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Consider the following hat guessing game. A bear sits on each vertex of a graph G, and a demon puts on each bear a
hat colored by one of h colors. Each bear sees only the hat colors of his neighbors. Based on this information only,
each bear has to guess g colors and he guesses correctly if his hat color is included in his guesses. The bears win if at
least one bear guesses correctly for any hat arrangement.

We introduce a new parameter—fractional hat chromatic number µ̂, arising from the hat guessing game. The pa-
rameter µ̂ is related to the hat chromatic number which has been studied before. We present a surprising connection
between the hat guessing game and the independence polynomial of graphs. This connection allows us to compute
the fractional hat chromatic number of chordal graphs in polynomial time, to bound fractional hat chromatic number
by a function of maximum degree of G, and to compute the exact value of µ̂ of cliques, paths, and cycles.

Keywords: hat guessing game, independence polynomial, chordal graphs

1 Introduction
In this paper, we study a variant of a hat guessing game. In these types of games, there are some entities—
players, pirates, sages, or, as in our case, bears. A bear sits on each vertex of graph G. There is some
adversary (a demon in our case) that puts a colored hat on the head of each bear. A bear on a vertex v sees
only the hats of bears on the neighboring vertices of v but he does not know the color of his own hat. Now
to defeat the demon, the bears should guess correctly the color of their hats. However, the bears can only
discuss their strategy before they are given the hats. After they get them, no communication is allowed,
each bear can only guess his hat color. The variants of the game differ in the bears’ winning condition.

The first variant was introduced by Ebert [8]. In this version, each bear gets a red or blue hat (chosen
uniformly and independently) and they can either guess a color or pass. The bears see each other, i.e.
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they stay on vertices of a clique. They win if at least one bear guesses his color correctly and no bear
guesses a wrong color. The question is what is the highest probability that the bears win achievable by
some strategy. Soon, the game became quite popular and it was even mentioned in NY Times [27].

Winkler [31] studied a variant where the bears cannot pass and the objective is to maximize the number
of bears that correctly guess their hat color. A generalization of this variant for more than two colors was
studied by Feige [11] and Aggarwal [1]. Butler et al. [6] studied a variant where the bears are sitting on
vertices of a general graph, not only a clique. For a survey of various hat guessing games, we refer to
theses of Farnik [10] or Krzywkowski [22].

In this paper, we study a variant of the game introduced by Farnik [10], where each bear has to guess
and they win if at least one bear guesses correctly. He introduced a hat guessing number HG of a graph
G (also named as hat chromatic number and denoted µ in later works) which is defined as the maximum
h such that bears win the game with h hat colors. We study a variant where each bear can guess multiple
times and we consider that a bear guesses correctly if the color of his hat is included in his guesses. We
introduce a parameter fractional hat chromatic number µ̂ of a graph G, which we define as the supremum
of h

g such that each bear has g guesses and they win the game with h hat colors.
Although the hat guessing game looks like a recreational puzzle, connections to more “serious” areas

of mathematics and computer science were shown—like coding theory [9, 19], network coding [14, 26],
auctions [1], finite dynamical systems [12], and circuits [32]. In this paper, we exhibit a connection
between the hat guessing game and the independence polynomial of graphs, which is our main result. This
connection allows us to compute the optimal strategy of bears (and thus the value of µ̂) of an arbitrary
chordal graph in polynomial time. We also prove that the fractional hat chromatic number µ̂ is equal, up
to a logarithmic factor, to the maximum degree of a graph, i.e., µ̂(G) = Ω(∆/ log∆) and µ̂(G) = O(∆).
Finally, we compute the exact value of µ̂ of graphs from some classes, like paths, cycles, and cliques.

We would like to point out that the existence of the algorithm computing µ̂ of a chordal graph is far from
obvious. Butler et al. [6] asked how hard is to compute µ(G) and the optimal strategy for the bears. Note
that a trivial non-deterministic algorithm for computing the optimal strategy (or just the value of µ(G)
or µ̂(G)) needs exponential time because a strategy of a bear on v is a function of hat colors of bears on
neighbors of v (we formally define the strategy in Section 2). It is not clear if the existence of a strategy
for bears would imply a strategy for bears where each bear computes his guesses by some efficiently
computable function (like linear, computable by a polynomial circuit, etc.). This would allow us to put
the problem of computing µ into some level of the polynomial hierarchy, as noted by Butler et al. [6]. On
the other hand, we are not aware of any hardness results for the hat guessing games. The maximum degree
bound for µ̂ does not imply an exact efficient algorithm computing µ̂(G) as well. This phenomenon can
be illustrated by the edge chromatic number χ′ of graphs. By Vizing’s theorem [7, Chapter 5], it holds for
any graph G that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. However, it is NP-hard to distinguish between these two
cases [18].
Organization of the Paper. We finish this section with a summary of results about the variant of the hat
guessing game we are studying. In the next section, we present notions used in this paper and we define
formally the hat guessing game. In Section 3, we formally define the fractional hat chromatic number µ̂
and compare it to µ. In Section 4, we generalize some previous results to the multi-guess setting. We use
these tools to prove our main result in Section 5 including the poly-time algorithm that computes µ̂ for
chordal graphs. The maximum degree bound for µ̂ and computation of exact values of paths and cycles
are provided in Section 6.
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1.1 Related and Follow-up Works
As mentioned above, Farnik [10] introduced a hat chromatic number µ(G) of a graph G as the maximum
number of colors h such that the bears win the hat guessing game with h colors and played on G. He
proved that µ(G) ≤ O

(
∆(G)

)
where ∆(G) is the maximum degree of G.

Since then, the parameter µ(G) was extensively studied. The parameter µ for multipartite graphs was
studied by Gadouleau and Georgiu [13] and by Alon et al. [2]. Szczechla [30] proved that µ of cycles
is equal to 3 if and only if the length of the cycle is 4 or it is divisible by 3 (otherwise it is 2). Bosek et
al. [5] gave bounds of µ for some graphs, like trees and cliques. They also provided some connections
between µ(G) and other parameters like chromatic number and degeneracy. They conjectured that µ(G)
is bounded by some function of the degeneracy d(G) of the graph G. They showed that such function has
to be at least exponential as for every d ≥ 1 they presented a graph G of d(G) = d such that µ(G) ≥ 2d.
This result was improved by He and Li [16] who showed that for every d ≥ 1 there is a graph G of
d(G) = d and µ(G) ≥ 22

d(G)−1

. Since µ̂(G) is lower-bounded by Ω
(
∆(G)/ log∆(G)

)
(as we show in

Section 6) it holds that µ̂ can not be bounded by any function of degeneracy as there are graph classes of
unbounded maximum degree and bounded degeneracy (e.g. trees or planar graphs). Recently, Kokhas et
al. [20, 21] studied a non-uniform version of the game, i.e., every bear may have a different number of
possible hat colors. They considered cliques and almost cliques. They also provided a technique to build
a strategy for a graph G whenever G is made up by combining G1 and G2 with known strategies. We
generalize some of their results and use them as “basic blocks” for our main result.

After the presentation of the preliminary version of this paper [4], Latyshev and Kokhas [24] extended
ideas presented in this paper to reason about the standard hat chromatic number. In particular, they found
a family of graphs of unbounded maximum degree such that for each graph G in the family holds that
µ(G) = 4

3∆(G); thus they disproved a conjecture that µ(G) ≤ ∆(G) + 1 stated in Bosek, et al. [5] and
Farnik [10] that was previously noticed by Alon et al. [2].

2 Preliminaries
We use standard notions of the graph theory. For an introduction to this topic, we refer to the book by
Diestel [7]. We denote a clique as Kn, a cycle as Cn, and a path as Pn, each on n vertices. The maximum
degree of a graph G is denoted by ∆(G), where we shorten it to ∆ if the graph G is clear from the context.
The neighbors of a vertex v are denoted by N(v). We use N [v] to denote the closed neighborhood of v,
i.e. N [v] = N(v) ∪ {v}. For a set U of vertices of a graph G, we denote by G \ U a graph induced by
vertices V (G) \ U , i.e., a graph arising from G by removing the vertices in U .

A hat guessing game is a triple H = (G, h, g) where

• G = (V,E) is an undirected graph, called the visibility graph,

• h ∈ N is a hatness that determines the number of different possible hat colors for each bear, and

• g ∈ N is a guessing number that determines the number of guesses each bear is allowed to make.

The rules of the game are defined as follows. On each vertex of G sits a bear. The demon puts a hat
on the head of each bear. Each hat has one of h colors. We would like to point out, that it is allowed
that bears on adjacent vertices get a hat of the same color. The only information the bear on a vertex v
knows are the colors of hats put on bears sitting on neighbors of v. Based on this information only, the
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bear has to guess a set of g distinct colors according to a deterministic strategy agreed to in advance. We
say bear guesses correctly if he included the color of his hat in his guesses. The bears win if at least one
bear guesses correctly.

Formally, we associate the colors with natural numbers and say that each bear can receive a hat colored
by a color from the set S = [h] = {0, . . . , h − 1}. A hats arrangement is a function φ : V → S. A
strategy of a bear on v is a function Γv : S

|N(v)| →
(
S
g

)
, and a strategy for H is a collection of strategies

for all vertices, i.e. (Γv)v∈V . We say that a strategy is winning if for any possible hats arrangement
φ : V → S there exists at least one vertex v such that φ(v) is contained in the image of Γv on φ, i.e.,
φ(v) ∈ Γv

(
(φ(u))u∈N(v)

)
. Finally, the game H is winning if there exists a winning strategy of the bears.

As a classical example, we describe a winning strategy for the hat guessing game (K3, 3, 1). Let us
denote the vertices of K3 by v0, v1 and v2 and fix a hats arrangement φ. For every i ∈ [3], the bear on the
vertex vi assumes that the sum

∑
j∈[3] φ(vj) is equal to i modulo 3 and computes its guess accordingly.

It follows that for any hat arrangement φ there is always exactly one bear that guesses correctly, namely
the bear on the vertex vi for i =

∑
j φ(vj) (mod 3).

Some of our results are stated for a non-uniform variant of the hat guessing game. A non-uniform game
is a triple

(
G = (V,E),h,g

)
where h = (hv)v∈V and g = (gv)v∈V are vectors of natural numbers

indexed by the vertices of G and a bear on v gets a hat of one of hv colors and is allowed to guess exactly
gv colors. Other rules are the same as in the standard hat guessing game. To distinguish between the
uniform and non-uniform games, we always use plain letters h and g for the hatness and the guessing
number, respectively, and bold letters (e.g. h,g) for vectors indexed by the vertices of G.

For our proofs we use two classical results. First one is the inclusion-exclusion principle for computing
a size of a union of sets.

Proposition 1 (folklore) For a union A of sets A1, . . . , An, it holds that

|A| =
∑

∅̸=I⊆{1,...,n}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
The other one is the rational root theorem, which we use to derive an algorithm for computing an exact

value of µ̂, if the value is rational.

Theorem 1 (Rational root theorem [23]) If a polynomial anxn + . . . a1x+ a0 has integer coefficients,
then every rational root is of the form p/q where p and q are coprimes, p is a divisor of a0, and q is a
divisor of an.

3 Fractional Hat Chromatic Number
From the hat guessing games, we can derive parameters of the underlying visibility graph G. Namely,
the hat chromatic number µ(G) is the maximum integer h for which the hat guessing game (G, h, 1) is
winning, i.e., each bear gets a hat colored by one of h colors and each bear has only one guess—we call
such game a single-guessing game. In this paper, we study a parameter fractional hat chromatic number
µ̂(G) which arises from the hat multi-guessing game and is defined as

µ̂(G) = sup

{
h

g

∣∣∣∣ (G, h, g) is a winning game
}
.
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Observe that µ(G) ≤ µ̂(G). Farnik [10] and Bosek et al. [5] also study multi-guessing games. They
considered a parameter µg(G) that is the maximum number of colors h such that the bears win the game
(G, h, g). The difference between µg and µ̂ is the following. If µg(G) ≥ k, then the bears win the game
(G, k, g) and µ̂ ≥ k

g . If µ̂(G) ≥ p
q , then there are h, g ∈ N such that p

q = h
g and the bears win the

game (G, h, g). However, it does not imply that the bears would win the game (G, p, q). In this section,
we prove that if the bears win the game (G, h, g) then they win the game (G, kh, kg) for any constant
k ∈ N. The opposite implication does not hold—we discuss a counterexample at the end of this section.
Unfortunately, this property prevents us from using our algorithm, which computes µ̂, to compute also µ
of chordal graphs.

Moreover, by definition, the parameter µ̂ does not even have to be a rational number. In such a case, for
each p, q ∈ N, it holds that

• If p
q < µ̂(G) then there are h, g ∈ N such that p

q = h
g and the bears win the game (G, h, g).

• If p
q > µ̂(G) then the demon wins the game (G, p, q).

For example, the fractional hat chromatic number µ̂(P3) of the path P3 is irrational. In the case of an
irrational µ̂(G), our algorithm computing the value of µ̂ of chordal graphs outputs an estimate of µ̂(G)
with arbitrary precision. We finish this section with a proof that the multi-guessing game is in some sense
monotone.

Observation 1 Let k ∈ N. If a game H = (G, h, g) is winning, then the game Hk = (G, k · h, k · g) is
winning as well.

Proof: We derive a winning strategy for the game Hk from a winning strategy for H. Each bear interprets
a color in [k · h] as a pair (i, c) where i ∈ [k] and c ∈ [h]. Let Av be guesses of the bear on v in the
game H. For the game Hk, a strategy of the bear on v is to make guesses

{
(i, c) | i ∈ [k], c ∈ Av

}
. It is

straight-forward to verify that this is a winning strategy for Hk. 2

Lemma 1 Let
(
G = (V,E), h, g

)
be a winning hat guessing game. Let r′ be a rational number such that

r′ ≤ h/g. Then, there exist numbers h′, g′ ∈ N such that h′/g′ = r′ and the hat guessing game (G, h′, g′)
is winning.

Proof: Let p, q ∈ N such that r′ = p/q and GCD(p, q) = 1. Let(i) ℓ = LCM(h, p).
Let h̄ = ℓ, ḡ = ℓ · g/h. By Observation 1 for k = ℓ/h, the game (G, h̄, ḡ) is winning. Let h′ = ℓ and

g′ = ℓ · q/p. Since p/q ≤ h/g by the assumption, it holds that g′ ≥ ḡ. Thus, the bears have a strategy
for (G, h′, g′), as we increased the number of guesses and the hatness does not change (h′ = h̄ = ℓ).
Moreover, h′/g′ = p/q = r′. 2

It is straight-forward to prove a generalization of Lemma 1 for non-uniform games. However, for
simplicity, we state it only for the uniform games. By the proof of the previous lemma, we know that we
can use a strategy for (G, h, g) to create a strategy for a game (G, k·h, k·g+ℓ) for arbitrary k, ℓ ∈ N where
k · g + ℓ ≤ k · h. However, it is unclear whether this also holds in general, i.e., given a winning strategy
for a fractional hat chromatic number h/g, is it always possible to have a winning strategy for a decreased
fraction h′/g′ < h/g where the hatness h′ and the guessing number g′ can be changed arbitrarily? It is

(i) GCD stands for the greatest common divisor and LCM stands for the least common multiple.
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true for cliques. We show in Section 4 that the bears win the game (Kn, h, g) if and only if h/g ≤ n.
However, it is not true in general. For example, for n large enough it holds that µ̂(Pn) ≥ 3, as we show
in Section 6 that µ̂(Pn) converges to 4 when n goes to infinity. However, Butler et al. [6] proved that
µ(T ) = 2 for any tree T . Thus, the bears lose the game (Pn, 3, 1).

4 Basic Blocks
In this section, we generalize some results of Kokhas et al. [20, 21] about cliques and strategies for graph
products, which we use for proving our main result. The single-guessing version of the next theorem
(without the algorithmic consequences) was proved by Kokhas et al. [20, 21].

Theorem 2 Bears win a game
(
Kn = (V,E),h,g

)
if and only if∑

v∈V

gv
hv

≥ 1.

Moreover, if there is a winning strategy, then there is a winning strategy (Γv)v∈V such that each Γv can
be described by two linear inequalities whose coefficients can be computed in linear time.

Proof: The proof follows the proof of Kokhas et al. [21] for the single-guessing game. First, suppose that∑
v∈V gv/hv < 1 and fix some strategy of bears. A bear on v guesses correctly the color of his hat in

exactly (gv/hv)-fraction of all possible hat arrangements. Thus, if the sum is smaller than one, there is a
hat arrangement where no bear guesses the color of his hat correctly.

Now suppose the opposite inequality holds, i.e.,
∑

v∈V gv/hv ≥ 1. Let V (Kn) = {v1, . . . , vn}. For
simplicity, we denote hi = hvi and gi = gvi . Let ℓ = LCM(h1, . . . , hn) and di = ℓ/hi (note that
di ∈ N). Let the bear on vi receive a hat of color ci ∈ [hi], and let

s =
∑

1≤i≤n

ci · di (mod ℓ).

The bears cover the set [ℓ] by disjoint intervals Qi of length di · gi. A bear on vi makes his guesses
according to a hypothesis that s is in an interval Qi and we will show that he guesses correctly if s ∈ Qi.
More formally, for bi =

∑
j<i dj · gj we define the interval Qi as {bi, . . . , bi + di · gi − 1}. Note that the

union of intervals Q1, . . . , Qi−1 is exactly the set [bi]. A bear on vi computes si =
∑

v ̸=vi
cv · dv . Then,

he guesses all such colors ai such that si + ai · di (mod ℓ) is in Qi. Since Qi contains di · gi consecutive
natural numbers and ℓ is divisible by di, he makes at most gi guesses. If s is in Qi then the bear on vi
guesses the color of his hat correctly, because s = si + ci · di (mod ℓ) and thus the bear on vi includes
the color ci in his guesses.

Note that the union Q of all intervals Qi is exactly the set0, . . . ,
∑

1≤i≤n

ℓ · gi
hi

− 1

 .

By assumption, we have that {0, . . . , ℓ − 1} ⊆ Q. Since 0 ≤ s < ℓ by definition, it follows that s has to
be in some interval Qi.
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For the “moreover” part, the bear on a vertex vi guesses all colors ai ∈ [hi] such that

bi ≤ (si + ai · di) mod ℓ < bi + di · gi.

Observe that si is a linear function of hat colors of bears sitting on the vertices different from v and the
coefficients bi and dj can be computed in linear time. 2

By Theorem 2, we can conclude the following corollary.

Corollary 1 For each n ∈ N, it holds that µ̂(Kn) = n.

Kokhas et al. [20] provided another proof of analogue of Theorem 2 for the single-guessing game,
which can be generalized with similar ideas. However, the second proof does not imply a polynomial
time algorithm for computing the strategy on cliques. For the interested reader, we provide the second
proof of Theorem 2 in Appendix A.

Further, we generalize a result of Kokhas and Latyshev [20]. In particular, we provide a new way to
combine two hat guessing games on graphs G1 and G2 into a hat guessing game on graph obtained by
gluing G1 and G2 together in a specific way.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, let S ⊆ V1 be a set of vertices inducing a clique in
G1, and let v ∈ V2 be an arbitrary vertex of G2. The clique join of graphs G1 and G2 with respect to S
and v is the graph G = (V,E) such that V = V1 ∪ V2 \ {v}; and E contains all the edges of E1, all the
edges of E2 that do not contain v, and an edge between every w ∈ S and every neighbor of v in G2. See
Figure 1 for a sketch of a clique join.

G1 G2

S
v

G

S

Fig. 1: The clique join of graphs G1 and G2 with respect to S and v.

Lemma 2 Let H′ =
(
G′ = (V ′, E′),h′,g′) and H′′ =

(
G′′ = (V ′′, E′′),h′′,g′′) be two hat guessing

games and let S ⊆ V ′ be a set inducing a clique in G′ and v ∈ V ′′. Set G to be the clique join of graphs
G′ and G′′ with respect to S and v. If the bears win the games H′ and H′′, then they also win the game
H = (G,h,g) where

hu =


h′
u u ∈ V ′ \ S

h′′
u u ∈ V ′′ \ {v}

h′
u · h′′

v u ∈ S, and
gu =


g′u u ∈ V ′ \ S
g′′u u ∈ V ′′ \ {v}
g′u · g′′v u ∈ S.

Proof: Using winning strategies (Γ′
v)v∈V ′ and (Γ′′

v)v∈V ′′ for H′ and H′′ respectively, let us construct a
winning strategy for H. For every bear u ∈ S, we interpret his color as a tuple (c′u, c

′′
u) where c′u ∈ [h′

u]
and c′′u ∈ [h′′

v ]. Also, we define an imaginary hat color of the bear on vertex v as s = (
∑

u∈S c′′u) mod h′′
v .

Every bear on w ∈ V ′ \ S plays according to the strategy Γ′
w using only the color c′u for his every

neighbor u ∈ S. Every bear on w ∈ V ′′ \ {v} plays according to the strategy Γ′′
w using the imaginary
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hat color s of v. And finally, every bear on vertex w ∈ S computes a set of guesses Aw by playing the
strategy Γ′

w and a set of guesses B by playing the strategy Γ′′
v . Since the bear on w can see every other

vertex of S, he computes the set

Bw =
{(

c−
∑

u∈S\{w} c
′′
u

)
mod h′′

v | c ∈ B
}
.

Finally, the bear on w guesses the set Aw ×Bw.
Fix an arbitrary hat arrangement. In the simulated hat guessing game H′, there is a vertex u1 such that

the bear on u1 guessed correctly. If u1 ̸∈ S then it also guessed correctly in H. Likewise, there is a bear
on a vertex u2 in the simulated hat guessing game H′′ that guessed correctly and we are done if u2 ̸= v.
The remaining case is when u1 ∈ S and u2 = v. Thus, the bear on v includes the color s in his guesses
in the game H′′. It follows that for each w ∈ S holds that if (c′w, c

′′
w) is a hat color of the bear on w, then

c′′w ∈ Bw. Since u1 ∈ S, the bear on u1 includes his hat color (c′u1
, c′′v) in his guesses Au1

×Bu1
. 2

We remark that Lemma 2 generalizes Theorem 3.1 and Theorem 3.5 of [20] not only by introducing
multiple guesses but also by allowing for more general ways to glue two graphs together. Thus, it provides
new constructions of winning games even for single-guessing games.

+ G =

3

3 3

3 3

3
3

3

3

3

3

9

9

v

S

Fig. 2: Applying Lemma 2 on winning hat guessing games (C4, 3, 1) (see [30]) and (K3, 3, 1), we obtain a winning
hat guessing game (G,h, 1) where G is the result of identifying an edge in C4 and K4, and h is given in the picture.

5 Independence Polynomial
The multivariate independence polynomial of a graph G = (V,E) on variables x = (xv)v∈V is

PG(x) =
∑
I⊆V

I independent set

∏
v∈I

xv.

First, we describe the connection between the multi-guessing game and the independence polynomial
informally and later prove the mentioned statements formally. Consider the game (G, h, g) and fix a
strategy of bears. Suppose that the demon put on the head of each bear a hat of random color (chosen
uniformly and independently). Let Av be an event that the bear on the vertex v guesses correctly. Then,
the probability of Av is exactly g/h. Moreover, for any independent set I it holds that Av is independent
on all events Aw for w ∈ I, w ̸= v. Thus, we can use the inclusion-exclusion principle (Proposition 1) to
compute the probability that Av occurs for at least one v ∈ I , i.e., at least one bear sitting on some vertex
of I guesses correctly.

Assume that no two bears on adjacent vertices guess correctly their hat colors at once; it turns out that
if we plug −g/h into all variables of the non-constant terms of −PG, then we get exactly the fraction of
all hat arrangements on which the bears win. The non-constant terms of PG correspond (up to sign) to the
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terms of the formula from the inclusion-exclusion principle. Because of that, we have to plug −g/h into
the polynomial PG.

To avoid confusion with the negative fraction −g/h, we define signed independence polynomial as
ZG(x) = PG(−x), i.e.,

ZG(x) =
∑
I⊆V

I independent set

(−1)
|I|∏

v∈I

xv.

We also introduce the monovariate signed independence polynomial UG(x) obtained by plugging x for
each variable xv of ZG.

Note that the constant term of any independence polynomial PG(x) equals to 1, arising from taking
I = ∅ in the sum from the definition of PG. When UG(g/h) = 0 and no two adjacent bears guess correctly
at the same time, then the bears win the game (G, h, g) because the fraction of all hat arrangements, on
which at least one bear guesses correctly, is exactly 1, however, the proof is far from trivial.

Slightly abusing the notation, we use ZG′(x) to denote the independence polynomial of an induced
subgraph G′ with variables x restricted to the vertices of G′. The independence polynomial PG can be
expanded according to a vertex v ∈ V in the following way.

PG(x) = PG\{v}(x) + xvPG\N [v](x)

The analogous expansions hold for the polynomials ZG and UG as well. This expansion follows from the
fact that for any independent set I of G, it holds that either v is not in I (the first term of the expansion),
or v is in I but in that case, no neighbor of v is in I (the second term). The formal proof of this expansion
of PG was provided by Hoede and Li [17].

For a graph G, we let R(G) denote the set of all vectors r ∈ [0,∞)V such that ZG(w) > 0 for all
0 ≤ w ≤ r, where the comparison is done entry-wise. For the monovariate independence polynomial
UG, an analogous set to R(G) would be exactly the real interval [0, r) where r is the smallest positive
root of UG. (Note that ZG(0) = 1 and UG(0) = 1.)

Our first connection of the independence polynomial to the hat guessing game comes in the shape of
a sufficient condition for bears to lose. Consider the following beautiful connection between the Lovász
Local Lemma and the independence polynomial due to Scott and Sokal [28].

Theorem 3 ([28] Theorem 4.1) Let G = (V,E) be a graph and let (Av)v∈V be a family of events on
some probability space such that for every v, the event Av is independent of {Aw | w ̸∈ N [v]}. Suppose
that p ∈ [0, 1]V is a vector of real numbers such that for each v we have P (Av) ≤ pv and p ∈ R(G).
Then

P
( ⋂
v∈V

Āv

)
≥ ZG(p) > 0.

Proposition 2 A hat guessing game H = (G = (V,E),h,g) is losing whenever r ∈ R(G) where
r = (gv/hv)v∈V .

Proof: Suppose for a contradiction that H is winning, and fix a strategy of the bears. We let the demon
assign a hat to each bear uniformly at random and independently from the other bears. Let Av be the
event that the bear on the vertex v guesses correctly. Observe, that P (Av) =

gv
hv

and the probability that
the bears lose is precisely P

(⋂
v∈V Āv

)
.
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Let us show that the event Av is independent of all events Aw such that w ̸∈ N [v]. Observe, that fixing
arbitrary hat arrangement φ on V \ {v} uniquely determines the guesses of bears on all vertices except
for N(v). In particular, for every vertex w ̸∈ N [v], we know whether the bear on w guessed correctly
and thus the probability of Aw conditioned by φ is either 0 or 1. On the other hand, the probability of Av

conditioned by φ is still gv
hv

. Therefore, Av is independent of any subset of {Aw | w ̸∈ N [v]}.
The claim follows since the graph G and vector r satisfies the conditions of Theorem 3 and we obtain

that P (
⋂

v∈V Āv) ≥ ZG(r) > 0. Therefore, there exists some hat arrangement in which all bears guess
incorrectly. 2

A strategy for a hat guessing game H is perfect if it is winning and in every hat arrangement, no two
bears that guess correctly are on adjacent vertices. We remark that perfect strategies exist, for example
the strategy for a single-guessing game on a clique Kn and exactly n colors [20], or for a multi-guessing
game on a clique Kn and h/g = n (Corollary 1). The following proposition shows that a perfect strategy
can occur only when r = (gv/hv)v∈V (note gv ≤ hv by definition) lies in some sense just outside of
R(G).

Proposition 3 If there is a perfect strategy for the hat guessing game (G,h,g) then for r = (gv/hv)v∈V

we have that ZG(r) = 0 and ZG(w) ≥ 0 for every 0 ≤ w ≤ r.

Proof: Fix a perfect strategy and set m =
∏

v∈V hv to be the total number of possible hat arrange-
ments. For any subset S ⊆ V , let nS be the number of hat arrangements such that every bear on vertex
v ∈ S guesses correctly (other bears are not forbidden from guessing correctly). We claim that for any
independent set I ⊆ V , we have nI = m ·

∏
v∈I

gv
hv

.
Observe that by assigning the hats to the bears on V \ I , we fix the guesses of all bears on I . Every bear

on a vertex v ∈ I guesses correctly exactly gv out of hv of his hat assignments. Thus the total number of
hat arrangements where every bear on the independent set I guesses correctly is exactly

nI =
∏

v∈V \I

hv ·
∏
v∈I

gv = m ·
∏
v∈I

gv
hv

.

On the other hand, the perfect strategy guarantees that for any non-empty S that is not an independent
set, nS = 0. This allows us to use the inclusion-exclusion principle and count the exact total amount of
hat arrangements such that at least one bear guesses correctly∑

∅≠S⊆V

(−1)|S|+1nS =
∑

∅̸=I⊆V
I independent

(−1)|I|+1nI = m ·
∑

∅̸=I⊆V
I independent

(−1)|I|+1
∏
v∈I

gv
hv

=

= m · (1− ZG(r)).

Finally, the total amount of hat arrangements when at least one bear guesses correctly must be exactly
m since the bears win. Therefore, we get ZG(r) = 0.

We prove the remaining claim in two steps. First, we show that for every induced subgraph G′ of G
it holds that ZG′(r) ≥ 0. To that end, consider a modified hat guessing game where only bears on the
vertices of G′ are allowed to guess and they play according to the original perfect strategy. By the same
argument as before, we can count the total amount of hat arrangements that are guessed correctly by this
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modified strategy as m · (1 − ZG′(r)). It implies ZG′(r) ≥ 0 as the total number of hat arrangements is
m.

Now consider any 0 ≤ w ≤ r. Let v1, . . . , vn be an arbitrary ordering of the vertices of G and let us
define vectors wi for 0 ≤ i ≤ n as

wi
u =

{
wu if u = vj for j ≤ i,
ru if u = vj for j > i.

Notice that w0 = r, wn = w, and the vectors wi correspond to switching the coordinates of r into the
coordinates of w one by one. We prove by induction on i that for every induced subgraph G′ of G it holds
that ZG′(wi) ≥ 0.

We already proved the fact for i = 0. Let i ≥ 1 and let G′ be an arbitrary induced subgraph of G. If G′

does not contain vi then ZG′(wi) = ZG′(wi−1) ≥ 0 and we are done. Otherwise, we have

ZG′(wi) = ZG′\{vi}(w
i)− wviZG′\N [vi](w

i)

≥ ZG′\{vi}(w
i−1)− rviZG′\N [vi](w

i−1) = ZG′(wi−1) ≥ 0

where we first partition the independent sets of G′ according to their incidence with vi and then replace wi

with wi−1 where the inequality holds since wvi ≤ rvi and ZG′\N(vi)(w
i−1) ≥ 0 from induction. Finally,

we notice that we obtained the independent polynomial ZG′ evaluated in wi−1 and apply induction. Thus,
ZG(w) ≥ 0 as w = wn and G is an induced subgraph of itself. 2

Scott and Sokal [28, Corollary 2.20] proved that ZG(w) ≥ 0 for every 0 ≤ w ≤ r if and only if r lies
in the closure of R(G). Therefore, Proposition 3 further implies that if a perfect strategy for the game
(G,h,g) exists, then r = (gv/hv)v∈V lies in the closure of R(G). And since r cannot lie inside R(G)
due to Proposition 2, it must belong to the boundary of the set R(G).

The natural question is what happens outside of the closure of R(G). We proceed to answer this
question for chordal graphs.

A graph G is chordal if every cycle of length at least 4 has a chord. For our purposes, it is more
convenient to work with a different equivalent definition of chordal graphs. For a graph G = (V,E), a
clique tree of G is a tree T whose vertex set is precisely the subsets of V that induce maximal cliques in
G and for each v ∈ V the vertices of T containing v induces a connected subtree. Gavril [15] showed that
G is chordal if and only if there exists a clique tree of G.

Theorem 4 Let G = (V,E) be a chordal graph and let r = (rv)v∈V be a vector of rational numbers
from the interval [0, 1]. If r ̸∈ R(G) then there are vectors g,h ∈ NV such that gv/hv ≤ rv for every
v ∈ V and the hat guessing game (G,h,g) is winning.

Proof: We prove the theorem by induction on the size of the clique tree of G. Let 0 ≤ w ≤ r be a witness
that r ̸∈ R(G), i.e., ZG(w) ≤ 0.

If G is itself a complete graph, then ZG(w) ≤ 0 implies that
∑

v∈V wv ≥ 1 and
∑

v∈V rv ≥∑
v∈V wv ≥ 1. Thus, if we take the minimal vectors g,h ∈ NV such that gv/hv = rv for each v,

the assumptions of Theorem 2 are satisfied and the hat guessing game (G,h,g) is winning.
Otherwise, the clique tree of G contains at least 2 vertices and we pick its arbitrary leaf C. Let R be

the set of vertices that belong only to the clique C, and let S = C \ R. We aim to split the graph into
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G′ = G[V \R] and G[C], apply induction to obtain winning strategies on these graphs, and then combine
them into a winning strategy on G; see Figure 3.

If
∑

v∈C rv ≥ 1, then the game is winning already on the clique G[C] due to Theorem 2, by letting
gv/hv = rv for each v ∈ C. Therefore, we can assume

∑
v∈C rv < 1 which implies

∑
v∈C wv < 1. We

define vectors w′ = (w′
v)v∈V \R and r′ = (r′v)v∈V \R as

w′
v =

{
wv/αw if v ∈ S,
wv otherwise, and

r′v =

{
rv/αr if v ∈ S,
rv otherwise,

where αr = 1 −
∑

v∈R rv and αw = 1 −
∑

v∈R wv . Observe that 0 < αr ≤ αw and that for every
v ∈ V \ R we have 0 ≤ w′

v ≤ r′v ≤ 1. In other words, r′ and w′ are both vectors of numbers from [0, 1]
such that w′ ≤ r′.

To simplify the rest of the proof, we introduce the following notation. For any u ∈ V , let ZG(x;u)
denote the independence polynomial restricted only to the independent sets containing u, i.e.,

ZG(x;u) =
∑

u∈I⊆V
I independent

(−1)
|I|∏

v∈I

xv.

With this in hand, we proceed to show that ZG′(w′) = ZG(w)/αw.

ZG(w) =
∑
v∈R

ZG(w; v) +
∑
v∈S

ZG(w; v) + ZG\C(w) (1)

=

(
1−

∑
v∈R

wv

)
· ZG\C(w) +

∑
v∈S

ZG\R(w; v) (2)

= αw · ZG\C(w
′) + αw ·

∑
v∈S

ZG\R(w
′; v) (3)

= αw · ZG\R(w
′) = αw · ZG′(w′) (4)

In (1), we partition the independent sets in G depending on their incidence with C. The line (2) follows
since every independent set intersecting R in G can be written as a union of v ∈ R and an independent
set in G \ C which allows us to collect the first and third terms. At the same time, all independent sets
intersecting S in G can be regarded as independent sets intersecting S in G\R. In (3), we replace w with
w′ which scales each term in the second sum by the factor wv/w

′
v = αw. Finally, notice that the terms in

(3) describe (up to scaling by αw) the independent sets in G \ R partitioned according to their incidence
with S. We collect them in (4).

Since αw > 0 and ZG(w) ≤ 0, we have ZG′(w′) ≤ 0 which witnesses that r′ ̸∈ R(G′). Therefore,
we can apply induction on G′ and r′ to obtain functions h′,g′ such that the hat guessing game (G′,h′,g′)
is winning and g′v/h

′
v ≤ r′v for each vertex v.

Let G′′ be the graph obtained from the clique G[C] by contracting S to a single vertex u and define the
vector r′′ = (r′′v )v∈R∪{u} as

r′′v =

{
rv if v ∈ R,
αr if v = u.
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Observe that G is precisely the clique join of G′ and G′′ with respect to S and w. Since r′′u+
∑

v∈R r′′v = 1,
we can take the minimal vectors h′′,g′′ ∈ NV such that g′′v/h

′′
v = rv for every v and apply Theorem 2 on

G′′ to show that the hat guessing game (G′′,h′′,g′′) is winning. Finally, we construct the desired winning
strategy by combining the two graphs and their respective strategies using Lemma 2 since r′v · r′′v = rv for
every v ∈ S. 2
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Fig. 3: Application of Theorem 2 on a chordal graph G with vector r ∈ R(G). In each step, we highlight the clique
S and vertex w that are used for Lemma 2 to inductively build a strategy for G from strategies on cliques given by
Theorem 2. Note that the number of colors and guesses may differ from the depicted ratios by a multiplicative factor.

Theorem 4 applied for the uniform polynomial UG immediately gives us the following corollary.

Corollary 2 For any chordal graph G, the fractional hat chromatic number µ̂(G) is equal to 1/r where
r is the smallest positive root of UG(x).

Proof: Theorem 4 implies that µ̂(G) ≥ 1/r. For the other direction, let (wi)i∈N be a sequence of
rational numbers such that wi < r for every i and limi→∞ wi = r. Set wi = (wi)v∈V . Scott and
Sokal [28, Thereom 2.10] prove that r ∈ R(G) if and only if there is a path in [0,∞)V connecting 0
and r such that ZG(p) > 0 for any p on the path. Taking the path {λwi | λ ∈ [0, 1]}, we see that
ZG(λwi) = UG(λ · wi) > 0 and thus wi ∈ R(G) for every i. Therefore by Proposition 2, the hat
guessing game (G, h, g) is losing for any h, g such that g/h = wi and µ̂(G) ≤ 1/wi for every i. It
follows that µ̂(G) ≤ 1/r. 2

We would like to remark that the proof of Theorem 4 (and also Theorem 2) is constructive in the sense
that given a graph G and a vector r it either greedily finds vectors g,h ∈ NV such that gv/hv ≤ rv
together with a succinct representation of a winning strategy on (G,h,g) or it reaches a contradiction if
r ∈ R(G). Moreover, it is easy to see that it can be implemented to run in polynomial time if the clique
tree of G is provided. Combining it with the well-known fact that a clique tree of a chordal graph can be
obtained in polynomial time (see Blair and Peyton [3]) we get the following corollary.

Corollary 3 There is a polynomial-time algorithm that for a chordal graph G = (V,E) and vector r
decides whether r ∈ R(G). Moreover, if r ̸∈ R(G) it outputs vectors h,g ∈ NV such that gv/hv ≤ rv
for every v ∈ V , together with a polynomial-size representation of a winning strategy for the hat guessing
game (G,h,g).

This result is consistent with the fact that chordal graphs are in general well-behaved with respect to
Lovász Local Lemma—Pegden [25] showed that for a chordal graph G, we can decide in polynomial
time whether a given vector r belongs to R(G). We finish this section by presenting an algorithm that
computes the fractional hat chromatic number of chordal graphs.



14 Václav Blažej, Pavel Dvořák, Michal Opler

Theorem 5 There is an algorithm A such that given a chordal graph G as an input, it approximates µ̂(G)
up to an additive error 1/2k. The running time of A is 2k · poly(n), where n is the number of vertices of
G. Moreover, if µ̂(G) is rational, then the algorithm A outputs the exact value of µ̂(G).

Proof: First, suppose that µ̂(G) is rational. Let µ̂(G) = q/p for coprimes p, q ∈ N. By Corollary 2,
1/µ̂(G) = p/q is the smallest positive root of the polynomial UG. Let UG(x) = adx

d + . . . a1x + a0.
Note that a0 = 1 and for each i ≤ d holds that |ai| ≤ 2n because |ai| is exactly the number of independent
sets of size i in the graph G. By the rational root theorem (Theorem 1), it holds that p = 1 and q ≤ 2n.

The algorithm A repeats a halving procedure which works as follows. We set the initial bounds ℓ0 = 0
and u0 = 1. In a step i, let ri = (ℓi + ui)/2. We run the algorithm by Corollary 3 to test if there are
hi, gi ∈ N such that gi/hi ≤ ri and the game Hi = (G, hi, gi) is winning. If so, we set new bounds
ℓi+1 = ℓi and ui+1 = ri. On the other hand, if Hi is not winning then we set ℓi+1 = ri and ui+1 = ui.
Thus, for each i it holds that ℓi ≤ 1/µ̂(G) ≤ ui.

We make s = max{2k, 3n} steps. The length of the real interval Is = [ℓs, us] is at most 1/23n. It is
easy to verify that the interval Is contains at most one rational number 1/q for q ≤ 2n. If so, we output
the number q. Otherwise, we output a number t such that 1/t is an arbitrary number in Is.

If µ̂(G) is rational, then by Corollary 2 and by the discussion above we found its value. Otherwise,
we know that |1/µ̂(G) − 1/t| ≤ 1/2s as the length of Is is exactly 1/2s. Since s ≥ 3n and 1/t ≥ 1/n
by Corollary 1, it follows by easy calculation that |µ̂(G) − t| ≤ 1/2s/2 ≤ 1/2k. Thus, even if µ̂(G) is
irrational, then we estimate it with precision 1/2k.

We ran the halving procedure at most 2k-times and during each step we run the poly-time algorithm
given by Corollary 3. Thus, the running time of A is at most 2k · poly(n). 2

6 Applications
In this section, we present applications of the relation between the hat guessing game and independence
polynomials which was presented in the previous section.

6.1 Fractional Hat Chromatic Number is Almost Linear in the Maximum Degree
First, we prove that µ̂(G) is asymptotically equal to ∆(G) up to a logarithmic factor.

Proposition 4 The fractional hat chromatic number of any graph G = (V,E) is at least Ω(∆/ log∆).

Proof: Let H be a subgraph of G. Note that µ̂(H) ≤ µ̂(G) as the bears can use a winning strategy for
H in G. Let S be a star of ∆(G) = ∆ leaves. The graph G contains S as a subgraph. We prove the
proposition by giving a lower bound for µ̂(S).

By Corollary 2, we have that r = 1/µ̂(S) is the smallest positive root of US(x). The independence
polynomial of S is

US(x) = −x+

∆∑
i=0

(
∆

i

)
(−x)i = (1− x)∆ − x.

The term −x is given by the independent set containing only the vertex of degree ∆. The sum is given by
all independent sets consisting of leaves of S. Thus, it must hold that (1−r)∆ = r. By simple calculation,
we conclude that r = Θ

(
log∆/∆

)
, which implies the assertion of the proposition. 2
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Farnik [10] proved that µg(G) ∈ O
(
g ·∆(G)

)
, from which we can deduce that µ̂(G) ∈ O

(
∆(G)

)
. It

gives with Proposition 4 the following corollary that µ̂(G) is almost linear in ∆(G).

Corollary 4 For any graph G, it holds that µ̂(G) ∈ Ω(∆/ log∆) and µ̂(G) ∈ O(∆).

6.2 Paths and Cycles
In this section, we discuss the precise value of µ̂ of paths and cycles. It follows from Corollary 4, that
µ̂(Pn) and µ̂(Cn) are upper bounded by constants. We prove that the fractional hat chromatic number of
paths and cycles goes to 4 with their increasing length.

For a proof, we need a version of Lovász local lemma proved by Shearer.

Lemma 3 (Shearer [29]) Let A1, . . . , An be events such that each event is independent on all but at most
d other events. Let the probability of any events Ai is at most p. If d > 1 and p < (d−1)d−1

dd , then there is
non-zero probability that none of the events A1, . . . , An occurs.

Proposition 5 limn→∞ µ̂(Pn) = limn→∞ µ̂(Cn) = 4

Proof: First, we prove the lower bound for paths. Let ε > 0. We construct a sufficiently long path P =
(V,E) and vectors h,g ∈ NV such that a hat guessing game (P,h,g) is winning and gv/hv ≤ 1/4 + ε.
Thus, we can conclude that for every δ > 0 there is n such that µ̂(Pn) ≥ 4− δ, i.e., limn→∞ µ̂(Pn) ≥ 4.
The same lower bound holds for cycles as they contain paths as subgraphs.

We construct the path P iteratively. Let P 0 be a path consisting of one edge e0 = {v0, u0}. We set
g0
v0 = g0

u0
= 1 and h0

v0 = h0
u0

= 2. By Theorem 2, the game (P 0,h0,g0) is winning.
Now, we want to construct a game Hi+1 = (P i+1,hi+1,gi+1) from (P i,hi,gi). Let vi and ui be the

endpoints of P i. We will maintain the invariant that givi = giui
and hi

vi = hi
ui

and let us denote the ratio
givi

/hi
vi by ri. We construct the paths P i in a way such that ri = 1

2 − i · ε. Note that this equality holds
for the game (P 0,h0,g0).

Let P ′ be a path consisting of one edge e′ = {w,w′} and we set g′ and h′ in such a way that g′w/h
′
w =

1/2+ (i+1) · ε and g′w′/h′
w′ = 1/2− (i+1) · ε. Again by Theorem 2, the game (P ′,h′,g′) is winning.

To create the path P i+1, we join two copies of P ′ to P i using Lemma 2. More formally, we join one copy
of P ′ by identifying w and ui and the second copy by identifying w and vi. Thus, the endpoints ui+1 and
vi+1 of P i+1 are copies of w′. By Lemma 2, we get a winning game Hi+1 = (P i+1,hi+1,gi+1). For a
sketch of construction of the game Hi+1, see Figure 4. Note that indeed ri+1 = 1

2 − (i+ 1) · ε.
We end this process after k =

⌈
1
4ε

⌉
steps. Thus, it holds that rk = 1

2 − k · ε ≤ 1
4 . On the other hand, it

holds for each 0 ≤ i < k by Lemma 2 that

gkvi
hk
vi

=
gkui

hk
ui

=

(
1

2
− i · ε

)
·
(
1

2
+ (i+ 1) · ε

)
=

1

4
+

ε

2
− i(i+ 1)ε2.

Thus, for each vertex v of P k holds that gk
v

hk
v
≤ 1

4 + ε as claimed.
Now, we prove the upper bound. Let H = (G, h, g) be a game such that G is a path or a cycle and

h
g > 4. We will prove that bears lose H, which implies that limn→∞ µ̂(Pn), limn→∞ µ̂(Cn) ≤ 4. Let
us fix some strategy of bears and the demon gives each bear a hat of random color (chosen uniformly and
independently). We denote Av an event that the bear on v guesses correctly. Then, Pr[Av] =

g
h < 1

4 .
Since the maximum degree in G is 2, each event Av might depend only on at most 2 other events. By
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1
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Fig. 4: A sketch of construction of the game Hi+1. The formulas below vertices are the fractions gv/hv .

Lemma 3, for events (Av)v∈V (G) and d = 2, we have that no event Av occurs with non-zero probability.
Thus, there is a hat arrangement such that no bear guesses correctly. 2

We remark that Proposition 5 follows also from the results of Scott and Sokal [28] as they proved that
the small positive roots of UPn

and UCn
go to 1/4 when n goes to infinity. However, their proof is purely

algebraic whereas we provide a combinatorial proof.
Further, we discuss the value of µ̂ = µ̂(P3). By Corollary 2, we have that 1/µ̂ is the smallest positive

root of UP3(x) = x2 − 3x + 1. Thus, 1/µ̂ = (3 −
√
5)/2. By Theorem 4, it holds that for any p, q ∈ N

such that µ̂ ≤ p/q there are g, h ∈ N such that p/q = h/g and the game (P3, h, g) is winning. However,
the strategy from the proof gives us h = p · (p− q) and g = q · (p− q). We present a sequence (hi/gi)i∈N
such that the sequence goes to µ̂, for each i the numbers hi and gi are coprime, and the game (P3, hi, gi)
is winning for each i. Thus, we present a strategy that is in some sense more efficient than the strategy
given by the proof of Theorem 4 as the general strategy for P3 does not produce numbers g and h which
are coprimes.

First, we present the strategy for P3. Note that if 1 ≥ g/h ≥ 1/µ̂ (for g, h ∈ N) then UP3
(g/h) =

(g/h)
2 − 3g/h + 1 < 0. We change the inequality to g2 − 3gh + h2 < 0 and prove that for each g and

h, which satisfy the previous inequality, there is a winning strategy for (P3, h, g).

Lemma 4 Let g, h ∈ N such that g2 − 3gh+ h2 < 0. Then, the bears win the game (P3, h, g).

Proof: Let V (P3) = {u, v, w} where v and w are the endpoints of the path P3. We identify the colors
with a set C = {0, . . . , h − 1}. Let the bear on v get a hat of color cv . The bear on u makes guesses
Au =

{
cv, cv − 1, . . . , cv − (g − 1)

}
. The bear on w makes guesses Aw =

{
cv, cv − ⌊h/g⌉ , . . . , cv −

⌊(g − 1) · h/g⌉
}

, where ⌊x⌉ is the nearest integer to x (i.e., standard rounding). We compute the guessed
colors modulo h.
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The bear on v computes two sets of colors Iu and Iw based on the hat colors of bears on u and w such
that he will not guess the colors from Iu ∪ Iw because if cv ∈ Iu ∪ Iw then the bear on u or the bear on w
would guess correctly (or maybe both of them). The guesses of the bear on u is an interval in the set C.
However, the guesses of the bear on w are spread through C as evenly as possible. Thus, the intersection
Iu ∩ Iw is small and Iu ∪ Iw is large.

More formally, let cu and cw be hat colors of the bears on u and w, respectively. Then, Iu = {cu, cu +
1, . . . , cu + (g − 1)}, and Iw = {cw, cw + ⌊h/g⌉, . . . , cw + (g − 1) · ⌊h/g⌉}. Again, we compute the
elements in the sets modulo h. Note that if cv ∈ Iu then the bear on u guesses correctly because in that
case cv = cu + t (mod h) for some t < g and thus cu ∈ Au. An analogous property holds for cw. Thus,
the bear on v does not have to guess the colors from Iu ∪ Iw.

We will prove that
∣∣C \ (Iu ∪ Iw)

∣∣ ≤ g. Thus, the bear on v can guess all colors outside Iu and Iw and
makes at most g guesses. First, we prove that |Iu∩Iw| ≤ 3g−h. Suppose opposite, that |Iu∩Iw| > 3g−h.
In such a case, there must be k such that both colors cw + ⌊k ·h/g⌉ and cw + ⌊(k+3g−h) ·h/g⌉ belong
to Iu. This implies that ⌊(k+3g−h) ·h/g⌉−⌊k ·h/g⌉ ≤ g−1. Applying bounds on the rounded terms,
we obtain

g − 1 ≥
⌊
(k + 3g − h) · h

g

⌉
−
⌊
k · h

g

⌉
≥ (k + 3g − h) · h

g
− 0.5− k · h

g
− 0.5

= (3g − h) · h
g
− 1.

The final inequality implies g2 − 3gh + h2 ≥ 0 which contradicts the assumption of the lemma.
Therefore, the size of the intersection Iu ∩ Iw is at most 3g − h. It follows that the size of the union
Iu ∪ Iw is at least 2g − (3g − h) = h− g and

∣∣C \ (Iu ∪ Iw)
∣∣ ≤ g. 2

Let Fi be the i-th Fibonacci number(ii). We define hi = F2i and gi = F2i−2. Now, we prove the
sequence (gi/hi)i∈N has the sought properties.

Lemma 5 For each i ∈ N it holds that hi

gi
≤ µ̂. Moreover,

lim
i→∞

hi

gi
= µ̂.

Proof: Note that 1/µ̂ = 1−
√
5−1
2 = 1− 1

φ , where φ is the golden ratio, i.e., φ = 1+
√
5

2 . It is well-known
that fractions Fi

Fi−1
go to φ. Moreover, F2i

F2i−1
≥ φ. Thus, for each i ∈ N it holds that

1

µ̂
= 1− 1

φ
≤ 1− F2i−1

F2i
=

F2i−2

F2i
=

gi
hi

.

and the fractions hi

gi
indeed go to µ̂. 2

(ii) F0 = F1 = 1 and Fi+1 = Fi−1 + Fi.
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Observation 2 Due to Cassini’s identity, for each i ∈ N holds that

g2i − 3gihi + h2
i = (hi − gi)

2 − higi = F 2
2i−1 − F2iF2i−2 = (−1)2i−1 = −1 (5)

Observation 3 For each i ∈ N the numbers hi and gi are coprime.

Proof: By definition, gi = F2i−2 and hi = F2i.

GCD(F2i−2, F2i) = GCD(F2i−2, F2i−1 + F2i−2) = GCD(F2i−2, F2i−1)

It is easy to prove by induction that for each i ∈ N it holds that GCD(Fi−1, Fi) = 1. 2
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A The Second Proof of the Non-algorithmic Part of Theorem 2
Theorem 6 (Non-algorithmic part of Theorem 2) Bears win a game (Kn,h,g) if and only if∑

v∈V (Kn)

gv
hv

≥ 1.

Proof (The second proof of non-algorithmic part of Theorem 2): The proof again follows the proof
of Kokhas et al. [20] for the single-guessing game. We prove only the “if” part. Thus, suppose that∑

v∈V (Kn)
gv
hv

≥ 1. Let V (Kn) = {v1, . . . , vn}. We create an auxiliary bipartite graph G = (Vℓ∪̇Vr, E).
In the left partite Vℓ there is a vertex for each possible coloring of hats. Thus we can identify each vertex
in Vℓ with an n-tuple (c1, . . . , cn) where ci ∈ [hvi ] is some color of the i-th bear’s hat. The set Vr is
split into n sets, Vr = V 1

r ∪̇ . . . ∪̇V n
r . For each vi ∈ V (Kn) and a tuple (c1, . . . , ci−1, ∗, ci+1, . . . , cn)

we have a gvi vertices in the set V i
r . Thus, the vertices in V i

r represent what could see the i-th bears.
Each vertex in V i

r labeled with (c1, . . . , ci−1, ∗, ci+1, . . . , cn) is connected with vertices in Vℓ labeled
with (c1, . . . , ci−1, ci, ci+1, . . . , cn) for all ci ∈ [hvi ]. Thus, each vertex in V i

r has degree h(vi) and each
vertex in Vℓ has a degree

∏
v∈V (Kn)

g(v).
Note that bears win the game if and only if there is a matching in G which covers Vℓ. Suppose there

is such matching M . Let a bear sitting on a vertex vi sees colors c1, . . . , ci−1, ci+1, . . . , cn and U ⊆ Vr

be a set of vertices in Vr labeled by (c1, . . . , ci−1, ∗, ci+1, . . . , cn). By construction of G, it holds that
|U | = gvi . Let N(U) be a set of neigbors of U given by the matching M , thus, |N(U)| ≤ g(vi). Each
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vertex u ∈ N(U) has label (c1, . . . , ci−1, c
u
i , ci+1, . . . , cn). Thus, the bear sitting on vi guesses colors cui

for all u ∈ N(U). It is clear that for each v ∈ V (Kn), the bear sitting on v guesses at most gv colors.
Moreover, since the matching M covers Vℓ at least one bear guesses the color of his hat correctly. On the
other hand, each winning strategy gives us a matching covering Vℓ.

We use Hall’s theorem [7, Chapter 2] to prove there is a matching M covering Vℓ if and only if∑
v∈V (Kn)

gv
hv

≥ 1. Let S ⊆ Vℓ be a set of m left vertices. Each vertex in V i
r has at most hvi neig-

bors in S. Since each vertex in Vℓ has gvi neigbors in V i
r , the set S has at least gvi · m

hvi
vertices in V i

r .
Therefore, in total the set S has at least ∑

v∈V (Kn)

gv ·
m

hv
≥ m

neighbors in Vr. We conclude by Hall’s theorem, that there is a matching in G which covers Vℓ. 2

Albeit Hall’s theorem is constructive, the size of the auxiliary graph G constructed in the proof could
be exponential in n. Thus, this proof can not be used for designing a polynomial algorithm.
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