ⊆ X1 and the arcs from D(s, t) to d are not reversed so D(s, t) ∩ X2 = ∅.
Consequently, X1 = {s} ∪B(s, t) ∪D(s, t), and X2 = {t} ∪B(s, t) ∪ C(s, t).

(3) The arc between s and t is reversed, so ts ∈ A(T ). The arcs from A(s, t) to t are not reversed
so A(s, t) ∩ X1 = ∅. The arcs from s to A(s, t) are not reversed so A(s, t) ∩ X2 = ∅. The arcs
from t to B(s, t) are reversed so B(s, t) ⊆ X1. The arcs from B(s, t) to s are reversed (only once) so
B(s, t)∩X2 = ∅. The arcs from t toC(s, t) are reversed soC(s, t) ⊆ X1. The arcs from s toC(s, t) must
the be reversed twice so C(s, t) ⊆ X2. The arcs from D(s, t) to t are not reversed so D(s, t) ∩X1 = ∅.
The arcs from D(s, t) to s are reversed so D(s, t) ⊆ X2. Consequently, X1 = {s, t} ∪B(s, t) ∪ C(s, t),
and X2 = {s} ∪ C(s, t) ∪D(s, t).

(4) The arc between s and t is reversed twice, so st ∈ A(T ).
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Assume for a contradiction, that there is a vertex c ∈ C(s, t). The arc tc must be reversed, so c is in
exactly one of X1 ad X2. But then the arc sc is reversed contradicting the fact that s becomes a source.
Hence C(s, t) = ∅. Similarly D(s, t) = ∅. The arcs from s to A(s, t) and from A(s, t) to t are not
reversed so every vertex of A(s, t) is either in X1 ∩ X2 or in V (T ) \ (X1 ∪ X2). The arcs from t to
B(s, t) and from B(s, t) to s are reversed so every vertex of B(s, t) is either in X1 \X2 or in X2 \X1.
Consequently, X1 ∩X2 ⊆ A(s, t) ∪ {s, t}, and B(s, t) = X14X2.

Lemma 6.7. Let T be a tournament of order n and let s and t be two distinct vertices of T .

(1) One can decide in O(n3) time whether there are two sets X1, X2 such that the inversion of X1 and
X2 results in a transitive tournament with source s and sink t and {s, t} ⊆ X1 \X2.

(2) One can decide in O(n2) time whether there are two sets X1, X2 such that the inversion of X1 and
X2 results in a transitive tournament with source s and sink t and s ∈ X1 \X2 and t ∈ X2 \X1.

(3) One can decide in O(n2) time whether there are two sets X1, X2 such that the inversion of X1 and
X2 results in a transitive tournament with source s and sink t and s ∈ X1 ∩X2 and t ∈ X1 \X2.

(4) One can decide in O(n4) time whether there are two sets X1, X2 such that the inversion of X1 and
X2 results in a transitive tournament with source s and sink t and {s, t} ⊆ X1 ∩X2.

Proof: For all cases, we first compute A(s, t), B(s, t), C(s, t), and D(s, t), which can obviously be done
in O(n2).

(1) By Lemma 6.6, we must have ts ∈ A(T ) and C(s, t) = D(s, t) = ∅. So we first check if this holds.
Furthermore, by Lemma 6.6, we must have X1 = {s, t} ∪ B(s, t). Therefore we invert {s, t} ∪ B(s, t)
which results in a tournament T ′. Observe that s is a source of T ′ and t is a sink of T ′. Hence, we return
‘Yes’ if and only if inv(T ′ − {s, t}) = 1 which can be tested in O(n3) by Proposition 6.4.

(2) By Lemma 6.6, we must have st ∈ A(T ). So we first check if this holds. Furthermore, by
Lemma 6.6, the only possibility is that X1 = {s} ∪B(s, t) ∪D(s, t), and X2 = {t} ∪B(s, t) ∪ C(s, t).
So we invert those two sets and check whether the resulting tournament is a transitive tournament with
source s and sink t. This can done in O(n2).

(3) By Lemma 6.6, we must have ts ∈ A(T ). So we first check if this holds. Furthermore, by
Lemma 6.6, the only possibility is thatX1 = {s, t}∪B(s, t)∪C(s, t), and X2 = {s}∪C(s, t)∪D(s, t).
So we invert those two sets and check whether the resulting tournament is a transitive tournament with
source s and sink t. This can done in O(n2).

(4) By Lemma 6.6, we must have st ∈ A(T ), C(s, t) = ∅, D(s, t) = ∅. So we first check if this holds.
Furthermore, by Lemma 6.6, the desired sets X1 and X2 must satisfy X1 ∩ X2 ⊆ A(s, t) ∪ {s, t}, and
B(s, t) = X14X2.

In particular, every arc of TA = T 〈A(s, t)〉 is either not reversed or reversed twice (which is the same).
Hence TA must be a transitive tournament. So we check whether TA is a transitive tournament and if yes,
we find a directed hamiltonian path PA = (a1, . . . , ap) of it. This can be done in O(n2).

Now we check that B(s, t) admits a partition (X ′1, X
′
2) with X ′i = Xi ∩ B and the inversion of both

X ′1 and X ′2 transforms T 〈B(s, t)〉 into a transitive tournament TB with source s′ and sink t′. The idea is
to investigate all possibilities for s′, t′ and the sets X ′1 and X ′2. Since (X ′1, X

′
2) is a partition of B(s, t)

and (X ′1, X
′
2) is a decycling family if and only if (X ′2, X

′
1) is a decycling family, we may assume that
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(a) {s′, t′} ⊆ X ′1 \X ′2, or

(b) s′ ∈ X ′1 \X ′2 and t′ ∈ X ′2 \X ′1.

For the possibilities corresponding to Case (a), we proceed as in (1) above. For every arc t′s′ ∈
A(T 〈B(s, t)〉), we check that C(s′, t′) = D(s′, t′) = ∅ (where those sets are computed in T 〈B(s, t)〉).
Furthermore, by Lemma 6.6, we must have X ′1 = {s, t} ∪B(s′, t′) and X ′2 = B(s, t) \X ′1. So we invert
those two sets and check whether the resulting tournament TB is transitive. This can be done in O(n2)
(for each arc t′s′).

For the possibilities corresponding to Case (b), we proceed as in (2) above. For every arc t′s′ ∈
A(T 〈B(s, t)〉), by Lemma 6.6, the only possibility is that X ′1 = {s′} ∪ B(s′, t′) ∪ D(s′, t′), and X2 =
{t′} ∪B(s′, t′)∪C(s′, t′). As those two sets form a partition of B(s, t), we also must have B(s′, t′) = ∅
andA(s′, t′) = ∅. So we invert those two sets and check whether the resulting tournament TB is transitive.
This can be done in O(n2) for each arc t′s′.

In both cases, we are left with a transitive tournament TB . We compute its directed hamiltonian path
PB = (b1, . . . , bq) which can be done inO(n2). We need to check whether this partial solution onB(s, t)
is compatible with the rest of the tournament, that is {s, t} ∪ A(s, t). It is obvious that it will always be
compatible with s and t as they become source and sink. So we have to check that we can merge TA
and TB into a transitive tournament on A(s, t) and B(s, t) after the reversals of X1 and X2. In other
words, we must interlace the vertices of PA and PB . Recall that Z = X1 ∩ X2 \ {s, t} ⊆ A(s, t) and
Xi = X ′i ∪ Z ∪ {s, t}, i ∈ [2] so the arcs between Z and B(s, t) will be reversed exactly once when we
invert X1 and X2. Using this fact, one easily checks that this is possible if and only there are integers
j1 ≤ · · · ≤ jp such that

• either bj → ai for j ≤ ji and bj ← ai for j > ji (in which case ai /∈ Z and the arcs between ai
and B(s, t) are not reversed),

• or bj ← ai for j ≤ ji and bj → ai for j > ji (in which case ai ∈ Z and the arcs between ai and
B(s, t) are reversed).

See Figure 10 for an illustration of a case when we can merge the two orderings after reversing X1 and
X2.

Deciding whether there are such indices can be done in O(n2) for each possibility.
As we have O(n2) possibilities, and for each possibility the procedure runs in O(n2) time, the overall

procedure runs in O(n4) time.

Proof Proof of Theorem 6.5: By Lemma 2.2, by removing iteratively the sources and sinks of the
tournament, it suffices to solve the problem for a tournament with no sink and no source.

Now for each pair (s, t) of distinct vertices, one shall check whether there are two setsX1, X2 such that
the inversion of X1 and X2 results in a transitive tournament with source s and sink t. Observe that since
s and t are neither sources nor sinks in T , each of them must belong to at least one of X1, X2. Therefore,
without loss of generality, we are in one of the following possibilities:

• {s, t} ⊆ X1 \X2. Such a possibility can be checked in O(n3) by Lemma 6.7 (1).

• s ∈ X1 \X2 and t ∈ X2 \X1. Such a possibility can be checked in O(n2) by Lemma 6.7 (2).
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

Fig. 10: Indicating how to merge the two orderings of A and B. The fat blue edges indicate that the final ordering
will be b1 − b3, a1 − a4, b4 − b6, a5 − a8, b7 − b9, a9 − a11, b10 − b12. The set Z = {a2, a6, a10} consists of those
vertices from A(s, t) which are in X1 ∩X2. These vertices are shown in red. The red arcs between a vertex of Z and
one of the boxes indicate that all arcs between the vertex and those of the box have the direction shown. Hence the
boxes indicate that values of j1, . . . , j11 satisfy that : j1 = . . . = j4 = 3, j5 = . . . = j8 = 6, j9 = . . . = j11 = 9.

• s ∈ X1 ∩X2 and t ∈ X1 \X2. Such a possibility can be checked in O(n2) by Lemma 6.7 (3).

• t ∈ X1 ∩X2 and s ∈ X1 \X2. Such a possibility is the directional dual of the preceding one. It
can be tested in O(n2) by reversing all arcs and applying Lemma 6.7 (3).

• {s, t} ⊆ X1 ∩X2. Such a possibility can be checked in O(n4) by Lemma 6.7 (4).

Since there are O(n2) pairs (s, t) and for each pair the procedure runs in O(n4), the algorithm runs in
O(n6) time.

6.3 Computing related parameters when the inversion number is bounded
The aim of this subsection is to prove the following theorem.

Theorem 6.8. Let γ be a parameter in τ, τ ′, ν. Given an oriented graph D with inversion number 1 and
an integer k, it is NP-complete to decide whether γ(D) ≤ k.

Let D be a digraph. The second subdivision of D is the oriented graph S2(D) obtained from D by
replacing every arc a = uv by a directed path Pa = (u, xa, ya, u) where xa, ya are two new vertices.

Lemma 6.9. Let D be a digraph.

(i) inv(S2(D)) ≤ 1.

(ii) τ ′(S2(D)) = τ ′(D), τ(S2(D)) = τ(D), and ν(S2(D)) = ν(D).
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Proof: (i) Inverting the set
⋃
a∈A(D){xa, ya} makes S2(D) acyclic. Indeed the xa become sinks, the ya

become sources and the other vertices form a stable set. Thus inv(S2(D)) = 1.

(ii) There is a one-to-one correspondence between directed cycles in D and directed cycles in S2(D)
(their second subdivision). Hence ν(S2(D)) = ν(D).

Moreover every cycle transversal S of D is also a cycle transversal of S2(D). So τ(S2(D)) ≤ τ(D).
Now consider a cycle transversal T . If xa or ya is in S for some a ∈ A(D), then we can replace it by any
end-vertex of a. Therefore, we may assume that T ⊆ V (D), and so T is a cycle transversal of D. Hence
τ(S2(D)) = τ(D).

Similarly, consider a cycle arc-transversal F of D. Then F ′ = {a | xaya ∈ F} is a cycle arc-
transversal of S2(D). Conversely, consider a cycle arc-transversal F ′ of S2(D). Replacing each arc
incident to xa, ya by xaya for each a ∈ A(D), we obtain another cycle arc-transversal. So we may
assume that F ′ ⊆ {xaya | a ∈ A(D)}. Then F = {a | xaya ∈ F ′} is a cycle arc-transversal of D. Thus
τ ′(S2(D)) = τ ′(D).

Proof Proof of Theorem 6.8: Since computing each of τ , τ ′, ν is NP-hard, Lemma 6.9 (ii) implies that
computing each of τ , τ ′, ν is also NP-hard for second subdivisions of digraphs. As those oriented graphs
have inversion number 1 (Lemma 6.9 (i)), computing each of τ , τ ′, ν is NP-hard for oriented graphs with
inversion number 1.
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