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We study a family of generalizations of EDGE DOMINATING SET on directed graphs called DIRECTED (p, q)-EDGE

DOMINATING SET. In this problem an arc (u, v) is said to dominate itself, as well as all arcs which are at distance at
most q from v, or at distance at most p to u.

First, we give significantly improved FPT algorithms for the two most important cases of the problem, (0, 1)-dEDS
and (1, 1)-dEDS (that correspond to versions of DOMINATING SET on line graphs), as well as polynomial kernels.
We also improve the best-known approximation for these cases from logarithmic to constant. In addition, we show
that (p, q)-dEDS is FPT parameterized by p+q+tw, but W-hard parameterized by tw (even if the size of the optimum
is added as a second parameter), where tw is the treewidth of the underlying (undirected) graph of the input.

We then go on to focus on the complexity of the problem on tournaments. Here, we provide a complete classification
for every possible fixed value of p, q, which shows that the problem exhibits a surprising behavior, including cases
which are in P; cases which are solvable in quasi-polynomial time but not in P; and a single case (p = q = 1) which
is NP-hard (under randomized reductions) and cannot be solved in sub-exponential time, under standard assumptions.

Keywords: Edge Dominating Set, Treewidth, Tournaments

1 Introduction
EDGE DOMINATING SET (EDS) is a classical graph problem, equivalent to MINIMUM DOMINATING
SET on line graphs. Despite the problem’s prominence, EDS has until recently received very little atten-
tion in the context of directed graphs. In this paper we investigate the complexity of a family of natural
generalizations of this problem to digraphs, building upon the recent work of Hanaka et al. (2019).
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Param. p, q FPT / W-hard Kernel Approximability

k
p+ q ≤ 1 2O(k)

Hanaka et al. (2019)→ 2k [Thm.4] O(k) vertices [Thm.10] 3-approx [Thm.5]

p = q = 1 2O(k)
Hanaka et al. (2019)→ 9k [Thm.3] O(k2) vertices [Thm.8] 8-approx [Thm.6]

max{p, q} ≥ 2 W[2]-hard Hanaka et al. (2019) - no o(ln k)-approx Hanaka et al. (2019)

tw any p, q W[1]-hard [Thm.14] - -
tw+p+ q any p, q FPT [Thm.15] unknown -

Tab. 1: Complexity status for various values of p and q: on general digraphs.

One of the reasons that EDS has not been well-studied so far in digraphs is that there are several
natural ways in which the undirected version can be generalized. For example, seeing as EDS is exactly
DOMINATING SET in line graphs, one could define DIRECTED EDS as (DIRECTED) DOMINATING SET
in line digraphs, similarly to Harary and Norman (1960). In this formulation, an arc (u, v) dominates all
arcs (v, w); however (v, w) does not dominate (u, v). Another natural way to define the problem would
be to consider DOMINATING SET on the underlying graph of the line digraph, so as to maximize the
symmetry of the problem, while still taking into account the arcs’ directions. In this formulation, (u, v)
dominates arcs coming out of v and arcs coming into u, but not any other arcs incident on u, v.

A unifying framework for studying such formulations was recently given by Hanaka et al. (2019), that
defined (p, q)-dEDS for any two non-negative integers p, q. In this setting, an arc (u, v) dominates every
other arc which lies on a directed path of length at most q that begins at v, or lies on a directed path
of length at most p that ends at u. In other words, (u, v) dominates arcs in the forward direction up to
distance q, and in the backward direction up to distance p. The interest in defining the problem in such
a general manner is that it allows us to capture at the same time DIRECTED DOMINATING SET on line
digraphs ((0, 1)-dEDS), DOMINATING SET on the underlying graph of the line digraph ((1, 1)-dEDS),
as well as versions corresponding to r-DOMINATING SET in the line digraph. We thus obtain a family of
optimization problems on digraphs, with varying degrees of symmetry, all of which crucially depend on
the directions of arcs in the input digraph.

Our contribution: In this paper we advance the state-of-the-art on the complexity of DIRECTED (p, q)-
EDGE DOMINATING SET on two fronts.(i)

First, we study the complexity and approximability of the problem in general (see Table 1). The problem
is shown NP-hard for all values of p, q (except p = q = 0), even for planar bounded-degree DAGs by
Hanaka et al. (2019), so it makes sense to study its parameterized complexity and approximability. We
show that its two most natural cases, (1, 1)-dEDS and (0, 1)-dEDS, admit FPT algorithms with running
times 9k and 2k, respectively, where k is the size of the optimal solution. These algorithms significantly
improve upon the FPT algorithms given by Hanaka et al. (2019), that use the fact that the treewidth (of the
underlying graph of the input) is at most 2k and runs dynamic programming over a tree decomposition
of width at most 10k, obtained by the algorithm of Bodlaender et al. (2016). The resulting running-time
estimate for the algorithm of Hanaka et al. (2019) is thus around 2510k. Though both of our algorithms
rely on standard branching techniques, we make use of several non-trivial ideas to obtain reasonable bases
in their running times. We also show that both of these problems admit polynomial kernels. These are the
only cases of the problem which may admit such kernels, since the problem is shown W-hard for all other

(i) We note that in the remainder we always assume that p ≤ q, as in the case where p > q we can reverse the direction of all arcs
and solve (q, p)-dEDS.
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values of p, q by Hanaka et al. (2019). Furthermore, we give an 8-approximation for (1, 1)-dEDS and a
3-approximation for (0, 1)-dEDS. We recall that Hanaka et al. (2019) showed anO(log n)-approximation
for general values of p, q, and a matching logarithmic lower bound for the case max{p, q} ≥ 2. Therefore
our result completes the picture on the approximability of the problem by showing that the only two
currently unclassified cases belong to APX. Finally, we consider the problem’s complexity parameterized
by the treewidth of the underlying graph. We show that, even though the problem is FPT when all of
p, q, tw are parameters, it is in fact W[1]-hard if parameterized only by tw. More strongly, we show that
the problem is W[1]-hard when parameterized by the pathwidth and the size of the optimum.

Our second contribution in this paper is an analysis of the complexity of the problem on tournaments,
which are one of the most well-studied classes of digraphs (see Table 2). One of the reasons for focusing
on this class is that the complexity of DOMINATING SET has a peculiar status on tournaments, as it is
solvable in quasi-polynomial time, W[2]-hard, but neither in P nor NP-complete (under standard assump-
tions). Here, we provide a complete classification of the problem which paints an even more surprising
picture. We show that (p, q)-dEDS goes from being in P for p + q ≤ 1; to being APX-hard and unsolv-
able in 2n

1−ε
under the (randomized) ETH for p = q = 1; to being equivalent to DOMINATING SET on

tournaments, hence NP-intermediate, quasi-polynomial-time solvable, and W[2]-hard, when one of p and
q equals 2; and finally to being polynomial-time solvable again if max{p, q} ≥ 3 and neither p nor q
equals 2. We find these results surprising, because few problems demonstrate such erratic complexity
behavior when manipulating their parameters and because, even though in many cases the problem does
seem to behave like DOMINATING SET, the fact that (1, 1)-dEDS becomes significantly harder shows that
the problem has interesting complexity aspects of its own. The most technical part of this classification
is a reduction that establishes the hardness of (1, 1)-dEDS, making use of several randomized tourna-
ment constructions, that we show satisfy certain desirable properties with high probability; as a result our
reduction itself is randomized.

Range of p, q Complexity
p = q = 1 NP-hard [Thm. 26], FPT [Thm. 3], polynomial kernel [Thm. 8]

p = 2 or q = 2 Quasi-P-time [Thm. 37], W[2]-hard [Thm 36]

remaining cases P-time [Thm. 38 and 39]

Tab. 2: Complexity status for various values of p and q: on tournaments.

Related Work: On undirected graphs EDGE DOMINATING SET, also known as MAXIMUM MINIMAL
MATCHING, is NP-complete even on bipartite, planar, bounded degree graphs as well as other special
cases, see Yannakakis and Gavril (1980); Horton and Kilakos (1993). It can be approximated within a
factor of 2 as shown by Fujito and Nagamochi (2002) (or better in some special cases as shown by Cardinal
et al. (2009); Schmied and Viehmann (2012); Baker (1994)), but not a factor better than 7/6 according
to Chlebı́k and Chlebı́ková (2006) unless P=NP. The problem has been the subject of intense study in
the parameterized and exact algorithms community (Xiao and Nagamochi (2014)), producing a series of
improved FPT algorithms by Fernau (2006); Binkele-Raible and Fernau (2010); Fomin et al. (2009); Xiao
et al. (2013); the current best is given by Iwaide and Nagamochi (2016). A kernel with O(k2) vertices
and O(k3) edges is also shown by Hagerup (2012).

For (p, q)-dEDS, Hanaka et al. (2019) show the problem to be NP-complete on planar DAGs, in P
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on trees, and W[2]-hard and c ln k-inapproximable on DAGs if max{p, q} > 1. The same paper gives
FPT algorithms for max{p, q} ≤ 1. Their algorithm performs DP on a tree decomposition of width
w in O(25w), using the fact that w ≤ 2k and the algorithm of Bodlaender et al. (2016) to obtain a
decomposition of width 10k.

DOMINATING SET is shown to not admit an o(log n)-approximation by Dinur and Steurer (2014);
Moshkovitz (2015), and to be W[2]-hard and unsolvable in time no(k) under the ETH by Downey and
Fellows (1995a); Cygan et al. (2015). The problem is significantly easier on tournaments, as the size of
the optimum is always at most log n, hence there is a trivial nO(logn) (quasi-polynomial)-time algorithm.
It remains, however, W[2]-hard as shown by Downey and Fellows (1995b). The problem thus finds
itself in an intermediate space between P and NP, as it cannot have a polynomial-time algorithm unless
FPT=W[2] and it cannot be NP-complete under the ETH (as it admits a quasi-polynomial-time algorithm).
The generalization of DOMINATING SET where vertices dominate their r-neighborhood has also been
well-studied in general, e.g. by Borradaile and Le (2016); Demaine et al. (2005); Eisenstat et al. (2014);
Katsikarelis et al. (2019); Kreutzer and Tazari (2012). It is noted by Biswas et al. (2022) that this problem
is much easier on tournaments for r ≥ 2, as the size of the solution is always a constant.

2 Definitions and Preliminaries
Graphs and domination: We use standard graph-theoretic notation. If G = (V,E) is a graph, S ⊆ V
a subset of vertices and A ⊆ E a subset of edges, then G[S] denotes the subgraph of G induced by S,
while G[A] denotes the subgraph of G that includes A and all its endpoints. We let V = A∪̇B denote the
disjoint set union of A and B. For a vertex v ∈ V , the set of neighbors of v in G is denoted by NG(v), or
simply N(v), and NG(S) := (

⋃
v∈S N(v)) \ S will be written as N(S). We define N [v] := N(v) ∪ {v}

and N [S] := N(S) ∪ S.
Depending on the context, we use (u, v) for u, v ∈ V to denote either an undirected edge connecting

two vertices u, v, or an arc (a directed edge) with tail u and head v. An incoming (resp. outgoing) arc for
vertex v is an arc whose head (resp. tail) is v. In a directed graph G = (V,E), the set of out-neighbors
(resp. in-neighbors) of a vertex v is defined as {u ∈ V : (v, u) ∈ E} (resp. {u ∈ V : (u, v) ∈ E})
and denoted as N+

G (v) (resp. N−G (v)). Similarly to the case of undirected graphs, N+(S) and N−(S)
respectively stand for the sets (

⋃
v∈S N

+(v)) \ S and (
⋃
v∈S N

−(v)) \ S. For a subdigraph H of G and
subsets S, T ⊆ V , we let δH(S, T ) denote the set of arcs in H whose tails are in S and heads are in T .

We use δ−H(S) (resp. δ+H(S)) to denote the set δH(V \ S, S) (resp. the set δH(S, V \ S)). If S is a
singleton consisting of a vertex v, we write δ+H(v) (resp. δ−H(v)) instead of δ+H({v}) (resp. δ−H({v})). The
union δ+H(v) ∪ δ−H(v) is denoted as δH(v). The in-degree d−H(v) (respectively out-degree d+H(v)) of a
vertex v is defined as |δ−H(v)| (resp. |δ+H(v)|)), and we write dH(v) to denote d+H(v) + d−H(v). We omit
H if it is clear from the context. If H is G[A] for some vertex or arc set of G, then we write A in place of
G[A].

A source (resp. sink) is a vertex that has no incoming (resp. outgoing) arcs. A vertex v is said to in-
cover every incoming arc (u, v) and out-cover every outgoing arc (v, u) for some u. Here, for a path
v1, v2, . . . , vl, the length of the path is defined as the number of arcs, that is, l − 1.

A directed graph is strongly connected if there is a path in each direction between each pair of vertices.
A strongly connected component of a directed graph G is a maximal strongly connected subgraph. The
collection of strongly connected components forms a partition of the set of vertices of G, while it also has
a topological ordering, i.e., a linear ordering of its components such that for every arc (u, v), u comes
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before v in the ordering. If each strongly connected component of G is contracted to a single vertex,
the resulting graph is a directed acyclic graph (DAG). The topic of this paper is DIRECTED (p, q)-EDGE
DOMINATING SET ((p, q)-dEDS): given a directed graph G = (V,E), a positive integer k and two non-
negative integers p, q, we are asked to determine whether an arc subset K ⊆ E of size at most k exists,
such that every arc is (p, q)-dominated by K. Such a K is called a (p, q)-edge dominating set of G.

The DOMINATING SET problem is defined as follows: given an undirected graph G = (V,E), we are
asked to find a subset of vertices D ⊆ V , such that every vertex not in D has at least one neighbor in D:
∀v /∈ D : N(v) ∩D 6= ∅. For a directed graph G = (V,E), every vertex not in D is required to have at
least one incoming arc from at least one vertex of D: ∀v /∈ D : N−(v) ∩D 6= ∅.

We also use the k-MULTICOLORED CLIQUE problem, which is defined as follows: given a graph G =
(V,E), with V partitioned into k independent sets V = V1∪̇ . . . ∪̇Vk, where ∀i ∈ [1, k] it is |Vi| = n,(ii)

we are asked to find a subset S ⊆ V , such that G[S] forms a clique with |S ∩ Vi| = 1,∀i ∈ [1, k]. The
problem k-MULTICOLORED CLIQUE is well-known to be W[1]-complete (see Fellows et al. (2009)).

Complexity background: We assume that the reader is familiar with the basic definitions of parameter-
ized complexity, such as the classes FPT and W[1], as well as the Exponential Time Hypothesis (ETH),
see Cygan et al. (2015). For a problem P , we let OPTP denote the value of its optimal solution. We
also make use of standard graph width measures, such as the vertex cover number vc, treewidth tw and
pathwidth pw, whose definitions can also be found in Cygan et al. (2015). Formal definitions of no-
tions related to approximation can be found in Vazirani (2001); Williamson and Shmoys (2011) (also in
appendices therein).

Treewidth and pathwidth: A tree decomposition of a graph G = (V,E) is a pair (X , T ) with T =
(I, F ) a tree and X = {Xi|i ∈ I} a family of subsets of V (called bags), one for each node of T , with
the following properties:

1)
⋃
i∈I Xi = V ;

2) for all edges (v, w) ∈ E, there exists an i ∈ I with v, w ∈ Xi;

3) for all i, j, k ∈ I , if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition ((I, F ), {Xi|i ∈ I}) is maxi∈I |Xi| − 1. The treewidth of a graph
G is the minimum width over all tree decompositions of G, denoted by tw(G). The tree decomposition
and width of a directed graph G = (V,E) is defined as those of the underlying graph of G, namely the
undirected graph obtained from G by forgetting the direction of arcs of G.

Moreover, for rooted T , let Gi = (Vi, Ei) denote the terminal subgraph defined by node i ∈ I , i.e.
the induced subgraph of G on all vertices in bag i and its descendants in T . Also let Ni(v) denote the
neighborhood of vertex v in Gi and disti(u, v) denote the distance between vertices u and v in Gi, while
dist(u, v) (absence of subscript) is the distance in G.

In addition, a tree decomposition can be converted to a nice tree decomposition of the same width (in
O(tw2 · n) time and with O(tw · n) nodes). The tree here is rooted and binary, while each node is one of
the four types:

a) Leaf nodes i are leaves of T and have |Xi| = 1;
(ii) We implicitly assume each set in the partition contains n elements (rather than potentially fewer), as the numbering of vertices

in each set will be used to encode algorithmic choices in our hardness proofs, whose descriptions will thus be more succint.
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b) Introduce nodes i have one child j with Xi = Xj ∪ {v} for some vertex v ∈ V and are said to
introduce v;

c) Forget nodes i have one child j with Xi = Xj \ {v} for some vertex v ∈ V and are said to forget v;

d) Join nodes i have two children denoted by i− 1 and i− 2, with Xi = Xi−1 = Xi−2.

Nice tree decompositions were introduced by Kloks (1994) and using them does not in general give any
additional algorithmic possibilities, yet algorithm design becomes considerably easier.

Replacing “tree” by “path” in the above, we get the definition of pathwidth pw. We recall the following
well-known relation:

Lemma 1 For any graph G we have tw(G) ≤ pw(G).

Tournaments: A tournament is a directed graph in which every pair of distinct vertices is connected
by a single arc. Given a tournament T , we denote by T rev the tournament obtained from T by reversing
the direction of every arc. Every tournament has a king (sometimes also called a 2-king), being a vertex
from which every other vertex can be reached by a path of length at most 2. One such king is the vertex of
maximum out-degree (see Biswas et al. (2022)). It is folklore that any tournament contains a Hamiltonian
path, being a directed path that uses every vertex. The DOMINATING SET problem can be solved by brute
force in time nO(logn) on tournaments, by the following lemma:

Lemma 2 (Cygan et al. (2015)) Every tournament on n vertices has a dominating set of size≤ log n+1.

3 Tractability
3.1 FPT algorithms
In this section we present FPT branching algorithms for (0, 1)-dEDS and (1, 1)-dEDS. Both algorithms
operate along similar lines, considering the particular ways available for domination of each arc.

Theorem 3 The (1, 1)-dEDS problem parameterized by solution size k can be solved in time O∗(9k).

Proof: We present an algorithm that works in two phases. In the first phase we perform a branching
procedure which aims to locate vertices with positive out-degree or in-degree in the solution. The general
approach of this procedure is standard (as long as there is an uncovered arc, we consider all ways in which
it may be covered), and uses the fact that at most 2k vertices have positive in- or out-degree in the solution.
In order to speed up the algorithm, however, we use a more sophisticated branching procedure that picks
an endpoint of the current arc (u, v) and completely guesses its behavior in the solution. This ensures
that this vertex will never be branched on again in the future. Once all arcs of the graph are covered, we
perform a second phase, which runs in polynomial time, and by using a maximum matching algorithm
finds the best solution corresponding to the current branch.

Let us now describe the branching phase of our algorithm. We construct three sets of vertices V +, V −, V +−.
The meaning of these sets is that when we place a vertex u in V +, V −, or V +− we guess that u has (i)
positive out-degree and zero in-degree in the optimal solution; (ii) positive in-degree and zero out-degree
in the optimal solution; (iii) positive in-degree and positive out-degree in the optimal solution, respec-
tively. Initially all three sets are empty. When the algorithm places a vertex in one of these sets we say
that the vertex has been marked.
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Our algorithm now proceeds as follows: given a graphG = (V,E) and three disjoint sets V +, V −, V +−,
we do the following:

1. If |V +|+ |V −|+ 2|V +−| > 2k, reject.

2. While there exists an arc (u, v) with both endpoints unmarked, do the following and return the best
solution:

(a) Call the algorithm with V + := V + ∪ {v} and the other sets unchanged.

(b) Call the algorithm with V +− := V +− ∪ {v} and the other sets unchanged.

(c) Call the algorithm with V − := V − ∪ {u} and the other sets unchanged.

(d) Call the algorithm with V +− := V +− ∪ {u} and the other sets unchanged.

(e) Call the algorithm with V + := V + ∪ {u}, V − := V − ∪ {v}, and V +− unchanged.

It is not hard to see that Step 1 is correct as |V +|+ |V −|+ 2|V +−| is a lower bound on the sum of the
degrees of all vertices in the optimal solution and therefore cannot surpass 2k.

Branching Step 2 is also correct: in order to cover (u, v), the optimal solution must either take an arc
coming out of v (2a,2b), or an arc coming into u (2c,2d), or, if none of the previous cases apply, it must
take the arc itself (2e).

Once we have applied the above procedure exhaustively, all arcs of the graph have at least one marked
endpoint. We say that an arc (u, v) with u ∈ V − ∪ V +−, or with v ∈ V + ∪ V +− is covered. We now
check if the graph contains an uncovered arc (u, v) with exactly one marked endpoint. We then branch
by considering all possibilities for its other endpoint. More precisely, if u ∈ V + and v is unmarked,
we branch into three cases, where v is placed in V +, or V −, or V +− (and similarly if v is the marked
endpoint). This branching step is also correct, since the degree specification for the currently marked
endpoint does not dominate the arc (u, v), hence any feasible solution must take an arc incident on the
other endpoint.

Once the above procedure is also applied exhaustively we have a graph where all arcs either have both
endpoints marked, or have one endpoint marked but in a way that if we respect the degree specifications the
arc is guaranteed to be covered. What remains is to find the best solution that agrees with the specifications
of the sets V +, V −, V +−.

We first add to our solution S all arcs δ(V +, V −), i.e., all arcs (u, v) such that u ∈ V + and v ∈ V −,
since there is no other way to dominate these arcs. We then define a bipartite graphH = (V +∪V +−, V −∪
V +−, δ(V + ∪ V +−, V − ∪ V +−)). That is, H contains all vertices in V + along with a copy of V +− on
one side, all vertices of V − and a copy of V +− on the other side and all arcs in E with tails in V +∪V +−

and heads in V − ∪ V +−. We now compute a minimum edge cover of this graph, that is, a minimum set
of edges that touches every vertex. This can be done in polynomial time by finding a maximum matching
and then adding an arbitrary incident edge for each unmatched vertex. It is not hard to see that a minimum
edge cover of this graph corresponds exactly to the smallest (1, 1)-edge dominating set that satisfies the
specifications of the sets V +, V −, V +−.

To see that the running time of our algorithm is O∗(9k), observe that there are two branching steps:
either we have an arc (u, v) with both endpoints unmarked; or we have an arc with exactly one unmarked
endpoint. In both cases we measure the decrease of the quantity ` := 2k − (|V +| + |V −| + 2|V +−|).
The first case produces two instances with `′ := ` − 1 (2a,2c), and three instances with `′ := ` − 2. We
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therefore have a recurrence satisfying T (`) ≤ 2T (` − 1) + 3T (` − 2), which gives T (`) ≤ 3`. For the
second case, we have three branches, all of which decrease ` and we therefore also have T (`) ≤ 3` in this
case. Taking into account that, initially ` = 2k we get a running time of at most O∗(9k). 2

Theorem 4 The (0, 1)-dEDS problem parameterized by solution size k can be solved in time O∗(2k).

Proof: We give a branching algorithm that marks vertices of V . During the branching process we con-
struct three disjoint sets: V0 contains vertices that will have in-degree 0 in the optimal solution; V +

F con-
tains vertices that have positive in-degree in the optimal solution and for which the algorithm has already
identified at least one selected incoming arc; and V +

? contains vertices that have positive in-degree in the
optimal solution for which we have not yet identified an incoming arc. The algorithm will additionally
mark some arcs as “forced”, meaning that these arcs have been identified as part of the solution.

Initially, the algorithm sets V0 = V +
F = V +

? = ∅. These sets will remain disjoint during the branching.
We denote V + = V +

F ∪ V +
? and Vr = V \ (V0 ∪ V +).

Before performing any branching steps we exhaustively apply the following rules:

1. If |V +| > k, we reject. This is correct since no solution can have more than k vertices with positive
in-degree.

2. If there exists an arc (u, v) with u, v ∈ V0, we reject. Such an arc cannot be covered without
violating the constraint that the in-degrees of u, v remain 0.

3. If there exists a source v ∈ Vr, we set V0 := V0 ∪ {v}. This is correct since a source will obviously
have in-degree 0 in the optimal solution.

4. If there exists an arc (u, v) with u ∈ V0 and v 6∈ V +
F , we set V +

F := V +
F ∪{v} and V +

? := V +
? \{v}.

This is correct since the only way to cover (u, v) is to take it. We mark all arcs with tail u as forced.

5. If there exists an arc (u, v) with v ∈ V0 and u 6∈ V +, we set V +
? := V +

? ∪ {u}. This is correct,
since we cannot cover (u, v) by selecting it (this would give v positive in-degree).

6. If there exists an arc (u, v) with v ∈ V +
F and u ∈ Vr which is not marked as forced, then we set

V +
? := V +

? ∪ {u}. We explain the correctness of this rule below.

The above rules take polynomial time and can only increase |V +|. We observe that Vr contains no
sources (Rule 3). To see that Rule 6 is correct, suppose that there is a solution in which the in-degree of
u is 0, therefore the arc (u, v) is taken. However, since v ∈ V +

F , we have already marked another arc
that will be taken, so the in-degree of v will end up being at least 2. Since u is not a source (Rule 3), we
replace (u, v) with an arbitrary incoming arc to u. This is still a valid solution.

The first branching step is the following: suppose that there exists an arc (u, v) with u, v ∈ Vr. In one
branch we set V +

? := V +
? ∪{u}, and in the other branch we set V0 := V0∪{u} and V +

F := V +
F ∪{v} and

mark (u, v) as forced. This branching is correct as any feasible solution will either take an arc incoming
to u to cover (u, v), or if it does not, will take (u, v) itself. In both branches the size of V + increases by 1.

Suppose now that we have applied all the above rules exhaustively, and that we cannot apply the above
branching step. This means that (V0 ∪V +) is a vertex cover (in the underlying undirected graph). If there
is a vertex u ∈ V +

? that has at least two in-neighbors v1, v2 ∈ Vr we branch as follows: we either set
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V +
? := V +

? ∪ {v1}; or we set V0 := V0 ∪ {v1}, V +
F := V +

F ∪ {u}, and V +
? := V +

? \ {u} and mark the
arc (v1, u) as forced. This is correct, since a solution will either take an incoming arc to v1, or the arc
(v1, u). The first branch clearly increases |V +|. The key observation is that |V +| also increases in the
second branch, as Rule 6 will immediately apply, and place v2 in V +

? .
Suppose now that none of the above applies. Because of Rule 6 there are no arcs from Vr to V +

F .
Because the second branching Rule does not apply, and because of Rule 4, each vertex v ∈ V +

? only has
in-neighbors in V + and at most one in-neighbor in Vr. For each v ∈ V +

? that has an in-neighbor u ∈ Vr
we select (u, v) in the solution; for every other v ∈ V +

? we select an arbitrary incoming arc in the solution;
for each u ∈ V +

F we select the incoming arcs that the branching algorithm has identified. We claim that
this is a valid solution. Because of Rule 4 all arcs coming out of V0 are covered, because of Rule 2 no arcs
are induced by V0, and because of Rule 5 all arcs going into V0 have a tail with positive in-degree in the
solution. We have selected in the solution every arc from Vr to V +

? , and there are no arcs induced by Vr,
otherwise we would have applied the first branching rule. All arcs from Vr to V +

F are marked as forced
and we have selected them in the solution. Finally, all arcs with tail in V + are covered.

Because of the correctness of the branching rules, if there is a solution, one of the branching choices
will produce it. All rules can be applied in polynomial time, or produce two branches with larger values
of |V +|. Since this value never goes above k, we obtain an O∗(2k) algorithm. 2

3.2 Approximation algorithms
We present here constant-factor approximation algorithms for (0, 1)-dEDS, and (1, 1)-dEDS. Both algo-
rithms appropriately utilize a maximal matching.

Theorem 5 There are polynomial-time 3-approximation algorithms for (0, 1)-dEDS.

Proof: Let G = (V,E) be an input directed graph. We partition V into (S,R, T ) so that S and T are
the sets of sources and sinks, respectively, and R = V \ (S ∪ T ). A (0, 1)-edge dominating set K is
constructed as follows.

1. Add the arc set δ+(S) to K.

2. For each vertex of v ∈ (R ∩N−(T )) \N+(S), choose precisely one arc from δ−(v) and add it to
K. In other words, as long as there exists a vertex v for which we have not yet selected any of its
incoming arcs and which has an outgoing arc to a sink, we select arbitrarily an arc coming into v.

3. Let G′ = (R,E′) be the subdigraph of G whose arc set consists of arcs not (0, 1)-dominated by
K thus far constructed. Let M be a set of arcs in G′, each corresponding to an edge of a maximal
matching in the underlying undirected graph of G′ (using either direction) and V (M) be the set of
vertices touched by M . Let M− be the tails of the arcs in M and let I+ be the set of unmatched
vertices v which are not sinks in G′, that is, v ∈ R \ V (M) and δ+G′(v) 6= ∅. To K, we add all
arcs of M , an arbitrary incoming arc of v for every v ∈M−, and an arbitrary incoming arc of v for
every v ∈ I+.

The above construction can be carried out in polynomial time. Furthermore, in all steps where we add
an arbitrary arc to a vertex u, we have u 6∈ S, therefore such an arc exists. Let us first observe that the
constructed solution is feasible. Let K1, K2 and K3 be the set of arcs added to K at step 1, 2 and 3,



10 Rémy Belmonte et al.

respectively. K1 contains all arcs incident on S, so all these arcs are covered. For each arc (u, v) with
v ∈ T we have selected an arc going into u to be put into K2, so (u, v) is covered. Finally, for each arc
(u, v) with u, v ∈ R we consider the following cases: If u ∈ V (M) and u is the head of an arc of M ,
then (u, v) is covered since we selected all arcs of M ; if u ∈ V (M) and u is a tail of an arc in M then
K3 contains an arc going into u, so (u, v) is covered; if u 6∈ V (M) then u ∈ I+, so we have selected an
arc going into u. In all cases (u, v) is covered.

Let us now argue about the approximation ratio. Fix an optimal solution OPT(0,1)dEDS . First, note for
K1 = δ+(S) we must have K1 ⊆ OPT(0,1)dEDS , because the only arc that can (0, 1)-dominate an arc of
δ+(S) is itself. Let OPT2 = OPT(0,1)dEDS \K1.

Consider the set R′ = (R ∩N−(T )) \N+(S). We claim that for each v ∈ R′ the set OPT2 contains
either at least one arc of δ−(v) or all arcs with tail v and head in T . Let OPT ′2 be a set of arcs constructed
by selecting for each v ∈ R′ a distinct element of OPT2 ∩ δ−(v), or if no such element exists all the arcs
(v, t) ∈ OPT2 with t ∈ T . We have |OPT ′2| ≥ |K2| because all vertices of R′ have an out-neighbor in
T . Let OPT3 = OPT2 \OPT ′2.

We will now argue that |OPT3| ≥ |I+|. We first observe that any (optimal) solution must contain at
least one arc of δ−G(v)∪ δ+G(v) for every v ∈ I+. In order to justify step 3, the following claim provides a
key observation.

Claim 5.1 It holds that δ(S, I+) = δ(I+, T ) = ∅. Furthermore I+ is an independent set in the underly-
ing undirected graph of G.

Proof: If there is an arc from s ∈ S to v ∈ I+ then (s, v) ∈ K1, which implies that all arcs coming out
of v are dominated by K1. This means that v is a sink in G′, which is a contradiction. If there is an arc
from v ∈ I+ to t ∈ T then there is an arc going into v that belongs to K2, which again makes v a sink in
G′, contradiction. Therefore, δ(S, I+) = δ(I+, T ) = ∅.

Suppose that I+ is not an independent set in G and let (u, v) be an arc with u, v ∈ I+. However, M is
maximal and u, v are unmatched, which implies that the arc (u, v) does not appear in G′. This means that
either (u, v) ∈ K2, which makes v a sink in G′, or an arc going into u belongs in K1 ∪K2, which makes
u a sink in G′. In both cases we have a contradiction. 2

Let us now use the above claim to show that |OPT3| ≥ |I+|. First, observe that I+ ∩ R′ = ∅, as all
vertices of R′ are sinks in G′. Furthermore, all arcs of OPT ′2 have their heads in R′ ∪ T , hence none of
them have their heads in I+. Similarly, no arc of K1 has its head in I+, because this would make its head
a sink in G′. Therefore, all arcs with tail in I+ that exist in G′ are dominated by OPT3. We now observe
that since I+ is an independent set, no arc of OPT3 can dominate two arcs with tails in I+. Therefore,
|OPT3| ≥ |I+|. We now have

|K1|+ |K2|+ |I+| ≤ |K1|+ |OPT ′2|+ |OPT3| ≤ |OPT(0,1)dEDS |.
In order to (0, 1)-dominate the entire arc set M , one needs to take at least |M | arcs, because M corre-

sponds to a matching in the underlying undirected graph and we thus have |OPT(0,1)dEDS | ≥ |M |. We
also recall the definition of K3: it contains all arcs of M , one arbitrary incoming arc of each v ∈ M−,
and an arbitrary incoming arc of each v ∈ I+. We therefore deduce

|K| ≤ |K1|+ |K2|+ 2|M |+ |I+| ≤ 3|OPT(0,1)dEDS |.
2
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Theorem 6 There is a polynomial-time 8-approximation algorithm for (1, 1)-dEDS.

Proof: Let G = (V,E) be an input directed graph. We partition V into (S,R, T ) so that S and T are the
sets of sources and sinks, respectively, and R = V \ (S ∪ T ).

We construct an (1, 1)-edge dominating set K as follows.

1. Add the arc set δ(S, T ) to K.

2. For each vertex of v ∈ R ∩N+(S), choose precisely one arc from δ+(v) and add it to K.

3. For each vertex of v ∈ R ∩N−(T ), choose precisely one arc from δ−(v) and add it to K.

4. Let G′ = (R,E′) be the subdigraph of G whose arc set consists of those arcs not (1, 1)-dominated
by K thus far constructed. Let M be a set of arcs in G′, each corresponding to an edge (any
direction) of a maximal matching in the underlying graph of G′. Let M− and M+ be the tails
and heads of the arcs in M , respectively. To K, we add all arcs of M , an arc of δ−G(v) for every
v ∈M−, and also an arc of δ+G(v) for every v ∈M+.

Clearly, the algorithm runs in polynomial time. In particular, for any vertex v considered in Steps 2-4,
both δ+(v) and δ−(v) are non-empty and choosing an arc from a designated set is always possible. We
show thatK is indeed an (1, 1)-edge dominating set. Suppose that an arc (u, v) is not (1, 1)-dominated by
K. As the first, second and third step of the construction ensures that any arc incident with S∪T is (1, 1)-
dominated, we know that (u, v) is contained in the subdigraph G′ constructed at step 4. For (u, v) /∈ M
and M corresponding to a maximal matching, one of the vertices u, v must be incident with M . Without
loss of generality, we assume v is incident with M (and the other cases are symmetric). If v ∈ M−,
then clearly the arc e ∈ M whose tail coincides with v would (1, 0)-dominate (u, v), a contradiction. If
v ∈ M+, then the outgoing arc of v added to K at step 4 would (1, 0)-dominate (u, v), again reaching a
contradiction. Therefore, the constructed set K is a solution to (1, 1)-dEDS.

To prove the claimed approximation ratio, we first note that δ(S, T ) is contained in any (optimal)
solution because any arc of δ(S, T ) can be (1, 1)-dominated only by itself. Note that these arcs do not
(1, 1)-dominate any other arcs ofG. Further, we have |R∩N+(S)| ≤ OPT(1,1)dEDS−|δ(S, T )| because
in order to (1, 1)-dominate any arc of the form (s, r) with s ∈ S and r ∈ R, one must take at least one
arc from {(s, r)} ∪ δ+(r). Since the sets {(s, r) : s ∈ S} ∪ δ+(r) are disjoint over all r ∈ R ∩N+(S),
the inequality holds. Likewise, it holds that |R ∩ N−(T )| ≤ OPT(1,1)dEDS − |δ(S, T )|. In order to
(1, 1)-dominate the entire arc set M , one needs to take at least |M |/2 arcs. This is because an arc e can
(1, 1)-dominate at most two arcs of M . That is, we have |M |/2 ≤ OPT(1,1)dEDS−|δ(S, T )|. Therefore,
it is |K| ≤ |δ(S, T )|+ |R ∩N+(S)|+ |R ∩N−(T )|+ 3|M | ≤ 8OPT(1,1)dEDS . 2

3.3 Polynomial kernels
We give polynomial kernels for (1, 1)-dEDS and (0, 1)-dEDS. We first introduce a relation between the
vertex cover number and the size of a minimum (1, 1)-edge dominating set, shown by Hanaka et al.
(2019) (as a corollary to their Lemma 22) and then proceed to show a quadratic-vertex/cubic-edge kernel
for (1, 1)-dEDS.

Lemma 7 (Hanaka et al. (2019)) Given a directed graph G, let G∗ be the undirected underlying graph
of G, vc(G∗) be the vertex cover number of G∗, and K be a minimum (1, 1)-edge dominating set in G.
Then vc(G∗) ≤ 2|K|.
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Theorem 8 There exists an O(k2)-vertex/O(k3)-edge kernel for (1, 1)-dEDS.

Proof: Given a directed graph G, we denote the underlying undirected graph of G by G∗. Let K be a
minimum (1, 1)-edge dominating set and vc(G∗) be the size of a minimum vertex cover in G∗. First, we
find a maximal matching M in G∗. If |M | > 2k, we conclude this is a no-instance by Lemma 7 and
the well-known fact that |M | ≤ vc(G∗), see Garey and Johnson (1979). Otherwise, let S be the set of
endpoints of edges in M . Then S is a vertex cover of size at most 4k for the underlying undirected graph
of G and V \ S is an independent set.

We next explain the reduction step. For each v ∈ S, we arbitrarily mark the first k + 1 tail vertices of
incoming arcs of v with “in” (or all, if the in-degree of v is ≤ k) and also arbitrarily the first k + 1 head
vertices of outgoing arcs of v with “out” (or all, if the out-degree of v is ≤ k). After this marking, if there
exists a vertex u ∈ V \ S without marks “in”, “out”, we can delete it.

We next show the correctness of the above. First, we can observe that if some v ∈ S has more than
k + 1 incoming arcs, then any feasible solution of size at most k must select an arc with tail v. Similarly,
if v ∈ S has more than k+ 1 outgoing arcs, any feasible solution of size at most k must select an arc with
head v. Consider now an unmarked vertex u and suppose that it is the tail of an arc (u, v) with v ∈ S
(the case where u is the head is symmetric). The vertex v has k + 1 other incoming arcs, besides (u, v),
otherwise u would have been marked. Therefore, in any solution of size at most k in the graph where
u has been deleted we must select an arc coming out of v. This arc dominates (u, v). Therefore, any
feasible solution of the new graph remains feasible in the original graph. For the other direction, suppose
a solution for the graphG selects the arc (u, v). We consider the same solution without (u, v) in the graph
where u is deleted. If this is already feasible, we are done. If not, any non-dominated arc must have v as
its tail (every other arc dominated by (u, v) has been deleted). All these arcs can be dominated by adding
to the solution an arc going into v. Note also that any deleted vertex u ∈ V \ S is only connected to
vertices in S, since S is a vertex cover and the above thus accounts for all possibly deleted arcs.

After exhaustively applying the above rule every vertex of the independent set will be marked. We
mark at most 2(k+ 1) vertices of the independent set for each of the at most 4k vertices of S, so we have
a total of at most 8k2 + 12k vertices. Moreover, there exist at most 4k · (8k2 + 8k) = 32k3 + 32k2 arcs
between the sets of the vertex cover and the independent set. Therefore, the number of arcs in the reduced
graph is at most

(
4k
2

)
+ 32k3 + 32k2 = 32k3 + 32k2 + 2k(4k − 1) = O(k3). 2

Next, we note that the size of a minimum (0, 1)-edge dominating set is equal to, or greater than the size
of a minimum (1, 1)-edge dominating set. Thus, we have |M | ≤ vc(G∗) ≤ 2|K|whereK is a (0, 1)-edge
dominating set and M is a maximal matching. We give a more strict relation between vc and the size of a
minimum (0, 1)-edge dominating set, however, that is then used to obtain Theorem 10.

Lemma 9 Given a directed graph G, let G∗ be the undirected underlying graph of G, vc(G∗) be the
vertex cover number of G∗, and K be a minimum (0, 1)-edge dominating set in G. Then vc(G∗) ≤ |K|.

Proof: For an arc (u, v), the head vertex v covers all arcs (i.e., edges) dominated by (u, v) in G∗. Since
K dominates all edges in G, the set of head vertices of K is a vertex cover in G∗. Thus, vc(G∗) ≤ |K|.
2

Theorem 10 There exists an O(k)-vertex/O(k2)-edge kernel for (0, 1)-dEDS.
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Proof: Our first reduction rule states that if there exists an arc (s, t) where s is a source (d−(s) = 0) and
t is a sink (d+(t) = 0) then we delete this arc and set k := k − 1. This rule is correct because the only
arc that dominates (s, t) is the arc itself, and (s, t) does not dominate any other arc. In the remainder we
assume that this rule has been applied exhaustively.

We then find a maximal matching M in the underlying undirected graph. If |M | > k, then by Lemma 9
we conclude that we can reject. Otherwise, the set of vertices incident on M , denoted by S is a vertex
cover of size at most 2k and V \ S is an independent set.

Now, suppose that there exist k + 1 vertices in V \ S with positive out-degree. This means that there
exist k + 1 arcs with distinct tails in V \ S, and heads in S. No arc of the graph dominates two of these
arcs (since V \S is independent), therefore any feasible solution has size at least k+ 1 and we can reject.

We can therefore assume that the number of non-sinks in V \ S is at most k. We will now bound the
number of sinks. Let T be the set of sinks, that is, T contains all vertices v for which d+(v) = 0. We edit
the graph as follows: delete all vertices of T \ S; add a new vertex u which is initially not connected to
any vertex; and then for each vertex v ∈ S such that there is an arc (v, t) with t ∈ T \ S in G we add the
arc (v, u). We claim that this is an equivalent instance.

Before arguing for correctness, we observe that the new instance has at most 3k + 1 vertices: S has at
most 2k vertices, V \ S has at most k non-sinks, and all sinks of V \ S have been replaced by u. This
graph clearly has O(k2) edges.

Let G be the original graph and G′ the graph obtained after replacing all sinks in the independent set
with the new vertex u. Consider an optimal solution in G. If the solution contains an edge (v, t) where
t ∈ V \ S is a sink, then we know that v is not a source (otherwise we would have simplified the instance
by deleting (v, t)). We edit the solution by replacing (v, t) with an arbitrary arc incoming to v. Repeating
this gives a solution which does not include any arc whose head is a sink of V \ S, but for each such
arc (v, t) contains an arc going into v. This is therefore a valid solution of G′, as it dominates all arcs
going into u. For the converse direction we similarly edit a solution to G′ by replacing any arc (v, u) with
an arbitrary arc going into v (again, we can safely assume that such an arc exists). The result is a valid
solution for G with the same size. 2

4 Treewidth
In this section we characterize the complexity of (p, q)-dEDS parameterized by the treewidth of the un-
derlying graph of the input. Our main result is that, even though the problem is FPT when parameterized
by p+ q+ tw, it becomes W[1]-hard if parameterized only by tw (in fact, also by pw), even if we add the
size of the optimal solution as a second parameter. The algorithm is based on standard dynamic program-
ming techniques, while for hardness we reduce from the well-known W[1]-complete k-MULTICOLORED
CLIQUE problem (Fellows et al. (2009)).

4.1 Hardness for Treewidth
Construction: Before we proceed, let us define a more general version of (p, q)-dEDS which will be
useful in our reduction. Suppose that in addition to a digraph G = (V,E) we are also given as input a
subset I ⊆ E of “optional” arcs. In OPTIONAL (p, q)-dEDS we are asked to select a minimum set of
arcs that dominate all arcs of E \ I , meaning it is not mandatory to dominate the optional arcs. We will
describe a reduction from k-MULTICOLORED CLIQUE to a special instance of OPTIONAL (p, q)-dEDS,
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and then show how to reduce this to the original problem without significantly modifying the treewidth or
the size of the optimum.

Given an instance [G = (V,E), k] of k-MULTICOLORED CLIQUE, with V =
⋃
i∈[1,k] Vi and Vi =

{vi0, . . . , vin−1}, where we assume that n is even (without loss of generality) we will construct an instance
G′ = (V ′, E′) of OPTIONAL (p, q)-dEDS. We set p = q = 3n. We begin by adding to V ′ all vertices of
V and connecting each set Vi into a directed cycle of length n. Concretely, we add the arcs (vij , v

i
j+1) for

all i ∈ [1, k] and j ∈ [0, n− 1] where addition is performed modulo n.
Intuitively, the idea up to this point is that selecting the vertex vij in the clique is represented in the new

instance by selecting the arc of the cycle induced by Vi whose head is vij . In order to make it easier to
prove that the optimal solution will be forced to select one arc from each directed cycle we add to our
instance the following: for each i ∈ [1, k] we construct a directed cycle of length 5n+ 1 and identify one
of its vertices with vin/2. We call these k cycles the “guard” cycles.

Finally, we need to add some gadgets to ensure that the arcs selected really represent a clique. For each
pair of vertices of G, via, v

j
b which are not connected by an edge in G we do the following (depending

on the values of a, b): we first construct two new vertices ei,j,a,b, fi,j,a,b and an arc (ei,j,a,b, fi,j,a,b)
connecting them. Then for the “forward” paths, if a > 0 we construct a directed path of length a + 2n
from vi0 to ei,j,a,b; if b > 0 we construct a directed path of length b + 2n from vj0 to ei,j,a,b. For the
“backward” paths, if a > 0 we construct a path of length 3n − a + 1 from fi,j,a,b to vi0, otherwise we
make a path of length 2n + 1 from fi,j,a,b to vi0; if b > 0 we construct a path of length 3n − b + 1 from
fi,j,a,b to vj0, otherwise we make a path of length 2n+ 1 from fi,j,a,b to vj0.

To complete the instance we define all arcs of the cycles induced by the sets Vi, all arcs of the guard
cycles, and all arcs of the form (ei,j,a,b, fi,j,a,b) as mandatory, and all other arcs (that is, internal arcs of
the paths constructed in the last part of our reduction) as optional. See Figure 1 for an example.

vi0

vi1

vin/2

vin−1

vi2

vj0

vj1

vjn/2

vjn−1

vj2

5n+ 1 5n+ 1

3n− a+ 1 b+ 2n

ei,j,a,b fi,j,a,b

a+ 2n 3n− b+ 1

Fig. 1: An example of our construction, where dotted lines show the length of each path.

Lemma 11 If G has a multi-colored clique of size k, then G′ has a partial (3n, 3n)-dEDS of size k.
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Proof: Suppose there is a multi-colored clique inG of size k that selects the vertex vif(i) for each i ∈ [1, k].
We select in G′ the k arcs (vif(i)−1, v

i
f(i)), where f(i)− 1 is computed modulo n, that is, the k arcs of the

cycles induced by
⋃
i∈[1,k] Vi whose heads coincide with the vertices of the clique.

Let us see why this set of k arcs (3n, 3n)-dominates all non-optional arcs. It is not hard to see that these
arcs dominate the k cycles induced by

⋃
i∈[1,k] Vi. For the guard cycles, for any j ∈ [0, n − 1] consider

the arc (vij−1, v
i
j), where again j − 1 is computed modulo n. We claim that this arc dominates all the arcs

of the guard cycle. To see this, suppose first that 1 ≤ j ≤ n/2. Then, there are 5n/2 + j arcs of the guard
cycle that lie on a path of length at most 3n from vij (because the distance from the head of the selected
arc to vin/2 is n/2− j), and 5n/2− (j − 1) arcs of the guard cycle that lie in a path of length at most 3n

to vij−1 (because the distance from vin/2 to the tail of the selected arc is n/2 + j − 1). These two sets are
disjoint, so the total number of dominated arcs in the cycle is 5n+ 1. The reasoning is similar if j > n/2
or j = 0.

Finally, let us see why this set dominates all arcs of the form (ei,j,a,b, fi,j,a,b), where via, v
j
b are not

connected in G. Since these two vertices are not connected, we have either f(i) 6= a or f(j) 6= b.
Suppose without loss of generality that f(i) = a′ 6= a (the other case is symmetric). We now consider the
following cases:

1. If a = 0, then since a′ 6= a we have 0 < a′ ≤ n− 1. Recall that if a = 0 we have a path of length
2n + 1 from fi,j,a,b to vi0, while the path from vi0 to via′−1 has length at most n − 2. Therefore,
the length of the path from fi,j,a,b to the tail via′−1 of the selected arc is at most 3n− 1 and the arc
(ei,j,a,b, fi,j,a,b) is dominated.

2. If a′ = 0, then since a′ 6= a we have 0 < a ≤ n − 1. In this case there is a path of length
a+ 2n ≤ 3n− 1 from vi0 to ei,j,a,b. Since vi0 is the head of a selected arc, the arc (ei,j,a,b, fi,j,a,b)
is dominated.

3. If n− 1 ≥ a′ > a > 0, then we observe that there is a path from via to ei,j,a,b of length exactly 3n:
the distance from via to vi0 is n− a and we have added a path of length a+ 2n from vi0 to ei,j,a,b. If
a′ > a then the path from via′ to ei,j,a,b is shorter than 3n, so the arc (ei,j,a,b, fi,j,a,b) is dominated.

4. Finally, if n − 1 ≥ a > a′ > 0, then we recall that there is a path from fi,j,a,b to vi0 of length
3n− a+ 1, and there is a path from vi0 to via′−1 of length a′ − 1, so the path from fi,j,a,b to the tail
of the selected arc is at most 3n− a+ 1 + a′ − 1 < 3n and the arc (ei,j,a,b, fi,j,a,b) is dominated.

2

Lemma 12 If G′ has a partial (3n, 3n)-dEDS of size k, then G has a multi-colored clique of size k.

Proof: We first argue that any valid solution must contain for each i ∈ [1, k] an arc of the form (vij , v
i
j+1),

where addition is done modulo n, or some arc from the guard cycle. Suppose that this is not the case for
some i. We then argue that there is an arc of the guard cycle that is not dominated. In particular, consider
the arc (u, v) of the guard cycle such that u is at distance exactly 5n/2 from vin/2. Observe that the path
from v to vin/2 also has length 5n/2. We argue that this arc is not dominated. Indeed, for any selected arc
(u′, v′), the path from v′ to u goes through vi0, since we have not selected any arcs from inside the two
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cycles. The distance from vi0 to u is already exactly 3n, however, so (u′, v′) does not (0, 3n) dominate
(u, v). Similarly, (u′, v′) does not (3n, 0) dominate (u, v) because the distance from v to vi0 (which lies
on a shortest path from v to u′) is 3n.

Because of the above, we know that a solution that selects exactly k arcs must select exactly one arc
from each cycle induced by a Vi or its attached guard cycle. Let us also argue that we may assume that
the solution does not select any arcs from the guard cycles. Suppose for contradiction that a solution
selects (u, v) from a guard cycle. We have either dist(vin/2, u) ≥ 5n/2 or dist(v, vin/2) ≥ 5n/2. In the
former case the arc (u, v) does not (3n, 0) dominate any arc with endpoints outside Vi and its guard cycle,
because to do so, the dominated arc would have to lie in a path of length at most 3n going into u. Such
a path must go through vi0, and the distance from vi0 to u is already at least 3n. Since (u, v) may only
(0, 3n) dominate arcs outside Vi, we replace (u, v) with (vin−1, v

i
0), which dominates all arcs inside the

two cycles and (0, 3n) dominates more arcs than (u, v) outside the cycles. Similarly, in the other case we
replace the selected arc with (vi0, v

i
1), which (3n, 0) dominates more arcs outside the cycles.

We therefore assume that the solution selects exactly one arc from each cycle induced by a Vi. Let
f(i), for i ∈ [1, k] be the head of the selected arc in the cycle induced by Vi. We claim that the set
{vif(i) | i ∈ [1, k] } is a multi-colored clique in G.

Suppose that f(i) = a, f(j) = b and via, v
j
b are not connected. We argue that the arc (ei,j,a,b, fi,j,a,b)

(which, by construction, exists in G′) is not dominated by our supposed solution, which will give a
contradiction. Observe that the endpoints of the arc (ei,j,a,b, fi,j,a,b) are at distance at least 4n from
each v`0, for any ` 6∈ {i, j}. As a result, the only selected arcs that could dominate (ei,j,a,b, fi,j,a,b) are the
selected arcs with heads via, v

j
b . However, (via−1, v

i
a) does not (0, 3n) dominate the arc in question: the

distance from via to ei,j,a,b is 3n (distance n− a from via to vi0 and 2n+ a from vi0 to ei,j,a,b); (via−1, v
i
a)

does not (3n, 0) dominate the arc in question: the distance from fi,j,a,b to via−1 is 3n (if a > 0 we have
distance a− 1 from vi0 to via−1 and 3n− a+ 1 from fi,j,a,b to vi0, while if a = 0 we have distance n− 1
from vi0 to the tail of the selected arc and distance 2n + 1 from fi,j,a,b to vi0). By identical arguments,
(vjb−1, v

j
b) does not dominate the arc (ei,j,a,b, fi,j,a,b), so we have a contradiction. 2

Lemma 13 The pathwidth of (the underlying graph of) G′ is at most 2k + 3. Furthermore, there exists
a set of vertices S of G′ that contains no sources or sinks such that (i) all optional arcs are incident to a
vertex of S and (ii) for each u ∈ S all arcs incindent on u are optional.

Proof: For the pathwidth bound, it is a well-known fact that deleting a vertex from a graph decreases
the pathwidth by at most one (since this vertex may be added to all bags in a decomposition of the new
graph). Hence, we begin by deleting from the graph the 2k vertices {vi0, vin/2 | i ∈ [1, k] }. The graph
becomes a forest, and its pathwidth is upper-bounded by the maximum pathwidth of any of its component
trees. These trees are either paths or trees with two vertices of degree higher than 2 (these are the vertices
ei,j,a,b, fi,j,a,b), but such trees are easily seen to have pathwidth at most 3.

For the second claim we observe that the optional arcs are exactly the arcs that were added in directed
paths connecting vi0 to ei,j,a,b, fi,j,a,b, for some i, j, a, b. We therefore define S to be the set of internal
vertices of such paths. 2

Theorem 14 (p, q)-dEDS is W[1]-hard parameterized by the pathwidth pw of the underlying graph and
the size k of the optimum. Furthermore, if there is an algorithm solving (p, q)-dEDS in time no(pw+k),
then the ETH is false.
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Proof: We start with an instance of MULTI-COLORED CLIQUE and use Lemmas 11, 12, 13 to construct
an equivalent instance of OPTIONAL (3n, 3n)-dEDS, with pathwidth O(k) and optimal solution target
k. What remains is to show how to transform this into an equivalent instance of the standard version of
dEDS, without affecting the pathwidth or the size of the optimal solution too much. The theorem will
then follow from standard facts about MULTI-COLORED CLIQUE, namely that the problem is W[1]-hard
and not solvable in no(k) under the ETH.

Given the instance G′ of OPTIONAL (3n, 3n)-dEDS, we add to the graph two new vertices u1, u2 and
an arc (u1, u2). We construct k+ 2 directed paths of 3n arcs (using new vertices). For each such path, we
identify its last vertex (sink) with u1. Recall that there is a set of vertices S that is incident on all optional
arcs. For each u ∈ S we do the following: we construct a new directed path of length 3n− 1 from u2 to
u; and we construct a new directed path of length 3n − 1 from u to u1. We claim that the new instance
has a (3n, 3n)-dominating set of size k+ 1 if and only if the OPTIONAL dEDS instance has a solution of
size k.

Suppose there is a solution of size k that dominates all mandatory arcs of G′. In the new instance we
select the same arcs, as well as (u1, u2). We claim that (u1, u2) dominates all the new arcs we added,
since all such arcs belong in a path of length at most 3n going into u1 or coming out of u2. Furthermore,
(u1, u2) dominates all optional arcs of G′, since for each such arc there exists u ∈ S such that the arc is
incident on u, and u is at distance at most 3n− 1 from u2 and to u1.

Suppose that there is a solution of size k + 1 for the new instance. We first claim that this solution
must contain (u1, u2). Indeed, consider the k + 2 arcs incident on the sources of the paths whose sinks
we identified with u1. No other arc of the instance dominates more than one of the arcs incident on these
sources. Hence, if we do not select (u1, u2), we must have a solution of size at least k + 2. Now, assume
that (u1, u2) has been selected and note that, as argued above, this arc dominates all new arcs as well as
all optional arcs. Furthermore, observe that (u1, u2) does not dominate any non-optional arc of G′, since
its distance to any vertex of V \ S is at least 3n in both directions, and all arcs incident on S are optional.

Suppose that the solution also contains another arc that does not appear in G′. We claim that we can
always replace this with another arc that appears in G′. Indeed, an arc from the k + 2 paths going into u1
is redundant (the arc (u1, u2) dominates more arcs); an arc from a path from u2 to u ∈ S can be replaced
by any arc of G′ going into u (such an arc exists since u is not a sink); and an arc from a path from u ∈ S
to u1 may be replaced by another arc coming out of u in G′. The latter two replacements are correct
because the new arcs dominate more arcs of G′, while all arcs which do not appear in G′ have already
been dominated by (u1, u2). We therefore arrive at a set of at most k arcs ofG′. As argued above (u1, u2)
does not dominate any of the mandatory arcs of G′. Furthermore, for any two vertices u, v of G′ such that
dist(u, v) ≥ 3n in G′ we still have dist(u, v) ≥ 3n in the new instance, as all paths we have added have
length at least 3n− 1. This means that if the k arcs of G′ we have selected in the new instance dominate
all mandatory arcs, they also dominate them in G′.

Finally, it is not hard to see that the pathwidth of the new graph remains O(k). We delete u1, u2 from
the graph and now the resulting graph is G′ with the addition of some path components and also some
pendant paths attached to the vertices of S. We can construct a path decomposition of the new graph by
taking a path decomposition of G′ and, for each u ∈ S, inserting immediately after a bag B that contains
u a path decomposition of the paths attached to u where we have added B to every bag. 2
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4.2 Algorithm for Treewidth
Theorem 15 The (p, q)-dEDS problem can be solved in time 42tw2

(4(q+ 1)(p+ 1))2tw ·nO(1) on graphs
of treewidth at most tw.

The rest of this subsection is devoted to the proof of Theorem 15. Let G = (V,E) the input graph and
we are given a rooted nice tree decomposition of G with width tw. For each node t of the decomposition,
let Bt denote the corresponding bag and Vt denote the set of vertices appearing in Bt or one of the
descendants of t. For a vertex set X ⊆ V, we denote by E(X) the set of arcs both of whose endpoints lie
in X . For a set of arcs D, let D+ (respectively, D−) be the set of all heads (respectively, tails) of arcs in
D. For a function f : X → F and the subset X ′ ⊆ X , we denote the restriction of f to X ′ by f |X′ .

Feasible solution. We construe a solution for the (p, q)-dEDS problem a triple (D, f, b), where D ⊆ E,
f : V → {0, . . . , q − 1,∞} and b : V → {0, . . . , p − 1,∞}. Informally, the functions f and b keep
track of the forward and backward distance from selected arcs. A triple (D, f, b) is said to be a feasible
solution (for the input instance G) if the following holds:

(i) for every arc (x, y) ∈ E, f(x) <∞ or b(y) <∞,

(ii) for every x ∈ V with f(x) <∞, either x ∈ D+ or there exists x′ ∈ δ−(x) with f(x′) < f(x),

(iii) for every y ∈ V with b(y) <∞, either y ∈ D− or there exists y′ ∈ δ+(y) with b(y′) < b(y).

The size of a feasible solution (D, f, b) is defined as the cardinality ofD. Here, the symbol∞ represents
a prohibitively large number. If there is no path from a vertex w to x, we set dist(w, x) = ∞. By
convention∞ + c = ∞ and c < ∞ hold for any finite number c. If q = 0 (resp. p = 0), then the range
of f (resp. b) is simply {∞}.
Lemma 16 G allows a (p, q)-edge dominating set of size at most d if and only if there is a feasible
solution (D, f, b) of size at most d.

Proof: Suppose that D is a (p, q)-edge dominating set, and for every x ∈ V let

f(x) =

{
dist(D+, x) if dist(D+, x) < q

∞ otherwise.

and

b(x) =

{
dist(x,D−) if dist(x,D−) < q

∞ otherwise.

To see that (D, f, b) is a feasible solution, first note that for every (x, y) ∈ E either dist(D+, x) < q or
dist(y,D−) < p, hence f(x) < ∞ or b(y) < ∞ holds, i.e. the feasibility condition (i) holds. Without
loss of generality, we assume the former. It remains to observe that either dist(D+, x) = 0 or x has an
in-neighbor x′ on the shortest path from D+ and x, thus (ii) holds.

Conversely, suppose that (D, f, b) is a feasible solution. To see that D is a (p, q)-dominating set, it
suffices to show that dist(D+, x) ≤ f(x) and dist(x,D−) ≤ b(x) for every x ∈ V because the feasi-
bility condition (i) then implies that every arc (x, y) is (p, q)-dominated by D. We prove the inequality
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dist(D+, x) ≤ f(x) by induction of the value f(x); the inequality dist(x,D−) ≤ b(x) can be shown
similarly. Note that if f(x) = 0, the feasibility condition (ii) enforces that x ∈ D+. Hence we have
dist(D+, x) ≤ f(x) in this case. Assume that dist(D+, x) ≤ f(x) for every x with f(x) ≤ i < ∞. If
i = q − 1, then we are done since the inequality trivially holds for all z with f(z) = ∞. Therefore, we
assume that i + 1 < ∞. Consider an arbitrary z ∈ V with f(z) = i + 1. If z ∈ D+, then clearly we
have 0 = dist(D+, z) ≤ f(z). Otherwise, z has an in-neighbor z′ with f(z′) < f(z) = i+ 1 by (ii). By
induction hypothesis, we conclude f(z) ≥ f(z′) + 1 ≥ dist(D+, z′) + 1 ≥ dist(D+, z). 2

Partial solution, feasibility of a partial solution, witness. The above formulation of a solution seems
convoluted but it is useful for defining a partial solution for the dynamic programming algorithm. For a
node t, a partial solution at t is a triple (Dt, ft, bt), where Dt ⊆ E(Vt), ft : Vt → {0, . . . , q − 1,∞}
and bt : Vt → {0, . . . , p− 1,∞}. A partial solution (Dt, ft, bt) is said to be feasible at t if the following
holds:

(a) for every arc (x, y) ∈ E(Vt), ft(x) <∞ or bt(x) <∞,

(b) for every x ∈ Vt with ft(x) <∞, either x ∈ D+
t , or there exists x′ ∈ δ−(x)∩Vt with ft(x′) < ft(x),

or x ∈ Bt,

(c) for every y ∈ Vt with bt(y) <∞, either y ∈ D−t , or there exists y′ ∈ δ+(y)∩ Vt with bt(y′) < bt(y)
or y ∈ Bt.

We say that a vertex x ∈ Vt has an f -witness for a partial solution (Dt, ft, bt) if ft(x) = ∞, x ∈ D+
t

or there exists x′ ∈ δ−(x) ∩ Vt with ft(x′) < ft(x). In each case, x itself, an arc (u, v) ∈ D with v = x,
and an in-neighbor x′ with ft(x′) < ft(x) is called an f -witness of x for (Dt, ft, bt). Likewise, x itself
when b(x) = ∞, an arc (u, v) ∈ Dt with x = u, or an out-neighbor x′ in Vt with bt(y′) < bt(y) is a
b-witness of x for (Dt, ft, bt). From the definition of witness and the feasibility conditions (a)-(c), the
next observation is immediate.

Fact 17 A partial solution (Dt, ft, bt) is feasible at t if and only the feasibility condition (a) holds and
every vertex x ∈ Vt \Bt has both an f -witness and a b-witness for (Dt, ft, bt).

Signature τ , canonical signature, realizability. We define a signature τ at a node t as a tuple consisting
of the following entries.

• A set of arcs A ⊆ E(Bt).

• A non-negative integer d.

• f : Bt → {0, . . . , q}.

• b : Bt → {0, . . . , p}.

• sf : Bt → {0, 1}.

• sb : Bt → {0, 1}.
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Intuitively speaking, a signature τ captures the projection of a feasible partial solution (Dt, ft, bt) on
Bt and additionally keeps track of whether x ∈ Bt has seen a witness or not with the indicator functions
sf and sb. The integer number d intends to record the number of forgotten arcs in the feasible partial
solution.

Formally, a signature τ = (A, d, f, b, sf , sb) at t is the canonical signature of a feasible partial solution
(Dt, ft, bt) at t if

(a) A = Dt ∩ E(Bt).

(b) d = |Dt \ E(Bt)|.

(c) f = ft|Bt
(d) b = bt|Bt
(e) for every x ∈ Bt, sf (x) = 1 if and only if x has a f -witness for (Dt, ft, bt).

(f) for every x ∈ Bt, sb(x) = 1 if and only if x has a b-witness for (Dt, ft, bt).

Notice that for each feasible partial solution at t there is a unique canonical signature of it. A signature τ
at node t is realizable if it is the canonical signature of a feasible partial solution at t. We also remark that
sf (x) = 1 for any x ∈ Bt with f(x) =∞ as x itself is an f -witness of x.

The next claim is useful.

Lemma 18 Let τ = (A, d, f, b, sf , sb) be a realizable signature at node t and (Dt, ft, bt) be a partial
feasible solution which realizes τ . Then, for each arc (x, y) ∈ E(Vt) which is not (p, q)-dominated by Dt

in G[Vt] there exists a vertex w0 ∈ Bt such that one of the following holds.

• f(w0) + dist(w0, x) ≤ q − 1 and sf (w0) = 0, or

• dist(y, w0) + b(w0) ≤ p− 1 and sb(w0) = 0.

Proof: If Dt (p, q)-dominates every arc of G[Vt], the claim trivially holds, so suppose this is not the case.
Consider an arc (x, y) ∈ E(Vt) which is not (p, q)-dominated by Dt in G[Vt]. By the (partial) feasibility
condition (a), we have ft(x) ≤ q− 1 or bt(y) ≤ p− 1. Without loss of generality, assume ft(x) ≤ q− 1.
By the feasibility condition (b), there exists a sequence of vertices (x =)x0, x1, . . . , x` in Vt such that
q − 1 ≥ ft(x0) > ft(x1) > · · · > ft(x`) and x`, . . . , x1, x0 forms a directed path of G[Vt]; we choose a
maximal such sequence. Because the value of ft strictly decreases along the sequence, we have ` ≤ q−1.
This means that xi /∈ D+

t for every i ∈ {0, . . . , `} since otherwise, Dt (p, q)-dominates (x, y) in G[Vt],
contradicting the choice of (x, y). By x` /∈ D+

t , ft(x`) < ∞ and the maximality assumption on the
sequence, x` cannot have an f -witness for (Dt, ft, bt), which implies x` ∈ Bt by Fact 17. In particular,
the condition (e) of the canonical signature indicates that sf (x`) = 0. Lastly, observe that the construction
of the sequence ensures that q − 1 ≥ ft(x0) ≥ ft(xi+1) + 1 ≥ · · · ≥ ft(x`) + dist(x`, x0).

The proof is symmetric when bt(y) ≤ p− 1 holds instead. 2

Lemma 19 There exists a (p, q)-edge dominating set of G of size at most d′ if and only if there exists a
realizable signature τ = (Aτ , dτ , f

τ , bτ , sτf , s
τ
b ) at the root node such that (i) |Aτ | + dτ ≤ d′, and (ii)

sτf (w) = sτb (w) = 1 for every w ∈ Bt.
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Proof: Suppose that D is a (p, q)-edge dominating set of G of size at most d′. Let (D, f∗, b∗) be a
(global) feasible solution of size at most d; the existence of such a solution is guaranteed by Lemma 16.
Thanks to the global feasibility condition (ii)-(iii), every vertex of V has an f -witness as well as a b-
witness. In particular this means that in the canonical signature τ = (A, d, f, b, sf , sb) of (D, f∗, b∗),
where (D, f∗, b∗) is seen as a partial feasible solution at the root r, we have sf (x) = sb(x) = 1 for every
x ∈ Bt. Clearly, |A| + d ≤ d′ by the conditions (a)-(b) of the canonical signature. Therefore τ satisfies
(i)-(ii) in the statement.

Conversely, let τ = (Aτ , dτ , f
τ , bτ , sτf , s

τ
b ) be a realizable signature at the root r which meets the

conditions (i)-(ii) of the statement. Let (Dr, fr, br) be a feasible solution whose canonical signature at r
is τ. We want to prove that Dr is a (p, q)-edge dominating set of G of size at most d′. By the conditions
(a)-(b) of the canonical signature, we have |Dr| = |Dr ∩E(Br)|+ |Dr \E(Br)| = |Aτ |+ dτ , which is
at most d′ by the condition (i) of the statement.

It remains to see that Dr (p, q)-dominates every arc of G. Suppose not, and (x, y) ∈ E = E(Vr) is not
(p, q)-dominated by Dr. By Lemma 18, there exists a vertex w0 ∈ Br with sf (w0) = 0 or sb(w0) = 0,
which is impossible due to the condition (ii) in the statement. 2

Computing all valid signatures. For two signatures τ and τ ′ at node t, we say that τ is superior to τ ′ if
all the entries of τ and τ ′ are identical except for the integer entry, in which τ takes a strictly smaller value
than τ ′ does. A signature τ at t is supreme if there is no other realizable signatures at t which is superior
to τ. A signature is valid if it is realizable and supreme. Thanks to Lemma 19, it is sufficient to design a
bottom-up procedure which produces all valid signatures at each node t (and possibly some invalid ones
as well) and determines whether a signature is valid or not, provided that all valid signatures have been
computed for the children of t (and invalid ones have been discarded).

We provide such a procedure for each type of a tree node t: leaf, introduce, join and forget and argue
that a signature τ at node t is generated and declared valid if and only if τ is indeed a valid signature.

• Leaf node. Let Bt = {w}. We generate all signatures τ = (A, d, f, b, sf , sb) with A = ∅, d = 0,
f(w) ∈ {0, . . . , q − 1,∞}, b(w) ∈ {0, . . . , p − 1,∞} and sf (w) ∈ {0, 1}, sb(w) ∈ {0, 1}. We discard
all unrealizable signatures. Deciding whether a signature is realizable or not is trivial in this case; simply
check whether f(w) =∞ if and only sf (w) = 1, likewise b(w) =∞ if and only if sb(w) = 1.

• Introduce node. Let w be a newly introduced vertex and Bt = Bt′ ∪ {w}. For a (not necessarily
feasible) partial solution (Dt′ , ft′ , bt′) at node t′ and a triple (Ā, r, s) ∈ 2δ(w) × {0, . . . , q − 1,∞} ×
{0, . . . , q−1,∞}, the extension of (Dt′ , ft′ , bt′) by (Ā, a, b) is a partial solution (Dt, ft, bt) at t such that
Dt = Dt′ ∪ Ā, ft(x) = ft′(x) for every x ∈ Bt′ and ft(w) = r, and bt(x) = bt′(x) for every x ∈ Bt′
and bt(w) = s. We first observe that not only the extension of a partial solution is well-defined but also
the extension of a signature by such a triple is well-defined.

Lemma 20 Let (Dt, ft, bt) and (Dt′ , ft′ , bt′) be feasible partial solutions at node t and t′ respectively,
and let (Ā, a, b) ∈ 2δ(w) × {0, . . . , q − 1,∞}× {0, . . . , q − 1,∞}. Suppose (Dt, ft, bt) is the extension
of (Dt′ , ft′ , bt′) by the triple (Ā, r, s). Then

1. Any vertex of Vt′ which has an f -witness for (Dt′ , ft′ , bt′) also has an f -witness for (Dt, ft, bt).

2. x ∈ Bt′ does not have an f -witness for (Dt′ , ft′ , bt′) and has an f -witness (Dt, ft, bt) if and only
if x ∈ δ+(w), and either x ∈ Ā+ or f(x) > f(w) holds.
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3. Any witness of w for (Dt, ft, bt) is in G[Bt].

The symmetric statement holds for b-witnesses.

Proof: The first two statements are clear from the construction and the definition of f -witness. To see the
third statement, it suffices to observe that any witness of w is either w itself, an arc incident with w or an
in-neighbor of w in Vt. In the first two cases, it is obvious that the witness is in G[Bt]. In the last case,
note that Bt′ is a separator between w and Vt \ Bt and thus, a witness of w as an in-neighbor of w must
be contained in Bt. 2

Lemma 20 implies that if two feasible partial solutions at t′ have the same canonical signature τ ′ at t′,
their extensions by a fixed triple (Ā, r, s) have the same canonical signature at t. This leads us to define
the extension of a signature τ ′ at t′ by (Ā, r, s). For a signature τ ′ = (A′, d′, f ′, b′, s′f , s

′
b) at node t′ and

a triple (Ā, a, b) ∈ 2δ(w) × {0, . . . , q − 1,∞}× {0, . . . , q − 1,∞}, the extension of τ ′ by (Ā, r, s) is the
signature τ = (A, d, f, b, sf , sb) at t defined as

• A = A′ ∪ Ā,

• d = d′,

• f(x) = f ′(x) for every x ∈ Bt′ and f(w) = r,

• b(x) = b′(x) for every x ∈ Bt′ and b(w) = s,

• for every x ∈ Bt, sf (x) = 1 if and only if (i) x ∈ Ā+, or (ii) there exists x′ ∈ N−(x) ∩ Bt with
f(x′) < f(x), or (iii) f(x) =∞, or (iv) x ∈ Bt′ and s′f (x) = 1,

• for every y ∈ Bt, sb(y) = 1 if and only if (i) y ∈ Ā−, or (ii) there exists y′ ∈ N+(y) ∩ Bt with
b(y′) < b(y), or (iii) b(y) =∞, or (iv) y ∈ Bt′ and s′b(y) = 1,

To obtain the set of all valid signatures at t, we consider all extensions over all valid signatures at t′ by
all triple (Ā, a, b) ∈ 2δ(w)×{0, . . . , q− 1,∞}×{0, . . . , q− 1,∞} such that the next two conditions are
met.

(∗) for every arc (w, x) ∈ E(Bt) ∩ δ+(w), either f(x) <∞ or r <∞ holds, and

(∗∗) for every arc (x,w) ∈ E(Bt) ∩ δ−(w), either b(x) <∞ or s <∞ holds.

Then among the obtained signatures, supreme signatures are marked and the unmarked signatures are
discarded. That this procedure produces all valid signatures follows from Lemma 21. Moreover, any
generated signature is realizable by Lemma 22. Therefore, those signatures which are marked as supreme
are precisely the set of all valid signatures at t.

Lemma 21 Let τ = (A, d, f, b, sf , sb) be a realizable signature at node t. Then there exists a triple
(Ā, r, s) ∈ 2δ(w)×{0, . . . , q−1,∞}×{0, . . . , q−1,∞} and a realizable signature τ ′ = (A′, d′, f ′, b′, s′f , s

′
b)

at node t′ such that τ is the extension of τ ′ by (Ā, r, s), and the conditions (∗) and (∗∗) hold.
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Proof: Let (Dτ , fτ , bτ ) be a partial feasible solution at t whose canonical signature is τ , and let (Dτ \
δ(w), fτ |Vt′ , bτ |Vt′ ) be a partial solution at t′. It is clear that the latter is feasible at t′. Consider the triple
(A∩δ(w), f(w), b(w)) and the canonical signature τ ′ = (A′, d′, f ′, b′, s′f , s

′
b) of (Dτ\δ(w), fτ |Vt′ , bτ |Vt′ )

at t′. It is tedious to check that τ is the extension of τ ′ by (A∩ δ(w), f(w), b(w)). The conditions (∗) and
(∗∗) are met because (Dτ , fτ , bτ ) is feasible, and due to the construction of the triple and τ ′. 2

Lemma 22 Let τ ′ = (A′, d′, f ′, b′, s′f , s
′
b) be a realizable signature at node t′. Then for any triple

(Ā, a, b) ∈ 2δ(w) × {0, . . . , q − 1,∞}× {0, . . . , q − 1,∞}, the extension τ = (A, d, f, b, sf , sb) of τ ′ by
(Ā, a, b) is realizable if and only if the conditions (∗) and (∗∗) hold.

Proof: Let us see the ‘only if’ part. If any of (∗) and (∗∗) fails to hold, then any partial solution whose
canonical signature is τ fails to meet the feasibility condition (a), and thus cannot be a feasible partial
solution at t.

For the ‘if’ direction, let (Dτ ′ , fτ ′ , bτ ′) be a feasible partial solution which realizes τ ′ and let (Dτ , fτ , bτ )
be the extension of it by the triple (Ā, a, b). It is tedious to check that (Dτ , fτ , bτ ) is a feasible partial
solution at t; the feasibility condition (a) is guaranteed by the feasibility of (Dτ ′ , fτ ′ , bτ ) and because the
conditions (∗) and (∗∗) hold for (Dτ , fτ , bτ ) and the triple (Ā, a, b). Also the feasibility condition (b) is
satisfied due to the statement 1 of Lemma 20. It remains to observe that τ is the canonical signature of
(Dτ , fτ , bτ ), which is again tedious to verify using Lemma 20. 2

• Join node. Let t1 and t2 be the two children of t with Bt = Bt1 = Bt2 . For two signatures τi =
(Ai, di, f i, bi, sif , s

i
b) at node ti for i = 1, 2 which are compatible, i.e. A1 = A2, f1 = f2 and b1 = b2,

the join τ = (A, d, f, b, sf , sb) of τ1 and τ2 is defined as follows.

• A = A1 = A2.

• d = d1 + d2.

• f = f1 = f2, b = b1 = b2,

• for every x ∈ Bt, sf (x) = s1f (x) ∨ s2f (x), and

• for every x ∈ Bt, sb(x) = s1b(x) ∨ s2b(x).

For every compatible pair of valid signatures at t1 and t2, we generate the join. After that, we only keep
the supreme signatures and discard the rest. That the signatures obtained in this way form the set of all
valid signatures at node t follows immediately from the next lemma.

Lemma 23 A signature is valid at t if and only if it is the join of two valid signatures at t1 and t2 which
are compatible.

Proof: Let τ = (A, d, f, b, sf , sb) be a realizable signature at twith a partial feasible solution (Dτ , fτ , bτ )
realizing τ. Let (Di, fi, bi) be the partial solution at ti where Di = Dτ ∩ E(Vti), fi = fτ |Vti and bi =

bτ |Vti for each i = 1, 2.Clearly, (Di, fi, bi) is feasible at ti for each i = 1, 2. Let τi = (Ai, di, f i, bi, sif , s
i
b)

for i = 1, 2 be the canonical signature of (Di, fi, bi). It is clear that τ1 and τ2 are compatible and τ is the
join of them.
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Conversely, let τi = (Ai, di, f i, bi, sif , s
i
b) be realizable signatures at node ti for i = 1, 2 withA1 = A2,

f1 = f2 and b1 = b2 and let (Dτi , fτi , bτi) be a feasible partial solution realizing τi for i = 1, 2. Let
D = Dτ1∪Dτ2 , f = fτ1∪fτ2 and b = bτ1∪bτ2 . We argue that the join τ = (A, d, f, b, sf , sb) of τ1 and τ2
is the canonical signature of (D, f, b). The conditions (a)-(d) of a canonical signature is straightforward
from Bt1 = Bt2 = Bt. To see (e) and (f), notice that x ∈ Bt has an f -witness (resp. b-witness) for
(D, f, b) if and only if x has an f -witness (resp. b-witness) for at least one of (Dτi , fτi , bτi) for i = 1, 2.
The latter holds precisely when sf (x) = 1 (resp. sb(x) = 1).

Lastly, if there is a realizable signature superior to τ , then one can obtain a realizable signature superior
to τ1 or τ2. Moreover, if any of τ1 and τ2 allows a realizable signature superior to it, one can obtain a
realizable signature superior to τ. This completes the proof. 2

• Forget node. Let w be the forgotten vertex and Bt = Bt′ \ {w}. For each valid signature τ ′ =
(A′, d′, f ′, b′, s′f , s

′
b) at node t′, let τ = (A, d, f, b, sf , sb) be the restriction of τ ′ on Bt, namely

• A = A′ \ δ(w).

• d = d′ +A′ ∩ δ(w).

• f(x) = f ′(x), b(x) = b′(x), sf (x) = s′f (x) and sb(x) = s′b(x) for every x ∈ Bt.
The new signature τ is declared valid if and only if it is a restriction of some τ ′ at t′ with s′f (w) =
s′b(w) = 1. We claim that a signature τ at t is valid if and only if it is generated and then declared valid.

Lemma 24 A signature τ at t is valid if and only if it is the restriction of a valid signature τ ′ at t′ with
s′f (w) = 1 and s′b(w) = 1.

Proof: Suppose τ ′ is a realizable signature at t′ with s′f (w) = s′b(w) = 1 and the restriction of τ ′

on Bt is τ . Let (Dτ ′ , fτ ′ , bτ ′) be a feasible partial solution at t′ which realizes τ ′. We first argue that
(Dτ ′ , fτ ′ , bτ ′) is a feasible partial solution at t. Clearly, Dτ ′ is fully contained in E(Vt) = E(Vt′) and
the feasibility condition (a) holds. To see (b), it is sufficient to verify that every vertex z ∈ Vt \ Bt has
an f -witness. This holds for every z 6= w because (Dτ ′ , fτ ′ , bτ ′) is a feasible partial solution at t′. For
z = w, that s′f (w) = 1 implies that w has an f -witness for (Dτ ′ , fτ ′ , bτ ′) by the condition (e) of the
canonical signature. The feasibility condition (c) can be similarly verified. It remains to observe that τ is
the canonical signature of (Dτ ′ , fτ ′ , bτ ′) at t.

Conversely, suppose that τ is a realizable signature at t and let (Dτ , fτ , bτ ) be a feasible partial solution
at t realizing τ . Because (Dτ , fτ , bτ ) is feasible at t, every vertex z ∈ Vt \ Bt has an f -witness (resp.
b-witness) for (Dτ , fτ , bτ ). This implies that (Dτ , fτ , bτ ) is feasible at t′. Let τ ′ = (A′, d′, f ′, b′, s′f , s

′
b)

be the canonical signature of (Dτ , fτ , bτ ) at t′ Clearly, the restriction of τ ′ on Bt equals τ . That s′f (w) =
s′b(w) = 1 follows from the fact that w /∈ Bt and thus it has an f -witness for (Dτ , fτ , bτ ) due to the
feasibility of (Dτ , fτ , bτ ).

To complete the proof, notice that the above constructions in both directions also establish that if τ at
node t is supreme if and only if it is the restriction of some supreme signature τ ′ at t′ with s′f (w) = 1 and
s′b(w) = 1. 2

By Lemmas 21, 22, 23 and 24, the procedures presented for introduce, join and forget nodes generate
precisely the set of valid signatures at each node t. Finally, we can correctly decide if G has a (p, q)-edge
dominating set of size at most d by examining the signatures at the root node thanks to Lemma 19.
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Running time. At each node t, the number of possible signatures, except for the integer value d, generated
from the child(ren) is at most 4tw2 · (q + 1)tw · (p+ 1)tw · 2tw · 2tw. Note that the signatures which are not
supreme are generated amongst these options from the children of t and discarded, and all in all at most
4tw2

(4(q + 1)(p + 1))tw signatures are generated and examined. Examining each signature for checking
the validity can be executed in 42tw2

(4(q + 1)(p+ 1))2tw time. This yields the claimed running time, and
completes the proof of Theorem 15.

5 On Tournaments
A complete complexity classification for the problems (p, q)-dEDS is presented in this section. For p =
q = 1, the problem is NP-hard under a randomized reduction while being amenable to an FPT algorithm
and polynomial kernelization, due to the results of Sections 3.1 and 3.3. The hardness reduction is given in
Subsection 5.1. When p = 2 or q = 2, the complexity status of (p, q)-dEDS is equivalent to DOMINATING
SET on tournaments and is discussed in Subsection 5.2. In the remaining cases, when p + q ≤ 1, or
max{p, q} ≥ 3, while neither of them equals 2, the problems turn out to be in P (Subsection 5.3).

5.1 Hard: when p = q = 1

We present a randomized reduction from INDEPENDENT SET to (1, 1)-dEDS. Our reduction preserves
the size of the instance up to polylogarithmic factors; as a result it shows that (1, 1)-dEDS does not admit
a 2n

1−ε
algorithm, under the randomized ETH. Furthermore, our reduction preserves the optimal value, up

to a factor of (1−o(1)); as a result, it shows that (1, 1)-dEDS is APX-hard under randomized reductions.
Before moving on, let us give a high-level overview of our reduction. The first step is to reduce INDE-

PENDENT SET on cubic graphs to the following intermediate problem called ALMOST INDUCED MATCH-
ING, also known as MAXIMUM DISSOCIATION NUMBER in the literature (Yannakakis (1981); Xiao and
Kou (2017)). A subgraph of G induced on a vertex set S ⊆ V is called an almost induced matching, if
every vertex v ∈ S has degree ≤ 1 in G[S].

Definition 25 The problem ALMOST INDUCED MATCHING (AIM) takes as input an undirected graph
G = (V,E). The goal is to find an almost induced matching having the maximum number of vertices.

Our reduction creates an instance of ALMOST INDUCED MATCHING that has several special properties,
notably producing a bipartite graphG = (A,B,E). From this we then build our instance for (1, 1)-dEDS.
The basic strategy will be to construct a tournament T = (V ′, E′), where V ′ = A∪B ∪C and C is a set
of new vertices. All edges of E will be directed from A to B, non-edges of E will be directed from B to
A, and all other edges will be set randomly. This intuitively encodes the structure of G in T .

The idea is now that a solution S inG (that is, a set of vertices ofG that induces a graph with maximum
degree 1) will correspond to an edge dominating set in T where all vertices except those of S will have
total degree 2, and the vertices of S will have total degree 1 (in the solution). In particular, vertices of
S∩Awill have out-degree 1 and in-degree 0, and vertices of S∩B will have in-degree 1 and out-degree 0.

The random structure of the remaining arcs of the tournament T is useful in two respects: in one
direction, given the solution S for G, it is easy to deal with vertices that have degree 1 in G[S]: we select
the corresponding arc from A to B in T . For vertices of degree 0, however, we are forced to look for
edge-disjoint paths that will allow us to achieve our degree goals. Such paths are guaranteed to exist if C
is random and large enough. In the other direction, given a good solution in T we would like to guarantee
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that, because the internal structure of A, B, and C is chaotic, the only way to obtain a large number of
vertices with low degree is to place those with in-degree 0 in A, and those with out-degree 0 in B. The
main result of this subsection is the following.

Theorem 26 (Main) (1, 1)-dEDS on tournaments cannot be solved in polynomial time, unless NP ⊆
BPP. Furthermore, (1, 1)-dEDS is APX-hard under randomized reductions, and does not admit an algo-
rithm running in time 2n

1−ε
for any ε, unless the randomized ETH is false.

To prove Theorem 26, we first reduce the INDEPENDENT SET problem on cubic graphs to ALMOST
INDUCED MATCHING. Before presenting the first reduction, we recall here the following theorem(s) for
Independent Set, that will act as our starting point.

Theorem 27 Alimonti and Kann (2000); Cygan et al. (2015) INDEPENDENT SET is APX-hard on cubic
graphs. Furthermore, INDEPENDENT SET cannot be solved in time 2o(n) unless the ETH is false.

Concerning ALMOST INDUCED MATCHING, the problem is known to be NP-complete on bipartite
graphs of maximum degree 3 and on C4-free bipartite graphs Boliac et al. (2004). It is also NP-hard to
approximate on arbitrary graphs within a factor of n1/2−ε for any ε > 0 Orlovich et al. (2011). Our next
lemma supplements the known hardness results on bipartite graphs and might be of independent interest.

e

x

y

xp

ypy

x

vxe
ve
vye

Fig. 2: An example of our construction for Lemma 28, with G on the left and G′ on the right.

Lemma 28 ALMOST INDUCED MATCHING is APX-hard and cannot be solved in time 2o(n) under the
ETH, even on bipartite graphs of degree at most 4. Furthermore, this hardness still holds if we are
promised that:

• OPTAIM > 0.6n;

• there is an optimal solution S that includes at least n/20 vertices with degree 0 in G[S].

Proof: Let a graph G = (V,E) and a positive integer k be the input of INDEPENDENT SET. We construct
a graph G′ = (V ′, E′) by subdividing each edge e = (x, y) with three vertices vxe, ve, vye so that the
edge e = (x, y) is replaced by a length-four path x, vxe, ve, vye, y. In addition, we create a copy xp of
each vertex x ∈ V of G and add it to G′ as a pendant vertex adjacent only to x (see Figure 2). Fix
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L = n+ 2m+ k. The vertices of G′ corresponding to the original vertices of G are considered to inherit
their labels in G and we denote them as V . We prove that G has an independent set of size k if and only
if G′ has an almost induced matching on L vertices.

Suppose that S is an independent set of G with |S| ≥ k. We construct a vertex set S′ of G′ so as to
contain all vertices of {xp : x ∈ V } ∪ S and also to include precisely one vertex set {ve, vye} for each
edge e ∈ E, where y /∈ S. Since S is an independent set, such a vertex set S′ exists. It is clear that
|S′| = n+ k+ 2m and also that G′[S′] has degree at most one, meaning it is an almost induced matching
of G′. Conversely, let S′ be an almost induced matching of G′ of maximum size, and suppose |S′| ≥ L.
First observe that, without loss of generality, we can assume that S′ contains all vertices of degree 1. If a
degree-one vertex is not in S′ we add it, and remove its neighbor from S′.

We now choose S′ so as to maximize the number of subdividing vertices contained in S′. We argue that
for each edge e = (x, y) ∈ E, it holds that |S′ ∩ {vxe, ve, vye}| = 2. Clearly |S′ ∩ {vxe, ve, vye}| ≤ 2.
Moreover, S′ contains at least one of {vxe, ve, vye}, since otherwise S′ ∪ {ve} is an almost induced
matching, contradicting the choice of S′. Suppose |S′∩{vxe, ve, vye}| = 1. If S′∩{vxe, ve, vye} = {vxe},
then vxe must be matched with x in G′[S′], as otherwise S′ ∪ {ve} is an almost induced matching. Then
the set S′∪{ve}\{x} has strictly more subdividing vertices, giving rise to a contradiction. Therefore, we
have S′∩{vxe, ve, vye} = {ve}. Now, the maximality of S′ implies that both x and y are contained in S′.
Observe that S′ ∪ {vxe} \ {x} is an almost induced matching of the same size as S′ having strictly more
subdividing vertices, producing a contradiction once more. Therefore, we have |S′ ∩ {vxe, ve, vye}| = 2
for every e = (x, y) ∈ E.

Moreover, this implies that for every e = (x, y) ∈ E, set S′ contains at most one of x and y, because,
as S′ contains all leaves, if x, y ∈ S′, then vxe, vye 6∈ S′, which would mean that S′ only contains
one of {vxe, ve, vye}. Thus S′ ∩ V corresponds to an independent set of G. It remains to note that
S′ ∩ (V ∪ {xp : x ∈ V }) has at least n + k vertices, and subsequently S′ ∩ V has at least k vertices.
This shows that ALMOST INDUCED MATCHING is NP-hard. Observe also that the constructed instance
G′ is bipartite with one side of the bipartition including vertices xP , vxe, vye, yP and the other including
vertices x, ve, y for every edge e = (x, y) of G.

To complete the proof, we note that when G is a cubic graph, the constructed graph G′ has degree at
most 4. Moreover, the hard instances of G restricted to cubic graphs satisfy k > n/4, since any cubic
graph on n vertices has an independent set of size dn/4e.Now, it is straightforward to verify that the above
reduction is an L-reduction (i.e., linear) from INDEPENDENT SET on cubic graphs to ALMOST INDUCED
MATCHING on bipartite graphs of degree at most 4. The APX-hardness of the former establishes the
APX-hardness of the latter. Furthermore, the number of vertices of the new graphs is linear in n. The
inequality noted above for k gives our properties’ desired bounds. 2

As our construction is randomized, the following (technical) property of a uniform random tournament
will be useful. Intuitively, the property established in Lemma 29 below states that it is impossible in a
large random tournament to have two large sets of vertices X,Y , such that all vertices of X have in-
degree 0 and out-degree 1 in a (1, 1)-edge dominating set, while all vertices of Y have in-degree 1 and
out-degree 0.

Lemma 29 Let T = (V,E) be a random tournament on the vertex set {1, 2, . . . , n}, in which (i, j) is
an arc of T with probability 1/2. Then the following event happens with high probability: for any two
disjoint sets X,Y ⊆ V with |X| > (log n)2 and |Y | > (log n)2, there exists a vertex x ∈ X with at least
two outgoing arcs to Y and a vertex y ∈ Y with at least two incoming arcs from X .
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Proof: Fix arbitrary sets X and Y satisfying the stated cardinality conditions. We will show that the
claimed vertex x exists with high probability and the proof is symmetric for y.

Let |X| = s1 > log2 n and |Y | = s2 > log2 n. We say that (X,Y ) is strongly biased if each x ∈ X
has at most one outgoing arc to Y . Then we have:

Prob[(X,Y ) is strongly biased] ≤
(
2−s2 · s2

)s1
≤ 2−s1s2+2(logn)3 ≤ 2−

s1s2
2 ,

where the last inequality follows from the lower bounds on s1, s2. Applying the union bound, the proba-
bility that T has a strongly biased pair (X,Y ) with |X| = s1, |Y | = s2 is at most

2−
s1s2

2 · ns1ns2 ≤ 2−
s1s2

4 ,

for any sufficiently large n. This probability is smaller than 1
n3 for sufficiently large n and thus taking the

union bound over all possible values of s1, s2 gives the claim. 2

Another useful (albeit also technical) property of the random digraphs we will be employing in our
construction, concerning the existence of vertex-disjoint directed paths, is given next.

Lemma 30 Let G = (V = A∪̇B∪̇C,E) be a random directed graph with |A| = |B| = n and |C| = 4n,
such that for any pair (x, y) with {x, y} ∩ C 6= ∅ we have exactly one arc, oriented from x to y, or from
y to x with probability 1/2. Let ` ≥ n/20 be a positive integer. Then with high probability, we have: for
any two disjoint sets X ⊆ A, Y ⊆ B with |X| = |Y | = `, there exist ` vertex-disjoint directed paths from
X to Y .

Proof: Suppose that there do not exist ` vertex-disjoint directed paths fromX to Y and let T ⊆ X∪C∪Y
be a minimal (X,Y )-separator of size at most ` − 1. We have |C \ T | ≥ 3n + 1. We say that a vertex
u ∈ C \ T is helpful, if there exists v1 ∈ X and v2 ∈ Y such that (v1, u), (u, v2) are arcs of the graph.
Clearly, if T is a separator, C \ T must not contain any helpful vertices.

A vertex u ∈ C is not helpful if either all edges between u and X are oriented towards X , or all arcs
between u and Y are oriented towards u. Each of these events happens with probability at most 2−n/20.
Therefore, the probability that all the vertices of C \ T (being at least 3n + 1) are not helpful is at most
2−

3n2

20 (as these events are independent). This is an upper-bound on the probability that two specific sets
X,Y do not have |X| vertex disjoint sets connecting them, and are therefore separated by a set T . Taking
the sum over all the choices for X,Y, T (being at most 2n · 2n · 24n) and using the union bound, we
conclude that no such sets exist with high probability (as n increases). 2

We are now ready to present our construction in Theorem 31 below. Our construction is randomized
and rather technical, making use of the specific properties held by the intermediate instances produced by
the above transformation from Independent Set (Lemma 28).

Theorem 31 (Construction) Suppose we are given an instance of ALMOST INDUCED MATCHING on a
bipartite graph with 2n vertices and maximum degree 4 such that there is an optimal solution that induces
at least n/10 vertices of degree 0. There is a randomized algorithm which runs in time polynomial in n
and, given an integer L ≥ 1.2n, reduces the ALMOST INDUCED MATCHING instance to an instance T
of (1, 1)-dEDS, such that T is a tournament with O(n) vertices and we also have with high probability:
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(a) if OPTAIM (G) ≥ L, then OPT(1,1)dEDS(T ) ≤ |V (T )| − L/2 + 1;

(b) if OPTAIM (G) < L− 5(logL)2, then OPT(1,1)dEDS(T ) > |V (T )| − L/2 + 1.

Proof: LetG = (A∪̇B,E) be an input bipartite graph of ALMOST INDUCED MATCHING with maximum
degree at most 4. We may assume that no vertex ofG is isolated. We may also assume that |A| = |B| = n,
and if S is an almost induced matching of G with |S| ≥ L then |S ∩A| = |S ∩B|, by taking the disjoint
union of two copies of G. This means that we may also assume that L is even.

From G, we construct a tournament T on the vertex set A′∪̇B′∪̇C, where A′ = {x′ : x′ ∈ A},
B′ = {x′ : x′ ∈ B} and |C| = 4n. The arc set of T is formed as follows (see Figure 3):

• for every pair of vertices x ∈ A and y ∈ B, (x, y) ∈ A(T ), if and only if (x, y) ∈ E.

• T [A′], T [B′], T [C] are random tournaments in which each pair u, v of vertices gets an orientation
u→ v with probability 1/2, independently.

• For every a ∈ A′ and c ∈ C, we have an orientation a → c with probability 1/2, independently.
The same holds between B′ and C.

A′ B′

C

4n

nn

x y

z w

(x, y) ∈ E

(z, w) /∈ E

Fig. 3: A simplified representation of our construction for Theorem 31.

We first prove (a): Suppose that S is an almost induced matching containing at least L vertices, and let
S0 and S1 ⊆ S be the sets of all vertices having degree exactly 0 and 1 in G[S], respectively. Slightly
abusing notation, let S0 and S1 refer to the corresponding vertex sets in T . Note that |S0 ∩ A′| =
|S0 ∩ B′| ≥ n/20. We construct an arc set D of T as follows. Let M be the set of arcs defined as
δ(S1 ∩A′, S1 ∩B′). We include all arcs of M in D.

By Lemma 30, there exist (with high probability) |S0∩A| vertex-disjoint directed paths P from S0∩A
to S0 ∩B. We add to D all arcs contained in a path of P , denoted as E(P).

Let us now observe that, with high probability, T does not contain any sources or sinks, as the prob-
ability that a vertex is a source or a sink is at most 2−n, and there are O(n) vertices in T . We use this
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fact to complete the solution as follows: consider the digraph T ′ = T − S1 − V (P), where V (P) is the
set of all vertices contained in a path of P . Recall that any tournament has a Hamiltonian path that can
be found in polynomial time. We choose a directed Hamiltonian path Q of T ′, with s and t as the start
and end vertices of Q. We add all the arcs E(Q) of Q to D, plus one incoming arc (s′, s) of s and one
outgoing arc (t, t′) of t. Since we have no sources or sinks, such arcs (s′, s) and (t, t′) exist. Note that
|D′| ≤ |V (T ′)|+ 1.

We argue that the obtained arc set

D = E(M) ∪ E(P) ∪ E(Q) ∪ {(s′, s), (t, t′)}

is a (1, 1)-edge dominating set of T . First note that all internal vertices of the disjoint paths P , as well as
all vertices of T ′ have both positive in-degree and positive out-degree, therefore all arcs incident on such
vertices are covered. For edges induced by S0 ∪ S1, we have that all arcs of this type going from A to B
have been selected (since S is an almost matching), and all arcs going in the other direction are covered
as all vertices of (S0 ∪ S1) ∩A have positive out-degree.

Lastly, we observe

|D| = |V (M)| − |S1|/2 + |V (P)| − |S0|/2 + (|V (T )| − |V (M)| − |V (P)|+ 1)

≤ |V (T )| − L/2 + 1.

To see (b), let D be a (1, 1)-edge dominating set of T of size at most |V (T )| − L/2 + 1. We will use
this to build a large almost induced matching in G. We define the following vertex sets:

R0,pos = {v ∈ V (T ) : d−D(v) = 0 and d+D(v) > 0}
R0,1 = {v ∈ V (T ) : d−D(v) = 0 and d+D(v) = 1}

Rpos,0 = {v ∈ V (T ) : d−D(v) > 0 and d+D(v) = 0}
R1,0 = {v ∈ V (T ) : d−D(v) = 1 and d+D(v) = 0}

Clearly, it holds that R0,1 ⊆ R0,pos and R1,0 ⊆ Rpos,0. By definition, the arc set from R0,pos to Rpos,0
must be completely contained in D, since no such arc can be (0, 1)-dominated or (1, 0)-dominated, and
the arc is thus required to dominate itself.

δ(R0,pos, Rpos,0) ⊆ D (1)

Given this, we observe that (R0,1∩A′)∪ (R1,0∩B′), seen as a vertex set of G sharing the same vertex
names, is an almost induced matching of G. If that is not so, then either there exists x ∈ R0,1 ∩ A′ with
two outgoing arcs to R1,0 ∩ B′, or y ∈ R1,0 ∩ B′ with two incoming arcs from R0,1 ∩ A′. In the former
case, both outgoing arcs from x must be contained in D as previously noted. This means x /∈ R0,1,
however, which gives a contradiction. A symmetric argument holds in the latter case.

Our aim is then to show that a “good chunk” of R0,1 is contained in A′, and that of R1,0 in B′. We will
use the following claim.

Claim 31.1 We have |R0,pos| ≥ L/2− 1, |Rpos,0| ≥ L/2− 1 and |R0,1|+ |R1,0| ≥ L− 4.
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Proof: Consider the numbers
∑
v∈V (T ) d

−
D(v) and

∑
v∈V (T ) d

+
D(v), where d−D(v), d+D(v) denote the

number of arcs of D going into and coming out of v, respectively. As every arc (x, y) ∈ D is counted
precisely once in each sum, it holds that

|D| =
∑

v∈V (T )

d−D(v) =
∑

v∈V (T )

d+D(v).

We now have

|V (T )| − L/2 + 1 ≥ |D| =
∑

v∈V (T )

d−D(v) =
∑
i

i · |{v ∈ V (T ) : d−D(v) = i}|

≥ |V (T )| − |R0,pos|,

from which it follows that |R0,pos| ≥ L/2 − 1 and similarly |Rpos,0| ≥ L/2 − 1. Also, observe that
there is at most one vertex v with dD(v) = 0, where dD(v) is the total number of arcs of D incident on
v. Indeed, if there are two such vertices u and v then the arc between u and v cannot be (1, 1)-dominated.
We therefore have:

2|V (T )| − L+ 2 ≥ 2|D| =
∑

v∈V (T )

dD(v) =
∑
i

i · |{v ∈ V (T ) : dD(v) = i}|

≥ |R0,1|+ |R1,0|+ 2(|V (T )| − |R0,1| − |R1,0| − 1)

establishing the claimed inequalities. 2

We can now resume the proof of Theorem 31 (reduction). By (1) and the definition of R0,1, every
x ∈ R0,1 has at most one outgoing arc to Rpos,0, because as we previously argued, all such arcs are
included in D. Consider now the bigger of the three sets among Rpos,0 ∩A′, Rpos,0 ∩B′ and Rpos,0 ∩C.
The biggest of these sets must have size at least L/6 which is larger than (log n)2 for sufficiently large
n. We apply Lemma 29 on R0,1 ∩ C and the largest of the three aforementioned sets. We conclude that
|R0,1 ∩ C| ≤ (log n)2, because otherwise there is a vertex in R0,1 ∩ C which has two outgoing arcs to
Rpos,0, which is a contradiction. With symmetric arguments for R1,0 ∩ C we have

|R0,1 ∩ C| ≤ (log n)2 and |R1,0 ∩ C| ≤ (log n)2. (2)

That is, most vertices of R0,1 and R1,0 can be found in A′ ∪B′.
We now concentrate on the four setsR0,1∩A′,R1,0∩A′,R0,1∩B′ andR1,0∩B′. We will say that one

of these sets is “large” if its cardinality is at least (log n)2. The following claim more carefully specifies
which combinations of these sets may be simultaneously large.

Claim 31.2 Precisely two of the following sets have size larger than (log n)2: R0,1 ∩ A′, R1,0 ∩ A′,
R0,1 ∩B′, R1,0 ∩B′. Furthermore, it holds that:

• either |R0,1 ∩A′| > (log n)2 and |R1,0 ∩B′| > (log n)2,

• or |R1,0 ∩A′| > (log n)2 and |R0,1 ∩B′| > (log n)2.
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Proof: Because, from Claim 31.1 we have |R0,1|+ |R1,0| ≥ L− 4 and L ≥ 1.2n, if we take into account
that |A′| = |B′| = n and the fact that |R0,1 ∩C| and |R1,0 ∩C| are at most (log n)2, we conclude that at
least two of the four sets we focus on (R0,1 ∩A′, R0,1 ∩B′, R1,0 ∩A′, R1,0 ∩B′) must be large, that is,
have cardinality at least (log n)2.

We now propose the following facts: (i) ifR0,1∩A′ is large, then onlyR1,0∩B′ is large; (ii) ifR0,1∩B′
is large, then only R1,0 ∩ A′ is large; (iii) R1,0 ∩ A′ and R1,0 ∩ B′ cannot be simultaneously large. It is
not hard to see that these three statements together give the claim.

To see (i) suppose that |R0,1 ∩ A′| is large. We argue that |Rpos,0 ∩ A′| ≤ (log n)2. Indeed, if not,
then by Lemma 29 there exists a vertex in R0,1 ∩ A′ which has two outgoing arcs to Rpos,0 ∩ A′, a
contradiction. Therefore, |R1,0 ∩ A′| ≤ (log n)2. Furthermore, we must have |Rpos,0 ∩ C| ≤ (log n)2.
Indeed, otherwise we again invoke Lemma 29 to find a vertex in R0,1 ∩ A′ with two outgoing arcs to
Rpos,0 ∩ C, a contradiction. Since by Claim 31.1 we have that |Rpos,0| ≥ L/2 − 1 it must be the case
that |Rpos,0 ∩ B′| ≥ (log n)2. If we have |R0,1 ∩ B′| ≥ (log n)2 then by Lemma 29 we have a vertex in
R0,1 ∩ B′ with two outgoing arcs to Rpos,0 ∩ B′, a contradiction. Therefore, |R0,1 ∩ B′| is also small,
and hence the only other set that may be large is R1,0 ∩B′.

To see (ii) it suffices to see that this statement is symmetric to (i) with the roles of A′, B′ reversed, so
identical arguments apply.

Finally, to see (iii), suppose that |R1,0 ∩ A′|, |R1,0 ∩ B′| ≥ (log n)2. We argue that |R0,pos ∩ A′| ≤
(log n)2. Indeed, otherwise by Lemma 29 we have a vertex y ∈ R1,0 ∩ A′ with two incoming arcs
from R0,pos ∩ A′, a contradiction. With a similar argument |R0,pos ∩ B′| ≤ (log n)2. Therefore, since
|R0,pos| ≥ L/2 − 1 by Claim 31.1, we must have |R0,pos ∩ C| ≥ (log n)2. This also gives rise to a
contradiction, however, since we can apply Lemma 29 to find a vertex y ∈ R1,0 ∩ A′ with two incoming
arcs from R0,pos ∩ C. 2

We can now complete the proof of our reduction, Theorem 31. Suppose that the first case of Claim 31.2
above holds, meaning |R1,0 ∩ A′| > (log n)2 and |R0,1 ∩ B′| > (log n)2. For every x ∈ B′, we know
that the in-degree of x with respect to A′ is at most 4 because we reduce from an input instance G whose
degree is at most 4. Therefore, x ∈ R0,1∩B′ has at least (log n)2−4 outgoing arcs toR1,0∩A′. All such
arcs must be included in D by (1), however, contradicting the definition of R0,1. Therefore, we have:

|R0,1 ∩A′| > (log n)2 and |R1,0 ∩B′| > (log n)2

|R1,0 ∩A′| ≤ (log n)2 and |R0,1 ∩B′| ≤ (log n)2.

With Inequalities (2) and Claim 31.1, we get:

|R0,1 ∩A′|+ |R1,0 ∩B′| ≥ |R0,1|+ |R1,0| − 4(log n)2 ≥ L− 4− 4(log n)2.

Therefore (R0,1 ∩ A′) ∪ (R1,0 ∩ B′), seen as a vertex subset of G, is an almost induced matching of
size at least L − 4 − 4(log n)2. From n ≤ 2L, we establish property (b) of the theorem’s statement for
sufficiently large n. 2

Proof Proof of Theorem 26 (Main): Let G be an instance of INDEPENDENT SET on cubic graphs and
let G′ be the instance of ALMOST INDUCED MATCHING obtained by the construction of Lemma 28. We
set ` as in the reduction and observe that OPTIS(G) ≥ k, if and only if OPTAIM (G′) ≥ `.



New Results on Directed Edge Dominating Set 33

Let G∗ be a disjoint union of 10(log `)2 copies of G′. Then G∗ is a gap-instance, whose optimal
solution is of size either at least 10`(log `)2, or at most 10`(log `)2 − 10(log `)2 ≤ L− 5(logL)2, where
L := 10`(log `)2. Now, Theorem 31 implies that using a probabilistic polynomial-time algorithm for
(1, 1)-dEDS with two-sided bounded errors, one can correctly decide an instance of INDEPENDENT SET
on cubic graphs with bounded errors. We observe that the size of the instance has only increased by a poly-
logarithmic factor, hence an algorithm solving the new instance in time 2n

1−ε
would give a randomized

sub-exponential time algorithm for 3-SAT.
Finally, for APX-hardness, we observe that we may assume we start our reduction from an INDEPEN-

DENT SET instance where either OPTIS ≥ k, or OPTIS < rk, for some constant r < 1 and k = Θ(n).
Lemma 28 then gives an instance of ALMOST INDUCED MATCHING where either OPTAIM ≥ L1,
or OPTAIM ≤ r′L1 = L2, for some (other) constant r′ < 1. We now use Theorem 31 to create a
gap-instance of (1, 1)-dEDS. 2

5.2 Equivalent to Dominating Set on tournaments: p = 2 or q = 2

We next consider the versions for p = 2 or q = 2 and show that they are W[2]-hard, while being solvable
in nO(logn). We begin with a series of lemmas that we then use to obtain the main theorems of this
subsection.

Lemma 32 On tournaments without a source, we have OPT(0,2)dEDS ≤ OPTDS .

Proof: Let T = (V,E) be a tournament with no source and D ⊆ V be a dominating set of T . Then let
K ⊆ E be a set containing one arbitrary incoming arc of every vertex inD. We claimK (0, 2)-dominates
all arcs in E: since D is a dominating set, for any vertex u /∈ D there must be an arc (v, u) from some
v ∈ D. Thus all outgoing arcs (u,w) from such u /∈ D are (0, 2)-dominated by K, as are all arcs (v, u)
from v ∈ D. 2

Lemma 33 Let T = (V,E) be a tournament and let s be a source of T . Then δ+(s) is an optimal
(p, q)-edge dominating set of T , for any p ≤ 1 and q ≥ 1.

Proof: Since s has no incoming arcs, any (p, q)-edge dominating set must select at least one arc from
{(s, v)} ∪ δ+(v) for every v ∈ V \ {s} in order to (p, q)-dominate (s, v). Because the arc sets {(s, v)} ∪
δ+(v) are mutually disjoint over all v ∈ V \ {s}, any (p, q)-edge dominating set has size at least |δ+(s)|.
Now, observe that δ+(s) (0, 1)-dominates every arc of T . 2

Lemma 34 On tournaments on n vertices, for any p ≥ 2, it is OPT(p,2)dEDS ≤ OPT(2,2)dEDS ≤
2 log n+ 3.

Proof: The first inequality trivially holds, so we prove the second inequality. Let T = (V,E) be a
tournament on n vertices. If T has no source, then OPT(2,2)dEDS ≤ OPT(0,2)dEDS ≤ OPTDS ≤
log n+ 1, where the second and the last inequality follow from Lemma 32 and Lemma 2, respectively. If
T rev contains no source, observe that a (0, 2)-edge dominating set of T rev is a (2, 0)-edge dominating set
of T and the statement holds.

Therefore, we may assume that T has a source s and a sink t. Let S1 ⊆ V \ {s} be a dominating set
of T − s of size at most log n + 1. Clearly, every arc (u, v) of T − s lies on a directed path of length
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at most two from some vertex of S1. Let D1 ⊆ E be a minimal arc set such that D1 ∩ δ−(v) 6= ∅ for
every v ∈ S1. Since every v ∈ S1 has positive in-degree, such a set D1 exists and we have |D1| ≤ |S1|.
Observe that D1 (0,2)-dominates every arc of T − s. Applying a symmetric argument to T rev − t, we
know that there exists an arc set D2 of size at most log n+ 1 which (2, 0)-dominates every arc of T − t.
Now D1 ∪ D2 (2,2)-dominates every arc incident with V \ {s, t}. Therefore, D1 ∪ D2 ∪ {(s, t)} is a
(2, 2)-edge dominating set. 2

Lemma 35 There is an FPT reduction from DOMINATING SET on tournaments parameterized by solu-
tion size to (p, q)-dEDS parameterized by solution size, when p = 2 or q = 2.

Proof: We assume that q = 2, without loss of generality. Let T = (V,E) be an input tournament to
DOMINATING SET, and let k be the solution size. It can be assumed that T has no source. We construct a
tournament T ′ by adding to T a new vertex t which is a sink, meaning we orient all arcs from V to t. We
claim that OPT(p,2)dEDS(T ′) = OPTDS(T ).

Given a dominating set D of T , we select an arbitrary arc set K of T ′ so that δ−K(v) = 1 for each
v ∈ D. It is easy to see that K (0, 2)-dominates every arc of T ′: any arc (u, v) with u ∈ D is clearly
dominated by K. For any arc (u, v) with u /∈ D, there is w ∈ D such that (w, u) ∈ E and thus K
(0, 2)-dominates (u, v).

Conversely, suppose that K is a (p, 2)-edge dominating set of size at most k and let K+ be the set
of heads of K found in V . Let K− be the set of vertices u ∈ V such that (u, t) ∈ K. We have
|K+ ∪K−| ≤ k, because each arc of K either contributes an element in K+ or in K−. We claim that
K+ ∪ K− is a dominating set of T . Suppose the contrary, therefore there exists u ∈ V \ (K+ ∪ K−)
that is not dominated by K+ ∪K−. The arc (u, t), however, is dominated by K. We have (u, t) 6∈ K, as
u 6∈ K−. Therefore, since t is a sink, (u, t) is (0, 2)-dominated by an arc (v, w) ∈ K. This means that
either w = u, or the arc (w, u) exists. It is w ∈ K+, however, meaning that u is dominated. 2

Theorem 36 On tournaments, the problems (p, 2)-dEDS are W[2]-hard for each fixed p.

Proof: For all problems, we use the reduction from SET COVER to DOMINATING SET ON TOURNA-
MENTS given by Cygan et al. (2015) in Theorem 13.14 therein and our results follow from the W[2]-
hardness of that problem (see also Theorem 13.28 therein) and our Lemma 35 above. 2

Theorem 37 On tournaments, the problems (0, 2)-dEDS, (1, 2)-dEDS and (p, 2)-dEDS, for any p ≥ 2,
can be solved in time nO(logn).

Proof: For (0, 2)-dEDS and (1, 2)-dEDS, the case when a given tournament contains a source can be
solved in polynomial time by Lemma 33. If the input tournament contains no source, then by Lemma 32
we have OPT(1,2)dEDS ≤ OPT(0,2)dEDS ≤ OPTDS , which is bounded by log n + 1 by Lemma 2.
Lemma 34 states thatOPT(p,2)dEDS ≤ 2 log n+3. Exhaustive search over vertex subsets of sizeO(log n)
performs in the claimed runtime. 2
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5.3 P-time solvable: p+ q ≤ 1 or, 2 /∈ {p, q} and max{p, q} ≥ 3

We turn our attention to the remaining cases and show that they are in fact solvable in polynomial time.

Theorem 38 (0, 1)-dEDS can be solved in polynomial time on tournaments.

Proof: We will show that OPT(0,1)dEDS = n− 1 and give a polynomial-time algorithm for finding such
an optimal solution. First, given a tournament T = (V,E), to see why OPT(0,1)dEDS ≥ n− 1 consider
any optimal solution K ⊆ E: if there exists a pair of vertices u, v ∈ V with d−K(u) = d−K(v) = 0,
meaning a pair of vertices, neither of which has an arc of K as an incoming arc, then the arc between
them (without loss of generality, let its direction be (v, u)) is not dominated: as d−K(u) = 0, the arc itself
does not belong in K and as d−K(v) = 0, there is no arc preceding it that is in K. This leaves (v, u)
undominated. Therefore, there cannot be two vertices with no incoming arcs in any optimal solution,
implying any solution must include at least n− 1 arcs.

To seeOPT(0,1)dEDS ≤ n−1, consider a partition of T into strongly connected componentsC1, . . . , Cl,
where we can assume these are given according to their topological ordering, meaning for 1 ≤ i < j ≤ l,
all arcs between Ci and Cj are directed towards Cj . Let S be the set of arcs traversed in breadth-first-
search (BFS) from some vertex s ∈ C1 until all vertices of C1 are spanned. Also let S′ be the set of arcs
(s, u),∀u ∈ Ci,∀i ∈ [2, l], that is, all outgoing arcs from s to every vertex of C2, . . . , Cl. Note that set S′

must contain an arc from s to every vertex that is not in C1: T being a tournament means every pair of ver-
tices has an arc between them and C1 being the first component in the topological ordering means all arcs
between its vertices and those of subsequent components are oriented away from C1. Then K := S ∪ S′
is a directed (0, 1)-edge dominating set of size n− 1 in T : observe that d−K(u) = 1,∀u 6= s ∈ T , that is,
every vertex in T has positive in-degree within K except s. Thus all outgoing arcs from all such vertices
u are (0, 1)-dominated by K, while all outgoing arcs from s are in K, due to the BFS selection for S and
the definition of S′.

Since such an optimal solution K can be computed in polynomial time (partition into strongly con-
nected components, BFS), the claim follows. 2

Theorem 39 For any p, q with max{p, q} ≥ 3, p 6= 2 and q 6= 2, (p, q)-dEDS can be solved in polyno-
mial time on tournaments.

Proof: Suppose, without loss of generality, that q ≥ 3, as otherwise we can solve (q, p)-dEDS on T rev ,
the tournament obtained by reversing the orientation of every arc. In any tournament T , there always
exists a king vertex, that is, a vertex with a path of length at most 2 to any other vertex in the graph. One
such vertex is the vertex of maximum out-degree v. If v is not a source, it suffices to select one of its
incoming arcs: since there is a path of length at most 2 from v to any other vertex u in the graph, any
outgoing arc from any such u will be (0, 3)-dominated by this selection. This is clearly optimal.

Suppose now that s is a source. We consider two cases: if p ≤ 1, then Lemma 33 implies that δ+(s) is
optimal. Finally, suppose s is a source and p ≥ 3. If T does not have a sink, then a king of T rev has an
incoming arc, which (0, 3)-dominates T rev as observed above, and thus T has a (3, 0)-edge dominating
set of size 1.

Therefore, we may assume that T has both a source s and a sink t. Let s′ and t′ be vertices of V \{s, t}
with maximum out- and in-degree, respectively. Now {(s, t), (s, s′), (t′, t)} is a (3, 3)-edge dominating
set. This is because s′ is a king of T−s and thus every arc (u, v) with u 6= s is (0, 3)-dominated by (s, s′).
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Similarly, every arc (u, v) with v 6= t is (3, 0)-dominated by (t′, t). The only arc not (3, 3)-dominated
by these two arcs is (s, t), which is only dominated by itself. Note this also implies optimality as any
(3, 3)-edge dominating set contains at least three arcs. Examining all vertex subsets of size up to 3, we
can compute an optimal (3, 3)-edge dominating set in polynomial time. 2
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M. Chlebı́k and J. Chlebı́ková. Approximation hardness of edge dominating set problems. Journal of
Combinatorial Optimization, 11(3):279–290, 2006.

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Springer, 2015.

E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Fixed-parameter algorithms for
(k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms, 1(1):33–47, 2005.

I. Dinur and D. Steurer. Analytical approach to parallel repetition. In D. B. Shmoys, editor, Symposium
on Theory of Computing, STOC, pages 624–633. ACM, 2014.



New Results on Directed Edge Dominating Set 37

R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness i: Basic results. SIAM
Journal of Computing, 24(4):873–921, 1995a.

R. G. Downey and M. R. Fellows. Parameterized Computational Feasibility. In Feasible Mathematics II,
pages 219–244, 1995b.

D. Eisenstat, P. N. Klein, and C. Mathieu. Approximating k-center in planar graphs. In Symposium on
Discreet Algorithms SODA 2014, pages 617–627. SIAM, 2014.

M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parameterized complexity of
multiple-interval graph problems. Theoretical Computer Science, 410(1):53–61, 2009.

H. Fernau. Edge dominating set: Efficient Enumeration-Based Exact Algorithms. In Parameterized and
Exact Computation, pages 142–153. Springer Berlin Heidelberg, 2006.

F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov. On two techniques of combining branching and
treewidth. Algorithmica, 54(2):181–207, 2009.

T. Fujito and H. Nagamochi. A 2-approximation algorithm for the minimum weight edge dominating set
problem. Discrete Applied Mathematics, 118(3):199–207, 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Co., 1979.

T. Hagerup. Kernels for edge dominating set: Simpler or smaller. In Mathematical Foundations of
Computer Science MFCS 2012, volume 7464 of Lecture Notes in Computer Science, pages 491–502.
Springer, 2012.

T. Hanaka, N. Nishimura, and H. Ono. On directed covering and domination problems. Discrete Applied
Mathematics, 259:76 – 99, 2019.

F. Harary and R. Z. Norman. Some properties of line digraphs. Rendiconti del Circolo Matematico di
Palermo, 9(2):161–168, 1960.

J. D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM Journal on Discrete Mathematics, 6
(3):375–387, 1993.

K. Iwaide and H. Nagamochi. An improved algorithm for parameterized edge dominating set problem.
Journal of Graph Algorithms and Applications, 20(1):23–58, 2016.

I. Katsikarelis, M. Lampis, and V. T. Paschos. Structural parameters, tight bounds, and approximation
for (k, r)-center. Discrete Applied Mathematics, 264:90 – 117, 2019. Combinatorial Optimization:
between Practice and Theory.

T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer, 1994.

S. Kreutzer and S. Tazari. Directed nowhere dense classes of graphs. In Symposium on Discrete Algo-
rithms SODA 2012, pages 1552–1562, 2012.
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