Rainbow vertex pair-pancyclicity of strongly edge-colored graphs

Peixue Zhao
Fei Huang*
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, People's Republic of China

revisions $13^{\text {th }}$ Oct. 2022, $27^{\text {th }}$ Mar. 2023; accepted $1^{\text {st }}$ Apr. 2023.

Abstract

An edge-colored graph is rainbow if no two edges of the graph have the same color. An edge-colored graph G^{c} is called properly colored if every two adjacent edges of G^{c} receive distinct colors in G^{c}. A strongly edge-colored graph is a proper edge-colored graph such that every path of length 3 is rainbow. We call an edge-colored graph G^{c} rainbow vertex pair-pancyclic if any two vertices in G^{c} are contained in a rainbow cycle of length ℓ for each ℓ with $3 \leq \ell \leq n$. In this paper, we show that every strongly edge-colored graph G^{c} of order n with minimum degree $\delta \geq \frac{2 n}{3}+1$ is rainbow vertex pair-pancyclicity.

Keywords: edge-coloring; strongly edge-colored graph; rainbow cycle; rainbow vertex pair-pancyclicity.

1 Introduction

In this paper, we only consider finite, undirected and simple graphs. Let G be a graph consisting of a vertex set $V(G)$ and an edge set $E=E(G)$. We use $d(v)$ to denote the number of edges incident with vertex v in G and $\delta(G)=\min \{d(v): v \in E\}$. An edge-coloring of G is a mapping $c: E(G) \rightarrow S$, where S is a set of colors. A graph G with an edge-coloring c is called an edge-colored graph, and denoted by G^{c}. For any $e \in E(G)$, e has color k if $c(e)=k$. For any subset $E_{1} \subseteq E, c\left(E_{1}\right)$ is the set $\left\{c(e): e \in E_{1}\right\}$. We use $d_{G}^{c}(v)$ (or briefly $d^{c}(v)$) to denote the number of different colors on the edges incident with vertex v in G^{c} and $\delta^{c}(G)=\min \left\{d^{c}(v): v \in V\left(G^{c}\right)\right\}$. An edge-colored graph G^{c} is called properly colored if every two adjacent edges of G^{c} receive distinct colors in G^{c}. Edge-colored graph G^{c} is rainbow if no two edges of G^{c} have the same color. A strongly edge-colored graph is a proper edgecolored graph such that every path of length 3 is rainbow. It is clearly that $d(v)=d^{c}(v)$ for all $v \in V\left(G^{c}\right)$ in a strongly edge-colored graph G^{c}, or equivalently, for every vertex v in strongly edge-colored graph G^{c}, the colors on the edges incident with v are pairwise distinct. An edge-colored graph G^{c} is called rainbow Hamiltonian if G^{c} contains a rainbow Hamiltonian cycle and rainbow vertex(edge)-pancyclic if every vertex (edge) in G^{c} is contained in a rainbow cycle of length l for each l with $3 \leq l \leq n$. We call an edge-colored graph G^{c} rainbow vertex pair-pancyclic if any two vertices in G^{c} are contained a rainbow cycle of length l for each l with $3 \leq l \leq n$. further, we call a cycle $C l$-cycle if the length of the cycle C is l. For notation and terminology not defined here, we refer the reader to Bondy and Murty (2008).

[^0]The classical Dirac's theorem states that every graph G is Hamiltonian if $\delta(G) \geq \frac{n}{2}$. Inspired by this famous theorem, Hendry (1990) show that every graph G of order n with minimum degree $\delta \geq \frac{n+1}{2}$ is vertex-pancyclic. During the past few decades, the existence of cycles in graphs have been extensively studied in the literatures. We recommend Abouelaoualim et al. (2010); Chen (2018); Chen and Li (2021, 2022); Chen et al. (2019); Czygrinow et al. (2021); Ehard and Mohr (2020); Fujita et al. (2019); Guo et al. (2022); Kano and Li (2008); Li et al. (2022) for more results.

For edge-colored graphs, Lo (2014) proved the following asymptotic theorem about properly colored cycles.
Theorem $1.1(\mathbf{L o} \mathbf{(2 0 1 4)})$ For any $\varepsilon>0$, there exists an integer n_{0} such that every edge-colored graph G^{c} with n vertices and $\delta^{c}(G) \geq\left(\frac{2}{3}+\varepsilon\right) n$ and $n \geq n_{0}$ contains a properly edge-colored cycle of length l for all $3 \leq l \leq n$, where $\delta^{c}(G)$ is the minimum number of distinct colors of edges incident with a vertex in G^{c}.

Cheng et al. (2019) considered the existence of rainbow Hamiltonian cycles in strongly edge-colored graph and proposed the following two conjectures.

Conjecture 1.2 (Cheng et al. (2019)) Every strongly edge-colored graph G^{c} with n vertices and degree at least $\frac{n+1}{2}$ has a rainbow Hamiltonian cycle.
Conjecture 1.3 (Cheng et al. (2019)) Every strongly edge-colored graph G^{c} with n vertices and degree at least $\frac{n}{2}$ has a rainbow Hamiltonian path.

To support the above two conjectures, they presented the following theorem.
Theorem 1.4 (Cheng et al. (2019)) Let G^{c} be a strongly edge-colored graph with minimum degree δ, if $\delta \geq \frac{2|G|}{3}$, then G^{c} has a rainbow Hamiltonian cycle.

Wang and Qian (2021) showed that every strongly edge-colored graph G^{c} on n vertices is rainbow vertex-pancyclic if $\delta \geq \frac{2 n}{3}$. Li and Li (2022) further considered the rainbow edge-pancyclicity of strongly edge-colored graphs and proposed the following theorem.

Theorem 1.5 ($\mathbf{L i}$ and $\mathbf{L i} \mathbf{(2 0 2 2))}$ Let G^{c} be a strongly edge-colored graph on n vertices. If $\delta\left(G^{c}\right) \geq$ $\frac{2 n+1}{3}$, then G^{c} is rainbow edge-pancyclic. Furthermore, for every edge e of G^{c}, one can find a rainbow l-cycle containing e for each l with $3 \leq l \leq n$ in polynomial time.

In this paper, we consider the rainbow vertex pair-pancyclicity of strongly edge-colored graph. Our main result is as follows.

Theorem 1.6 Let G^{c} be a strongly edge-colored graph with n vertices and minimum degree δ. If $\delta \geq$ $\frac{2 n}{3}+1$, then G^{c} is rainbow vertex pair-pancyclicity.

2 Proof of Theorem 1.6

First, we introduce some useful notations. Given a rainbow cycle C in graph G^{c}, a color s is called a C-color (resp., \widetilde{C}-color) if $s \in c(C)$ (resp., $s \notin c(C)$). Correspondingly, we call an edge e a C-color edge (resp., \widetilde{C}-color edge) if $c(e) \in c(C)$ (resp., $c(e) \notin c(C)$). Two adjacent vertices u and v are called C-adjacent (resp., \widetilde{C}-adjacent) if $c(u v) \in c(C)$ (resp., $c(u v) \notin c(C)$). For two disjoint adjacent subsets V_{1} and V_{2} of $V(G)$, let $E\left(V_{1}, V_{2}\right)$ denote the set of edges between V_{1} and V_{2}. We denote the subsets
of $E\left(V_{1}, V_{2}\right)$ consisting of the C-color edges (resp., \widetilde{C}-color edges) by $E_{C}\left(V_{1}, V_{2}\right)$ (resp., $E_{\widetilde{C}}\left(V_{1}, V_{2}\right)$). Similarly, for two subgraphs H_{1} and H_{2}, we denote the set of C-color edges (resp., \widetilde{C}-color edges) between $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ by $E_{C}\left(H_{1}, H_{2}\right)$ (resp., $E_{\widetilde{C}}\left(H_{1}, H_{2}\right)$). For any two vertices v_{i} and v_{j} of cycle $C=v_{1} v_{2} \ldots v_{l} v_{1}$, we identify the two subscripts i and j if $i \equiv j(\bmod l)$. Let $v_{i} C^{+} v_{j}$ be the path $v_{i} v_{i+1} \ldots v_{j-1} v_{j}$ and $v_{i} C^{-} v_{j}$ the path $v_{i} v_{i-1} \ldots v_{j+1} v_{j}$, respectively. For any vertex $v \in V\left(G^{c}\right)$, let $C N(v)$ be the set of colors used by the edges incident with v.

From the definition of strongly edge-coloring, we can easily get the following observation.
Obervation 2.1 Each cycle of length at most 5 in a strongly edge-colored graph is rainbow.
Proof of Theorem 1.6: Recall that the colors on the edges incident with v are pairwise distinct for each vertex v of a strongly edge-colored graph. So we do not distinguish the colors of adjacent edges in the following. If $n \leq 8, G$ is complete since $\delta \geq \frac{2 n}{3}+1$, and so the result clearly holds. Thus we suppose that $n \geq 9$. Let a and b be two arbitrary vertices of G. If a and b are adjacent, then a and b are contained in a rainbow cycle of length l for each l with $3 \leq l \leq n$ from Theorem 1.5. So we consider that a and b are not adjacent. Since $\delta \geq \frac{2 n}{3}+1$, we have that a and b are contained in a 4-cycle which is rainbow from Observation 2.1. Suppose to the contrary that the result is not true. Then there is an integer l with $4 \leq l \leq n-1$ such that there is a rainbow l-cycle containing a and b, but there is no rainbow $(l+1)$-cycle containing both a and b. Let $C:=v_{1} v_{2} \ldots v_{l} v_{1}$ be a rainbow l-cycle containing a and b.

Without loss of generality, we assume that $c\left(v_{i} v_{i+1}\right)=i$ for $1 \leq i \leq l$. For $1 \leq i \leq l$, let N_{i} be the set of the vertices of C which are adjacent to v_{i}, that is, $N_{i}=N\left(v_{i}\right) \cap V(C)$. We then proof the following claim.
Claim $1 l \geq \frac{n+12}{3}$. In particular, $l \geq 7$ when $n \geq 9$.
Proof. Since G^{c} is strongly edge-colored, for any $v_{j} \in N_{1}$, the color j does not occur in $C N\left(v_{1}\right)$. So the number of C-colors not contained in $C N\left(v_{1}\right)$ is at least $\left|N_{1}\right|-1$, and therefore, the number of C-colors contained in $C N\left(v_{1}\right)$ is at most $l-\left(\left|N_{1}\right|-1\right)$. Since 1 and l are C-colors in $C N\left(v_{1}\right)$, we have that the number of C-colors contained in $E\left(v_{1}, V(G) \backslash V(C)\right)$ is at most $l-\left(\left|N_{1}\right|-1\right)-2=l-\left|N_{1}\right|-1$. Hence, we have $\left|E_{C}\left(v_{1}, V(G) \backslash V(C)\right)\right| \leq l-\left|N_{1}\right|-1$. Since $\left|E\left(v_{1}, V(G) \backslash V(C)\right)\right| \geq \delta-\left|N_{1}\right|$, we have that

$$
\begin{aligned}
\left|E_{\widetilde{C}}\left(v_{1}, V(G) \backslash V(C)\right)\right| & =\left|E\left(v_{1}, V(G) \backslash V(C)\right)\right|-\left|E_{C}\left(v_{1}, V(G) \backslash V(C)\right)\right| \\
& \geq\left(\delta-\left|N_{1}\right|\right)-\left(l-\left|N_{1}\right|-1\right) \\
& =\delta-l+1
\end{aligned}
$$

Similarly, we can also deduce that $\left|E_{\widetilde{C}}\left(v_{i}, V(G) \backslash V(C)\right)\right| \geq \delta-l+1$ for all $1 \leq i \leq l$. For any two vertices v_{i} and v_{i+1} with $1 \leq i \leq l$, if there exists a vertex $w \in V(G) \backslash V(C)$ such that both $v_{i} w$ and $v_{i+1} w$ are \widetilde{C}-color edges, then both a and b are contained in a rainbow $(l+1)$-cycle $C^{\prime}:=v_{i} w v_{i+1} C^{+} v_{i}$, a contradiction. Thus, for any common neighbor $w \in V(G) \backslash V(C)$ of v_{i} and v_{i+1}, either $v_{i} w$ or $v_{i+1} w$ is not a \widetilde{C}-color edge. Then we have that $\left|E_{\widetilde{C}}\left(v_{i}, w\right)\right|+\left|E_{\widetilde{C}}\left(v_{i+1}, w\right)\right| \leq 1$. Therefore, we have

$$
n \geq\left|E_{\widetilde{C}}\left(v_{i}, V(G) \backslash V(C)\right)\right|+\left|E_{\widetilde{C}}\left(v_{i+1}, V(G) \backslash V(C)\right)\right|+l \geq 2(\delta-l+1)+l=2 \delta-l+2
$$

Hence,

$$
l \geq 2 \delta-n+2 \geq 2 \cdot\left(\frac{2 n}{3}+1\right)-n+2=\frac{n+12}{3}
$$

This completes the claim.
Let $H=K_{k}$ be the maximal rainbow complete graph in $G^{c}[V(G) \backslash V(C)]$ such that every edge in H is \widetilde{C}-colored, and let $R=G^{c}[V(G)-(V(C) \cup V(H))]$. It is clearly that for any $w \in V(H)$, if there is a vertex $v_{i} \in V(C)$ such that $v_{i} w$ is a \widetilde{C}-color edge, then $c\left(v_{i} w\right) \notin c(H)$ since G^{c} is a strongly edge-colored graph.

For two \widetilde{C}-color edges $v_{i} w_{1}$ and $v_{j} w_{2}$ with $w_{1}, w_{2} \in V(H)$ and $1 \leq i<j \leq l$, if $w_{1}=w_{2}$ and $j-i=1$, we say $v_{i} w_{1}$ and $v_{j} w_{2}$ are forbidden pair of type 1 ; if $w_{1} \neq w_{2}$, both a and b are contained in $v_{i} C^{-} v_{j}$, and $2 \leq j-i \leq k$, we say $v_{i} w_{1}$ and $v_{j} w_{2}$ are forbidden pair of type 2 . Clearly, if $E_{\widetilde{C}}(C, H)$ has a forbidden pair of type 1 , then there exists a rainbow $(l+1)$-cycle $C^{\prime}:=v_{i} w_{1} v_{j} C^{+} v_{i}$ containing both a and b, and if $E_{\widetilde{C}}(C, H)$ has a forbidden pair of type 2 , then there exist a rainbow $(l+1)$-cycle $C^{\prime}:=v_{i} w_{1} H w_{2} v_{j} C^{+} v_{i}$ containing both a and b, where $w_{1} H w_{2}$ is a path of length $\left|E\left(v_{i} C^{+} v_{j}\right)\right|-1$ with endpoints w_{1} and w_{2} in H.

Claim $2 k \geq 3$.

Proof. For each $w \in V(H)$, let

$$
\begin{aligned}
\widetilde{s}_{w} & =\left|E_{\widetilde{C}}(w, C)\right|, s_{w}=\left|E_{C}(w, C)\right| \\
\widetilde{t}_{w} & =\left|E_{\widetilde{C}}(w, R)\right|, t_{w}=\left|E_{C}(w, R)\right| .
\end{aligned}
$$

We have

$$
\begin{equation*}
\widetilde{s}_{w}+s_{w}+\widetilde{t}_{w}+t_{w}+(k-1) \geq \delta . \tag{1}
\end{equation*}
$$

If there is an integer i with $1 \leq i \leq l$ such that $v_{i} w \in E\left(G^{c}\right)$, then the colors $i-1$ and i can not appear in $C N(w)$. Thus the number of C-colors not contained in $C N(w)$ is at least $\widetilde{s}_{w}+s_{w}$, which implies that

$$
s_{w}+t_{w} \leq l-\left(\widetilde{s}_{w}+s_{w}\right)
$$

and so, we have

$$
\begin{equation*}
\widetilde{s}_{w}+2 s_{w}+t_{w} \leq l \tag{2}
\end{equation*}
$$

Let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{\tilde{s}_{w}}}$ be the vertices on C which are \widetilde{C}-adjacent to w. Without loss of generality, we suppose that $1 \leq i_{1}<i_{2}<\ldots<{\widetilde{s}_{w}} \leq l$. Then $i_{j+1}-i_{j} \geq 2$ for each $1 \leq j \leq \widetilde{s}_{w}-1$ and $i_{\widetilde{s}_{w}}-i_{1} \leq l-2$. Let $I=\left\{i_{1}-1, i_{1}, i_{2}-1, i_{2}, \ldots, i_{\widetilde{s}_{w}}-1, i_{\widetilde{s}_{w}}\right\}$. Clearly, we have $|I|=2 \widetilde{s}_{w}$ and $I \cap C N(w)=\phi$. Thus, we can deduce that

$$
\begin{equation*}
2 \widetilde{s}_{w}+s_{w}+t_{w}=|I|+s_{w}+t_{w} \leq l \tag{3}
\end{equation*}
$$

Since $|V(R)|=n-l-k$, we have $t_{w}+\widetilde{t}_{w} \leq n-l-k$. Together with inequalities (2) and (3), we have

$$
3 \widetilde{s}_{w}+3 s_{w}+3 t_{w}+\widetilde{t}_{w} \leq l+l+n-l-k=n+l-k
$$

Let

$$
\widetilde{S}=\sum_{w \in V(H)} \widetilde{s}_{w}, S=\sum_{w \in V(H)} s_{w}, \widetilde{T}=\sum_{w \in V(H)} \widetilde{t}_{w}, T=\sum_{w \in V(H)} t_{w}
$$

Then,

$$
\begin{equation*}
3 \widetilde{S}+3 S+3 T+\widetilde{T} \leq k(n+l-k) \tag{4}
\end{equation*}
$$

Since k is maximal, each vertex of R has at most $k-1$ number of \widetilde{C}-color edges to H, which implies that

$$
\begin{equation*}
\widetilde{T}=\sum_{w \in V(H)} \tilde{t}_{w} \leq(k-1)(n-l-k) \tag{5}
\end{equation*}
$$

Recall that $w \in V(H)$. By (1) and the arbitrariness of w, we have

$$
\begin{align*}
k \delta & \leq \sum_{w \in V(H)}\left(\widetilde{s}_{w}+s_{w}+\widetilde{t}_{w}+t_{w}+(k-1)\right) \tag{6}\\
& =\widetilde{S}+S+\widetilde{T}+T+k(k-1)
\end{align*}
$$

Combining inequalities (4), (5) and (6), we can get the following inequality

$$
\begin{aligned}
3 k \delta & \leq 3 \widetilde{S}+3 S+3 T+3 \widetilde{T}+3 k(k-1) \\
& \leq k(n+l-k)+2(k-1)(n-l-k)+3 k(k-1) \\
& \leq n(3 k-2)+l(2-k)-k
\end{aligned}
$$

If $k=1$, then $l>n$, a contradiction. If $k=2$, then $\delta \leq \frac{2 n-1}{3}$, again a contradiction. So we have $k \geq 3$. Claim 2 follows.

Since H is a rainbow complete graph, we can deduce that

$$
\begin{equation*}
S+T \leq l \tag{7}
\end{equation*}
$$

Claim $3 \widetilde{S} \geq l+1$.
Proof. Suppose, by way of contradiction, that $\widetilde{S} \leq l$. Combining with inequality (6), we can get that

$$
k \delta \leq \widetilde{S}+S+\widetilde{T}+T+k(k-1) \leq l+l+(k-1)(n-l-k)+k(k-1)
$$

which implies that $k(n-l-\delta) \geq n-3 l$. Since $\delta \geq \frac{2 n}{3}+1$ and $l \geq \frac{n+12}{3}$ from Claim 1, we have $n-l-\delta \leq 0$. Thus we have $3(n-l-\delta) \geq k(n-l-\delta) \geq n-3 l$ from Claim 2, and therefore $\delta \leq \frac{2 n}{3}$, a contradiction. Claim 3 follows.

Without loss of generality, we suppose that $a=v_{1}$ and $b=v_{m}$, where $2 \leq m \leq l-1$, and let $P^{1}=a C^{+} b$. Then we design an algorithm to generate a sequence of disjoint sub-paths $P_{1}^{1}, P_{2}^{1}, \ldots, P_{h_{1}}^{1}$ of C respect to P^{1} and H.

```
Algorithm AI
Input: a strongly edge-colored graph \(G^{c}\), a rainbow cycle \(C=v_{1} v_{2} \ldots v_{l} v_{1}\), a path \(P^{1}=\)
\(v_{1} v_{2} \ldots v_{m}\) and a rainbow complete subgraph \(H=K_{k}\) of \(G^{c}-V(C)\).
Output: a sequence of disjoint paths \(P_{1}^{1}, P_{2}^{1}, \ldots, P_{h_{1}}^{1}\) such that \(P_{i}^{1}\) is a subgraph of \(C\).
1: Set \(i=1\)
2: While \(V\left(P^{1}\right) \neq \phi\) do
    If \(E_{\widetilde{C}}\left(P^{1}, H\right)=\phi\)
        stop
    Else Set \(d\) be the smallest subscript such that \(E_{\widetilde{C}}\left(v_{d}, H\right) \neq \phi\)
        If \(d+k \geq m\) then
            Set \(P_{i}^{1}=v_{d} v_{d+1} \ldots v_{m}\)
            stop
        Else If \(\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right| \geq 2\) then
                Set \(P_{i}^{1}=v_{d} v_{d+1} \ldots v_{d+k}\)
                    If \(\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|=1\) then
                        Set \(P_{i}^{1}=v_{d} v_{d+1} \ldots v_{d+k+1}\)
        Set \(P^{1}=P^{1} \backslash P_{i}^{1}\)
        Set \(i=i+1\)
3: return \(P_{1}^{1}, P_{2}^{1}, \ldots, P_{h_{1}}^{1}\)
```

Claim $4\left|E_{\widetilde{C}}\left(P_{i}^{1}, H\right)\right| \leq\left|V\left(P_{i}^{1}\right)\right|-1$ for any $1 \leq i \leq h_{1}-1,\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k$ if $\left|V\left(P_{h_{1}}^{1}\right)\right| \in\{1,2\}$, and $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k+1$ if $3 \leq\left|V\left(P_{h_{1}}^{1}\right)\right| \leq k+1$.

Proof. For $1 \leq i \leq h_{1}-1$, we distinguish the following two cases.
Case 1. $\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right| \geq 2$. Then we have $P_{i}^{1}=v_{d} v_{d+1} \ldots v_{d+k}$. Let w_{1} and w_{2} be two vertices in H such that $v_{d} w_{1}, v_{d} w_{2} \in E_{\widetilde{C}}\left(v_{d}, H\right)$. Since there exist no forbidden pairs of type 1 for any vertex $w \in V(H)$, then we have $\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|+\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right| \leq k$. For any j with $d+2 \leq j \leq d+k$, if w_{1} and v_{j} are \widetilde{C}-adjacent, then $v_{j} w_{1}$ and $v_{d} w_{2}$ form a forbidden pair of type 2 ; if w_{2} and v_{j} are \widetilde{C}-adjacent, then $v_{j} w_{2}$ and $v_{d} w_{1}$ form a forbidden pair of type 2 ; if v_{j} and w are \widetilde{C}-adjacent for some w with $w \neq w_{1}$ and $w \neq w_{2}$, then $v_{j} w$ and $v_{d} w_{1}$ form a forbidden pair of type 2. Therefore, we have $\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right|=0$. Thus,

$$
\begin{aligned}
\left|E_{\widetilde{C}}\left(P_{i}^{1}, H\right)\right| & =\sum_{j=d}^{d+k}\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right| \\
& =\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|+\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right| \\
& \leq k \\
& =\left|V\left(P_{i}^{1}\right)\right|-1
\end{aligned}
$$

Case 2. $\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|=1$. Then we have $P_{i}^{1}=v_{d} v_{d+1} \ldots v_{d+k+1}$. Let w_{1} be a vertex in H such that $v_{d} w_{1} \in E_{\widetilde{C}}\left(v_{d}, H\right)$. We further distinguish the following three cases.
Case 2.1. $\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right|=0$. For any $w \in V(H) \backslash\left\{w_{1}\right\}$, we have that v_{j} and w cannot be \widetilde{C}-adjacent for any $d+2 \leq j \leq d+k+1$ since otherwise $v_{j} w$ and $v_{d} w_{1}$ form a forbidden pair of type 2 . Thus, we
have $\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right| \leq 1$ and $\sum_{j=d+2}^{d+k+1}\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right| \leq k-1$. Therefore,

$$
\begin{aligned}
\left|E_{\widetilde{C}}\left(P_{i}^{1}, H\right)\right| & =\sum_{j=d}^{d+k+1}\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right| \\
& =\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|+\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right|+\sum_{j=d+2}^{d+k+1}\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right| \\
& \leq 1+0+(k-1) \\
& =k \\
& \leq\left|V\left(P_{i}^{1}\right)\right|-1
\end{aligned}
$$

Case 2.2. $\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right|=1$. Let w_{2} be a vertex in H such that $v_{d+1} w_{2} \in E_{\widetilde{C}}\left(v_{d}, H\right)$. Clearly, $w_{1} \neq w_{2}$. If v_{d+2} and w_{2} are \widetilde{C}-adjacent, we have that $v_{d+2} w_{2}$ and $v_{d} w_{1}$ form a forbidden pair of type 2, a contradiction. If v_{d+2} and w are \widetilde{C}-adjacent for some $w \in V(H)$ with $w \neq w_{1}$ and $w \neq w_{2}$, then $v_{d+2} w$ and $v_{d} w_{1}$ form a forbidden pair of type 2, again a contradiction. So, $\left|E_{\widetilde{C}}\left(v_{d+2}, H\right)\right| \leq 1$. For any j with $d+3 \leq j \leq d+k+1$, if w_{1} and v_{j} are \widetilde{C}-adjacent, then $v_{j} w_{1}$ and $v_{d+1} w_{2}$ form a forbidden pair of type 2 ; if w_{2} and v_{j} are \widetilde{C}-adjacent, then $v_{j} w_{2}$ and $v_{d} w_{1}$ form a forbidden pair of type 2; if v_{j} and w are \widetilde{C}-adjacent for some $w \in V(H)$ with $w \neq w_{1}$ and $w \neq w_{2}$, then $v_{j} w$ and $v_{d} w_{1}$ form a forbidden pair of type 2 . We obtain a contradiction in the above three cases, and therefore, we have $\sum_{j=d+3}^{d+k+1}\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right|=0$. Therefore,

$$
\begin{aligned}
\left|E_{\widetilde{C}}\left(P_{i}^{1}, H\right)\right| & =\sum_{j=d}^{d+k+1}\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right| \\
& =\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|+\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right|+\left|E_{\widetilde{C}}\left(v_{d+2}, H\right)\right|+\sum_{j=d+3}^{d+k+1}\left|E_{\widetilde{C}}\left(v_{j}, H\right)\right| \\
& \leq 1+1+1+0 \\
& \leq k \\
& \leq\left|V\left(P_{i}^{1}\right)\right|-1
\end{aligned}
$$

Case 2.3. $\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right| \geq 2$. Let $Q_{i}^{1}=P_{i}^{1} \backslash\left\{v_{d}\right\}=v_{d+1} v_{d+2} \ldots v_{d+k+1}$. Similar to the discussion of Case 1, we have that $\left|E_{\widetilde{C}}\left(Q_{i}^{1}, H\right)\right| \leq\left|V\left(Q_{i}^{1}\right)\right|-1=(k+1)-1=k$. Thus, $\left|E_{\widetilde{C}}\left(P_{i}^{1}, H\right)\right|=$ $\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|+\left|E_{\widetilde{C}}\left(Q_{i}^{1}, H\right)\right| \leq 1+k=\left|V\left(P_{i}^{1}\right)\right|-1$.

Then we analysis the value of $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|$. If $\left|V\left(P_{h_{1}}^{1}\right)\right|=1$, the inequality $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k$ clearly holds. If $\left|V\left(P_{h_{1}}^{1}\right)\right|=2$, that is, $P_{h_{1}}^{1}=v_{d} v_{d+1}$, we have $\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|+\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right| \leq k$ since v_{d} and v_{d+1} are adjacent. Therefore, $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|=E_{\widetilde{C}}\left(v_{d}, H\right)\left|+\left|E_{\widetilde{C}}\left(v_{d+1}, H\right)\right| \leq k\right.$. If $3 \leq\left|V\left(P_{h_{1}}^{1}\right)\right| \leq k+1$, we have $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k$ when $\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right| \geq 2$ by the similar analysis of the above Case 1 (taking m as $d+k$), and $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k+1$ when $\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|=1$ by the similar analysis of the above Case 2 (taking m as $d+k+1$). The proof is thus completed.

Let $P^{2}=a C^{-} b$. Then we design another algorithm to generate a sequence of disjoint sub-paths $P_{1}^{2}, P_{2}^{2}, \ldots, P_{h_{2}}^{2}$ of C respect to P^{2} and H in the following.

```
Algorithm AII
Input: a strongly edge-colored graph \(G\), a rainbow cycle \(C=v_{1} v_{2} \ldots v_{l} v_{1}, P^{2}=a C^{-} b=\)
\(v_{l+1} v_{l} v_{l-1} \ldots v_{m}\) and a rainbow complete subgraph \(H=K_{k}\) of \(G^{c}-V(C)\).
Output: a sequence of disjoint paths \(P_{1}^{2}, P_{2}^{2}, \ldots, P_{h_{2}}^{2}\) such that \(P_{i}^{2}\) is a subgraph of \(C\).
1: Set \(i=1\)
2: While \(V\left(P^{2}\right) \neq \phi\) do
    If \(E_{\widetilde{C}}\left(P^{2}, H\right)=\phi\)
            stop
        Else Set \(d\) be the biggest subscript for which \(E_{\widetilde{C}}\left(v_{d}, H\right) \neq \phi\)
            If \(d-k \leq m\) then
            Set \(P_{i}^{2}=v_{d} v_{d-1} \ldots v_{m}\)
            stop
            Else \(\quad\) If \(\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right| \geq 2\) then
                        Set \(P_{i}^{2}=v_{d} v_{d-1} \ldots v_{d-k}\)
                    If \(\left|E_{\widetilde{C}}\left(v_{d}, H\right)\right|=1\) then
                        Set \(P_{i}^{2}=v_{d} v_{d-1} \ldots v_{d-k-1}\)
            Set \(P^{2}=P^{2} \backslash P_{i}^{2}\)
            Set \(i=i+1\)
3: return \(P_{1}^{2}, P_{2}^{2}, \ldots, P_{h_{2}}^{2}\)
```

Similar to Claim 4, we can get the following Claim.
Claim $5\left|E_{\widetilde{C}}\left(P_{i}^{2}, H\right)\right| \leq\left|V\left(P_{i}^{2}\right)\right|-1$ for all $1 \leq i \leq h_{2}-1,\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right| \leq k$ if $\left|V\left(P_{h_{2}}^{2}\right)\right| \in\{1,2\}$ and $\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right| \leq k+1$ if $3 \leq\left|V\left(P_{h_{2}}^{2}\right)\right| \leq k+1$.

According to the above claims, we have

$$
\begin{align*}
\left|E_{\widetilde{C}}(C, H)\right|= & \left|E_{\widetilde{C}}\left(a C^{+} b, H\right)\right|+\left|E_{\widetilde{C}}\left(a C^{-} b, H\right)\right|-\left|E_{\widetilde{C}}(a, H)\right|-\left|E_{\widetilde{C}}(b, H)\right| \\
\leq & \sum_{i=1}^{h_{1}-1}\left|V\left(P_{i}^{1}\right)\right|-\left(h_{1}-1\right)+\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \\
& +\sum_{i=1}^{h_{2}-1}\left|V\left(P_{i}^{2}\right)\right|-\left(h_{2}-1\right)+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right| \tag{8}\\
& -\left|E_{\widetilde{C}}(a, H)\right|-\left|E_{\widetilde{C}}(b, H)\right| \\
\leq & {\left[l-\left|V\left(P_{h_{1}}^{1}\right)\right|-\left|V\left(P_{h_{2}}^{2}\right)\right|+1\right]-\left(h_{1}+h_{2}\right)+2 } \\
& +\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(a, H)\right|-\left|E_{\widetilde{C}}(b, H)\right| \\
= & l-\left(\left|V\left(P_{h_{1}}^{1}\right)\right|+\left|V\left(P_{h_{2}}^{2}\right)\right|\right)-\left(h_{1}+h_{2}\right)+3 \\
& +\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(a, H)\right|-\left|E_{\widetilde{C}}(b, H)\right| .
\end{align*}
$$

Claim $6 \widetilde{S} \leq l+2 k-4$.

Proof. We show that $\widetilde{S} \leq \max \{2 k+2, l+k-1, l+2 k-4\}$, which implies $\widetilde{S} \leq l+2 k-4$ since $l \geq 7$ from Claim 1 and $k \geq 3$ from Claim 2.

Let $h=h_{1}+h_{2}$. By symmetry, we suppose $h_{1} \geq h_{2}$ and $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq\left|V\left(P_{h_{2}}^{2}\right)\right|$. From Claim 3, we have $h \geq 1$. Then we proceed our proof by distinguishing the following four cases.
Case 1. $h_{1}=1$ and $h_{2}=0$. From Algorithm AII, we have $E_{\widetilde{C}}\left(a C^{-} b, H\right)=\phi$. Thus, $E_{\widetilde{C}}(a, H)=\phi$ and $E_{\widetilde{C}}(b, H)=\phi$. From Algorithm AI, we have $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 2$. If $\left|V\left(P_{h_{1}}^{1}\right)\right|=2$, let u be the vertex distinct from b in C such that $E_{\widetilde{C}}(u, H) \neq \phi$. Thus we have $\widetilde{S}=\left|E_{\widetilde{C}}(u, H)\right| \leq k<2 k+2$. If $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 3$, from Claim 4, we have $\widetilde{S}=E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right) \leq k+1<2 k+2$. The claim follows.
Case 2. $h_{1} \geq 2$ and $h_{2}=0$. From Algorithm AI and AII, we have $E_{\widetilde{C}}(a, H)=\phi, E_{\widetilde{C}}(b, H)=\phi$ and $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 2$. If $\left|V\left(P_{h_{1}}^{1}\right)\right|=2$, since $E_{\widetilde{C}}(b, H)=\phi$, we have $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-$ $\left|E_{\widetilde{C}}(b, H)\right|=\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k$. Applying inequality (8), we have $\widetilde{S} \leq l-2-2+3+k+0=l+k-1$. If $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 3$, from Claim 4, we have $\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(b, H)\right|=\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq$ $k+1$. Thus, by inequality (8), we have $\widetilde{S} \leq l-3-2+3+k+1+0=l+k-1$. The claim follows. Case 3. $h_{1}=1$ and $h_{2}=1$. By Claim 4 and 5, if $\left|V\left(P_{h_{1}}^{1}\right)\right| \in\{1,2\}$ and $\left|V\left(P_{h_{2}}^{2}\right)\right| \in\{1,2\}$, we have $\widetilde{S} \leq\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right| \leq 2 k<2 k+2$. If $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 3$ and $\left|V\left(P_{h_{2}}^{2}\right)\right| \in\{1,2\}$, we have $\widetilde{\sim} \leq\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right| \leq 2 k+1<2 k+2$. If $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 3$ and $\left|V\left(P_{h_{2}}^{2}\right)\right| \geq 3$, we have $\widetilde{S} \leq\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right| \leq 2 k+2$. The claim holds.
Case 4. $h \geq 3$ and $h_{2} \geq 1$. We consider the following six cases.
Case 4.1. $\left|V\left(P_{h_{1}}^{1}\right)\right|=1$ and $\left|V\left(P_{h_{2}}^{2}\right)\right|=1$. It is clearly that

$$
V\left(P_{h_{1}}^{1}\right)=V\left(P_{h_{2}}^{2}\right)=\{b\}
$$

and

$$
\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(b, H)\right|=\left|E_{\widetilde{C}}(b, H)\right| \leq k
$$

By inequality (8), we have

$$
\widetilde{S}=\left|E_{\widetilde{C}}(C, H)\right| \leq l-2-3+3+k+0=l+k-2<l+k-1
$$

Case 4.2. $\left|V\left(P_{h_{1}}^{1}\right)\right|=2$ and $\left|V\left(P_{h_{2}}^{2}\right)\right|=1$. It is clearly that $V\left(P_{h_{2}}^{2}\right)=\{b\}$. From Claim 4, we have

$$
\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(b, H)\right|=\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k
$$

By inequality (8) and $h \geq 3$, we have

$$
\widetilde{S} \leq l-3-3+3+k+0=l+k-3<l+k-1
$$

Case 4.3. $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 3$ and $\left|V\left(P_{h_{2}}^{2}\right)\right|=1$. It is clearly that $V\left(P_{h_{2}}^{2}\right)=\{b\}$. From Claim 4, we have

$$
\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(b, H)\right|=\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right| \leq k+1
$$

By inequality (8) and $h \geq 3$, we have

$$
\widetilde{S}=\left|E_{\widetilde{C}}(C, H)\right| \leq l-4-3+3+k+1+0=l+k-3<l+k-1
$$

Case 4.4. $\left|V\left(P_{h_{1}}^{1}\right)\right|=2$ and $\left|V\left(P_{h_{2}}^{2}\right)\right|=2$. From Claim 4 and 5, we have

$$
\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(b, H)\right| \leq 2 k
$$

By inequality (8) and $h \geq 3$, we have

$$
\widetilde{S}=\left|E_{\widetilde{C}}(C, H)\right| \leq l-4-3+3+2 k+0=l+2 k-4<l+k-1
$$

Case 4.5. $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 3$ and $\left|V\left(P_{h_{2}}^{2}\right)\right|=2$. It is clearly that

$$
\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(b, H)\right| \leq k+k+1=2 k+1
$$

By inequality (8) and $h \geq 3$, we have

$$
\widetilde{S}=\left|E_{\widetilde{C}}(C, H)\right| \leq l-5-3+3+2 k+1+0=l+2 k-4
$$

Case 4.6. $\left|V\left(P_{h_{1}}^{1}\right)\right| \geq 3$ and $\left|V\left(P_{h_{2}}^{2}\right)\right| \geq 3$. From Claim 4 and 5, we have

$$
\left|E_{\widetilde{C}}\left(P_{h_{1}}^{1}, H\right)\right|+\left|E_{\widetilde{C}}\left(P_{h_{2}}^{2}, H\right)\right|-\left|E_{\widetilde{C}}(b, H)\right| \leq k+1+k+1=2 k+2
$$

By inequality (8), we have

$$
\widetilde{S}=\left|E_{\widetilde{C}}(C, H)\right| \leq l-6-3+3+2 k+2+0=l+2 k-4
$$

The Claim follows.
From Claim 6, inequalities (5) (6) and (7), we can deduce that

$$
\begin{aligned}
k \delta & \leq \widetilde{S}+S+\widetilde{T}+T+k(k-1) \\
& \leq l+2 k-4+l+(k-1)(n-l-k)+k(k-1) \\
& =l+2 k-4+k(n-l)+2 l-n
\end{aligned}
$$

Therefore, we have $k(n-l-\delta+2) \geq n-3 l+4$. Since $l \geq \frac{n+12}{3}$ from Claim 1 and $\delta \geq \frac{2 n}{3}+1$, we have $n-l-\delta+2<0$. Then from Claim 2, we have

$$
3(n-l-\delta+2) \geq k(n-l-\delta+2) \geq n-3 l+4
$$

which implies that $\delta \leq \frac{2 n+2}{3}$, a contradiction. We complete the proof of Theorem 1.6.

Acknowledgment

This research was supported by National Natural Science Foundation of China under grant numbers 11971445 and 12171440.

References

A. Abouelaoualim, K. C. Das, W. Fernandez de la Vega, M. Karpinski, Y. Manoussakis, C. A. Martinhon, and R. Saad. Cycles and paths in edge-colored graphs with given degrees. Journal of Graph Theory, 64(1):63-86, 2010.
J. A. Bondy and U. S. R. Murty. Graph Theory. Springer Graduate Texts in Mathematics, Springer, Berlin, 2008.
H. Chen. Long rainbow paths and rainbow cycles in edge colored graphs - a survey. Applied Mathematics and Computation, 317:187-192, 2018.
X. Chen and X. Li. Proper vertex-pancyclicity of edge-colored complete graphs without joint monochromatic triangles. Discrete Applied Mathematics, 294:167-180, 2021.
X. Chen and X. Li. Note on rainbow cycles in edge-colored graphs. Discrete Mathematics, 345(12): 113082, 2022.
X. Chen, F. Huang, and J. Yuan. Proper vertex-pancyclicity of edge-colored complete graphs without monochromatic triangles. Discrete Applied Mathematics, 265:199-203, 2019.
Y. Cheng, Q. Sun, T. S. Tan, and G. Wang. Rainbow hamiltonian cycles in strongly edge-colored graphs. Discrete Mathematics, 342(4):1186-1190, 2019.
A. Czygrinow, T. Molla, B. Nagle, and R. Oursler. On odd rainbow cycles in edge-colored graphs. European Journal of Combinatorics, 94:103316, 2021.
S. Ehard and E. Mohr. Rainbow triangles and cliques in edge-colored graphs. European Journal of Combinatorics, 84:103037, 2020.
S. Fujita, B. Ning, C. Xu, and S. Zhang. On sufficient conditions for rainbow cycles in edge-colored graphs. Discrete Mathematics, 342(7):1956-1965, 2019.
S. Guo, F. Huang, and J. Yuan. Properly colored 2-factors of edge-colored complete bipartite graphs. Discrete Mathematics, 345(12):113094, 2022.
G. R. T. Hendry. Extending cycles in graphs. Discrete Mathematics, 85(1):59-72, 1990.
M. Kano and X. Li. Monochromatic and heterochromatic subgraphs in edge-colored graphs - a survey. Graphs and Combinatorics, 24:237-263, 2008.
L. Li and X. Li. Rainbow edge-pancyclicity of strongly edge-colored graphs. Theoretical Computer Science, 907:26-33, 2022.
L. Li, F. Huang, and J. Yuan. Proper vertex-pancyclicity of edge-colored complete graphs without monochromatic paths of length three. Discrete Mathematics, 345(6):112838, 2022.
A. Lo. An edge-colored version of dirac's theorem. SIAM Journal on Discrete Mathematics, 28(1):18-36, 2014.
M. Wang and J. Qian. Rainbow vertex-pancyclicity of strongly edge-colored graphs. Discrete Mathematics, 344(1):112164, 2021.

[^0]: *Corresponding author: Fei Huang. Email: hf@zzu.edu.cn
 ISSN 1365-8050 © 2023 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

