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We discuss a notion of convergence for binary trees that is based on subtree sizes. In analogy to recent developments

in the theory of graphs, posets and permutations we investigate some general aspects of the topology, such as a

characterization of the set of possible limits and its structure as a metric space. For random trees the subtree size

topology arises in the context of algorithms for searching and sorting when applied to random input, resulting in a

sequence of nested trees. For these we obtain a structural result based on a local version of exchangeability. This in

turn leads to a central limit theorem, with possibly mixed asymptotic normality.

Keywords: Asymptotics, binary trees, binary search trees, digital search trees, Gaussian process, subtree size con-

vergence.

1 Introduction

A description of large discrete objects can be based on a suitable convergence concept, together with a

characterization of the possible limits. For graphs Lovász and Szegedy (2006) used subgraph counts and

obtained a description of the limits as graphons; see also Lovász (2012) and the references given there.

A similar approach has been used in Janson (2011) for posets, in Elek and Tardos (2022) for trees and

in Hoppen et al. (2013) for permutations; in the latter case pattern counting leads to permutons as limit

objects. (Some details are given below at the end of Section 2.) In the present note we use subtree sizes in

a similar fashion to obtain a convergence concept for binary trees, and we obtain a description of the limit

objects as probability distributions on the set of infinite sequences of zeros and ones.

In Lovász and Szegedy (2006); Hoppen et al. (2013); Elek and Tardos (2022) randomness appears

somewhat implicitly in the relation to subsampling. It is further used in Lovász and Szegedy (2006)

and Hoppen et al. (2013), via a suitable probabilistic construction, to show that each of the potential

limit objects indeed occurs for some sequence of graphs or permutations. Sequences of binary trees

arise in connection with algorithms for searching and sorting: With random input both the binary search

tree (BST) and the digital search tree (DST) algorithms (Knuth, 1973, Chapter 6) lead to increasing

random sequences (Xn)n∈N of binary trees, where Xn has n nodes (again, details are given below). The

asymptotics of such sequences have been studied in Evans et al. (2012) where the subtree size topology

appears in the context of Markov chain boundary theory. A similar boundary theory interpretation for

the topologies of substructure sampling has been found for graph sequences in Grübel (2015) and for

sequences of permutations in Grübel (2023+).
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2 Rudolf Grübel

A different class of binary trees appears in connection with Rémy’s algorithm, which provides a se-

quence (Xn)n∈N of trees where each Xn is uniformly distributed on the set of trees with n nodes. This

is again a combinatorial Markov chain in the sense of Grübel (2013), and its Martin boundary has been

determined in Evans et al. (2017). In contrast to Evans et al. (2012), where the boundary was worked

out directly through the Martin kernel, the approach in Evans et al. (2017) is based on the construction

of exchangeable arrays and an associated representation theorem, as discussed in depth in Kallenberg

(2005). This also leads to a description of (Xn)n∈N as the result of sampling from a real tree in a spe-

cific manner, similar to the use of graphons and permutons. For graphons an exchangeability approach

is outlined in (Lovász, 2012, Section 11.3.3) and studied in more detail in Diaconis and Janson (2008);

for a similar treatment of randomly growing permutations see Grübel (2023+). Recently, Elek and Tar-

dos (2022) constructed dendrons as limit objects for general trees, with an approach based on regarding

trees as metric spaces, together with a suitable rescaling, and using the machinery of ultraproducts and

ultralimits. Finally, rooted general trees and their limits appear in connection with classical branching

processes; see the survey Janson (2012a) and the references given there.

It is well known that search trees and uniform trees belong to two different ‘universality classes’, often

labeled by the asymptotics of their height, which is logn in the first and
√
n in the second case. Another

aim of this note is to show that an approach based on probabilistic symmetries can also be used in the

context of trees of logarithmic height.

In Section 2 we first introduce some basic notation for binary trees and then study the subtree size

topology, proceeding essentially as in Hoppen et al. (2013) for permutation sequences. In Section 3 we

consider tree sequences that grow by one node at a time, such as the output sequences obtained with the

BST and DST algorithms mentioned above, where we introduce a local notion of exchangeability. This

is then applied in Section 4 to obtain a second order result for subtree size convergence, where a possibly

mixed Gaussian process arises as the distributional limit.

We restrict ourselves to binary trees in order to arrive at a compact presentation. Many related varieties

of trees, such as quad trees, may be treated in a similar manner; see also the models considered in Devroye

(1998) and in Evans et al. (2012).

2 Subtree size convergence

Let V := {0, 1}⋆ :=
⊔∞

k=0{0, 1}k be the set of finite words with letters from the alphabet {0, 1}. We

write |u| = k for the length of the word u = (u1, . . . , uk) and Vk for the set of words of length k.

We will also use the notation |A| for the size of a set A. The concatenation of u = (u1, . . . , uk) and

v = (v1, . . . , vl) is given by u + v = (u1, . . . , uk, v1, . . . , vl). On V, the prefix order is defined by

v = (v1, . . . , vk) ≺ w = (w1, . . . , wl) if k < l and vi = wi for all i ∈ [k] := {1, . . . , k}. As usual, we

augment this by putting v � w if v ≺ w or v = w.

By a binary tree x we mean a subset of V (the potential nodes or vertices of the tree) with the property

that v = (v1, . . . vk) ∈ x with k > 0 implies (v1, . . . , vk−1) ∈ x. In short, binary trees are sets of

words that are prefix stable. The node v = ∅ (arising if k = 0) is the root of the tree. Further, v1 :=
(v1, . . . , vk, 1) and v0 := (v1, . . . , vk, 0) are the right and left descendant of v respectively. The set V of

all nodes may be seen as the complete infinite binary tree, Bn is the set of binary trees with n nodes, and

B :=
⊔∞

n=0 Bn is the set of all binary trees with finitely many nodes. The (external) boundary ∂x of a

finite tree consists of all external nodes v ∈ V\ x with v = u0 or v = u1 for some u ∈ x. It is easy to see

that |∂x| = |x|+ 1 for all x ∈ B.
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Two tree-related notions that are particularly important for us are the subtree σ(x, u) of a tree x rooted

at u ∈ x and the (relative) subtree size function t(x, ·) : V→ [0, 1] of x, with

σ(x, u) := {v ∈ V : u+ v ∈ x}, t(x, u) :=
1

|x| |σ(x, u)| for all u ∈ V. (1)

We say that a sequence (xn)n∈N converges in the subtree size topology if, for all u ∈ V, the real numbers

t(xn, u) converge as n → ∞. It is easy to see that finite binary trees are characterized by their subtree

size function. We may therefore regard the mapping B ∋ x 7→ (u 7→ t(x, u)) ∈ [0, 1]V as an embedding

of the set of finite binary trees into a set that is compact by Tychonoff’s theorem under the topology

of pointwise convergence, as in the definition of subtree size convergence, and may even identify trees

with their subtree size functions. In this sense the closure B of the image of the embedding provides

a compactification where the limits are given by the functions on V that appear as pointwise limits of

the sequences (t(xn, ·))n∈N for convergent sequences of trees. Obviously, not all functions on V can

arise in this way, and the identification of subtree size limits amounts to finding a tractable space that is

homeomorphic to the boundary B \B. Note, however, that the general abstract setting immediately yields

that each sequence of trees has a convergent subsequence.

Let V∞ := {0, 1}∞ be the set of infinite sequences of zeros and ones and let B∞ be the σ-field

on the sequence space that is generated by the coordinate projections (vn)n∈N 7→ vk, k ∈ N. Let

M∞ := M(V∞,B∞) be the set of probability measures on (V∞,B∞). We use the canonical extension

of the prefix order to pairs (u, v) with u ∈ V and v ∈ V∞. For all u ∈ V let Bu := {v ∈ V∞ : u ≺ v}.

Then

Bu ∩Bv =











Bv, if u � v,

Bu, if v � u,

∅, otherwise,

(2)

which implies that B0 := {Bu : u ∈ V} is a countable and intersection stable generator of B∞. As

a consequence, elements of M∞ are determined by their values on B0. With componentwise addition

V∞ becomes a compact group. Its unique Haar measure µ with total mass 1, the uniform distribution on

(V∞,B∞), is characterized by µ(Bu) = 2−|u| for all u ∈ V.

We will need the following measure-theoretic property of binary trees, which seems to be part of the

folklore of the subject. I have not found a suitable reference, and therefore include a proof.

Lemma 1. Let ψ : V→ [0, 1] be such that ψ(∅) = 1 and

ψ(u) = ψ(u0) + ψ(u1) for all u ∈ V. (3)

Then there exists a unique µ ∈ M∞ such that µ(Bu) = ψ(u) for all u ∈ V.

Proof: We define a set function µ0 : B0 → [0, 1] by µ0(Bu) = ψ(u) for all u ∈ V. Using (3) it is easy to

show by induction that µ0 is finitely additive on each system {Bu : u ∈ Vk}, k ∈ N. Suppose now that

Bu(1), . . . , Bu(n) ∈ B0 are pairwise disjoint and let k := maxi∈[k] |u(i)|. We then get

µ0

(

∑

i∈[n]

Bu(i)

)

=
∑

i∈[n]

∑

v∈Vk,u(i)�v

µ(Bv) =
∑

i∈[n]

µ(Bu(i)).
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The finite additivity of µ0 on B0 extends to the field B1 generated by B0.

We now use a topological argument: An ultrametric d can be defined on V∞ by d(v, w) = 2−|v∧w|,

where |v ∧ w| denotes the length of the longest common prefix of the sequences v, w. Endowed with d
the sequence space becomes a totally disconnected and compact topological space, with B∞ as its Borel

σ-field. The σ-additivity of µ0 on B1 now follows from the finite intersection property of compact sets,

so that we may apply Carathéodory’s extension theorem.

The lemma shows that M∞ can be embedded into [0, 1]V, as done above for B. In its proof we have

chosen a topological argument, in line with the general thrust of the paper; Kolmogorov’s consistency

theorem can be used to obtain a probabilistic alternative.

The digital search tree (DST) algorithm turns a sequence (ξi)i∈N of elements of V∞ into an increasing

sequence (xn)n∈N of binary trees, with xn ∈ Bn for all n ∈ N: Starting with x1 = {∅} we obtain

xn+1 from xn and ξn by interpreting ξn as a routing instruction, with 0 as a move to the left and 1 as a

move to the right, and the inclusion of the external node u where exit from the current tree xn occurs.

For µ ∈ M∞ let DST(µ) be the distribution of the B-valued random sequence (Xn)n∈N generated by

the digital search tree algorithm if the input sequence (ξi)i∈N consists of independent random variables

with distribution µ. For example, if µ is concentrated at the single sequence (0, 0, 0, . . .) ∈ V∞ then the

DST mechanism produces the infinite tree that consists of all nodes on the left-most infinite branch in V.

A special case of the DST family is the Bernoulli model with parameter p ∈ (0, 1), see (Drmota, 2009,

Section 1.4.3), where each ξi consists of a sequence of independent {0, 1}-valued variables (ξik)k∈N with

P (ξik = 1) = p for all k ∈ N. Especially the symmetric case, with p = 1/2, has been studied extensively.

It is easy to see that for a sequence (xn)n∈N of trees with lim infn→∞ |xn| < ∞ subtree size conver-

gence implies that the sequence is constant from some n0 ∈ N onwards. The following may be regarded

as the binary tree analogue of (Hoppen et al., 2013, Theorem 1.6).

Theorem 2. (a) If a sequence (xn)n∈N of binary trees with limn→∞ |xn| = ∞ converges in the subtree

size topology then, for some unique µ ∈ M∞,

lim
n→∞

t(xn, u) = µ(Bu) for all u ∈ V. (4)

(b) Let µ ∈ M∞ and let (Xn)n∈N be distributed according to DST(µ). Then Xn converges with proba-

bility one to µ in the subtree size topology.

Proof: (a) Let ψ(u) := limn→∞ t(xn, u) for all u ∈ V. It is easy to see that ψ satisfies (3) and clearly,

ψ(∅) = 1. Lemma 1 now supplies the probability measure µ and, by (4), the tree sequence converges to

µ in the subtree size topology.

(b) Let u = (u1, . . . , uk) ∈ V. We may assume that µ(Bu) > 0 since t(Xn, u) = 0 with probability

one for all n ∈ N otherwise, which would imply (4). The entry times τu := inf{n ∈ N : u ∈ Xn} can be

written as

τu = τ(u1) +
(

τ(u1,u2) − τ(u1)

)

+ · · ·+
(

τ(u1,u2,...,uk) − τ(u1,...,uk−1)

)

.

It follows from the description of the DST algorithm that, with τ∅ := 0, the differences

τ(u1,u2,...,ui) − τ(u1,u2,...,ui−1), i = 1, . . . , k,

are independent and geometrically distributed with (success) parameter µ(B(u1,...,ui)). Hence τu < ∞
with probability one. From n = τu(ω) onwards an increase in the size of the subtree rooted at u is
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equivalent to ξn(ω) ∈ Bu. These are independent events with the same positive probability µ(Bu), which

leads to (4).

The first part of the theorem shows that convergence with respect to the subtree size topology leads to

convergence of binary trees to a measure in M∞, and the second part shows that indeed each µ ∈ M∞

arises as the limit of a sequence of binary trees. Using the above identifications of B, B and M∞ as

subsets of [0, 1]V we may summarize the result by the simple formula B = B ⊔M∞.

Example 3. Let xn :=
⊔n

k=0{0, 1}k be the complete finite binary tree of height n. Then, for k ≤ n
the subtree of xn rooted at u = (u1, . . . , uk) ∈ V is isomorphic to xl with l = n − k, which leads to

limn→∞ t(xn, u) = 2−k. It follows that xn → µ, with µ the uniform distribution on V∞. ⊳

Similar to the graphon and permuton situation, the limit of a random sequence of binary trees may be

a (truly) random element of M∞. The next example has already been considered in Evans et al. (2012),

with methods from Markov chain boundary theory.

Example 4. (BST, see also (Devroye, 1998, Example 1)) Let (ξi)i∈N be a sequence of independent ran-

dom variables, all uniformly distributed on the unit interval. We may assume that the values are pairwise

different, and may then define a random sequence (Rn)n∈N by Rn =
∣

∣{i ∈ [n] : ξi ≤ ξn}
∣

∣. As in the

DST case, the BST algorithm generates a sequence (Xn)n∈N of increasing trees, with X1 = {∅} and

Xn+1 = Xn ⊔ {v} with some v ∈ ∂Xn. To specify the respective new node as a function of Xn and

Rn+1 we first note that the n + 1 elements of ∂Xn can be ordered lexicographically, and we then take

the node v ∈ ∂Xn with left-right position Rn+1. We write X = (Xn)n∈N ∼ BST for the result. In a

nutshell, BST uses the ranks whereas DST uses the bit structure of the input values. This implies that

we may replace unif(0, 1) by any other distribution µ as long as µ({a}) = 0 for all a ∈ R. With this

construction all ξ-values less than ξ1 end up in the left subtree, the larger ones in the right subtree of

the root node. It follows that t(Xn, (0)) converges almost surely (a.s.) to ξ1 and t(Xn, (1)) to 1 − ξ1.

Further, given ξ1 = a the values less than a and greater than a are independent and uniformly distributed

on [0, a) respectively (a, 1]. Hence, given ξ1, the left and right subtree are independent and, after passing

to the appropriate subsequence, equal in distribution to X . Taken together this shows that for any u ∈ V,

the sequence of pairs
(

t(Xn, u0)/t(Xn, u), t(Xn, u1)/t(Xn, u)
)

converges almost surely to (ηu, 1−ηu),
where ηu, u ∈ V, are independent and uniformly distributed on [0, 1]. Thus, the BST sequence converges

almost surely to a random element MBST of M∞, with

MBST(Bu) =

k
∏

i=1

η1−ui

(u1,...,ui)

(

1− η(u1,...,ui)

)ui
, u = (u1, . . . , uk) ∈ V. (5)

In particular, P (MBST = µ) = 0 for all µ ∈ M∞. ⊳

Our final example requires a slight shift of perspective, from random variables to their distributions.

We use the classic Billingsley (1968) as our basic reference for weak convergence.

By Prohorov’s theorem (Billingsley, 1968, Theorems 6.1 and 6.2), the space M1(B) of probability mea-

sures on (the Borel subsets of) B, together with the topology of weak convergence, is a compact metrizable

space. We write temporarily M̃n, M̃ for (non-random) elements of M1(B) in order to distinguish these

from random elements Mn,M of B (thus, we may have M̃ = L(M)). The topological structure implies

that any sequence (M̃n)n∈N must have a limit point in M1(B), and convergence on this level, which we

denote by M̃n →w M̃ , holds if and only if there is only one such point.
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In contrast to the previous example, where the model specifies the distribution of the full sequence

(Xn)n∈N, we now only have the distributions of the individual variables Xn, n ∈ N. In view of its

connection to enumerative combinatorics the uniform distribution is of special interest.

Example 5. Let M̃n = unif(Bn) for all n ∈ N, and let M̃ be an associated limit point, so that

M̃n(k) →w M̃ as k → ∞ for some subsequence (n(k))k∈N. Then, by the Skorohod representation

theorem, see e.g. (Kallenberg, 1997, Theorem 3.30), there exists a probability space carrying random

variables X∞, X1, X2, . . . with L(X∞) = M̃ , L(Xk) = M̃n(k) for all k ∈ N, such that Xk → X∞ a.s.

in the subtree size topology. We will show that

P
(

X∞(Bu) ∈ {0, 1}
)

= 1 for all u ∈ V. (6)

For this, we note that any x ∈ B may be decomposed into its left and right subtree, given by σ(x, (0)) and

σ(x, (1)) respectively. Further, for all n ∈ N,

|Bn| = Cn :=
1

n+ 1

(

2n

n

)

,

one of the many appearances of the Catalan numbers Cn. Hence, if Un ∼ unif(Bn), and with Ln :=
|σ(Un, (0))|, Rn := |σ(Un, (1))|,

P (Ln = k) = P (Rn = k) =
Ck Cn−1−k

Cn

for k = 0, . . . , n− 1.

Standard bounds for the Catalan numbers lead to

lim
n→∞

P (an < Ln < bn) = lim
n→∞

P (an < Rn < bn) = 0 for all 0 < a < b < 1,

and it follows that L
(

t(Un, (0))
)

= L(Ln/n) converges weakly to the uniform distribution on the finite

set {0, 1}. For the representing sequence (Xk)k∈N we must have almost sure convergence of t(Xk, (0))
to some real value X∞(B(0)), hence (6) holds for u = (0) and u = (1). Uniformity of the distribution

further implies that, conditionally on Ln = k, the left and right subtree of Un are independent and

uniformly distributed onBk andBn−1−k respectively. Applying the above argument to these we obtain (6)

for nodes of length two, and iteration gives the statement for all u ∈ V.

If µ ∈ M∞ is such that µ(Bu) ∈ {0, 1} for all u ∈ V then µ = δv for some v ∈ V∞. The limit

point M̃ ∈ M1(B) is therefore concentrated on the subset {δv : v ∈ V∞} of M1(B). We next apply a

symmetry argument: The group V∞ acts on V via

v.u := (w1, . . . , wk), with wj := vj + uj mod 2, j = 1, . . . , k,

where v = (vj)j∈N ∈ V∞, u = (u1, . . . , uk) ∈ V and k = |u|. This preserves prefix order, hence V∞

also acts on B via

v.x := {v.u : u ∈ x} for all v ∈ V∞, x ∈ B.

Clearly, if Un ∼ unif(Bn), then v.Un ∼ unif(Bn). Taken together this shows the distribution of M̃
is invariant under these transformations, which implies that M̃ = M̃unif := L(δV ), with V uniformly

distributed on V∞.

Thus, all limit points are identical, and we have unif(Bn) →w M̃unif as n→ ∞. ⊳



Limits of sequences of binary trees 7

It follows from this example that for any sequence (Xn)n∈N of random trees on some probability space

with the properties that L(Xn) = unif(Bn) for all n ∈ N and that Xn converges almost surely to some

X∞ in the subtree size topology, we must have L(X∞) = L(δV ) with L(V ) = unif(V∞). Rémy’s

algorithm, see Rémy (1985), provides such a sequence. In Evans et al. (2017) a different topology has

been introduced and discussed for the Rémy sequence, and this led to a more detailed class of limits.

Stated somewhat informally, subtree sizes reflect the local behavior, and in the uniform case this amounts

to a reduction of the limit tree to its spine, a term commonly used in connection with the asymptotics

of Galton-Watson trees; see (Janson, 2012a, p115). Moreover, for uniform binary trees the spine can be

constructed from a sequence of coin tosses.

Another opportunity for comparison between topologies arises if we ignore the root and the left-right

positioning of the descendants in a binary tree, so that we arrive at an isomorphism class of tree graphs.

For these, a ‘global’ topology is introduced and discussed in Elek and Tardos (2022) and Janson (2012b).

With the complete binary trees in Example 3 the situation turns out to be somewhat reversed as, for these,

the subtree size topology leads to an arguably more interesting limit; see (Janson, 2012b, Example 7.3).

We next investigate the topological structure of subtree size convergence. In the general setup, with

convergence meaning the pointwise convergence of the functions t(x, ·), a suitable metric can be obtained

as

dw(x, y) :=
∑

u∈V

w(u)
∣

∣t(x, u)− t(y, u)
∣

∣, x, y ∈ B,

with an arbitraryw : V→ (0,∞) such that
∑

u∈Vw(u) <∞. However, in this generality this does not re-

flect the specific structures considered here. For sequences of graphs and permutations embeddings of the

discrete structures into the respective limit spaces of graphons and permutons have been given in (Lovász,

2012, Section 1.5.2) and (Hoppen et al., 2013, Definition 3.4). To obtain a similar embedding of B into

M∞ we first recall the metric d from the proof of Theorem 2 that makes V∞ a compact ultrametric space.

The σ-field B∞ on V∞ is the associated Borel σ-field, and weak convergence µn → µ in M∞ means that
∫

f dµn →
∫

f dµ for all bounded continuous f : V∞ → R. We now associate with x ∈ B an element

µx ∈ M∞ by

µx =
1

|x|+ 1

∑

v∈∂x

unif(Bv). (7)

Here, for v = (v1, . . . , vk) ∈ V, the probability measure unif(Bv) is the distribution of the sequence

(v1, . . . , vk, ξ1, ξ2, ξ3, . . .) ∈ V∞, where ξi, i ∈ N, are independent and uniformly distributed on the set

{0, 1}.

Theorem 6. Let (xn)n∈N be a sequence of binary trees with limn→∞ |xn| = ∞. Then (xn)n∈N converges

in the subtree size topology if and only if the associated sequence (µxn
)n∈N of elements of M∞ defined

in (7) converges in the weak topology, and then the limits are the same.

Proof: The path through x ∈ B defined by v ∈ V∞ leaves x at some unique u ∈ ∂x. Hence, in view

of (2), the set system {Bu : u ∈ ∂x} is a measurable partition of V∞. If the subtree of x rooted at u ∈ x
has k nodes, then |{v ∈ ∂x : u ≺ v}| = k + 1, so that

µx(Bu) =
1

|x|+ 1

∑

v∈∂x,u≺v

1 =
1 + |x| t(x, u)

1 + |x| (8)
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which implies the general bounds

0 ≤ µx(Bu)− t(x, u) ≤ 1

1 + |x| for all u ∈ V. (9)

It follows that, for any sequence (xn)n∈N ⊂ B with |xn| → ∞, subtree size convergence is equivalent to

the convergence of µxn
(Bu) as n → ∞ for all u ∈ V. By the Portmanteau theorem (Billingsley, 1968,

Theorem 2.1), as eachBu is open and closed in the compact ultrametric space (V∞, d), weak convergence

of a sequence (µn)n∈N ⊂ M∞ implies convergence of µn(Bu) as n→ ∞ for all u ∈ V. Thus it remains

to show that {Bu : u ∈ V} is a convergence determining class, but this follows easily with the criteria

given in (Billingsley, 1968, p14f).

We now compare the above to the graph situation, see Lovász and Szegedy (2006); Lovász (2012);

Diaconis and Janson (2008), and the permutation situation, see Hoppen et al. (2013). Similar treatments

of partially ordered sets (posets) and general trees have been given in Janson (2011), and in Elek and

Tardos (2022) and Janson (2012b) respectively.

Let Gn be the set of simple graphs with [n] as its set of vertices. For G ∈ Gn and H ∈ Gk, k ≤ n, let

T (G,H) be the number of injections φ : [k] → [n] with the property that, for all 1 ≤ j < l ≤ k, {j, l} is

an edge in H if and only if {φ(j), φ(l)} is an edge in G. Similarly, with Sn the set of permutations of [n]
and π ∈ Sn, τ ∈ Sk, k ≤ n, let T (π, τ) be the number of strictly increasing functions φ : [k] → [n] with

the property that, for all 1 ≤ j < l ≤ k, τ(j) < τ(l) holds if and only if π(φ(j)) < π(φ(l)). Dividing

by the respective number of functions φ leads to subgraph frequencies t(G,H) and pattern frequencies

t(π, τ), and convergence of a sequence (Gn)n∈N of graphs or (πn)n∈N of permutations may be defined

as the convergence of all substructure frequencies H 7→ t(Gn, H), respectively τ 7→ t(πn, τ). The

associated limit objects are graphons and permutons: A graphon is a symmetric and measurable function

W : [0, 1]2 → [0, 1], and the analogue of Theorem 2 (b) consists in defining an isomorphism class Xn of

graphs with vertex set [n] by choosing U1, . . . , Un uniformly at random from the unit interval and then

connecting vertices i and j with probability W (Ui, Uj), independently for 1 ≤ i < j ≤ n. A permuton

is a distribution function C : [0, 1]2 → [0, 1] of a distribution with uniform marginals (hence a two-

dimensional copula) and the analogue of Theorem 2 (b) is based on constructing a random permutation

Xn of [n] via the rank plot of independent random vectors (Yi, Zi), i ∈ [n], with distribution function C.

For the binary trees considered here, the role of subgraph respectively pattern is taken over by a node

u ∈ V, and instead of substructures we use the prefix relation: T (x, u) is now the number of nodes

v ∈ x with u � v, and standardization means that we divide by |x|. All three cases have an obvious

sampling interpretation. For a permutation π ∈ Sn, for example, we select a strictly increasing function

φ : [k] → [n] uniformly at random from the
(

n
k

)

possibilities, and t(π, τ) emerges as the probability

that the random choice leads to pattern containment. For binary trees x ∈ Bn we select a node v of x
uniformly at random, and t(x, u) is the probability that u is a prefix of the chosen node. All three modes

of convergence are thus connected to a view according to which two large discrete structures of the same

type are close to each other if they appear to be similar when viewed through the ‘sampling lens’. As in

the permuton case, we obtain a description of the limit space as the space of all probability measures on

some compact metric space, with the topology of weak convergence of distributions. With the Prohorov

metric (Billingsley, 1968, p237f) this is again a compact metric space.

Another parallel is the use of accompanying sequences, corresponding to the transition from x to µx

in the space of limits, together with a result such as Theorem 6 relating the convergence of the sequence
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of interest to the associated sequence in the limit space; see e.g. (Hoppen et al., 2013, Theorem 1.8)

for permutations. Example 3 can be used to show that x 7→ µx is not one-to-one, in contrast to the

permutations case, but in analogy to the poset and graph situation. The basis for such results are equations

such as (8). For graphs and posets different versions of the substructure sampling are discussed in the

literature. For trees, given the deterministic relation between number of nodes and size of the external

boundary, we could have worked with

σ0(x, u) := {v ∈ V : u+ v ∈ ∂x}, t0(x, u) :=
1

|∂x| |σ0(x, u)|,

which would lead to the more concise the version µx(Bu) = t0(x, u) of (8).

3 Local exchangeability

The topological approach of the previous section applies to arbitrary sequences (xn)n∈N of elements of

B. In the present section we assume that xn ∈ Bn and xn ⊂ xn+1 for all n ∈ N. Such sequences that

grow by one node at a time appear in connection with the DST and BST algorithms, for example. Also,

the boundary theory approach in Evans et al. (2012) refers to random sequencesX = (Xn)n∈N with these

properties, where it is further assumed that the stochastic process X has the Markov property.

We assume that X = (Xn)n∈N satisfies P (B↑) = 1, with the path space defined by

B↑ :=
{

x = (xn)n∈N : xn ∈ Bn, xn ⊂ xn+1 for all n ∈ N,

∞
⋃

n=1

xn = V

}

. (10)

We endow B↑ with the σ-field B↑ generated by the coordinate projections and write M↑ for the set of

probability measures on (B↑,B↑). As
⋃

n∈N
Xn = V with probability one, we have P (τu <∞) = 1 for

all entry times τu := inf{n ∈ N : u ∈ Xn}, u ∈ V. Ignoring a set of probability zero, we may define the

local increment process at u by Y (u) = (Yn(u))n∈N by

Yn(u) =











1, s(τu + n, u1) > s(τu + n− 1, u1),

−1, s(τu + n, u0) > s(τu + n− 1, u0),

0, else,

(11)

where s(n, u) := |{v ∈ V : u + v ∈ Xn}|. Thus the value of Yn(u) indicates if the right or left subtree

of u, or none of them, receives another node at time τu + n. We note for later use that the transition from

X to Y (u) may be seen as the result of a deterministic function, say Ψu, defined on B↑ and with values

in {−1, 0, 1}N.

In connection with the representation part of the following theorem we recall that a statement on con-

ditional distributions such as L(X |Y = y) = Q(y, ·) means that Q is a probability kernel and that,

for a class A of measurable sets sufficiently rich to characterize the distribution of X , it holds that

P (X ∈ A) =
∫

Q(y,A)L(Y )(dy). In order to be able to formalize this in the present context, where the

values of X and Y are distributions, we need a measurable structure on M↑. As in the case of M∞ we

use the σ-field generated by the insertion functions µ 7→ µ(A). Finally, we say that an element µ of M∞

has full support if its support is equal to the whole of V∞. It is easy to see that this is equivalent to the

condition that µ(Bu) > 0 for all u ∈ V.
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Theorem 7. Suppose that X = (Xn)n∈N is such that P (X ∈ B↑) = 1.

(a) If X is locally exchangeable in the sense that all local increment processes Y (u), u ∈ V, are

exchangeable, then there exists a possibly random M ∈ M∞ such that

L(X |M = µ) = DST(µ) for L(M)-almost all µ ∈ M∞, (12)

and Xn converges to M almost surely in the subtree size topology. Further, with probability one, M has

full support.

(b) Suppose that (12) holds for some possibly random M ∈ M∞, where M has full support with

probability one. Then X is locally exchangeable.

Proof: (a) For each u ∈ V de Finetti’s theorem provides a possibly random driving measure, here repre-

sented by a probability vector pu = (pu(−1), pu(0), pu(1)), such that the sequence Y (u) is conditionally

i.i.d. with distribution pu, which may be written as

L
(

Y (u)
∣

∣pu
)

= p⊗N

u for all u ∈ V.

By the convergence part of de Finetti’s theorem,

1

n

∣

∣

∣

{

j ∈ [n] : Yj(u) = k
}

∣

∣

∣
→ pu(k) a.s. as n→ ∞

for all u ∈ V and k ∈ {−1, 0, 1}. Clearly,

∣

∣

∣

{

v ∈ V : u+ v ∈ Xτu+n

}

∣

∣

∣
= 1 +

∣

∣

∣

{

j ∈ [n] : Yj(u) = −1
}

∣

∣

∣
+
∣

∣

∣

{

j ∈ [n] : Yj(u) = 1
}

∣

∣

∣

for all n ∈ N. With ψ(u) := pu(−1) + pu(1) we thus obtain

t(Xn, u) → ψ(u) a.s. as n→ ∞ (13)

for all u ∈ V. As ψ(u) = ψ(u0) + ψ(u1) for all u ∈ V the set function M with M(Bu) = ψ(u), u ∈ V,

satisfies condition (3) in Lemma 1. Together with M(V) = ψ(∅) = 1 this provides a (unique)M ∈ M∞,

and (13) shows that Xn converges a.s. in the subtree size topology to M as n→ ∞.

For the proof of (12) we first argue that (µ,A) 7→ DST(µ)(A) defines a probability kernel from M∞

to M↑, both endowed with the measurable structure generated by the insertion maps. For each µ ∈
M∞, A 7→ DST(µ)(A) is obviously a probability measure on (B↑,B↑). For the measurability of µ 7→
DST(µ)(A) we may take A to be of the form A = {X1 = x1, . . . , Xk = xk} with some k ∈ N, xi ∈ Bi

for i ∈ [k] and xi ⊂ xi+1 for i ∈ [k − 1]. The increasing trees are described by the nodes vi with

xi = xi−1 ∪ {vi} for i = 2, . . . , k, and with these the algorithm leads to

DST(µ)(A) =

k
∏

i=2

µ(Bvi). (14)

The right hand side of (14) is a measurable function of µ.

We now use that, conditionally on M ≡ µ for some fixed µ ∈ M∞, each of the local counting

processes Y (u), u ∈ V, is simply a sequence of independent random variables with values in {−1, 0, 1}
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and probability mass function pu(−1) = µ(Bu0), pu(0) = 1 − µ(Bu0)− µ(Bu1) and pu(1) = µ(Bu1).
Let X̃ = (X̃n)n∈N ∼ DST(µ). Clearly, X1 = X̃1 = {∅}. Further, Xn+1 = Xn ∪ {Vn+1} with

Vn+1 ∈ ∂Xn, and X̃n+1 = X̃n ∪ {Ṽn+1} with Ṽn+1 ∈ ∂X̃n. Hence (12) will follow by induction if, for

all n ∈ N, x1 ∈ B1, . . . , xn ∈ Bn with x1 ⊂ · · · ⊂ xn, and all v ∈ ∂xn,

P
(

Vn+1 = v
∣

∣X1 = x1, . . . , Xn = xn
)

= P
(

Ṽn+1 = v
∣

∣X̃1 = x1, . . . , X̃n = xn
)

. (15)

For the proof we may assume that v = u0 ∈ ∂x with u ∈ x, the argument for the other case v = u1
being similar. Then Vn+1 = v holds if and only if Yk(u) = −1, where k := n− τu + 1 is a function of

x1, . . . , xn, so that the left hand side of (15) evaluates to pu(−1) = µ(Bv). Further, from the definition

of the DST algorithm it follows that the right hand side of (15) is equal to P (ξn+1 ∈ Bv), where (ξn)n∈N

is the input sequence. As these have distribution µ, this is again equal to µ(Bv).

In order to prove the support statement we first note that the representation (12) gives

P (X ∈ A) =

∫

M∞

DST(µ)(A)L(M)(dµ) (16)

for all A ∈ B↑. With A =
{
⋃∞

n=1 xn = V
}

the assumption leads to the value 1 on the left hand side.

Also, 0 ≤ DST(µ)(A) ≤ 1 for all µ ∈ M∞. Now suppose that M(Bu) = 0 has positive probability for

some u ∈ V, so that

L(M)
(

{µ ∈ M∞ : µ(Bu) = 0}
)

> 0.

For each µ in this set,

DST(µ)
(

∞
⋃

n=1

xn ⊂ V \Bu}
)

= 1.

by the definition of the DST algorithm. This means that the integrand on the right hand side of (16)

vanishes on a set of positive probability for the integrating distribution, which implies that the integral is

strictly smaller than 1.

(b) If µ(Bu) > 0 for all u ∈ V then it follows from the definition of the DST algorithm that each of the

local increment processes is a sequence of independent and identically distributed random variables, with

P (Yn(u) = −1) = µ(Bu0), P (Yn(u) = 1) = µ(Bu1), and P (Yn(u) = 0) = 1 − µ(Bu0) − µ(Bu1) for

all u ∈ V. Hence a tree sequence with distribution DST(µ), µ with full support, is locally exchangeable.

To see that this property survives the mixing operation we recall that Y (u) is a deterministic function Ψu

of X , so that (12) leads to

L
(

Y (u)
)

= L(X)Ψu =
(

∫

DST(µ)L(M)(dµ)
)Ψu

=

∫

DST(µ)Ψu L(M)(dµ).

It follows from the above argument for the DST case that only distributions of i.i.d. sequences appear

inside the integral, hence Y (u) is exchangeable.

It may seem surprising that only local conditions on the processes Y (u), u ∈ V, are needed. However,

the general structure of the tree sequence leads to deterministic relations between these. For example, let

Bu(1), . . . , Bu(d) be a partition of V∞ (or, equivalently, {u(j) : j ∈ [d]} = ∂x for some x ∈ B) and let
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ρ = maxj∈[d] τu(j). Then the individual local increment processes can be combined into a d-dimensional

process Y 0 = (Y 0
1 , . . . , Y

0
d ) with values in {−1, 0, 1}d by

Y 0
j,n = Yn+ρ−τu(j)

(u(j)) for all j ∈ [d], n ∈ N.

With ej the jth canonical basis vector of Rd it then holds that, for all n ∈ N, Y 0
n is equal to ej or −ej

for some j ∈ [d]. Similarly, for randomM , the individual driving random vectors pu, u ∈ V, need not be

independent, as evidenced by MBST.

As a geometric consequence of Theorem 7 we obtain that the set of distributions of locally exchangeable

tree sequences is convex, in fact in affine-linear and one-to-one correspondence with the full support subset

of M∞. This in turn can be used to identify its extremal elements as DST(µ), where µ has support V∞.

In particular, the BST distribution is locally exchangeable, with random driving measureM =MBST given

in Example 4.

4 A second order result

In Section 2 we examined a specific notion of convergence for general sequences in B and in Section 3 we

found a representation for a class of increasing random trees where this notion appears. The subtree size

convergence in Theorem 7 may be interpreted as a strong law of large numbers, with a possibly random

limit. For such sequences it makes sense to consider an analogue of the central limit theorem. As all

distributions of locally exchangeable sequences arise as mixtures of DST(µ), µ ∈ M∞, we are thus lead

to consider sequences X = (Xn)n∈N ∼ DST(µ), with µ of full support. Our aim is a functional central

limit theorem for the stochastic processes

Zn :=
√
n
(

t(Xn, u)− µ(Bu)
)

u∈V
, n ∈ N, (17)

meaning that Zn converges in distribution to a Gaussian process Z = (Zu)u∈V as n → ∞. For a general

locally exchangeable sequence we then obtain asymptotic mixed normality by conditioning on the limit

M in Theorem 7.

The distributional convergence is based on an infinite-dimensional space L of functions on V that con-

tains the range of Zn with probability one. For general subtree size convergence we may take L to be the

vector space RV of all real functions on V, together with the product topology, i.e. of convergence of coor-

dinates. For processesX = (Xt)t∈T with time parameter t ∈ T it is customary to denote the distributions

of random vectors (Xt1 , . . . , Xtk), k ∈ N and t1, . . . , tk ∈ T , as the finite-dimensional distributions of

X .

Theorem 8. Let (Xn)n∈N be a sequence of random binary trees with distribution DST(µ) where µ has

support V∞. Then there exists a centered Gaussian process Z = (Zu)u∈V with covariance function

cov(Zu, Zv) =



















µ(Bu)(1 − µ(Bu)), if u = v,

µ(Bv)(1 − µ(Bu)), if u ≺ v,

µ(Bu)(1 − µ(Bv)), if v ≺ u,

−µ(Bu)µ(Bv), else,

(18)

and with this process it holds that

√
n
(

t(Xn, u)− µ(Bu)
)

u∈V
→distr Z as n→ ∞, (19)
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where the convergence in distribution refers to RV endowed with the product topology.

Proof: Suppose that A ⊂ V is finite and such that the sets Bu, u ∈ A, are pairwise disjoint with
∑

u∈A µ(Bu) = 1. We know from the proof of Theorem 2 (b) that τu = inf{n ∈ N : u ∈ Xn} is finite

with probability one, for all u ∈ V. Let ρ := sup{τu : u ∈ A} and fix some k ∈ N. Then it follows from

the description of the DST algorithm with input (ξn)n∈N that, conditionally on ρ ≤ k, the random vector

Yn = (Yn,u)u∈A with components

Yn,u :=
∣

∣{k < m ≤ n : ξm ∈ Bu}
∣

∣ =
∣

∣σ(Xn, u)
∣

∣−
∣

∣σ(Xk, u)
∣

∣, u ∈ A, (20)

has a multinomial distribution, with parameters n− k (for the number of trials) and (µ(Bu))u∈A (for the

vector of success probabilities). By the central limit theorem for these distributions,

√
n− k

( 1

n− k
Yn,u − µ(Bu)

)

u∈A
→distr Z = (Zu)u∈A as n→ ∞, (21)

where the random vector Z is centered normal with covariances

cov(Zu, Zv) =

{

µ(Bu)(1 − µ(Bu)), if u = v,

−µ(Bu)µ(Bv) if u 6= v.

This implies √
n
(

t(Xn, u)− µ(Bu)
)

u∈A
→distr Z = (Zu)u∈A as n→ ∞, (22)

as the difference between the left hand sides in (21) and (22) converges to zero with probability one as

n → ∞ because of (20). All this is conditionally on ρ ≤ k for some k ∈ N. However, as k does not

appear in (22) and as ρ <∞ with probability one, the last statement even holds unconditionally.

On this basis we now deduce the convergence of the finite-dimensional distributions together with the

covariance function of the limit process.

For k ∈ N fixed we have asymptotic normality of the random vector Z(k) associated with A := Vk

from the above argument. This yields joint asymptotic normality for all Zu with |u| ≤ k, u ∈ V, as these

variables are all linear functions of the vector Z(k).

Now let u, v ∈ V. If u ≺ v and |v| = k then, due to the asymptotic negligibility of the difference, we

may use the partition of Bu into sets Bw with |w| = k to obtain, with A(u, v) := {w ∈ Vk : w 6= v, u ≺
w}

cov(Zv, Zu) = var(Zv) + cov
(

Zv,
∑

w∈A(u,v)

Zw

)

= µ(Bv)(1 − µ(Bu)).

The case v ≺ u follows by symmetry. Finally, if neither u ≺ v nor v ≺ u then {Bu, Bv} can be

augmented to a system BA to which the first step applies.

As explained in (Billingsley, 1968, p17), for RV this already implies the asserted convergence in distri-

bution, together with the existence of the Gaussian process Z .

The following is now an immediate consequence of the theorem and the mixture representation of the

BST distribution, as MBST has support V∞ with probability one.
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Corollary 9. LetX = (Xn)n∈N be the sequence of random trees generated by the BST algorithm with in-

dependent random variables uniformly distributed on the unit interval. LetZ(µ) be the centered Gaussian

process with covariance function given in (18), and let MBST be as defined in (5). Then

√
n
(

t(Xn, u)−MBST(Bu)
)

u∈V
→distr Z as n→ ∞, (23)

where the distribution ofZ is given by the distribution ofMBST and the conditional distributionL(Z|MBST =
µ) = L(Z(µ)), µ ∈ M∞.

Acknowledgements

The referees’ comments have led to a significant improvement of the paper.

References

P. Billingsley. Convergence of probability measures. Wiley, New York, 1968.

L. Devroye. Universal limit laws for depths in random trees. SIAM J. Comput., 28:409–432, 1998.

P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. Rend. Mat. Appl., 28:33–61,

2008.

M. Drmota. Random trees. An interplay between combinatorics and probability. Springer, Wien, 2009.

G. Elek and G. Tardos. Convergence and limits of finite trees. Combinatorica, 42:821–852, 2022.
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aléatoire. RAIRO Inform. Théor., 19:179–195, 1985.


