The variance and the asymptotic distribution of the length of longest k-alternating subsequences

Recep Altar Çiçeksiz ${ }^{1} \quad$ Yunus Emre Demirci ${ }^{2}$ Ümit Işlak ${ }^{3}$
${ }^{1}$ Umeå University, Department of Mathematics, Umeå, Sweden
${ }^{2}$ Queen's University, Department of Mathematics and Statistics, Kingston, Ontario, Canada
${ }^{3}$ Boğaziçi University, Department of Mathematics, Istanbul, Turkey

revisions $12^{\text {th }}$ Nov. 2022; accepted $12^{\text {th }}$ Mar. 2023.

Abstract

We obtain an explicit formula for the variance of the number of k-peaks in a uniformly random permutation. This is then used to obtain an asymptotic formula for the variance of the length of longest k-alternating subsequence in random permutations. Also a central limit is proved for the latter statistic.

Keywords: Alternating subsequences, k-alternating subsequences, Peak, central limit theorem

1 Introduction

Letting $\left(a_{i}\right)_{i=1}^{n}$ be a sequence of real numbers, a subsequence $a_{i_{k}}$, where $1 \leq i_{1}<\ldots<i_{k} \leq n$, is called an alternating subsequence if $a_{i_{1}}>a_{i_{2}}<a_{i_{3}}>\cdots$. The length of the longest alternating subsequence of $\left(a_{i}\right)_{i=1}^{n}$ is defined to be the largest integer q such that $\left(a_{i}\right)_{i=1}^{n}$ has an alternating subsequence of length q. Denoting the symmetric group on n letters by S_{n}, an alternating subsequence of a permutation $\sigma \in S_{n}$ refers to an alternating subsequence corresponding to the sequence $\sigma(1), \sigma(2), \ldots, \sigma(n)$. See Stanley (2008) for a survey on the topic.

The purpose of this manuscript is to study a generalization of the length of longest alternating subsequences in uniformly random permutations. Letting $\sigma \in S_{n}$, a subsequence $1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq n$ is said to be k alternating for σ if

$$
\sigma\left(i_{1}\right) \geq \sigma\left(i_{2}\right)+k, \quad \sigma\left(i_{2}\right)+k \leq \sigma\left(i_{3}\right), \quad \sigma\left(i_{3}\right) \geq \sigma\left(i_{4}\right)+k, \cdots
$$

In other words, the subsequence is k-alternating if it is alternating and additionally

$$
\left|\sigma\left(i_{j}\right)-\sigma\left(i_{j+1}\right)\right| \geq k, \quad j \in[t-1]
$$

where we set $[m]=\{1, \ldots, m\}$ for $m \in \mathbb{N}$. Below the length of the longest k-alternating subsequence of $\sigma \in S_{n}$ is denoted by $\operatorname{as}_{n, k}(\sigma)$, or simply $\operatorname{as}_{n, k}$.

Let us also define k-peaks and k-valleys which will be intermediary tools to understand the longest k-alternating subsequences. Let $\sigma=\sigma(1) \ldots \sigma(n) \in S_{n}$. We say that a section $\sigma(i) \ldots \sigma(j)$ of the permutation σ is a k-up (k-down, resp.) if $i<j$ and $\sigma(j)-\sigma(i) \geq k(\sigma(i)-\sigma(j) \geq k$, resp.). We say that the section is k-ascending if it satisfies:

- $\sigma(i)=\min \{\sigma(i), \ldots, \sigma(j)\}$ and $\sigma(j)=\max \{\sigma(i), \ldots, \sigma(j)\}$, and
- the section $\sigma(i) \ldots \sigma(j)$ is a k-up, and
- there is no k-down in $\sigma(i) \ldots \sigma(j)$, i.e. for any $i \leq s<t \leq j$, we have $\sigma(s)-\sigma(t)<k$.

If also there is no k-ascending section that contains $\sigma(i) \ldots \sigma(j)$, it is called a maximal k-ascending section. In this case, $\sigma(i), \sigma(j)$ are called a k-valley and a k-peak of σ, respectively.

A maximal k-descending section $\sigma(i) \ldots \sigma(j)$ can be defined similarly, and this time $\sigma(i), \sigma(j)$ are called a k-peak and a k-valley of σ, respectively. An alternative description can be given as in Cai (2015).
Proposition 1.1 Let $\sigma=\sigma(1) \sigma(2) \ldots \sigma(n) \in S_{n}, i \in[n]$ and $1 \leq k \leq n-1$. Then $\sigma(i)$ is a k-peak if and only if it satisfies both of the following two properties:
(i) If there is an $s>i$ with $\sigma(s)>\sigma(i)$, then there is a k-down $\sigma(i) \ldots \sigma(j)$ in $\sigma(i) \ldots \sigma(s)$.
(ii) If there is an $s<i$ with $\sigma(s)>\sigma(i)$, then there is a k-up $\sigma(j) \ldots \sigma(i)$ in $\sigma(s) \ldots \sigma(i)$.

Considering the case where σ is a uniformly random permutation, our purpose in present paper is to study $\operatorname{Var}\left(\operatorname{as}_{n, k}\right)$ and to show that $\operatorname{as}_{n, k}$ satisfies a central limit theorem. The statistic $\operatorname{Var}\left(\operatorname{as}_{n, k}\right)$ is well understood for the case $k=1$. Indeed, Stanley proved in Stanley 2008) that

$$
\mathbb{E}\left[\operatorname{as}_{n, 1}\right]=\frac{4 n+1}{6} \quad \text { and } \quad \operatorname{Var}\left[\operatorname{as}_{n, 1}\right]=\frac{8 n}{45}-\frac{13}{180}
$$

It was later shown in Houdré and Restrepo (2010) and Romik (2011) that as ${ }_{n, 1}$ satisfies a central limit theorem, and convergence rates for the normal approximation were obtained in Islak (2018). All these limiting distribution results rely on the simple fact that $\mathrm{as}_{n, 1}$ can be represented as a sum of m-dependent random variables (namely, the indicators of local extrema) and they then use the well-established theory of such sequences.

Regarding the general k, Armstrong conjectured in Armstrong (2014) that $\mathbb{E}\left[\mathrm{as}_{n, k}\right]=\frac{4(n-k)+5}{6}$. Pak and Pemantle Pak and Pemantle (2015) then used probabilistic methods to prove that $\mathbb{E}\left[\mathrm{as}_{n, k}\right]$ is asymptotically $\frac{2(n-k)}{3}+O\left(n^{2 / 3}\right)$.

Let us very briefly mention their approach. For $x \in(0,1)$, a vector $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in[0,1]^{n}$ is said to be x-alternating if $(-1)^{j+1}\left(y_{j}-y_{j+1}\right) \geqslant x$ for all $1 \leqslant j \leqslant n-1$. Given a vector $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in[0,1]^{n}$, a subsequence $1 \leq i_{1}<i_{2}<\ldots<i_{r} \leq n$ is said to be x-alternating for \mathbf{y} if

$$
\left|y_{i_{j}}-y_{i_{j+1}}\right| \geq x, \quad j \in[r-1]
$$

Denoting the length of the longest x-alternating subsequence of a random vector \mathbf{y}, with Lebesgue measure on $[0,1]^{n}$ as its distribution, by $\mathrm{as}_{\mathrm{n}, \mathrm{x}}(\mathbf{y})$, their main observation was: If Z is a binomial random variable with parameters n and $1-x$, then

$$
\operatorname{as}_{n, x}(\mathbf{y}) \stackrel{\mathcal{D}}{\stackrel{1}{2}} \operatorname{as}_{Z, 1}
$$

(Here, $\stackrel{\mathcal{D}}{=}$ means equality in distribution). That is, they concluded that $\operatorname{as}_{n, x}(\mathbf{y})$ has the same distribution as the length of the longest ordinary alternating subsequence of a random permutation on S_{Z}. Afterwards, using $\mathbb{E}\left[\mathrm{as}_{n, 1}\right]=\frac{4 n+1}{6}$ and $\operatorname{Var}\left(\operatorname{as}_{n, 1}\right)=\frac{8 n}{45}-\frac{13}{180}$, they proved

$$
\mathbb{E}\left[\operatorname{as}_{n, x}\right]=\frac{2}{3} n(1-x)+\frac{1}{6} \quad \text { and } \quad \operatorname{Var}\left(\operatorname{as}_{n, x}\right)=(1-x)(2+5 x) \frac{4 n}{45}
$$

Further, for suitable x_{1} and x_{2}, they showed that $\mathbb{E}\left[\operatorname{as}_{n, x_{2}}\right] \leqslant \mathbb{E}\left[\mathrm{as}_{n, k}\right] \leqslant \mathbb{E}\left[\mathrm{as}_{n, x_{1}}\right]$ and in this way they are able to bound $\mathbb{E}\left[\mathrm{as}_{n, k}\right]$.

A closely related problem to the longest alternating subsequence problem is that of calculating the longest zigzagging subsequence. For a given permutation σ, denoting its vertical flip by $\tilde{\sigma}$, a subsequence is said to be zigzagging if it is alternating for either σ or $\tilde{\sigma}$. The k-zigzagging case is defined similarly. We will be using the notation $\mathrm{zs}_{n, k}$ for the length of the longest k-zigzagging subsequence in the sequel. Note that in exactly half of the permutations, $\operatorname{as}_{n, k}$ and $\mathrm{zs}_{n, k}$ are equal to each other, and in the other half the length of the k-zigzagging subsequence is exactly one more than the length of the k-alternating subsequence. This is seen via the involution map $I: \sigma(1) \sigma(2) \ldots \sigma(n) \rightarrow(n+1-\sigma(1))(n+1-\sigma(2)) \ldots(n+1-\sigma(n))$ as noted in Cai (2015). Therefore

$$
\begin{equation*}
\mathbb{E}\left[\mathrm{zs}_{k}\right]=\mathbb{E}\left[\mathrm{as}_{k}\right]+1 / 2 \tag{1}
\end{equation*}
$$

Cai proved in 2015 that $\mathbb{E}\left[\mathrm{Zs}_{k}\right]=\frac{2(n-k)+4}{3}$, and then combining this with ($\mathbb{1}$), solved the Armstrong conjecture Cai (2015).

Our first result in this paper is an asymptotic formula for $\operatorname{Var}\left(\mathrm{as}_{n, k}\right)$. Namely, we will prove

$$
\operatorname{Var}\left(\operatorname{as}_{n, k}\right)=\frac{8(n-k)}{45}+O(\sqrt{n})
$$

In order to obtain this result, we first study the number of k-peaks P in random permutations and show that

$$
\operatorname{Var}(P)=\frac{2(n-k)+4}{45}
$$

Our second result is a central limit theorem for $\operatorname{as}_{n, k}$:

$$
\frac{\operatorname{as}_{n, k}-\mathbb{E}\left[\mathrm{as}_{n, k}\right]}{\sqrt{\operatorname{Var}\left(\operatorname{as}_{n, k}\right)}} \longrightarrow_{d} \mathcal{G}
$$

where \mathcal{G} is the standard normal distribution and where \rightarrow_{d} is used for convergence in distribution.
The rest of the paper is organized as follows. Next section proves our formulas for the variances of P and $\mathrm{as}_{n, k}$. In Section 3, we prove the central limit theorem for $\mathrm{as}_{n, k}$.

2 The variances of P and $\mathrm{as}_{n, k}$

Next result gives an exact formula for the variance of the number of k-peaks P in a uniformly random permutation.
Theorem 2.1 Let P be the number of k-peaks in a uniformly random permutation in S_{n}. We have

$$
\operatorname{Var}(P)=\frac{2(n-k)+4}{45}
$$

We will prove Theorem 2.1 after providing a corollary related to the length of longest k-alternating subsequence of a uniformly random permutation. Note that we have $\operatorname{as}_{n, k}=2 P+E$ where $|E| \leq 1$ for any n, k. Thus, $\operatorname{Var}\left(\operatorname{as}_{n, k}\right)=$ $4 \operatorname{Var}(P)+\operatorname{Var}(E)+2 \operatorname{Cov}(P, E)$. Here, clearly $\operatorname{Var}(E) \leq 1$ and by Cauchy-Schwarz inequality $|\operatorname{Cov}(P, E)| \leq$ $2 \sqrt{\operatorname{Var}(P)} \sqrt{\operatorname{Var}(E)} \leq C_{0} \sqrt{n}$ where C_{0} is a constant independent of n and k. We now obtain the following.
Corollary 2.1 Let as $_{n, k}$ be the length of longest k-alternating subsequence of a uniformly random permutation in S_{n}. Then,

$$
\operatorname{Var}\left(\operatorname{as}_{n, k}\right)=\frac{8(n-k)}{45}+O(\sqrt{n})
$$

In particular, when $k=o(n), \operatorname{Var}\left(\operatorname{as}_{n, k}\right) \sim \frac{8 n}{45}$ as $n \rightarrow \infty$.
Remark 2.1 In setting of Corollary 2.1, we conjecture that $\operatorname{Var}\left(\operatorname{as}_{n, k}\right)=\frac{8(n-k)}{45}+\frac{19}{180}$. Although we have a heuristic derivation of this equality, we were not able to justify it rigorously.
Now, let us proceed to the proof of Theorem 2.1.
Proof of Theorem 2.1. Below P_{i} is the indicator of i being a k-peaki], i.e.

$$
P_{i}:= \begin{cases}1, & i \text { is a k-peak } \\ 0, & \text { otherwise }\end{cases}
$$

In particular,

$$
P=\sum_{i=1}^{n} P_{i}
$$

We are willing to compute

$$
\operatorname{Var}(P)=\operatorname{Var}\left(\sum_{i=1}^{n} P_{i}\right)=\mathbb{E}\left[\left(\sum_{i=1}^{n} P_{i}\right)^{2}\right]-\left(\mathbb{E}\left[\sum_{i=1}^{n} P_{i}\right]\right)^{2}
$$

Recall from Cai (2015) that

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i=1}^{n} P_{i}\right]=\mathbb{E}[P]=\frac{1}{2} \mathbb{E}\left[\mathrm{zs}_{k}\right]=\frac{n-k+2}{3} \tag{2}
\end{equation*}
$$

Let us next analyze

$$
\mathbb{E}\left[\left(\sum_{i=1}^{n} P_{i}\right)^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[P_{i}^{2}\right]+2 \sum_{i<j} \mathbb{E}\left[P_{i} P_{j}\right]
$$

Denoting the probability that i is a k-peak by $p_{n, k}(i)$ and the probability that both i, j are k-peaks by $p_{n, k}(i, j)$, we may rewrite this last equation as

$$
\mathbb{E}\left[\left(\sum_{i=1}^{n} P_{i}\right)^{2}\right]=\sum_{i=1}^{n} p_{n, k}(i)+2 \sum_{i<j} p_{n, k}(i, j)
$$

We already know from (2) that the first sum on the right-hand side is $\frac{n-k+2}{3}$. We are then left with calculating $p_{n, k}(i, j)$.

[^0]With the definition of k-peaks in mind, for given i and j, we can divide $[n] \backslash\{i\}$ and $[n] \backslash\{j\}$ into three sets according to the following partitions respectively. The first partition is with respect to i :

$$
\begin{aligned}
& A_{i}=\{\ell: 1 \leq \ell \leq i-k\} \\
& B_{i}=\{\ell: i-k+1 \leq \ell \leq i-1\} \\
& C_{i}=\{\ell: i+1 \leq \ell \leq n\}
\end{aligned}
$$

and the second partition is with respect to j :

$$
\begin{aligned}
A_{j} & =\{\ell: 1 \leq \ell \leq j-k\} \\
B_{j} & =\{\ell: j-k+1 \leq \ell \leq j-1\} \\
C_{j} & =\{\ell: j+1 \leq \ell \leq n\}
\end{aligned}
$$

Assuming without loss of generality that $i<j$, observe

$$
\begin{aligned}
& i<j \Longrightarrow A_{i} \subset A_{j} \\
& i<j \Longrightarrow C_{j} \subset C_{i}
\end{aligned}
$$

By Proposition 1.1, we observe that for i to be a k-peak, there should be at least one element from A_{i} between any element of C_{i} and i, and similarly for j to be a k-peak, there should be at least one element from A_{j} between any element of C_{j} and j. To ensure these two properties, we will place the elements accordingly.

Our procedure for placing the elements starts with placing $A_{i} \cup\{i\}$ in a row $a_{1} a_{2} \ldots a_{i-k+1}$ arbitrarily. Leaving the insertion of the elements in $A_{j} \backslash A_{i}$ to the end of the argument, we will next focus on placing the elements of C_{i} and C_{j}. Note that by the observation in previous paragraph, in order to have i and j as k-peaks, the two places next to i are not available for the elements in $C_{i} \backslash C_{j}$, and the four places next to i and j are not available for the elements in $C_{i} \cap C_{j}=C_{j}$.

Now, let us focus on the elements of $C_{i} \backslash C_{j}=\{i+1, \ldots, j\}$. There are $\left|A_{i} \cup\{i\}\right|=i-k+1$ elements that are placed in a row. Thus, we have $i-k+2$ vacant spots for the element $i-k+2$ to be inserted into the row $a_{1} a_{2} \ldots a_{i-k+1}$. Since the two places next to i are prohibited, we see that

$$
\mathbb{P}(\{i+1\} \text { does not prevent } i, j \text { being a } k \text {-peak })=\frac{i-k}{i-k+2}
$$

Now, we have $i+k+3$ vacant spots for the element $i+2$, and the two places next to i are prohibited, and so,

$$
\mathbb{P}(\{i+2\} \text { does not prevent } i, j \text { being a } k \text {-peak })=\frac{i-k+1}{i-k+3}
$$

Continuing in this manner, we see that when we arrive at j, which is the last element to be inserted in from the set $C_{i} \backslash C_{j}$, we have $i-k+(j-i+1)=j-k+1$ many vacant places, and the two places next to i are prohibited, and then

$$
\mathbb{P}(\{j\} \text { does not prevent } i, j \text { being a } k \text {-peak })=\frac{j-k-1}{j-k+1}
$$

More generally, for $t=1, \ldots, j-i$, we have

$$
\mathbb{P}(\{i+t\} \text { does not prevent } i, j \text { being a } k \text {-peak })=\frac{i-k+t-1}{i-k+t+1}
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left(C_{i} \backslash C_{j} \text { does not prevent } i, j \text { being a } k \text {-peak }\right) & =\mathbb{P}\left(\bigcap_{t=1}^{j-i}\{i+t\} \text { does not prevent } i, j \text { being a } k \text {-peak }\right) \\
& =\prod_{t=1}^{j-i} \frac{i-k+t-1}{i-k+t+1} \\
& =\frac{(i-k)(i-k+1)}{(j-k)(j-k+1)} .
\end{aligned}
$$

Now, let us focus on the elements of $C_{i} \cap C_{j}=C_{j}=\{j+1, \ldots, n\}$. Recall that there are four prohibited places for these elements to be inserted. We have $j-k+2$ many vacant places to insert $j+1$ into but four of these are prohibited. Thus,

$$
\mathbb{P}(\{j+1\} \text { does not prevent } i, j \text { being a } k \text {-peak })=\frac{j-k-2}{j-k+2}
$$

Similar to the analysis in $C_{i} \backslash C_{j}$, continuing in this manner, we have $n=j+(n-j)$, and in the end we will have $j-k+(n-j+1)=n-k+1$ many vacant places to insert n, and four of these are prohibited. So,

$$
\mathbb{P}(n \text { does not prevent } i, j \text { being a } k \text {-peak })=\frac{n-k-3}{n-k+1} .
$$

We may generalize this to obtain

$$
\mathbb{P}(\{j+t\} \text { does not prevent } i, j \text { being a } k \text {-peak })=\frac{j-k+t-3}{j-k+t+1}
$$

for $t=1, \ldots, n-j$. We then obtain

$$
\begin{aligned}
\mathbb{P}\left(C_{i} \cap C_{j} \text { does not prevent } i, j \text { being a } k \text {-peak }\right) & =\mathbb{P}\left(\bigcap_{t=1}^{n-j}\{j+t\} \text { does not prevent } i, j \text { being a } k \text {-peak }\right) \\
& =\prod_{t=1}^{n-j} \frac{j-k+t-3}{j-k+t+1} \\
& =\frac{(j-k-2)(j-k-1)(j-k)(j-k+1)}{(n-k-2)(n-k-1)(n-k)(n-k+1)} .
\end{aligned}
$$

Note that we can multiply the probabilities (here, and above in the case of $C_{i} \backslash C_{j}$), since in essence what we are doing is conditioning on the event that the previous added elements do not prevent i, j being a k-peak. Now, clearly, the elements of $A_{j} \backslash A_{i}$ are in $B_{i} \cup C_{i}$. Since the elements that are in C_{i} have been inserted, we will then be done once we insert the elements of B_{i} and B_{j}. But the elements in the sets B_{i} and B_{j} have no effect on i and j being a k-peak (once the elements from C_{i} and C_{j} are placed), and so we may insert them in any place. Thus, overall, we have

$$
\begin{aligned}
p_{n, k}(i, j)= & \mathbb{P}\left(\text { the set } C_{i} \cup C_{j} \text { does not prevent } i, j \text { being a } k \text {-peak }\right) \\
= & \mathbb{P}\left(C_{i} \backslash C_{j} \text { does not prevent } i, j \text { being a } k \text {-peak }\right) \\
& \times \mathbb{P}\left(C_{i} \cap C_{j} \text { does not prevent } i, j \text { being a } k \text {-peak }\right) \\
= & \frac{(i-k)(i-k+1)}{(j-k)(j-k+1)} \frac{(j-k-2)(j-k-1)(j-k)(j-k+1)}{(n-k-2)(n-k-1)(n-k)(n-k+1)} \\
= & \frac{(i-k)(i-k+1)(j-k-2)(j-k-1)}{(n-k-2)(n-k-1)(n-k)(n-k+1)} .
\end{aligned}
$$

These add up to

$$
\begin{aligned}
\sum_{i<j} p_{n, k}(i, j) & =\sum_{i=k+1}^{n} \sum_{j=i+1}^{n} \frac{(i-k)(i-k+1)(j-k-2)(j-k-1)}{(n-k-2)(n-k-1)(n-k)(n-k+1)} \\
& =\frac{1}{90}(5 k-5 n+3)(k-n-2)
\end{aligned}
$$

where the sum is computed fairly easily noting that essentially we are summing the consecutive integers and squares of consecutive integers. Therefore we obtain

$$
\begin{aligned}
\mathbb{E}\left[\left(\sum_{i=1}^{n} P_{i}\right)^{2}\right] & =\sum_{i=1}^{n} p_{n, k}(i)+2 \sum_{i<j} p_{n, k}(i, j)=\frac{n-k+2}{3}+\frac{1}{45}(5 k-5 n+3)(k-n-2) \\
& =\frac{n-k+2}{3}\left(1+\frac{1}{15}(5 n-5 k-3)\right)=\frac{1}{45}(n-k+2)(5 n-5 k+12)
\end{aligned}
$$

Using this we arrive at

$$
\begin{aligned}
\operatorname{Var}(P) & =\mathbb{E}\left[\left(\sum_{i=1}^{n} P_{i}\right)^{2}\right]-\left(\mathbb{E}\left[\sum_{i=1}^{n} P_{i}\right]\right)^{2} \\
& =\frac{1}{45}(n-k+2)(5 n-5 k+12)-\left(\frac{n-k+2}{3}\right)^{2}=\frac{2(n-k)+4}{45}
\end{aligned}
$$

as asserted in Theorem 2.1.

3 A Central Limit theorem

In this section, we will prove the following central limit theorem.
Theorem 3.1 Let k be a fixed positive integer. Then the length of the longest k-alternating subsequence $\operatorname{as}_{n, k}$ of a uniformly random permutation satisfies a central limit theorem,

$$
\frac{\operatorname{as}_{n, k}-\mathbb{E}\left[\operatorname{as}_{n, k}\right]}{\sqrt{\operatorname{Var}\left(\operatorname{as}_{n, k}\right)}} \longrightarrow_{d} \mathcal{G}
$$

where \mathcal{G} is the standard normal distribution.
The proof involves a suitable truncation argument that allows us to reduce the problem to proving a central limit theorem for sums of locally dependent random variables for which a theory is already available. Since the length of the longest k alternating sequence differs from twice the number of k peaks by at most 1 , we may focus on the number of peaks. For any i, let P_{i} be the random variable that is 1 if the value i is a k-peak and zero otherwise as before. Also recall $P=P_{1}+\cdots+P_{n}$. We know that $P_{i}=1$ precisely when

- Scanning to the right of the value i, we encounter an element in $[i-k]$ before we encounter an element in $[i+1, n]$. It is permitted that we do not encounter an element from $[i+1, n]$ at all.
- Scanning to the left of the value i, we encounter an element in $[i-k]$ before we encounter an element in $[i+1, n]$. It is permitted that we do not encounter an element from $[i+1, n]$ at all.

Our approach to getting a central limit theorem is to define a suitable truncation that can be computed using local data. There are a number of theorems that establish central limit behaviour for variables with only local correlations and this approach has been employed in a number of situations.

Note that the condition on $P_{i}=1$ can be restated as

- There is an index $j>\sigma^{-1}(i)$ such that $i-k \geq \sigma(j)$ and such that

$$
i=\max _{s \in\left[\sigma^{-1}(i), j\right]} \sigma(s), \quad \sigma(j)=\min _{s \in\left[\sigma^{-1}(i), j\right]} \sigma(s)
$$

- There is an index $j<\sigma^{-1}(i)$ such that $i-k \geq \sigma(j)$ and such that

$$
i=\max _{s \in\left[j, \sigma^{-1}(i)\right]} \sigma(s), \quad \sigma(j)=\min _{s \in\left[j, \sigma^{-1}(i)\right]} \sigma(s)
$$

Note that we might need to scan far to the left and right in order to determine whether a value is a k-peak or not and thus we will have long range dependence. We will show that ignoring long range interactions does not change the statistic very much.

Fix a number m that we will specify later. Let $Y_{i}=1$ if we can determine that i is a k-peak by only looking at m positions to the left and right of i. Precisely, let $Y_{i}=1$ if

- There is an index $j \in\left[\sigma^{-1}(i), \sigma^{-1}(i)+m\right]$ such that $i-k \geq \sigma(j)$ and such that

$$
i=\max _{s \in\left[\sigma^{-1}(i), j\right]} \sigma(s), \quad \sigma(j)=\min _{s \in\left[\sigma^{-1}(i), j\right]} \sigma(s)
$$

- There is an index $j \in\left[\sigma^{-1}(i)-m, \sigma^{-1}(i)\right]$ such that $i-k \geq \sigma(j)$ and such that

$$
i=\max _{s \in\left[j, \sigma^{-1}(i)\right]} \sigma(s), \quad \sigma(j)=\min _{s \in\left[j, \sigma^{-1}(i)\right]} \sigma(s)
$$

If $Y_{i}=1$, we call it a local k-peak (suppressing the reference to m). Note that any local k-peak is a k-peak and thus, $Y_{i} \leq P_{i}$. We should next understand the case where $Y_{i}=0$ and $P_{i}=1$. Note that if $i \leq k$, then $P_{i}=Y_{i}=0$.

If $\sigma^{-1}(i) \in[m+1]$, there is no issue when scanning to the left. However, if we scan to the right and this event happens, then the m indices to the right should have values in $[i-k+1, i-1]$. The probability of this is at most $\left(\frac{k-1}{n-1}\right)^{m}$. Similarly, the probability of this event when $\sigma^{-1}(i) \in[n-m, n]$ is at most $\left(\frac{k-1}{n-1}\right)^{m}$.

If $\sigma^{-1}(i) \in[m+2, n-m-2]$, the event can only happen if the $2 m$ positions, m to the left and m to the right take values in $[i-k-1, i-1]$ and the probability of this is at most $\left(\frac{k-1}{n-1}\right)^{2 m}$.

Putting these together, recalling $Y_{i} \leq P_{i}$, and denoting the total variation distance by $d_{T V}$, we see that

$$
\begin{aligned}
d_{T V}\left(P_{i}, Y_{i}\right) & =\frac{1}{2} \sum_{j=0}^{1}\left|\mathbb{P}\left(P_{i}=j\right)-\mathbb{P}\left(Y_{i}=j\right)\right| \\
& =\frac{1}{2}\left(\mathbb{P}\left(Y_{i}=0\right)-\mathbb{P}\left(P_{i}=0\right)+\mathbb{P}\left[P_{i}=1\right]-\mathbb{P}\left(Y_{i}=1\right)\right) \\
& =\frac{1}{2}\left(2\left(\mathbb{P}\left(P_{i}=1\right)-\mathbb{P}\left(Y_{i}=1\right)\right)\right) \\
& =\mathbb{P}\left(Y_{i}=0, P_{i}=1\right) \\
& \leq \frac{2 m+2}{n}\left(\frac{k-1}{n-1}\right)^{m}+\frac{n-2 m-2}{n}\left(\frac{k-1}{n-1}\right)^{2 m}
\end{aligned}
$$

This implies

$$
\begin{align*}
d_{T V}\left(P_{1}+\ldots+P_{n}, Y_{1}+\ldots+Y_{n}\right) \leq & \frac{(2 m+2)(n)}{n}\left(\frac{k-1}{n-1}\right)^{m} \\
& +\frac{(n-2 m-2)(n)}{n}\left(\frac{k-1}{n-1}\right)^{2 m} \\
& \leq(2 m+2)\left(\frac{k}{n}\right)^{m}+n\left(\frac{k}{n}\right)^{2 m} \\
& \leq 3 n\left(\frac{k}{n}\right)^{m} \tag{3}
\end{align*}
$$

When k is fixed, taking $m=3$ suffices for our purpose. Note in particular that

$$
\begin{equation*}
\mathbb{P}\left(Y_{1}+\ldots+Y_{n}<P_{1}+\cdots+P_{n}\right)=o\left(\frac{1}{n}\right) \tag{4}
\end{equation*}
$$

when m is chosen appropriately.
Next we will show that $Y=Y_{1}+\cdots+Y_{n}$ satisfies a central limit theorem. Let $Z_{i}=1$ if the position i is a local k-peak and 0 otherwise. It is immediate that $Z=Z_{1}+\cdots+Z_{n}$ and Y have the same distribution. We let Z be such a random variable for which (P, Z) and (P, Y) have the same distribution. Further, note that the variables Z_{i} have the property that Z_{i} and Z_{j} are independent if $|i-j|>2 m$.

There are a number of related theorems that guarantee central limit behaviour for sums of locally dependent variables. A result due to Rinott Rinott (1994) will suffice for our purpose. The version we give is a slight variation of the one discussed in Raic (2003).

Theorem 3.2 Let U_{1}, \ldots, U_{n} be random variables such that U_{i} and U_{j} are independent when $|i-j|>2 m$. Setting $U=U_{1}+\cdots+U_{n}$, we have

$$
d_{K}\left(\frac{U-\mathbb{E}[U]}{\sqrt{\operatorname{Var}(U)}}, \mathcal{G}\right) \leq C(2 m+1) \sqrt{\frac{\sum_{i=1}^{n} \mathbb{E}\left|U_{i}\right|^{3}}{(\operatorname{Var}(U))^{3 / 2}}}
$$

where d_{K} is the Kolmogorov distance.
We will now apply this result for $Z=Z_{1}+\cdots+Z_{n}$. For this purpose we need a lower bound on the variance of the random variable Z. Recall that the variance of P is $\Omega(n)$ and let us show that the same holds for Z.

We have

$$
\begin{aligned}
\sqrt{\operatorname{Var}(Z)} & \geq \sqrt{\operatorname{Var}(P)}-\sqrt{\operatorname{Var}(P-Z)} \\
& \geq \sqrt{\operatorname{Var}(P)}-\sqrt{\mathbb{E}\left[(P-Z)^{2}\right]} \\
& \geq \sqrt{\operatorname{Var}(P)}-\sqrt{n} \sqrt{\mathbb{E}|P-Z|} \\
& \geq \sqrt{\operatorname{Var}(P)}-\sqrt{n} \sqrt{\mathbb{E}[|P-Z| \mid P \neq Z] \mathbb{P}(P \neq Z)} \\
& \geq \sqrt{\operatorname{Var}(P)}-\sqrt{n} \sqrt{n} \sqrt{o\left(\frac{1}{n}\right)} \\
& =\Omega(\sqrt{n})-o(\sqrt{n}) \\
& =\Omega(\sqrt{n}) .
\end{aligned}
$$

using (4)

Also, the Z_{i} are Bernoulli random variables and thus $\sum_{i=1}^{n} \mathbb{E}\left|Z_{i}\right|^{3}=O(n)$. This shows that

$$
d_{K}\left(\frac{Z-\mathbb{E}[Z]}{\sqrt{\operatorname{Var}(Z)}}, \mathcal{G}\right) \leq O\left(\frac{m}{n^{1 / 4}}\right)
$$

proving that when k is fixed, we have a central limit theorem,

$$
\frac{Z-\mathbb{E}[Z]}{\sqrt{\operatorname{Var}(Z)}} \longrightarrow_{d} \mathcal{G}
$$

Together with the total variation distance bound between P and Z, and noting that convergence in $d_{T V}$ implies convergence in d_{K}, we conclude that P satisfies a central limit theorem. Since $\mathrm{as}_{n, k}$ differs from $2 P$ by at most 1 , the same holds for it as well after proper centering and scaling.

Remark 3.1 The arguments given in this section carry over to certain cases where k grows with n. For example, considering the case $k=\gamma n$ for constant γ, the quantity $3 n\left(\frac{k}{n}\right)^{m}$ in (3) can be made $o(1 / n)$ by choosing m suitably. To see this, letting $\alpha>1$, suppose $\frac{1}{n^{\alpha}}=3 n\left(\frac{k}{n}\right)^{m}$. Since $\gamma=\frac{k}{n}$, we then have

$$
n^{-1-\alpha}=3(\gamma)^{m}
$$

and then $m=\frac{(-1-\alpha) \log (n)-\log (3))}{\log (\gamma)}$. We can choose $\alpha=2$ so that $m=\frac{-3 \log (n)}{\log (\gamma)}$. Note that $m>0$ since $\log \left(\frac{k}{n}\right)<$ 0.

Remark 3.2 In notation of the Introduction, if we were to prove a central limit theorem for $\mathrm{as}_{\mathrm{n}, \mathrm{x}}$, then that would be straightforward. This is thanks to the fact that it can be written as a random sum (where the number of summands is binomial) of locally dependent variables, and that central limit theorem for such cases are already available. See, for example, Islak (2016.

Acknowledgements

We would like to thank Mohan Ravichandran for helpful discussions, especially towards the the local k-peaks argument used in the proof of the central limit theorem. Third author is supported partially by BAP grant 20B06P

References

D. Armstrong. Enumerative combinatorics problem session. in Oberwolfach Report No, 122014.
T. W. Cai. Average length of the longest k-alternating subsequence. Journal of Combinatorial Theory, Series A, 134: 51-57, 2015.
C. Houdré and R. Restrepo. A probabilistic approach to the asymptotics of the length of the longest alternating subsequence. Electronic Journal of Combinatorics, 17, 2010.
U. Islak. Asymptotic results for random sums of dependent random variables. Statistics and Probability Letters, 109: 22-29, 2016.
U. Islak. Descent-inversion statistics in riffle shuffles. Turkish Journal of Mathematics, 42(2):502-514, 2018.
I. Pak and R. Pemantle. On the longest k-alternating subsequence. Electronic Journal of Combinatorics, 22(1), 2015.
M. Raic. Normal approximation by stein's method. In Proceedings of the 7th Young Statisticians Meeting, pages 71-97, 2003.
Y. Rinott. On normal approximation rates for certain sums of dependent random variables. Journal of Computational and Applied Mathematics, 55(2):135-143, 1994.
D. Romik. Local extrema in random permutations and the structure of longest alternating subsequences. Discrete Mathematics and Theoretical Computer Science, 2011.
R. Stanley. Longest alternating subsequences of permutations. Michigan Mathematical Journal, 57:675-687, 2008.

[^0]: ${ }^{(i)}$ Note that when we say i is a k-peak, we consider i to be an element in the image of the permutation, not an element of the domain of the permutation. If the position i is considered in domain of the permutation, we will be emphasizing it there.

