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Congruence successions in compositions
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A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession,
we will mean a pair of adjacent parts x and y within a composition such that x ≡ y (mod m). Here, we consider
the problem of counting the compositions of size n according to the number of m-congruence successions, extending
recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in
the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention
is paid to the case m = 2, where further enumerative results may be obtained by means of combinatorial argu-
ments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence
successions.
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1 Introduction
Let n be a positive integer. A composition σ = σ1σ2 · · ·σd of n is any sequence of positive integers
whose sum is n. Each summand σi is called a part of the composition. If n, d ≥ 1, then let Cn,d denote
the set of compositions of n having exactly d parts and Cn = ∪nd=1Cn,d. By convention, there is a single
composition of n = 0 having zero parts.

If m ≥ 1 and 0 ≤ r ≤ m− 1, by an (m, r)-congruence succession within a sequence π = π1π2 · · ·πd,
we will mean an index i for which πi+1 ≡ πi + r (mod m). An (m, r)-congruence succession in which
r = 0 will be referred to as anm-congruence succession, them = 2 case being termed a parity succession
(or just a succession). A sequence is said to be parity-alternating if it contains no parity successions, that
is, if its terms alternate between even and odd values. This concept of parity succession for sequences
extends an earlier one that was introduced for subsets [15] and later considered on permutations [16].
The terminology is an adaptation of an analogous usage in which a succession refers to a pair pi, pi+1

within an integral sequence p1p2 · · · such that pi+1 = pi + 1 (see, e.g., [1, 21, 12]). For other related
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problems involving restrictions on compositions, the reader is referred to the text [11] and such papers as
[2, 3, 4, 5, 7, 10].

Enumerating finite discrete structures according to the parity of individual elements perhaps started
with the formula of Tanny [22] for the number g(n, k) of alternating k-subsets of [n] given by

g(n, k) =

(
bn+k2 c
k

)
+

(
bn+k−12 c

k

)
, 1 ≤ k ≤ n.

This result was recently generalized to any modulus in [13] and in terms of counting by successions
in [15]. Tanimoto [20] considered a comparable version of the problem on permutations in his investiga-
tion of signed Eulerian numbers. There one finds the formula for the number h(n) of parity-alternating
permutations of length n given by

h(n) =
3 + (−1)n

2

⌊n
2

⌋
!

⌊
n+ 1

2

⌋
!,

which has been generalized in terms of succession counting in [16]; see also [14].
In the next section, we consider the problem of counting compositions of n according to the number

of (m, r)-congruence successions, as defined above, and derive an explicit formula for the generating
function for all m and r (see Theorem 2 below). When r = 0, we obtain as a corollary a relatively
simple expression for the generating function Fm which counts compositions according to the number
of m-congruence successions. Letting m → ∞ and taking the variable in Fm which marks the num-
ber of m-congruence successions to be zero recovers the generating function for the number of Carlitz
compositions, i.e., those having no consecutive parts equal; see, e.g., [9].

In the third section, we obtain some enumerative results concerning the case m = 2. In particular,
we provide a bijective proof for a related recurrence and enumerate, in two different ways, the parity-
alternating compositions of size n. As a consequence, we obtain a combinatorial proof of a pair of bino-
mial identities which we were unable to find in the literature. In the final section, we provide asymptotic
estimates for the number of compositions of n having no m-congruence successions as n → ∞, which
may be extended to compositions having any fixed number of successions.

Special cases of the generating function Rm,r(x, y, q) defined below do fall within the general frame-
work of Bender and Canfield in [2, 3, 4, 5]. In particular, if one takes D = Z − {km + r : k ∈ Z}
in Theorem 4 of [2], then one obtains another recurrence satisfied by the q = 0 case of Rm,r(x, y, q).
We are unable to solve this recurrence explicitly in our case and no general solution to the recurrence in
this theorem can apparently be found, as remarked by the authors. We note that the set D above was not
among the examples considered in [2] or in the later paper [4]. Furthermore, the distribution of the statistic
recording the number of adjacent differences belonging to a certain residue class mod m has apparently
not been previously studied.

2 Counting compositions by number of (m, r)-congruence suc-
cessions

Let clm,r(π) denote the number of (m, r)-congruence successions within a sequence π = π1π2 · · ·πd.
Let Rm,r;a(x, y, q) = Ra(x, y, q) be the generating function for the number of compositions of n with
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exactly d parts whose first part is a according to the statistic clm,r, that is,

Ra(x, y, q) =
∑
n≥0

n∑
d=0

xnyd

 ∑
π=aπ′∈Cn,d

qclm,r(π)

 .

Clearly, we have Rm+a(x, y, q) = xmRa(x, y, q) for all a ≥ 1. Let Rm,r(x, y, q) = R(x, y, q) =
1 +

∑
a≥1Ra(x, y, q). By the definitions, we have

Ra(x, y, q) = xayR(x, y, q) + xay(q − 1)
∑

Rt(x, y, q),

for all a ≥ 1, where the sum is taken over all positive integers t such that t ≡ a+ r (mod m). Hence,∑
i≥0

Rim+a(x, y, q) =
xay

1− xm
R(x, y, q) +

xay(q − 1)

1− xm
∑
i≥0

Rim+a+r(x, y, q),

if 1 ≤ a ≤ m− r, and∑
i≥0

Rim+a(x, y, q) =
xay

1− xm
R(x, y, q) +

xay(q − 1)

1− xm
∑
i≥0

Rim+a+r−m(x, y, q),

if m− r + 1 ≤ a ≤ m. The last two equalities may be expressed as

Gj(x, y, q) =
xjy

1− xm
R(x, y, q) +

xjy(q − 1)

1− xm
Gj+r(x, y, q), 1 ≤ j ≤ m− r,

Gj(x, y, q) =
xjy

1− xm
R(x, y, q) +

xjy(q − 1)

1− xm
Gj+r−m(x, y, q), m− r + 1 ≤ j ≤ m, (1)

where Gj(x, y, q) =
∑
i≥0Rim+j(x, y, q).

In order to find an explicit formula for Gj(x, y, q), we will need the following lemma.

Lemma 1. Suppose xj = aj + bjxj+r for all j = 1, 2, . . . ,m − r and xj = aj + bjxj+r−m for all
j = m − r + 1,m − r + 2, . . . ,m. Let s = gcd(m, r) and p = m/s. Then for all j = 1, 2, . . . , s and
` = 0, 1, . . . , p− 1, we have

xj+`r =

`+p−1∑
i=`

aj+ir
∏i−1
k=` bj+kr

1−
∏`+p−1
k=` bj+kr

,

where xj+m = xj , aj+m = aj and bj+m = bj .

Proof: Let j = 1, 2, . . . , s. By definition of the sequence xj and m-periodicity, we may write

xj = aj + bjxj+r = aj + bjaj+r + bjbj+rxj+2r

= · · · = aj + bjaj+r + · · ·+ bjbj+r · · · bj+(p−2)raj+(p−1)r + bjbj+r · · · bj+(p−1)rxj+pr.

Since pr ≡ 0 (mod m), we have

xj =

p−1∑
i=0

aj+ir
∏i−1
k=0 bj+kr

1−
∏p−1
k=0 bj+kr

.
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More generally, for any ` = 0, 1, . . . , p− 1,

xj+`r =

`+p−1∑
i=`

aj+ir
∏i−1
k=` bj+kr

1−
∏`+p−1
k=` bj+kr

.

Let us denote by t the member of {1, 2, . . . ,m} such that t ≡ t (mod m) for a positive integer t. When
aj =

xjy
1−xmR(x, y, q) and bj =

xjy(q−1)
1−xm for 1 ≤ j ≤ m in Lemma 1, we get

xj+`r =

`+p−1∑
i=`

xj+iry
1−xm R(x, y, q)

∏i−1
k=`

xj+kry(q−1)
1−xm

1−
∏`+p−1
k=`

xj+kry(q−1)
1−xm

=
R(x, y, q)

1−
(
y(q−1)
1−xm

)p∏`+p−1
k=` xj+kr

p−1∑
i=0

xj+(i+`)ryi+1(q − 1)i
∏i+`−1
k=` xj+kr

(1− xm)i+1
, (2)

for all j = 1, 2, . . . , s and ` = 0, 1, . . . , p − 1, where s = gcd(m, r) and p = m/s. By (1), we have
Gj+`r(x, y, q) = xj+`r = xj+`r, where xj+`r is given by (2). Note that the set of indices j + `r
for 1 ≤ j ≤ s and 0 ≤ ` ≤ p − 1 is a complete residue set (mod m). Using (2) and the fact that
R(x, y, q) = 1 +

∑m
a=1Ga(x, y, q), we obtain the following result.

Theorem 2. If m ≥ 1, 0 ≤ r ≤ m− 1, s = gcd(m, r) and p = m/s, then

Rm,r(x, y, q) =
1

1−
s∑
j=1

p−1∑̀
=0

p−1∑
i=0

xj+(i+`)ryi+1(q−1)i
∏i+`−1

k=` xj+kr

(1−xm)i+1(1−( y(q−1)
1−xm )

p ∏`+p−1
k=` xj+kr)

. (3)

Note that in general we are unable to simplify the number theoretic product
∏i+`−1
k=` xj+kr appearing

in (3).
Let

Fm(x, y, q) =
∑
n≥0

n∑
d=0

xnyd

 ∑
π∈Cn,d

qclm(π)

 ,

where clm(π) denotes the number of m-congruence successions of a sequence π. Taking r = 0 in (3),
and noting s = gcd(m, 0) = m, gives the following result.

Corollary 3. If m ≥ 1, then

Fm(x, y, q) =
1

1−
∑m
a=1

(
xay

1−xm−xay(q−1)

) . (4)

Letting q = 0 and m→∞ in (4) yields the generating function for the number of compositions having
no m-congruence successions for all large m. Note that the only possible such compositions are those
having no two adjacent parts the same. Thus, we get the following formula for the generating function
which counts the Carlitz compositions according to the number of parts.
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Corollary 4. We have

F∞(x, y, 0) =
1

1−
∑∞
a=1

xay
1+xay

. (5)

Let us close this section with a few remarks.

Remark 1. Letting q = 1 in (3) gives

Rm,r(x, y, 1) =
1

1− y
1−xm

∑s
j=1

∑p−1
`=0 x

j+`r
=

1

1− y
1−xm

∑m
a=1 x

a
=

1− x
1− x− xy

,

which agrees with the generating function for compositions where x marks the size and y marks the
number of parts.

Remark 2. In [6], the generating function for the number c(n, d) of Carlitz compositions of n having d
parts was obtained as ∑

n≥0

n∑
d=0

c(n, d)xnyd =
1

1 +
∑
j≥1

(−xy)j
1−xj

. (6)

Note that formulas (5) and (6) are seen to be equivalent since

∑
a≥1

xay

1 + xay
=
∑
a≥1

∑
j≥1

(−1)j−1xajyj =
∑
j≥1

(−1)j−1yj
∑
a≥1

xja =
∑
j≥1

(−1)j−1 (xy)j

1− xj
.

Remark 3. Letting m = 1 in (4) gives

F1(x, y, q) =
1− x− xy(q − 1)

1− x− xyq
.

This formula may also be realized directly upon noting in this case that q marks the number of parts minus
one in any non-empty composition, whence

F1(x, y, q) = 1 +
1

q

(
1− x

1− x− xyq
− 1

)
.

3 Combinatorial results
In this section, we will provide some combinatorial results concerning successions in compositions. Let
F (x, y, q) = F2(x, y, q) denote the generating function which counts the compositions of n having d
parts according to the number of parity successions. Taking m = 2 in Corollary 3 gives

F (x, y, q) =
(1− x2 − xy(q − 1))(1− x2 − x2y(q − 1))

(1− x2)2 − x3y2 − xy(1− x2)(1 + x)q + x3y2q2
. (7)

Let Cn,d,a denote the subset of Cn,d whose members contain exactly a successions and let c(n, d, a) =
|Cn,d,a|. Comparing coefficients of xnydqa on both sides of (7) yields the following recurrence satisfied
by the array c(n, d, a).
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Theorem 5. If n ≥ 4 and d ≥ 3, then

c(n, d,a) = c(n− 1, d− 1, a− 1) + 2c(n− 2, d, a) + c(n− 2, d− 1, a− 1) + c(n− 3, d− 2, a)

− c(n− 3, d− 1, a− 1)− c(n− 3, d− 2, a− 2)− c(n− 4, d, a)− c(n− 4, d− 1, a− 1).
(8)

We can also provide a combinatorial proof of (8), rewritten in the form

(c(n, d, a)− c(n− 2, d, a)) + c(n− 3, d− 2, a− 2) =

(c(n− 1, d− 1, a− 1)− c(n− 3, d− 1, a− 1)) + (c(n− 2, d, a)− c(n− 4, d, a))

+ (c(n− 2, d− 1, a− 1)− c(n− 4, d− 1, a− 1)) + c(n− 3, d− 2, a). (9)

To do so, let Bn,d,a denote the subset of Cn,d,a all of whose members end in a part of size 1 or 2. Note
that for all n, d, and a, we have

|Bn,d,a| = c(n, d, a)− c(n− 2, d, a),

by subtraction, since c(n − 2, d, a) counts each member of Cn,d,a whose last part is of size 3 or more
(to see this, add two to the last part of any member of Cn−2,d,a, which leaves the number of parts and
successions unchanged).

So to show (9), we define a bijection between the sets

Bn,d,a ∪ Cn−3,d−2,a−2 and Bn−1,d−1,a−1 ∪ Bn−2,d,a ∪ Bn−2,d−1,a−1 ∪ Cn−3,d−2,a.

For this, we refine the sets as follows. In the subsequent definitions, x, y, and z will denote an odd
number, an even number, or a number greater than or equal three, respectively. First, let B(i)n,d,a, 1 ≤ i ≤ 4,
denote, respectively, the subsets of Bn,d,a whose members (1) end in either 1 + 1 or x + 1 + 2 for some
x, (2) end in y + 2 + 1 or 2 + 2 for some y, (3) end in x + 2 + 1 or y + 1 + 2, or (4) end in z + 1 or
z + 2 for some z. Let B(i)n−1,d−1,a−1, 1 ≤ i ≤ 3, denote the subsets of Bn−1,d−1,a−1 whose members end

in 1, x+2 for some x, or y+2 for some y, respectively. Finally, let B(i)n−2,d−1,a−1, 1 ≤ i ≤ 3, denote the
subsets of Bn−2,d−1,a−1 whose members end in x+ 1, y + 1, or 2, respectively.

So we seek a bijection between
(
∪4i=1B

(i)
n,d,a

)
∪ Cn−3,d−2,a−2 and(

∪3i=1B
(i)
n−1,d−1,a−1

)
∪
(
∪3i=1B

(i)
n−2,d−1,a−1

)
∪ Bn−2,d,a ∪ Cn−3,d−2,a.

Simple correspondences as described below show the following:

(i) |B(1)n,d,a| = |B
(1)
n−1,d−1,a−1 ∪ B

(2)
n−1,d−1,a−1|,

(ii) |B(2)n,d,a| = |B
(2)
n−2,d−1,a−1 ∪ B

(3)
n−2,d−1,a−1|,

(iii) |B(3)n,d,a| = |Cn−3,d−2,a|,

(iv) |B(4)n,d,a| = |Bn−2,d,a|,

(v) |Cn−3,d−2,a−2| = |B(1)n−2,d−1,a−1 ∪ B
(3)
n−1,d−1,a−1|.
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For (i), we remove the right-most 1 within a member of B(1)n,d,a, while for (ii), we remove the right-most

2 within a member of B(2)n,d,a. To show (iii), we remove the final two parts of λ ∈ B(3)n,d,a to obtain the
composition λ′. Note that λ′ ∈ Cn−3,d−2,a and that the mapping λ 7→ λ′ is reversed by adding 1 + 2 or
2 + 1 to a member of Cn−3,d−2,a, depending on whether the last part is even or odd, respectively. For
(iv), we subtract two from the penultimate part of λ ∈ B(4)n,d,a, which leaves the number of successions
unchanged. Finally, for (v), we add either a part of size 1 or 2 to λ ∈ Cn−3,d−1,a−2, depending on whether
the last part of λ is odd or even, respectively. Combining the correspondences used to show (i)–(v) yields
the desired bijection and completes the proof.

We will refer to a composition having no parity successions as parity-alternating. We now wish to
enumerate parity-alternating compositions having a fixed number of parts. Setting q = 0 in (7), and
expanding, gives

F (x, y, 0) =
(1− x2 + x2y)(1− x2 + xy)

(1− x2)2 − x3y2
=

(
1 + x2y

1−x2

)(
1 + xy

1−x2

)
1− x3y2

(1−x2)2

=

(
1 +

x2y

1− x2

)(
1 +

xy

1− x2

)∑
i≥0

x3iy2i

(1− x2)2i

=
∑
i≥0

2y2i
∑

j≥2i−1

(
j

2i− 1

)
x2j−i+2 + y2i+1

∑
j≥2i

(
j

2i

)
x2j−i+2 + y2i+1

∑
j≥2i

(
j

2i

)
x2j−i+1

 .

Extracting the coefficient of xnym in the last expression yields the following result.

Proposition 6. If n ≥ 1 and d ≥ 0, then

c(n, 2d, 0) =

 2
(n+d

2 −1
2d−1

)
, if n ≡ d (mod 2);

0, otherwise,
(10)

and

c(n, 2d+ 1, 0) =


(n+d

2 −1
2d

)
, if n ≡ d (mod 2);

(n+d−1
2
2d

)
, otherwise.

(11)

It is instructive to give combinatorial proofs of (10) and (11). For the first formula, suppose λ ∈ Cn,2d,0.
Then n and d must have the same parity since the parts of λ alternate between even and odd values. In
this case, the number of possible λ is twice the number of integral solutions to the equation

d∑
i=1

(xi + yi) = n, (12)

where each xi is even, each yi is odd, and xi, yi > 0. Note that the number of solutions to (12) is the same
as the number of positive integral solutions to

∑d
i=1(ui + vi) = n+d

2 , which is
(n+d

2 −1
2d−1

)
, upon letting
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ui =
xi

2 and vi = yi+1
2 . Thus, there are 2

(n+d
2 −1
2d−1

)
members of Cn,2d,0 when n and d have the same parity,

which gives (10).
On the other hand, note that members of Cn,2d+1,0, when n and d have the same parity, are synonymous

with positive integral solutions to
d∑
i=1

(xi + yi) + z = n, (13)

where the xi are even, the yi are odd, and z is even. Upon adding 1 to each yi, and halving, the number
of such solutions is seen to be

(n+d
2 −1
2d

)
. Similarly, there are

(n+d−1
2
2d

)
members of Cn,2d+1,0 when n and d

differ in parity, which gives (11).

Let a(n) =
∑n
d=0 c(n, d, 0). Note that a(n) counts all parity-alternating compositions of n. Taking

a = 0 in (8) and summing over d yields the following result.

Proposition 7. If n ≥ 4, then

a(n) = 2a(n− 2) + a(n− 3)− a(n− 4), (14)

with a(0) = a(1) = a(2) = 1 and a(3) = 3.

Summing the formulas in Proposition 6 over d with n fixed, and using the fact
(
a
b

)
=
(
a−2
b

)
+2
(
a−2
b−1
)
+(

a−2
b−2
)
, yields the following pair of binomial identities, which we were unable to find in the literature.

Corollary 8. If n ≥ 0, then

a(2n) =

bn+1
3 c∑

d=0

(
n+ d+ 1

4d

)
(15)

and

a(2n+ 1) =

bn3 c∑
d=0

(
n+ d+ 2

4d+ 2

)
, (16)

where a(m) is given by (14).

Note that both sides of (15) and (16) are seen to count the parity-alternating compositions of 2n and
2n + 1, respectively, the right-hand side by the number of parts. Using (14), the binomial sums in (15)
and (16) can be shown to satisfy fourth order recurrences; see [8] for other examples of recurrent binomial
sums.

4 Asymptotics
We recall from (4) that Fm(x, y, q) is a rational function. Specializing variables we obtain Fm(x, 1, 0) =∑
n≥0 anx

n, which we have seen in the previous section. The exact formulas given there for the coeffi-
cient an are complemented here by asymptotic results. These are analogous to known results for Smirnov
words and Carlitz compositions.

Note that Fm(x, 1, 0) = 1/Hm(x), whereHm(x) = 1−
∑m
a=1

xa

1+xa−xm . Each 1+xa−xm is analytic
and so its modulus over each closed disk centered at 0 is maximized on the boundary circle. It can be
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shown that when |x| is fixed, |1 + xa − xm| is maximized when xa − xm is positive real, and minimized
when xa − xm is negative real. Furthermore, the maximum over a of this maximum value occurs when
a = 1, and similarly for the minimum.

By Pringsheim’s theorem, there is a minimal singularity of Fm on the positive real axis, and this is
precisely the smallest positive zero ρm of Hm. Furthermore, because Fm is not periodic, this singularity
is the unique one of that modulus. Thus Fm is analytic in the open disk centered at 0 with radius ρm. Note
that ρm ≥ 1/2 because the exponential growth rate of unrestricted compositions is 2, and so our restricted
class of compositions must grow no faster. However ρm ≤ 1 because the sum defining Hm has value m
when x = 1. Since ρm is the smallest positive solution of

m∑
a=1

ρa

1 + ρa − ρm
= 1,

it follows that ρm is an algebraic number of degree at most m2. Note that for all m and 0 < x < 1,

Hm(x)−Hm+1(x) = xm+1 +
m∑
a=1

[
xa

(1 + xa − xm+1)
− xa

(1 + xa − xm)

]

= xm+1 +

m∑
a=1

xa+m(x− 1)

(1 + xa − xm+1)(1 + xa − xm)

= (1− x)

(
xm+1

1− x
−

m∑
a=1

xa+m

(1 + xa − xm+1)(1 + xa − xm)

)

> (1− x)

(
xm+1

1− x
−

m∑
a=1

xa+m

)
> (1− x)

xm+1

1− x
−
∑
a≥1

xa+m

 = 0.

Thus 0.5 ≤ ρm+1 < ρm ≤ ρ2 < 0.68 for all m.
The rest of the proof should proceed according to a familiar outline: apply Rouché’s theorem to locate

the dominant singularity of Fm(x, 1, 0), by approximating Hm with a simpler function having a unique
zero inside an appropriately chosen disk of radius c, where ρm < c < 1; derive asymptotics for the
coefficients an via standard singularity analysis. This technique has been used in several similar problems,
for example for Carlitz compositions.

There are some difficulties with this approach in our case. If we attack Fm directly, we must derive a
result for all m. Since Fm is rational with numerator and denominator of degree at most m2, for fixed
m, we could consider using numerical root-finding methods, though for arbitrary symbolic m this will
not work. It is intuitively clear that for sufficiently large m, Fm should be close to F∞ and so by using
Rouché’s theorem, we could reduce to the Carlitz case.

However, even the Carlitz case is not as easy as claimed in the literature, and we found several uncon-
vincing published arguments. Some authors simply assert that F∞ has a single root, based on a graph
of the function on a given circle. This can be made into a proof, by approximately evaluating F∞ at
sufficiently many points and using an upper bound on the best Lipschitz constant for the function, but this
is somewhat unpleasant. We do not know a way of avoiding this problem — the minimum modulus of a
function on a circle in the complex plane must be computed somehow. We use an approach similar to that
taken in [9].
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The obvious approximating function to use is an initial segment with k terms of the partial sum defining
Fm. However, it seems easier to use the initial segment of the sum defining F∞, which we denote by Sk.
We will take k = 7 and c = 0.7 and denote S7 by h. By using the Jenkins-Traub algorithm as implemented
in the Sage command maxima.allroots(), we see that all roots of h, except the real positive root
(approximately 0.572) have real or imaginary part with modulus more than 0.7, so they certainly lie
outside the circle C given by |x| = c.

To apply Rouché’s theorem, we need an upper bound for |Hm − h| on C which is less than the lower
bound for |h| on C. We first claim that the lower bound for |h| on C is at least 0.43. This can be
proved by evaluation at sufficiently many points of C. Since |h′(z)| is bounded by 100 on C, N := 1000
points certainly suffice. This is because the minimum of |h| at points of the form 0.7 exp(2πij/N), for
0 ≤ j ≤ N , is more than 0.51 (computed using Sage), and the distance between two such points is at
most 8 × 10−4, by Taylor approximation. In fact, it seems that the minimum indeed occurs at x = 0.7,
but this is not obvious to us.

We now compute an upper bound for |Hm − h|. To this end, we compute, when m ≥ 7,

|Hm(x)− h(x)| =
m∑
a=8

xa

1− xa + xm
+

(
7∑
a=1

xa

1− xa + xm
− h(x)

)

≤
∞∑
a=8

ca

1− c8
+

(
7∑
a=1

xa

1− xa + xm
− h(x)

)
.

The sum
∑∞
a=8

ca

1−c8 has value less than 0.204 when c = 0.7. The second sum is smaller than 0.2 which
can be verified by a similar argument to the above, by evaluating at sufficiently many points.

We still need to deal with the casesm < 7 and these can be done directly via inspection after computing
all roots numerically as above.

The above arguments show that ρm is a simple zero of Hm and hence a simple pole of the rational
function Fm(x, 1, 0). The asymptotics now follow in the standard manner by a residue computation, and
we obtain

an ∼ ρ−nm
1

−ρmH ′(ρm)
.

For example, F2(x, 1, 0) = (1 + x − x2)/((1 − x2)2 − x3) has a minimal singularity at ρ2 ≈
0.6710436067037893, which yields the following result.

Theorem 9. We have

a(n) ∼ (0.6436)1.4902n

for large n, where a(n) is given by (14).

For example, when n = 20, the relative error in this approximation is already less than 0.2%. The
exponential rate 1/ρm approaches the rate for Carlitz compositions, namely 1.750 · · · , as m→∞.

For a given m, it is possible in principle to compute asymptotics in a given direction by analysis of
Fm(x, y, q), for example, using the techniques of Pemantle and Wilson [17]. We provide here a sketch
for the case m = 2, the proof being similar for other small m, and refer the reader to the above reference
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or the more recent book [18]. In this case we have

F2(x, y, q) =

(
1− xy

1− x2 − xy(q − 1)
+

x2y

1− x2 − x2y(q − 1)

)−1
=

(1− x2 − xy(q − 1))(1− x2 − x2y(q − 1))

1− 2x2 − qxy + x4 − qx2y − x3y2 + qx3y + qx4y + q2x3y2
.

By standard algorithms, for example as implemented in Sage’s solve command, one can check that
the partial derivatives Hx, Hy, Hq never vanish simultaneously, so that the variety defined by Hm is
smooth everywhere. The critical point equations are readily solved by the same method. For example, for
the special case when n = 2d = 4t, where t denotes the number of congruence successions, we obtain
(using the Sage package amgf [19]) the first order asymptotic

(0.379867842273)(15.8273658508862)t/(πt),

which has relative error just over 1% when n = 32 (the number of such compositions being 54865800).
Bivariate asymptotics when q = 0, or when y = 1, could be derived similarly. The smoothness of the
variety defined by Hm leads quickly to Gaussian limit laws in a standard way as described in [18], and
we leave the reader to explore this further.
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