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An edge-colored graph is rainbow if no two edges of the graph have the same color. An edge-colored graph G
c is

called properly colored if every two adjacent edges of Gc receive distinct colors in G
c. A strongly edge-colored graph

is a proper edge-colored graph such that every path of length 3 is rainbow. We call an edge-colored graph G
c rainbow

vertex pair-pancyclic if any two vertices in G
c are contained in a rainbow cycle of length ℓ for each ℓ with 3 ≤ ℓ ≤ n.

In this paper, we show that every strongly edge-colored graph G
c of order n with minimum degree δ ≥ 2n

3
+ 1 is

rainbow vertex pair-pancyclicity.

Keywords: edge-coloring; strongly edge-colored graph; rainbow cycle; rainbow vertex pair-pancyclicity.

1 Introduction

In this paper, we only consider finite, undirected and simple graphs. Let G be a graph consisting of a

vertex set V (G) and an edge set E = E(G). We use d(v) to denote the number of edges incident with

vertex v in G and δ(G) = min{d(v) : v ∈ E}. An edge-coloring of G is a mapping c : E(G) → S,

where S is a set of colors. A graph G with an edge-coloring c is called an edge-colored graph, and

denoted by Gc. For any e ∈ E(G), e has color k if c(e) = k. For any subset E1 ⊆ E, c(E1) is the set

{c(e) : e ∈ E1}. We use dcG(v) (or briefly dc(v)) to denote the number of different colors on the edges

incident with vertex v in Gc and δc(G) = min{dc(v) : v ∈ V (Gc)}. An edge-colored graph Gc is called

properly colored if every two adjacent edges of Gc receive distinct colors in Gc. Edge-colored graph Gc

is rainbow if no two edges of Gc have the same color. A strongly edge-colored graph is a proper edge-

colored graph such that every path of length 3 is rainbow. It is clearly that d(v) = dc(v) for all v ∈ V (Gc)
in a strongly edge-colored graph Gc, or equivalently, for every vertex v in strongly edge-colored graph

Gc, the colors on the edges incident with v are pairwise distinct. An edge-colored graph Gc is called

rainbow Hamiltonian if Gc contains a rainbow Hamiltonian cycle and rainbow vertex(edge)-pancyclic if

every vertex (edge) in Gc is contained in a rainbow cycle of length l for each l with 3 ≤ l ≤ n. We call an

edge-colored graph Gc rainbow vertex pair-pancyclic if any two vertices in Gc are contained a rainbow

cycle of length l for each l with 3 ≤ l ≤ n. further, we call a cycle C l-cycle if the length of the cycle C
is l. For notation and terminology not defined here, we refer the reader to Bondy and Murty (2008).

∗Corresponding author: Fei Huang. Email: hf@zzu.edu.cn

ISSN 1365–8050 © 2023 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/2210.05867v3


2 Peixue Zhao, Fei Huang

The classical Dirac’s theorem states that every graph G is Hamiltonian if δ(G) ≥ n
2 . Inspired by this

famous theorem, Hendry (1990) show that every graph G of order n with minimum degree δ ≥ n+1
2 is

vertex-pancyclic. During the past few decades, the existence of cycles in graphs have been extensively

studied in the literatures. We recommend Abouelaoualim et al. (2010); Chen (2018); Chen and Li (2021,

2022); Chen et al. (2019); Czygrinow et al. (2021); Ehard and Mohr (2020); Fujita et al. (2019); Guo et al.

(2022); Kano and Li (2008); Li et al. (2022) for more results.

For edge-colored graphs, Lo (2014) proved the following asymptotic theorem about properly colored

cycles.

Theorem 1.1 (Lo (2014)) For any ε > 0, there exists an integer n0 such that every edge-colored graph

Gc with n vertices and δc(G) ≥ (23 + ε)n and n ≥ n0 contains a properly edge-colored cycle of length l
for all 3 ≤ l ≤ n, where δc(G) is the minimum number of distinct colors of edges incident with a vertex

in Gc.

Cheng et al. (2019) considered the existence of rainbow Hamiltonian cycles in strongly edge-colored

graph and proposed the following two conjectures.

Conjecture 1.2 (Cheng et al. (2019)) Every strongly edge-colored graph Gc with n vertices and degree

at least n+1
2 has a rainbow Hamiltonian cycle.

Conjecture 1.3 (Cheng et al. (2019)) Every strongly edge-colored graph Gc with n vertices and degree

at least n
2 has a rainbow Hamiltonian path.

To support the above two conjectures, they presented the following theorem.

Theorem 1.4 (Cheng et al. (2019)) Let Gc be a strongly edge-colored graph with minimum degree δ, if

δ ≥ 2|G|
3 , then Gc has a rainbow Hamiltonian cycle.

Wang and Qian (2021) showed that every strongly edge-colored graph Gc on n vertices is rainbow

vertex-pancyclic if δ ≥ 2n
3 . Li and Li (2022) further considered the rainbow edge-pancyclicity of strongly

edge-colored graphs and proposed the following theorem.

Theorem 1.5 (Li and Li (2022)) Let Gc be a strongly edge-colored graph on n vertices. If δ(Gc) ≥
2n+1

3 , then Gc is rainbow edge-pancyclic. Furthermore, for every edge e of Gc, one can find a rainbow

l-cycle containing e for each l with 3 ≤ l ≤ n in polynomial time.

In this paper, we consider the rainbow vertex pair-pancyclicity of strongly edge-colored graph. Our

main result is as follows.

Theorem 1.6 Let Gc be a strongly edge-colored graph with n vertices and minimum degree δ. If δ ≥
2n
3 + 1, then Gc is rainbow vertex pair-pancyclicity.

2 Proof of Theorem 1.6

First, we introduce some useful notations. Given a rainbow cycle C in graph Gc, a color s is called a

C-color (resp., C̃-color) if s ∈ c(C) (resp., s /∈ c(C)). Correspondingly, we call an edge e a C-color

edge (resp., C̃-color edge) if c(e) ∈ c(C) (resp., c(e) /∈ c(C)). Two adjacent vertices u and v are called

C-adjacent (resp., C̃-adjacent) if c(uv) ∈ c(C) (resp., c(uv) /∈ c(C)). For two disjoint adjacent subsets

V1 and V2 of V (G), let E(V1, V2) denote the set of edges between V1 and V2. We denote the subsets
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of E(V1, V2) consisting of the C-color edges (resp., C̃-color edges) by EC(V1, V2) (resp., E
C̃
(V1, V2)).

Similarly, for two subgraphs H1 and H2, we denote the set of C-color edges (resp., C̃-color edges)

between V (H1) and V (H2) by EC(H1, H2) (resp., E
C̃
(H1, H2)). For any two vertices vi and vj of

cycle C = v1v2 . . . vlv1, we identify the two subscripts i and j if i ≡ j (mod l). Let viC
+vj be the

path vivi+1...vj−1vj and viC
−vj the path vivi−1...vj+1vj , respectively. For any vertex v ∈ V (Gc), let

CN(v) be the set of colors used by the edges incident with v.

From the definition of strongly edge-coloring, we can easily get the following observation.

Obervation 2.1 Each cycle of length at most 5 in a strongly edge-colored graph is rainbow.

Proof of Theorem 1.6: Recall that the colors on the edges incident with v are pairwise distinct for each

vertex v of a strongly edge-colored graph. So we do not distinguish the colors of adjacent edges in the

following. If n ≤ 8, G is complete since δ ≥ 2n
3 + 1, and so the result clearly holds. Thus we suppose

that n ≥ 9. Let a and b be two arbitrary vertices of G. If a and b are adjacent, then a and b are contained

in a rainbow cycle of length l for each l with 3 ≤ l ≤ n from Theorem 1.5. So we consider that a and

b are not adjacent. Since δ ≥ 2n
3 + 1, we have that a and b are contained in a 4-cycle which is rainbow

from Observation 2.1. Suppose to the contrary that the result is not true. Then there is an integer l with

4 ≤ l ≤ n−1 such that there is a rainbow l-cycle containing a and b, but there is no rainbow (l+1)-cycle

containing both a and b. Let C := v1v2 . . . vlv1 be a rainbow l-cycle containing a and b.
Without loss of generality, we assume that c(vivi+1) = i for 1 ≤ i ≤ l. For 1 ≤ i ≤ l, let Ni be the set

of the vertices of C which are adjacent to vi, that is, Ni = N(vi) ∩ V (C). We then proof the following

claim.

Claim 1 l ≥ n+12
3 . In particular, l ≥ 7 when n ≥ 9.

Proof. Since Gc is strongly edge-colored, for any vj ∈ N1, the color j does not occur in CN(v1). So the

number of C-colors not contained in CN(v1) is at least |N1| − 1, and therefore, the number of C-colors

contained in CN(v1) is at most l − (|N1| − 1). Since 1 and l are C-colors in CN(v1), we have that the

number of C-colors contained in E(v1, V (G) \ V (C)) is at most l − (|N1| − 1) − 2 = l − |N1| − 1.

Hence, we have |EC(v1, V (G) \ V (C))| ≤ l − |N1| − 1. Since |E(v1, V (G) \ V (C))| ≥ δ − |N1|, we

have that

|E
C̃
(v1, V (G) \ V (C))| = |E(v1, V (G) \ V (C))| − |EC(v1, V (G) \ V (C))|

≥ (δ − |N1|)− (l − |N1| − 1)

= δ − l + 1.

Similarly, we can also deduce that |E
C̃
(vi, V (G) \ V (C))| ≥ δ − l + 1 for all 1 ≤ i ≤ l. For any two

vertices vi and vi+1 with 1 ≤ i ≤ l, if there exists a vertex w ∈ V (G) \ V (C) such that both viw and

vi+1w are C̃-color edges, then both a and b are contained in a rainbow (l+1)-cycle C′ := viwvi+1C
+vi,

a contradiction. Thus, for any common neighbor w ∈ V (G) \ V (C) of vi and vi+1, either viw or vi+1w

is not a C̃-color edge. Then we have that |E
C̃
(vi, w)| + |E

C̃
(vi+1, w)| ≤ 1. Therefore, we have

n ≥ |E
C̃
(vi, V (G) \ V (C))| + |E

C̃
(vi+1, V (G) \ V (C))| + l ≥ 2(δ − l + 1) + l = 2δ − l + 2.

Hence,

l ≥ 2δ − n+ 2 ≥ 2 · (
2n

3
+ 1)− n+ 2 =

n+ 12

3
.
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This completes the claim. �

Let H = Kk be the maximal rainbow complete graph in Gc[V (G) \ V (C)] such that every edge in

H is C̃-colored, and let R = Gc[V (G) − (V (C) ∪ V (H))]. It is clearly that for any w ∈ V (H), if

there is a vertex vi ∈ V (C) such that viw is a C̃-color edge, then c(viw) /∈ c(H) since Gc is a strongly

edge-colored graph.

For two C̃-color edges viw1 and vjw2 with w1, w2 ∈ V (H) and 1 ≤ i < j ≤ l, if w1 = w2 and

j − i = 1, we say viw1 and vjw2 are forbidden pair of type 1; if w1 6= w2, both a and b are contained in

viC
−vj , and 2 ≤ j − i ≤ k, we say viw1 and vjw2 are forbidden pair of type 2. Clearly, if E

C̃
(C,H)

has a forbidden pair of type 1, then there exists a rainbow (l + 1)-cycle C′ := viw1vjC
+vi containing

both a and b, and if E
C̃
(C,H) has a forbidden pair of type 2, then there exist a rainbow (l + 1)-cycle

C′ := viw1Hw2vjC
+vi containing both a and b, where w1Hw2 is a path of length |E(viC

+vj)| − 1
with endpoints w1 and w2 in H .

Claim 2 k ≥ 3.

Proof. For each w ∈ V (H), let

s̃w = |E
C̃
(w,C)|, sw = |EC(w,C)|,

t̃w = |E
C̃
(w,R)|, tw = |EC(w,R)|.

We have

s̃w + sw + t̃w + tw + (k − 1) ≥ δ. (1)

If there is an integer i with 1 ≤ i ≤ l such that viw ∈ E(Gc), then the colors i − 1 and i can not appear

in CN(w). Thus the number of C-colors not contained in CN(w) is at least s̃w + sw, which implies that

sw + tw ≤ l− (s̃w + sw),

and so, we have

s̃w + 2sw + tw ≤ l. (2)

Let vi1 , vi2 , ..., vis̃w be the vertices on C which are C̃-adjacent to w. Without loss of generality, we

suppose that 1 ≤ i1 < i2 < ... < is̃w ≤ l. Then ij+1 − ij ≥ 2 for each 1 ≤ j ≤ s̃w − 1 and

is̃w − i1 ≤ l − 2. Let I = {i1 − 1, i1, i2 − 1, i2, ..., is̃w − 1, is̃w}. Clearly, we have |I| = 2s̃w and

I ∩ CN(w) = φ. Thus, we can deduce that

2s̃w + sw + tw = |I|+ sw + tw ≤ l. (3)

Since |V (R)| = n− l− k, we have tw + t̃w ≤ n− l− k. Together with inequalities (2) and (3), we have

3s̃w + 3sw + 3tw + t̃w ≤ l + l + n− l − k = n+ l − k.

Let

S̃ =
∑

w∈V (H)

s̃w, S =
∑

w∈V (H)

sw, T̃ =
∑

w∈V (H)

t̃w, T =
∑

w∈V (H)

tw.

Then,

3S̃ + 3S + 3T + T̃ ≤ k(n+ l − k). (4)
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Since k is maximal, each vertex of R has at most k− 1 number of C̃-color edges to H , which implies that

T̃ =
∑

w∈V (H)

t̃w ≤ (k − 1)(n− l − k). (5)

Recall that w ∈ V (H). By (1) and the arbitrariness of w, we have

kδ ≤
∑

w∈V (H)

(s̃w + sw + t̃w + tw + (k − 1))

= S̃ + S + T̃ + T + k(k − 1).

(6)

Combining inequalities (4), (5) and (6), we can get the following inequality

3kδ ≤ 3S̃ + 3S + 3T + 3T̃ + 3k(k − 1)

≤ k(n+ l − k) + 2(k − 1)(n− l − k) + 3k(k − 1)

≤ n(3k − 2) + l(2− k)− k.

If k = 1, then l > n, a contradiction. If k = 2, then δ ≤ 2n−1
3 , again a contradiction. So we have k ≥ 3.

Claim 2 follows. �

Since H is a rainbow complete graph, we can deduce that

S + T ≤ l. (7)

Claim 3 S̃ ≥ l + 1.

Proof. Suppose, by way of contradiction, that S̃ ≤ l. Combining with inequality (6), we can get that

kδ ≤ S̃ + S + T̃ + T + k(k − 1) ≤ l + l + (k − 1)(n− l − k) + k(k − 1),

which implies that k(n − l − δ) ≥ n − 3l. Since δ ≥ 2n
3 + 1 and l ≥ n+12

3 from Claim 1, we have

n− l− δ ≤ 0. Thus we have 3(n− l− δ) ≥ k(n− l− δ) ≥ n− 3l from Claim 2, and therefore δ ≤ 2n
3 ,

a contradiction. Claim 3 follows. �

Without loss of generality, we suppose that a = v1 and b = vm, where 2 ≤ m ≤ l − 1, and let

P 1 = aC+b. Then we design an algorithm to generate a sequence of disjoint sub-paths P 1
1 , P

1
2 , ..., P

1
h1

of C respect to P 1 and H .
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Algorithm AI

Input: a strongly edge-colored graph Gc, a rainbow cycle C = v1v2 . . . vlv1, a path P 1 =
v1v2...vm and a rainbow complete subgraph H = Kk of Gc − V (C).
Output: a sequence of disjoint paths P 1

1 , P
1
2 , ..., P

1
h1

such that P 1
i is a subgraph of C.

1: Set i = 1
2: While V (P 1) 6= φ do

If E
C̃
(P 1, H) = φ

stop

Else Set d be the smallest subscript such that E
C̃
(vd, H) 6= φ

If d+ k ≥ m then

Set P 1
i = vdvd+1...vm

stop

Else If |E
C̃
(vd, H)| ≥ 2 then

Set P 1
i = vdvd+1...vd+k

If |E
C̃
(vd, H)| = 1 then

Set P 1
i = vdvd+1...vd+k+1

Set P 1 = P 1 \ P 1
i

Set i = i+ 1
3: return P 1

1 , P
1
2 , ..., P

1
h1

Claim 4 |E
C̃
(P 1

i , H)| ≤ |V (P 1
i )| − 1 for any 1 ≤ i ≤ h1 − 1, |E

C̃
(P 1

h1
, H)| ≤ k if |V (P 1

h1
)| ∈ {1, 2},

and |E
C̃
(P 1

h1
, H)| ≤ k + 1 if 3 ≤ |V (P 1

h1
)| ≤ k + 1.

Proof. For 1 ≤ i ≤ h1 − 1, we distinguish the following two cases.

Case 1. |E
C̃
(vd, H)| ≥ 2. Then we have P 1

i = vdvd+1...vd+k. Let w1 and w2 be two vertices in H such

that vdw1, vdw2 ∈ E
C̃
(vd, H). Since there exist no forbidden pairs of type 1 for any vertex w ∈ V (H),

then we have |E
C̃
(vd, H)| + |E

C̃
(vd+1, H)| ≤ k. For any j with d + 2 ≤ j ≤ d + k, if w1 and vj

are C̃-adjacent, then vjw1 and vdw2 form a forbidden pair of type 2; if w2 and vj are C̃-adjacent, then

vjw2 and vdw1 form a forbidden pair of type 2; if vj and w are C̃-adjacent for some w with w 6= w1 and

w 6= w2, then vjw and vdw1 form a forbidden pair of type 2. Therefore, we have |E
C̃
(vj , H)| = 0. Thus,

|E
C̃
(P 1

i , H)| =

d+k∑

j=d

|E
C̃
(vj , H)|

= |E
C̃
(vd, H)|+ |E

C̃
(vd+1, H)|

≤ k

= |V (P 1
i )| − 1.

Case 2. |E
C̃
(vd, H)| = 1. Then we have P 1

i = vdvd+1...vd+k+1. Let w1 be a vertex in H such that

vdw1 ∈ E
C̃
(vd, H). We further distinguish the following three cases.

Case 2.1. |E
C̃
(vd+1, H)| = 0. For any w ∈ V (H) \ {w1}, we have that vj and w cannot be C̃-adjacent

for any d+ 2 ≤ j ≤ d+ k + 1 since otherwise vjw and vdw1 form a forbidden pair of type 2. Thus, we
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have |E
C̃
(vj , H)| ≤ 1 and

∑d+k+1
j=d+2 |EC̃

(vj , H)| ≤ k − 1. Therefore,

|E
C̃
(P 1

i , H)| =

d+k+1∑

j=d

|E
C̃
(vj , H)|

= |E
C̃
(vd, H)|+ |E

C̃
(vd+1, H)|+

d+k+1∑

j=d+2

|E
C̃
(vj , H)|

≤ 1 + 0 + (k − 1)

= k

≤ |V (P 1
i )| − 1.

Case 2.2. |E
C̃
(vd+1, H)| = 1. Let w2 be a vertex in H such that vd+1w2 ∈ E

C̃
(vd, H). Clearly,

w1 6= w2. If vd+2 and w2 are C̃-adjacent, we have that vd+2w2 and vdw1 form a forbidden pair of type

2, a contradiction. If vd+2 and w are C̃-adjacent for some w ∈ V (H) with w 6= w1 and w 6= w2,

then vd+2w and vdw1 form a forbidden pair of type 2, again a contradiction. So, |E
C̃
(vd+2, H)| ≤ 1.

For any j with d + 3 ≤ j ≤ d + k + 1, if w1 and vj are C̃-adjacent, then vjw1 and vd+1w2 form a

forbidden pair of type 2; if w2 and vj are C̃-adjacent, then vjw2 and vdw1 form a forbidden pair of type

2; if vj and w are C̃-adjacent for some w ∈ V (H) with w 6= w1 and w 6= w2, then vjw and vdw1 form

a forbidden pair of type 2. We obtain a contradiction in the above three cases, and therefore, we have∑d+k+1
j=d+3 |EC̃

(vj , H)| = 0. Therefore,

|E
C̃
(P 1

i , H)| =

d+k+1∑

j=d

|E
C̃
(vj , H)|

= |E
C̃
(vd, H)|+ |E

C̃
(vd+1, H)|+ |E

C̃
(vd+2, H)|+

d+k+1∑

j=d+3

|E
C̃
(vj , H)|

≤ 1 + 1 + 1 + 0

≤ k

≤ |V (P 1
i )| − 1.

Case 2.3. |E
C̃
(vd+1, H)| ≥ 2. Let Q1

i = P 1
i \ {vd} = vd+1vd+2...vd+k+1. Similar to the discussion

of Case 1, we have that |E
C̃
(Q1

i , H)| ≤ |V (Q1
i )| − 1 = (k + 1) − 1 = k. Thus, |E

C̃
(P 1

i , H)| =
|E

C̃
(vd, H)|+ |E

C̃
(Q1

i , H)| ≤ 1 + k = |V (P 1
i )| − 1.

Then we analysis the value of |E
C̃
(P 1

h1
, H)|. If |V (P 1

h1
)| = 1, the inequality |E

C̃
(P 1

h1
, H)| ≤ k

clearly holds. If |V (P 1
h1
)| = 2, that is, P 1

h1
= vdvd+1, we have |E

C̃
(vd, H)| + |E

C̃
(vd+1, H)| ≤ k

since vd and vd+1 are adjacent. Therefore, |E
C̃
(P 1

h1
, H)| = E

C̃
(vd, H)| + |E

C̃
(vd+1, H)| ≤ k. If

3 ≤ |V (P 1
h1
)| ≤ k + 1, we have |E

C̃
(P 1

h1
, H)| ≤ k when |E

C̃
(vd, H)| ≥ 2 by the similar analysis of

the above Case 1 (taking m as d+ k), and |E
C̃
(P 1

h1
, H)| ≤ k + 1 when |E

C̃
(vd, H)| = 1 by the similar

analysis of the above Case 2 (taking m as d+ k + 1). The proof is thus completed. �
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Let P 2 = aC−b. Then we design another algorithm to generate a sequence of disjoint sub-paths

P 2
1 , P

2
2 , ..., P

2
h2

of C respect to P 2 and H in the following.

Algorithm AII

Input: a strongly edge-colored graph G, a rainbow cycle C = v1v2 . . . vlv1, P 2 = aC−b =
vl+1vlvl−1...vm and a rainbow complete subgraph H = Kk of Gc − V (C).
Output: a sequence of disjoint paths P 2

1 , P
2
2 , ..., P

2
h2

such that P 2
i is a subgraph of C.

1: Set i = 1
2: While V (P 2) 6= φ do

If E
C̃
(P 2, H) = φ

stop

Else Set d be the biggest subscript for which E
C̃
(vd, H) 6= φ

If d− k ≤ m then

Set P 2
i = vdvd−1...vm

stop

Else If |E
C̃
(vd, H)| ≥ 2 then

Set P 2
i = vdvd−1...vd−k

If |E
C̃
(vd, H)| = 1 then

Set P 2
i = vdvd−1...vd−k−1

Set P 2 = P 2 \ P 2
i

Set i = i+ 1
3: return P 2

1 , P
2
2 , ..., P

2
h2

Similar to Claim 4, we can get the following Claim.

Claim 5 |E
C̃
(P 2

i , H)| ≤ |V (P 2
i )| − 1 for all 1 ≤ i ≤ h2 − 1, |E

C̃
(P 2

h2
, H)| ≤ k if |V (P 2

h2
)| ∈ {1, 2}

and |E
C̃
(P 2

h2
, H)| ≤ k + 1 if 3 ≤ |V (P 2

h2
)| ≤ k + 1.

According to the above claims, we have

|E
C̃
(C,H)| = |E

C̃
(aC+b,H)|+ |E

C̃
(aC−b,H)| − |E

C̃
(a,H)| − |E

C̃
(b,H)|

≤

h1−1∑

i=1

|V (P 1
i )| − (h1 − 1) + |E

C̃
(P 1

h1
, H)|

+

h2−1∑

i=1

|V (P 2
i )| − (h2 − 1) + |E

C̃
(P 2

h2
, H)|

− |E
C̃
(a,H)| − |E

C̃
(b,H)|

≤ [l − |V (P 1
h1
)| − |V (P 2

h2
)|+ 1]− (h1 + h2) + 2

+ |E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(a,H)| − |E

C̃
(b,H)|

= l − (|V (P 1
h1
)|+ |V (P 2

h2
)|)− (h1 + h2) + 3

+ |E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(a,H)| − |E

C̃
(b,H)|.

(8)

Claim 6 S̃ ≤ l + 2k − 4.
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Proof. We show that S̃ ≤ max{2k+2, l+ k− 1, l+2k− 4}, which implies S̃ ≤ l+2k− 4 since l ≥ 7
from Claim 1 and k ≥ 3 from Claim 2.

Let h = h1 + h2. By symmetry, we suppose h1 ≥ h2 and |V (P 1
h1
)| ≥ |V (P 2

h2
)|. From Claim 3, we

have h ≥ 1. Then we proceed our proof by distinguishing the following four cases.

Case 1. h1 = 1 and h2 = 0. From Algorithm AII, we have E
C̃
(aC−b,H) = φ. Thus, E

C̃
(a,H) = φ and

E
C̃
(b,H) = φ. From Algorithm AI, we have |V (P 1

h1
)| ≥ 2. If |V (P 1

h1
)| = 2, let u be the vertex distinct

from b in C such that E
C̃
(u,H) 6= φ. Thus we have S̃ = |E

C̃
(u,H)| ≤ k < 2k + 2. If |V (P 1

h1
)| ≥ 3,

from Claim 4, we have S̃ = E
C̃
(P 1

h1
, H) ≤ k + 1 < 2k + 2. The claim follows.

Case 2. h1 ≥ 2 and h2 = 0. From Algorithm AI and AII, we have E
C̃
(a,H) = φ, E

C̃
(b,H) = φ

and |V (P 1
h1
)| ≥ 2. If |V (P 1

h1
)| = 2, since E

C̃
(b,H) = φ, we have |E

C̃
(P 1

h1
, H)| + |E

C̃
(P 2

h2
, H)| −

|E
C̃
(b,H)| = |E

C̃
(P 1

h1
, H)| ≤ k. Applying inequality (8), we have S̃ ≤ l−2−2+3+k+0 = l+k−1.

If |V (P 1
h1
)| ≥ 3, from Claim 4, we have |E

C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)|−|E

C̃
(b,H)| = |E

C̃
(P 1

h1
, H)| ≤

k + 1. Thus, by inequality (8), we have S̃ ≤ l − 3− 2 + 3 + k + 1 + 0 = l + k − 1. The claim follows.

Case 3. h1 = 1 and h2 = 1. By Claim 4 and 5, if |V (P 1
h1
)| ∈ {1, 2} and |V (P 2

h2
)| ∈ {1, 2}, we have

S̃ ≤ |E
C̃
(P 1

h1
, H)| + |E

C̃
(P 2

h2
, H)| ≤ 2k < 2k + 2. If |V (P 1

h1
)| ≥ 3 and |V (P 2

h2
)| ∈ {1, 2}, we have

S̃ ≤ |E
C̃
(P 1

h1
, H)| + |E

C̃
(P 2

h2
, H)| ≤ 2k + 1 < 2k + 2. If |V (P 1

h1
)| ≥ 3 and |V (P 2

h2
)| ≥ 3, we have

S̃ ≤ |E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| ≤ 2k + 2. The claim holds.

Case 4. h ≥ 3 and h2 ≥ 1. We consider the following six cases.

Case 4.1. |V (P 1
h1
)| = 1 and |V (P 2

h2
)| = 1. It is clearly that

V (P 1
h1
) = V (P 2

h2
) = {b}

and

|E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(b,H)| = |E

C̃
(b,H)| ≤ k.

By inequality (8), we have

S̃ = |E
C̃
(C,H)| ≤ l − 2− 3 + 3 + k + 0 = l + k − 2 < l+ k − 1.

Case 4.2. |V (P 1
h1
)| = 2 and |V (P 2

h2
)| = 1. It is clearly that V (P 2

h2
) = {b}. From Claim 4, we have

|E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(b,H)| = |E

C̃
(P 1

h1
, H)| ≤ k.

By inequality (8) and h ≥ 3, we have

S̃ ≤ l − 3− 3 + 3 + k + 0 = l + k − 3 < l + k − 1.

Case 4.3. |V (P 1
h1
)| ≥ 3 and |V (P 2

h2
)| = 1. It is clearly that V (P 2

h2
) = {b}. From Claim 4, we have

|E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(b,H)| = |E

C̃
(P 1

h1
, H)| ≤ k + 1.

By inequality (8) and h ≥ 3, we have

S̃ = |E
C̃
(C,H)| ≤ l − 4− 3 + 3 + k + 1 + 0 = l + k − 3 < l + k − 1.
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Case 4.4. |V (P 1
h1
)| = 2 and |V (P 2

h2
)| = 2. From Claim 4 and 5, we have

|E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(b,H)| ≤ 2k.

By inequality (8) and h ≥ 3, we have

S̃ = |E
C̃
(C,H)| ≤ l − 4− 3 + 3 + 2k + 0 = l + 2k − 4 < l + k − 1.

Case 4.5. |V (P 1
h1
)| ≥ 3 and |V (P 2

h2
)| = 2. It is clearly that

|E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(b,H)| ≤ k + k + 1 = 2k + 1.

By inequality (8) and h ≥ 3, we have

S̃ = |E
C̃
(C,H)| ≤ l− 5− 3 + 3 + 2k + 1 + 0 = l + 2k − 4.

Case 4.6. |V (P 1
h1
)| ≥ 3 and |V (P 2

h2
)| ≥ 3. From Claim 4 and 5, we have

|E
C̃
(P 1

h1
, H)|+ |E

C̃
(P 2

h2
, H)| − |E

C̃
(b,H)| ≤ k + 1 + k + 1 = 2k + 2.

By inequality (8), we have

S̃ = |E
C̃
(C,H)| ≤ l− 6− 3 + 3 + 2k + 2 + 0 = l + 2k − 4.

The Claim follows. �

From Claim 6, inequalities (5) (6) and (7), we can deduce that

kδ ≤ S̃ + S + T̃ + T + k(k − 1)

≤ l + 2k − 4 + l + (k − 1)(n− l − k) + k(k − 1)

= l + 2k − 4 + k(n− l) + 2l − n.

Therefore, we have k(n− l − δ + 2) ≥ n − 3l + 4. Since l ≥ n+12
3 from Claim 1 and δ ≥ 2n

3 + 1, we

have n− l − δ + 2 < 0. Then from Claim 2, we have

3(n− l − δ + 2) ≥ k(n− l − δ + 2) ≥ n− 3l + 4,

which implies that δ ≤ 2n+2
3 , a contradiction. We complete the proof of Theorem 1.6. �
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