
ar
X

iv
:2

21
0.

05
08

0v
3 

 [
m

at
h.

C
O

] 
 1

6 
Fe

b 
20

23

Discrete Mathematics and Theoretical Computer Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vol. 25:1 #3 (2023)

How to construct the symmetric cycle of length 5

using Hajós construction with an adapted Rank

Genetic Algorithm

Juan Carlos García-Altamirano∗Mika Olsen†Jorge Cervantes-Ojeda
1 UAM CUAJIMALPA, México

revisions 21st Oct. 2022, 31st Jan. 2023; accepted 3rd Feb. 2023.

In 2020 Bang-Jensen et al. generalized the Hajós join of two graphs to the class of digraphs and gen-

eralized several results for vertex colorings in digraphs. Although, as a consequence of these results, a

digraph can be obtained by Hajós constructions (directed Hajós join and identifying non-adjacent ver-

tices), determining the Hajós constructions to obtain the digraph is a complex problem. In particular,

Bang-Jensen et al. posed the problem of determining the Hajós operations to construct the symmetric

5-cycle from the complete symmetric digraph of order 3 using only Hajós constructions. We successfully

adapted a rank-based genetic algorithm to solve this problem by the introduction of innovative recombi-

nation and mutation operators from graph theory. The Hajós Join became the recombination operator

and the identification of independent vertices became the mutation operator. In this way, we were able

to obtain a sequence of only 16 Hajós operations to construct the symmetric cycle of order 5.

Keywords: Rank-based genetic operators, Dichromatic number, Directed Hajós join.

1 Introduction

A genetic algorithm can solve mathematical problems that are intractable by exhaustive search,
as is the case of the problem described here. Evolutionary algorithms have been applied to a
wide variety of engineering problems, for instance: Dasgupta and Michalewicz (2013), and they
have also been applied to mathematics problems: Jong and Spears (1989) showed that Genetic
Algorithms (GA) can be used to solve NP-complete problems, Jakobs (1996) applied a GA to
a geometry problem, Pourrajabian et al. (2013) solved nonlinear algebraic equations by using
a GA, and Cervantes-Ojeda et al. (2019) applied a Rank Genetic Algorithm (Rank GA) to the
graph theory problem of finding the rainbow connection number of a graph. Bokal et al. (2004)
proved that for a given digraph D, deciding whether the dichromatic number of a digraph is at
most 2 is NP-Complete. Therefore, our motivation is to try using the Rank GA heuristic on this
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problem. To our best knowledge, this problem has not been approached in this way nor using
any other heuristic algorithms.

In a genetic algorithm, we have an initial population of individuals. In our case, each individual
represents a digraph obtained by Hajós constructions of the complete symmetric digraph on 3
vertices D(K3). Each individual in the population is evaluated according to a fitness function.
This function measures the ability of the individual for reaching a predetermined objective. Once
individuals are evaluated, the next generation is obtained by applying genetic operators to the
population inspired by the evolution in nature, such as cross-over between individuals, selection
of the fittest individuals, and mutations. This procedure is repeated until the genetic algorithm
finds an individual that achieves the required objective or until a maximum number of generations
is reached.

A vertex coloring of a digraph is acyclic if there are no monochromatic directed cycles. The
dichromatic number of a digraph D was introduced in Neumann-Lara (1982) as the minimum
number of colors of an acyclic coloring of D, denoted by dc(D). The dichromatic number of a
digraph is an extension of the chromatic number of a graph and several concepts and results for
the chromatic number of a graph have been extended to digraphs using the dichromatic number.
For instance, perfect digraphs by Andres and Hochstättler (2015), dichromatic polynomial by
González-Moreno et al. (2022), Brooks theorem for digraphs by Harutyunyan and Mohar (2011),
bounds in terms of the girth of a graph by Cordero-Michel and Galeana-Sánchez (2018), flow
theory by Hochstättler (2017), and diachromatic number by Araujo-Pardo et al. (2017). A
digraph D is r-critical if dc(D) = r and dc(H) < k for every proper subdigraph H of D. Bang-
Jensen et al. (2019) extended the well-known Hajós construction for graphs to digraphs: any
r-critical digraph can be obtained by Hajós constructions using complete symmetric digraphs on
r vertices, D(Kr). Although the result was proved, it is not a trivial task to obtain even simple
digraphs such as symmetric cycles of odd length. In particular, the authors left as an open
problem how to construct the symmetric cycle D(C5) using directed Hajós joins and identifying
non-adjacent vertices. Another interesting problem is constructing digraphs of minimum order
for a given dichromatic number r. The 3-dichromatic tournaments of minimum order were
characterized in Neumann-Lara (1994).

1.1 Definitions

We consider finite digraphs without loops and without multiple arcs. For all definitions not
given here we refer the reader to the book of Chartrand, Lesniak and Zhang Chartrand et al.
(2015). Let D be a digraph with vertex set V (D) and arc set A(D). The in-neighborhood
of a vertex u is N−(u) = {v ∈ V (D) | vu ∈ A(D)} and the out-neighborhood of a vertex u
is N+(u) = {v ∈ V (D) | uv ∈ A(D)}. Two vertices in a digraph D are independent if there
are no arcs between them in D, a set of vertices X is independent in a digraph D if any pair of
vertices of X is independent in D. An arc uv ∈ A(D) is symmetric (asymmetric) if vu ∈ A(D)
(vu /∈ A(D)), and a digraph is symmetric (bidirected graph) if every arc of D is a symmetric arc.
The symmetric digraph D(G), of the graph G, is the digraph obtained by replacing each edge
with a symmetric arc.

The Hajós construction was defined for digraphs in 2020 by Bang-Jensen et al. Bang-Jensen
et al. (2019) as an extension of the well-known Hajós construction Hajós (1961); Jensen and Royle
(1999); Urquhart (1997) for graphs. The class of Hajós-k-constructible digraphs is defined
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as the smallest family of digraphs that contains all complete digraphs of order k and is closed
under directed Hajós join and identifying independent vertices.

The digraph H obtained by identifying a non-empty set I of independent vertices is defined
as the digraph H = D−I adding a new vertex v and adding all arcs from v to N+

D (I) =
⋃

u∈I

N+
D (u)

and all arcs from N−

D (I) =
⋃

u∈I

N−

D (u) to v. The new vertex v may preserve the label of one of

the vertices of the independent set I.

We use Figure 1 to illustrate the definition of directed Hajós Join. Let D1 and D2 be two
disjoint digraphs. Let u1v1 ∈ A(D1) and v2u2 ∈ A(D2). The directed Hajós join D =
(D1, u1, v1)▽(D2, v2, u2) or, briefly D = D1▽D2 of D1 and D2 is defined as the disjoint union
of D1 and D2 and deleting both arcs u1v1 and v2u2, identifying the vertices v1 and v2 to a new
vertex v and adding the arc u1u2. The vertex v may be denoted by v1, v2 or v.

v1

u1

delete

v2

u2

delete

add

identify

v

u1 u2

Fig. 1: The first digraph indicates the directed Hajós join of two directed triangles and the second is
the resulting digraph.

2 The problem

Bang-Jensen et al. (2019) proved that any k-critical digraph is Hajós-k-constructible. In the same
paper they posed the following question (Question 19):

How can a bidirected (symmetric) C5 (D(C5)) be constructed from copies of D(K3) by only
using directed Hajós joins and identifying non-adjacent vertices?

To answer this question, we use an evolutionary algorithm that exclusively applies directed
Hajós joins and identifications of non-adjacent vertices. The algorithm starts with a population
that contains only copies of D(K3) and is guided using a fitness function whose optimum is in
the digraph D(C5), which is the symmetric cycle of length 5. It is important to stress that as
a consequence of Theorem 4 in Bang-Jensen et al. (2019), we already know that the symmetric
cycle of order 5 can be obtained from D(K3) using only Hajós operations, but we do not know
how. From the algorithm, we save the operations that are being carried out by the evolutionary
algorithm to obtain each individual, in order to reconstruct the operations needed to obtain the
optimum, which in this case is the digraph D(C5).

Observe that the digraphs in the populations obtained after applying Hajós constructions, may
have different order and size.
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3 Using a Genetic Algorithm

In this section, we describe how we use a genetic algorithm to solve our problem.

3.1 The Rank GA

The Rank GA is an algorithm that was first presented in Cervantes and Stephens (2009) as a
solution to the limitations of existing mutation rate heuristics. It has been successfully applied
to solve several problems, for instance Cervantes-Ojeda et al. (2019); López-Jaimes et al. (2018);
Cervantes et al. (2010); Flores and Cervantes (2011). The claim is that this algorithm has a
very good balance between exploration and exploitation by applying all genetic operations to the
population based (or depending) on the fitness rank of each individual.

In the Rank GA, the individuals of the population are ranked from best to worst in terms of their
fitness before the genetic operators (selection, recombination, and mutation) are applied. The
application of these genetic operators depends on the rank of each individual in the population.
The top ranked individuals tend to vary less than the bottom ranked ones. This is to make the
latter try to escape from the local optima of the fitness function. Also, top ranked individuals
tend to be cloned more than others who tend to disappear.

3.2 Adaptation to our problem

We use an adapted version of the Rank GA by Cervantes and Stephens (2009) to solve the problem.
The adapted algorithm (Hajós RankGA) pseudocode is given in Algorithm 1 which we describe
below. In that algorithm, the population size is equal to 50 and the number of generations has
no limit. Here we give an overview of the features taken from Cervantes and Stephens (2009) and
the modifications and adaptions made to that. For details, please consult that original paper.

Algorithm 1 Hajós Rank GA

procedure rankGA()
for each individual i do

individuali ← D(K3)

Evaluation and Sort
while not end Criteria met do

rankRecombination()
Evaluation and Sort
rankMutation()
Evaluation and Sort
rankSelection() and Sort
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Algorithm 2 rank Recombination

procedure rankRecombination()
for i in [0..individuals.size()-1] step 2 do

arc1 = random(arcs of individuali)
arc2 = random(arcs of individuali+1)
individuals.add( Hajós(i, (i + 1) mod individuals.size(), arc1, arc2))

Algorithm 3 Hajós operation

procedure Hajós(int i, int j, arc1, arc2)
result ← union(individuali, individualj) ⊲ disjoint union
result.deleteArcs(arc1, arc2)
identify(result, arc2.v2, arc1.v1)
result.addArc(arc1.u1, arc2.u2)

Algorithm 4 identification operation

procedure identify(individual, u, v)
individual.vertex(u).addArcs(arcs of v)
individual.delete(v)

Algorithm 5 rank Mutation

procedure rankMutation()
for i in [0..2individuals.size()-1] do

r ← i/(2individuals.size-1)
nonAdjacentPairs ← binomial numVerticesi,2)-(asimi+digoni)
numAttempts ← (r)nonAdjacentPairs
for j in [1..numAttempts] do

select 1 random vertex u from individuali
if u has non adjacent vertices then

v = random(non adjacent vertices of u)
identify(individuali, v, u)

3.2.1 Representation

Each individual in the population represents a digraph D by its adjacency matrix A, defined as
follows

Let D be a digraph of order n with V (D) = {v0, v1, . . . , vn−1} being its set of vertices. The
adjacency matrix of D is the matrix An×n, where A[i, j] = 1 if vivj is an arc of the digraph D
and A[i, j] = 0 otherwise.
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Algorithm 6 rank Selection

procedure rankSelection()
clones ← null
for i in [0..2individuals.size()-1] do

r ← i/(2individuals.size()-1)
n← ⌊P (1− r)(2P −1)⌋
for j in [0..n− 1] do

clones.add(individuali) ⊲ individual i is cloned n times

i← 0
while clones.size() < individuals.size() do

r ← i/(2individuals.size()-1)
n← P (1− r)(2P −1)

f ← n− ⌊n⌋ ⊲ f is the fractional part of n
if random(0,1) < f then

clones.add(individuali) ⊲ one extra clone of individual i

i← (i + 1) mod 2individuals.size()

individuals ← clones ⊲ replace population

3.2.2 Fitness Function

The fitness function to be minimized that we use is:

ft = |n− 5|+ 2
a

n
+ |n− s|+ 15TS + 5T, (1)

where n is the order of the individual, a is the number of its asymmetric arcs, s is the number
of its symmetric arcs, TS is the number of its D(K3) subdigraphs and T is the number of its
triangles with at least one non-symmetric arc.

The term |n − 5| is introduced to favor those digraphs of order 5. The term 2 a
n

is introduced
to favor digraphs with a low density of asymmetric arcs relative to their order. The term |n− s|
favors digraphs with the same number of vertices and symmetric arcs. The terms 15TS and
5T are introduced to favor those digraphs with no triangles (symmetric and non-symmetric).
Observe that if the fitness function is equal to 0, the digraph has 5 vertices, no asymmetric
arcs, 5 symmetric arcs, and no triangles. The unique 3-dichromatic digraph that satisfies these
conditions is the symmetric cycle of length 5, D(C5).

3.2.3 Recombination

Recombination is done based on the rank of the individuals (see Algorithm 2), so the population
needs to be sorted by fitness value before any recombination. Mating is done in such a way that
the best individual is recombined only with the second best. The third best is recombined only
with the fourth best, etc.

We use the directed Hajós join between two digraphs as our Recombination operator.
Procedure Hajós in Algorithm 3 takes two individuals and one arc from each individual and

returns the Hajós join between them. Procedure identify in Algorithm 4 takes an individual and
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a pair of independent vertices and produces another individual that is the input individual with
the identification operation done between the given vertices.

3.2.4 Mutation

The amount of mutation individuals get is a function of their rank (see Algorithm 5). The
particular function to be used takes into account that the best individual should have 0 mutations
and the worst individual should have the maximum number of mutations. First, we calculate
the number of non-adjacent pairs of vertices and then we take a fraction of this to determine the
number of mutation attempts to be done on the individual. This function is:

numAttempts = (r)numNonAdjacentP airs (2)

where

r =
i

2popSize− 1
(3)

where i is the index of the individual in the sorted population (starting at 0). Here we use
2popSize because after recombination we have doubled the population. A single mutation attempt
selects one vertex randomly and, if it has non-adjacent vertices, one of those is selected randomly,
or else the attempt is aborted. Once a pair of non-adjacent vertices was selected, the mutation
is performed as the identification of these two (see Algorithm 4).

3.2.5 Selection

Rank selection defines that the number of clones of an individual is a function of its rank (see Al-
gorithm 6). This function is monotonously decreasing and it is expected to produce a population
of half the size of the previous population. The number of clones for individuali is:

clones = P (1− r)2P −1 (4)

where r is given by equation 3 and P is the selective pressure parameter that in our case is P = 3.
The integer part of numClones determines a minimum number of clones for that individual,

whereas the fractional part of it determines the probability that this individual gets one extra
clone. The probabilistic part is performed after the integer part and only until the required
population size is reached.

3.2.6 Stored information

Each population is stored and each individual is assigned its origin that describes how the
individual is obtained in terms of the previous population. In case the individual was not modified,
the origin indicates from which individual of the previous population it comes from, and in case
the individual was modified, the origin indicates how it was obtained from one or two individuals
from the previous population. Due to this information, we can reconstruct the operations that
lead to the solution of the problem.

4 Results

The Hajós Rank GA used almost 5000 generations to obtain the symmetric 5-cycle, but we do
not need 5000 Hajós operations. In each generation, the RankGA 1 stores the population and
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the operations from which each individual was obtained, with this information we can recursively
reconstruct the steps used by the algorithm to generate a particular individual. That is, we can
reconstruct recursively each individual from D(K3) no matter the number of generations. In
what follows, we describe the 16 Hajós operations we obtained from the algorithm to construct
the symmetric 5-cycle from D(K3) using Hajós operations. Thus, we answer the question posed
in Bang-Jensen et al. (2019).

The following sequence of directed Hajós joins and vertex identifications is the one obtained
by the adapted version of the Hajós Rank GA:

The initial step is the directed Hajós join between two disjoint copies H and H ′ of D(K3),
where V (H) = {v0, v1, v2} and V (H ′) = {v′

0, v′

1, v′

2}. In the left digraph in Figure 2, we indicate
the arcs that must be deleted with a dotted line, and we indicate the vertices that we identify
with a black background, and the right digraph in Figure 2 is the resulting digraph where v0 is
the vertex obtained by identifying the vertices v0 and v′

0, and with the vertices that correspond
to the vertices of H ′ relabeled in cyclic order as v3 and v4.

v0

v1

v2

v′

0

v′

1

v′

2

v0

v1

v2 v3

v4

Fig. 2: The first digraph indicates the construction of the digraph D0 = (H, v2, v0)▽(H ′, v′
0, v′

1) using
two copies of D(K3), and the second is the resulting digraph.

In each of the following steps, we consider 5 Hajós operations: a directed Hajós join and four
vertex identifications. In Figures 2 to 5, the left digraph indicates the directed Hajós join, where
the dotted arcs must be deleted, the thick arrow added and the black vertices identified, and
the shades of gray indicate the four pairwise vertex identifications. The digraph on the right
indicates the result of these operations.

The operation in Figure 3 uses as input the result in Figure 2, the operation in Figure 4 does
so with the result in Figure 3 and the one in Figure 5 does so with the result in Figure 4.

Observe that the resulting digraph in Figures 2 and 3 is a symmetric 5-cycle with two diagonals,
the resulting digraph in Figure 4 is a symmetric 5-cycle with only one diagonal and the resulting
digraph in Figure 5 is a symmetric 5-cycle without diagonals.

5 Conclusions

Graph and digraph theory is a field of application of GAs that has been little explored, although
there are examples where GAs have been applied successfully, for instance Bouazzi et al. (2021);
Cervantes-Ojeda et al. (2019). The sequence of operations obtained by the GA inspired the
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v0

v1

v2 v3

v4

v′

0

v′

1

v′

2 v′

3

v′

4

v0

v1

v2 v3

v4

Fig. 3: The first digraph indicates the construction of the digraph D1 = (D0, v0, v2)▽(D′
0, v′

3, v′
0) using

two copies of D0, and the second is the resulting digraph.

v0

v1

v2 v3

v4

v′

0

v′

1

v′

2 v′

3

v′

4

v0

v1

v2 v3

v4

Fig. 4: The first digraph indicates the construction of the digraph D2 = (D1, v3, v0)▽(D′
1, v′

4, v′
1) using

two copies of D1, and the second is the resulting digraph.

v0

v1

v2 v3

v4

v′

0

v′

1

v′

2 v′

3

v′

4

v0

v1

v2 v3

v4

Fig. 5: The first digraph indicates the construction of the digraph D3 = (D2, v4, v1)▽(D′
2, v′

4, v′
1) using

two copies of D2, and the second is the resulting digraph.

authors to develop a method to obtain any symmetric odd cycle. The description of the operations
of that method is out of the scope of this article, but it will be described in a forthcoming article by
the authors. Thus, this article reiterates the viability of using genetic algorithms, with innovative
ways for their adaptation, as an important heuristic in the development of graph theory.
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