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Given a set system (also well-known as a hypergraph) H = {U ,X}, where U is a set of elements and X is a set of subsets

of U , an exact hitting set S is a subset of U such that each subset in X contains exactly one element in S. We refer to a

set system as exactly hittable if it has an exact hitting set. In this paper, we study interval graphs which have intersection

models that are exactly hittable. We refer to these interval graphs as Exactly Hittable Interval Graphs (EHIG). We present

a forbidden structure characterization for EHIG. We also show that the class of proper interval graphs is a strict subclass of

EHIG. Finally, we give an algorithm that runs in polynomial time to recognize graphs belonging to the class of EHIG.
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1 Introduction

We study classes of simple graphs which are intersection graphs of set systems that have exact hitting sets. In

particular, we introduce a class of interval graphs which are intersection graphs of intervals that have exact hit-

ting sets. We refer to this class as Exactly Hittable Interval Graphs (EHIG). We also present an infinite family

of forbidden structures for EHIG. In the following, we introduce a setting of exact hitting sets and intersection

graphs, before presenting our results.

Exact Hitting Sets: Set systems are synonymous with hypergraphs. A hitting set of a hypergraphH is a subset

T of the vertex set of H such that T has at least one vertex from every hyperedge. If every hyperedge has

exactly one element from T , then T is called an exact hitting set. The EXACT HITTING SET problem is a well-

studied decision problem that aims to find if a given hypergraph has an exact hitting set. It finds applications

in combinatorial cryptosystems (Downey and Fellows (2013)) and computational biology among many others.

The EXACT HITTING SET problem is the dual of the EXACT COVER problem which, in turn, seeks to find a set

cover that covers all vertices of a hypergraph such that the number of occurrences each vertex has in the cover

is exactly one. Some famous examples of the EXACT COVER problem are sudoku, tiling dominoes, and the

n-queens problem. The EXACT COVER problem is a special case of the MINIMUM MEMBERSHIP SET COVER

problem (MMSC) (Karp (1972)). While the classic SET COVER problem seeks to find a set cover of minimum

cardinality, MMSC aims to find a set cover that minimizes the maximum number of occurrences each vertex

has in the cover. MMSC is known to be NP-complete on arbitrary set systems (Kuhn et al. (2005)). However,

for interval hypergraphs, MMSC was shown to be solvable in polynomial time by Dom et al. (2006). If a hyper-

graphH has an exact hitting set, we refer to H as an exactly hittable hypergraph. Dhannya and Narayanaswamy

(2020) have shown that a conflict-free coloring of a set of intervals is exactly a partition into sets of intervals,

such that each set has an exact hitting set. This motivates the question of characterizing those sets of intervals

which have an exact hitting set. A natural characterization is obtained by writing the hitting set linear program

with one constraint per interval. This system is totally unimodular and thus defines an integer polytope (Dom

et al. (2006)). Thus, the intervals have an exact hitting set if and only if the polytope defined by the exact hitting

set linear program is non-empty. Further, it is possible to find if the interval hypergraph is exactly hittable in

∗Part of the work was done as a PhD student at Indian Institute of Technology Madras, Chennai, India

ISSN 1365–8050 © 2023 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/2301.00387v3


2 K.K. Nisha, N.S. Narayanaswamy, S.M. Dhannya

polynomial time (Dom et al. (2006)). In this work, we consider a related graph theoretic version of this question

- can we characterize the class of interval graphs that are the intersection graphs (defined in Section 1.1) of a set

of intervals that have an exact hitting set? We refer to this class as the class of Exactly Hittable Interval Graphs

(EHIG).

Intersection Graphs: The theory of graphs and hypergraphs are connected by a very well-studied notion

of intersection graphs (Erdős et al. (1966)). It is well-known that every graph G is an intersection graph of

some hypergraph H (Harary (1969)). H is referred to as an intersection model or a set representation of G
(Golumbic (2004); Harary (1969)). Interestingly, certain special classes of graphs are characterized by the

structure of their intersection models. For instance, Gavril (1974) has shown that the class of chordal graphs

are the intersection graphs of subtrees of a tree . When the hyperedges are restricted to be paths on a tree,

the resulting intersection graph class is that of path chordal graphs, which is a proper subclass of the class

of chordal graphs (Chalopin and Gonçalves (2009); Gavril (1978); Lévêque et al. (2009); Monma and Wei

(1986)). These characterizations result in recognition algorithms which are very well studied. The book by

Golumbic (2004) can be considered a pilgrimage for anyone interested in the characterization and recognition

of different natural sub-classes of perfect graphs. The recognition problem in the class of perfect graphs itself

remained a fascinating open problem with a long history of results (survey in the classic book by Grötschel

et al. (2012)) till the Strong Perfect Graph Conjecture was proven by Chudnovsky et al. (2003). While many

classes have efficient recognition algorithms, there are those for which the recognition problem is NP-complete.

Tolerance graphs are a sub-class of interval graphs, and the recognition problem for this class has been shown

to be NP-Complete by Mertzios et al. (2010). The thinness of a graph, on the other hand, is a width parameter

that generalizes certain properties of interval graphs. Interval graphs are exactly the graphs of thinness one. In

their work, Bonomo-Braberman and Brito (2023) have presented characterizations of 2-thin and proper 2-thin

graphs as intersection graphs of rectangles in the plane, as vertex intersection graphs of paths on a grid, and by

forbidden ordered patterns. Forbidden induced subgraph characterization for restricted cases of known graph

classes are well-studied. For instance, even though a structural characterization by minimal forbidden induced

subgraphs for the entire class of circle graphs is not known, Bonomo-Braberman et al. (2022) have given a

characterization by minimal forbidden induced subgraphs of circle graphs, restricted to split graphs. Rectangle

intersection graphs are the intersection graphs of axis-parallel rectangles in the plane. A graph is said to be

a k-stabbable rectangle intersection graph (k-SRIG), if it has a rectangle intersection representation in which

k horizontal lines can be placed such that each rectangle intersects at least one of them. Chakraborty et al.

(2021) have introduced some natural subclasses of 2-SRIG, and have shown that one of these subclasses can be

recognized in linear-time if the input graphs are restricted to be triangle-free. Earlier, Chakraborty and Francis

(2020) had developed a forbidden structure characterization for block graphs that are 2-ESRIG (in the case

when each rectangle intersects exactly one of the k horizontal lines) and trees that are 3-ESRIG, which lead to

polynomial-time recognition algorithms for these two classes of graphs. These forbidden structures are natural

generalizations of asteroidal triples.

A result which has the flavour of Exact Hitting Set is in a recent paper by Bhyravarapu et al. (2021). They

consider the problem of coloring the vertex set of a graph with k non-zero colors and one zero colour such that

for each vertex v, there is a vertex u in N(v) which has a non-zero colour different from all the other vertices in

N(v). This is called the CFON∗ colouring problem, and the goal is to find the minimum value of k for which

the graph has a CFON∗ colouring. For k = 1, this problem is the Exact Hitting Set problem of a set system in

which the sets are the set of neighbours of each vertex. For unit disk graphs, they show that testing if there is a

CFON∗ coloring with one non-zero colour is NP-complete.

Forbidden Structure Characterizations: While a graph G may be identified as an intersection graph of a

structured hypergraph, characterization of G based on forbidden structures has also been equally well-studied.

For instance, the class of chordal graphs are characterized by the absence of induced cycles of size 4 or more

(Golumbic (2004)). Similarly, by the celebrated theorem of Kuratowski (West (2000)), the class of planar graphs

must not have subgraphs that are subdivisions of K5 and K3,3. Interval graphs are known to be the class of

chordal graphs without an asteroidal triple as induced subgraph Lekkerkerker and Boland (1962). Recall that

an asteroidal triple of a graph G is a set of three independent vertices such that there is path between each pair
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of these vertices that does not contain any vertex of the neighborhood of the third. The class of proper interval

graphs is a subclass of interval graphs that do not have a K1,3 as an induced subgraph (Roberts (1978)). Refer to

Table 1 for a summary of these examples. Clearly, characterization of simple graphs based on their intersection

models and forbidden structures are extremely well-studied notions in defining graph classes.

Graph Class Intersection Model Forbidden Structures

Simple An exactly hittable hypergraph NIL

Planar Segments on a plane Subdivisions of K5 and K3,3 West (2000)

Chordal Subtrees of a tree Ck , for k ≥ 4 Golumbic (2004)

Path chordal Paths on a tree List given in Lévêque et al. (2009)

Interval Subpaths on a path Ck , for k ≥ 4 and asteroidal triple Lekkerkerker and

Boland (1962)

Proper interval Sets of intervals not properly

contained in each other

Ck , for k ≥ 4, asteroidal triple and K1,3 Roberts (1978)

Exactly Hittable Interval

Graphs (New graph class)

Exactly hittable sets of intervals Ck , for k ≥ 4, asteroidal triple and induced path Pk

which has, in its open neighbourhood, an independent set

of k + 3 vertices

Tab. 1: Intersection models and forbidden structures for well-known graph classes

Our results

1. We begin our set of results with a simple extension to a well-known theorem by Harary (1969) that every

graph G is the intersection graph of some hypergraph H .

Observation 1 Every simple undirected graph is the intersection graph of an exactly hittable hypergraph.

Further, if G is a chordal graph, then it is the intersection graph of an exactly hittable set of subtrees of a

tree.

We present proof of this observation in Section 2. Further to this observation, we look at a subclass of

chordal graphs, namely interval graphs, which are intersection graphs of subpaths on a path. We ask

if there is an exactly hittable intersection model for every interval graph, where the intersection model

consists of subpaths on a path. Interestingly, the answer is no.

2. We introduce the class of Exactly Hittable Interval Graphs (EHIG), which is the set of interval graphs

that have an exactly hittable interval representation. A given set of intervals defines a unique interval

graph, but an interval graph can have many interval representations. We say that an interval graph is an

exactly hittable interval graph if and only if it has at least one exactly hittable interval representation.

Definition 1 (Exactly Hittable Interval Graphs) The class of exactly hittable interval graphs is the

class of interval graphs which are intersection graphs of intervals that have exact hitting sets.

We present a forbidden structure characterization for EHIG. First, we define a family F of simple graphs

as follows:

Definition 2 For each k ≥ 1, Fk denotes the set of connected interval graphs whose vertex set can be

partitioned into an induced path P consisting of k vertices and the open neighbourhood of P (consisting

of only those vertices which are not in P ) which is an independent set of size k+3. Further, F is defined

to be
⋃

k≥1

Fk.
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Our main contribution in this paper is to prove that every graph in F is a forbidden structure for EHIG.

See Fig.1 for examples of forbidden structures. In Fig.1(i), u is the induced path P consisting of one

vertex with an independent set of four vertices a, b, c, d in its neighbourhood. Similarly, in Fig.1(ii), a-b
is the induced path P consisting of two vertices and {c, d, u, e, f} is an independent set of five vertices in

the neighbourhood of P .

u

a

b

c

d

(i)

c

d
a b

e

f

u

(ii)

Fig. 1: Two simple instances of forbidden structures

By Definition 2, for any k, the set Fk may contain more than one graph which are forbidden structures.

For example, both the graphs in Fig. 2 belong to F2.

c

d
a b

e

f

u

(i)

c

d
a b

e

f

u

(ii)

Fig. 2: Two instances of forbidden structures in F2

It may, however, be noted that, Fig. 2(ii) contains K1,4 as an induced subgraph, which itself is a forbidden

structure in F1.

Theorem 1 An interval graph G is exactly hittable if and only if it does not contain any graph from the

set F as an induced subgraph.

This theorem is proved in Section 3. We believe that this result is an interesting addition to the existing

graph characterizations, primarily because we could not find such an equivalence elsewhere in the litera-

ture, including graph classes repositories like graphclasses.org.

3. In Section 2, we introduce, what we refer to as, a canonical interval representation for an interval graph.

Given an interval graph G, a canonical interval representation HG is an interval hypergraph given by

HG = ([n], I), where [n] = {1, . . . , n} and I ⊆ {{i, i+ 1, . . . , j} | i ≤ j, i, j ∈ [n]}, and all intervals

have distinct left endpoints and distinct right endpoints. Further, for each v ∈ G, Iv ∈ I denotes the

corresponding interval. For construction of HG, we start with the well known linear ordering of maximal

cliques associated with an interval graph (Gilmore and Hoffman (2011); Golumbic (2004)). An interval

representation is constructed from the ordering such that the intersection graph of this representation is

isomorphic to G. By construction, there exists exactly one canonical interval representation for every

interval graph. While the canonical representation may be of independent interest, this representation is

crucial in proving Theorem 1 in this paper.

In Section 2, we prove the following theorem.

Theorem 2 Let G be an interval graph. Let HG be its canonical interval representation constructed as

described in Section 2. Then, G is exactly hittable if and only if HG is exactly hittable.
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4. Given an interval graph G and its canonical interval representation HG, we show that the algorithm by

Dom et al. (2006) to solve the MMSC problem in interval hypergraphs can be used to recognize EHIG.

We present the details in Section 3.2.

5. We show that the class EHIG is positioned between the class of proper interval graphs and the class of

interval graphs in the containment hierarchy of graph classes.

Theorem 3 Proper interval graphs⊂ EHIG ⊂ Interval Graphs.

The proof of the second part of the above theorem follows from the definition of EHIG. We prove the

first part of the containment relationship in Section 3.3. Interestingly, the smallest forbidden structure of

EHIG is K1,4 whereas that of the class of proper interval graphs is K1,3.

1.1 Preliminaries

Definition 3 (Intersection Graphs) Given a set system X = (U ,S), the intersection graph G(X ) of sets in X
is the simple graph obtained as follows. For every set S ∈ S, there exists a vertex vS ∈ G. An edge (vSi

, vSj
)

occurs in G if and only if there exists two sets Si, Sj ∈ F such that Si ∩ Sj 6= ∅. The family S is called a

set representation of the graph G. A set representation is also referred to as an intersection model (Golumbic

(2004), Harary (1969)).

A hypergraph H = (V , E) is a graph theoretic representation of a set system X = (U ,S), where the set V
corresponds to U and the set E corresponds to S. The set V contains vertices of hypergraph H and the set E
contains hyperedges. In the intersection graph G, for every hyperedge E ∈ E , there exists a vertex vE ∈ G. An

edge (vEi
, vEj

) occurs in G if and only if the hyperedges Ei and Ej have a non-empty intersection.

Definition 4 (Interval Graphs) A graph G = (V,E) is an interval graph if there exists an assignment of

intervals on the real line to each vertex v ∈ V (G) such that for each edge (u, v) in G, the associated intervals

I(u) and I(v) have a non-empty intersection. The set of intervals {I(v)}v∈V (G) is an interval representation

or intersection model of G.

Open and Closed neighborhoods: For a vertex v in a graph G = (V,E), the open neighborhood of v in G,

denoted by N(v), is the set {u ∈ V | {u, v} ∈ E} and the closed neighborhood of v in G, denoted by N [v], is

the set N(v) ∪ {v}.

Definition 5 Cheilaris and Smorodinsky (2012) An interval hypergraph is any hypergraphH = ([n], I), where

[n] = {1, . . . , n} and I ⊆ {{i, i+ 1, . . . , j} | i ≤ j, i, j ∈ [n]}.

Each hyperedge in I is a set of consecutive integers, which we call an interval. In an interval I = {i, i +
1, . . . , j}, i and j are the left and right endpoints of I respectively, which we denote by l(I) and r(I), respec-

tively. We use V(H) (or simply V) and I(H) (or simply I) to denote the vertex set and the hyperedge set,

respectively, of an interval hypergraphH . An interval hypergraph is said to be proper if no interval is contained

in another interval. If, for an interval graph G, there exists an interval representation in which no interval is

properly contained inside another interval, then G is a proper interval graph.

An interval graph is characterized by the existence of a linear ordering of its maximal cliques. In Section 3,

we use the following characterization to obtain an exactly hittable interval representation for an interval graph,

if such a representation exists.

Theorem 4 (Gilmore and Hoffman (2011)) The maximal cliques of an interval graph G can be linearly or-

dered such that, for every vertex x of G, the maximal cliques containing x occur consecutively.

The class of interval graphs is a subfamily of the class of chordal graphs, which, in turn, is a subfamily of the

class of perfect graphs. A chordal graph is a simple graph that does not contain any induced cycle of size ≥ 4
(Golumbic (2004)). Chordal graphs are known to be intersection graphs of subtrees of a tree (Gavril (1974)).

A clique tree T of a graph G is a tree with the maximal cliques of G as nodes, such that for every vertex v of

G, the maximal cliques containing v induce a subtree T (v) in T . In fact, chordal graphs are exactly the graphs
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that admit a clique tree (McKee and McMorris (1999)). A clique tree is also known as a tree decomposition of

a graph.

Note: We draw the reader’s attention to the distinction between interval hypergraphs and interval graphs, and

proper interval hypergraphs and proper interval graphs, as these are used extensively throughout the paper.

Furthermore, recall that an interval graph is an Exactly Hittable Interval Graph if it has an intersection model,

made of intervals, that has an exact hitting set. On the other hand, an Exactly Hittable Interval Hypergraph is

one that has an exact hitting set.

Observation 2 Since our goal is to characterize interval graphs that have an exactly hittable interval repre-

sentation, we assume without loss of generality that, in the graph G, for every sequence of consecutive maximal

cliques in a linear ordering, there is at most one vertex which starts and ends in this sequence.

Indeed, if a given graph violates this property and there are two or more vertices that start at the same clique

and end at the same clique in a sequence, then we retain only one of those vertices. The justification for this

assertion is that if the resulting graph has an exactly hittable interval representation, so does the original graph.

Notations: All other definitions and notations on simple graphs, used throughout this paper, have been taken

from West (2000).

2 A Canonical Interval Representation

In this section, we obtain a canonical interval representation HG of a given interval graph G. The canonical

interval representation is nothing but a special intersection model of G. Consequently, the intersection graph of

intervals in HG is isomorphic to G. The construction follows a well-defined set of steps with the result that ev-

ery interval graph has a unique canonical interval representation. The canonical representation HG is obtained

by stretching intervals so that all intervals have distinct left endpoints and distinct right endpoints. In other

words, no pair of intervals start at the same point or end at the same point. The canonical interval representation

is crucial to the proof of our main result in Section 3.

Outline: The starting point of this construction is to use the well known linear ordering of maximal cliques

associated with an interval graph (Golumbic (2004)) (refer Theorem 4). Fig. 3 gives an illustration of how to

obtain the canonical interval representation of an interval graph. Let G = (V,E) be the given interval graph.

Let O = {Q1, Q2 . . . Qt} be a linear ordering of maximal cliques in G. For each v ∈ V (G), let the interval

representation of G obtained fromO be I(v) = [l(v), r(v)], where l(v) is the index of the leftmost clique in O
that contains v, and r(v) is the index of the rightmost clique containing v. Let I ′ = {I(v) | v ∈ V (G)}. To

construct the canonical interval representation, we associate a gadget Di with maximal clique Qi, for 1 ≤ i ≤ t.
For every maximal clique Qi, we look at Di and stretch those intervals in I ′ that either start at i or end at i.
Intuitively, we can think of I(v) as being stretched to the left if l(v) = i and as being stretched to the right if

r(v) = i. Inside gadget Di, there is a point, which we denote by zi, with the following property: any interval

for which l(v) = i, starts at zi or to the left of zi and any interval for which r(v) = i, ends at zi or to the right

of zi. We refer to zi as the zero-point of gadget Di. The exact construction of stretched intervals is detailed in

the subsequent paragraphs.

The gadgets D1, D2 . . . , Dt are arranged in the same order as that of the maximal cliques in O. Further, for

each v ∈ V (G), the stretched interval associated with I(v) has Dl(v) as its left-most gadget and Dr(v) as its

rightmost gadget. To complete the construction, between each pair of consecutive gadgets, we add an additional

point, and we refer to these points as intermediate points. These points play a crucial role in our characterization

of EHIGs in Section 3.1. The stretched interval of I(v) contains all these additional points between consecutive

gadgets in the ordered set {Dl(v), Dl(v)+1, . . . , Dr(v)}. Let HG = (V , I) denote the canonical interval hyper-

graph thus obtained. V is the set of all points internal to the gadgets (defined below) and the t − 1 additional

points between consecutive gadgets (as described above). The intervals in I are the stretched intervals corre-

sponding to each interval in I ′. We now describe the gadget Di associated with maximal clique Qi, 1 ≤ i ≤ t.
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Fig. (i)

Q1 Q2 Q3 Q4

u u u u
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d d e e

Fig. (ii)

Q1 Q2 Q3 Q4 Iu

Ia Ib Ic

Id Ie

z1 z2 z3 z4
Fig. (iii)

Iu

Id

D1 D2 D3 D4

Iu Iu Iu Iu Iu Iu

Ia Ia Ia

IdId Id

Ib Ib Ib

Ie Ie Ie Ie

IcIc Ic

1 2 3

z1

4 5

z2

6 7

z3

8 9

z4

10 11

Fig. (iv)

Ia

Id

Iu

Ib

Ie

Ic

1 2 3

z1

4 5

z2

6 7

z3

8 9

z4

10 11

Fig. (v)

Fig. 3: Construction of Canonical Interval Representation (i) Interval Graph G with its maximal cliques Q1, Q2, Q3, Q4 (ii) Linear ordering of maximal

cliques O = {Q1, Q2, Q3, Q4} (iii) Interval representation of G obtained from O (iv) Gadgets D1 to D4 (v) Canonical interval representation for G

Construction of the gadget Di for maximal clique Qi: Let {I(v1), I(v2), . . . , I(vm)} be the ordered set

of intervals such that for each 1 ≤ k ≤ m, l(vk) = i and r(vk) > r(vj) whenever 1 ≤ k < j ≤ m. In

other words, the ordered set considers the intervals whose left endpoint is i in descending order of their right

endpoints. Then, for each 1 ≤ k ≤ m, the left endpoint of the interval of I(vk) is stretched k − 1 points to the

left. By this, l(v1) is kept at zi itself, as no stretching is done on it (see Fig. 4).

On the integer line, the left end point of I(vk) ∈ D1, which is the most left stretched interval in D1, is taken

as point 1. We next consider those intervals I(v) such that r(v) = i. Let {I(v1), I(v2), . . . , I(vm)} be the

ordered set of intervals such that for each 1 ≤ k ≤ t, r(vk) = i and l(vk) < l(vj) whenever 1 ≤ k < j ≤ m.

In other words, the ordered set considers the intervals whose right endpoint is i in ascending order of their left

endpoints. Then, for each 1 ≤ k ≤ m, the right endpoint of the interval of I(vk) is stretched k − 1 points to

the right. On the integer line, the right endpoint of the stretched interval of I(vk) would be zi + k − 1. This

completes the description of the gadget Di. Note that for I(v) in I, the stretched interval is stretched to the left

only in the leftmost gadget in which it is present, and it is stretched to the right in the rightmost gadget in which

it is present. By construction, no two intervals share the same left endpoint and the same right endpoint.

Lemma 1 Let HG be the canonical interval representation of graph G as constructed using the above proce-

dure. Then, G is isomorphic to the intersection graph of intervals in HG.

Proof: The gadgets D1, . . . , Dt are arranged in the same order as the maximal cliques in the ordered set

O = {Q1, Q2 . . . Qt}. For each v ∈ G, the starting gadget (and the ending gadget) of interval I(v) and the

starting maximal clique (and the ending maximal clique) of vertex v inO are the same by construction. Further,
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D1

I(v1)

I(v2)

I(v3)

1 2 3

z1

4 5 6 7 8 9 10 11

Fig. 4: Stretching intervals to the left

I(v) contains all the points in the intervening gadgets between the starting and ending gadgets of I(v) just as

v occurs in all the intervening maximal cliques between the starting and ending maximal cliques to which v
belongs to. It follows that I(u) and I(v) intersect if and only if the corresponding stretched intervals have a

non-empty intersection. Thus the intersection graph of intervals in HG is isomorphic to G. ✷

3 Exactly Hittable Interval Graphs

Characterizing simple graphs as intersection graphs is a well-pursued line of study in graph theory. Harary

(1969) had presented results on this problem in his book. We address the question of when a simple graph

is the intersection graph of an exactly hittable hypergraph. We modify the proof given by Harary to answer

this question. In addition, we present similar results for the class of chordal graphs (refer to Section 1.1 for

definition). We recall and prove Observation 1 about arbitrary graphs and arbitrary chordal graphs.

Observation 1 Every simple undirected graph is the intersection graph of an exactly hittable hypergraph. Fur-

ther, if G is a chordal graph, then it is the intersection graph of an exactly hittable set of subtrees of a tree.

Proof: The proof of the first statement is based on a slight modification to the intersection model constructed

from G in Theorem 2.5 in the book by Harary (1969). Let H = (V , E) be the intersection model constructed as

follows. The universe V of the hypergraph is V (G)∪E(G). The set E contains a hyperedge Ev for each vertex

v ∈ V (G), and Ev contains all the edges incident on v and the element v. Clearly, the intersection graph of H
is isomorphic to G and V (G) is an exact hitting set of H .

The proof of the second statement, which is for a chordal graph G, is similar and is as follows. Since G is a

chordal graph let it be isomorphic to the intersection graph of some subtrees of a tree T . In particular, let T be

the clique tree of the chordal graph G (Golumbic (2004)). Let {Tv | v ∈ V (G)} be the set of subtrees in T ,

where Tv is the subtree associated with v and the tree nodes in Tv correspond to those maximal cliques in G
which contain the vertex v. We modify T to get T ′ by adding n = |V (G)| new nodes, each corresponding to a

vertex in V (G). For each v ∈ V (G), the new node corresponding to v is made adjacent in T to some node in

Tv. The resulting tree is T ′ and T ′
v is the subtree of T ′ consisting of Tv and the new node corresponding to v.

Clearly, the newly added nodes form an exact hitting set of the set {T ′
v | v ∈ V (G)} in T ′, and the intersection

graph of the subtrees {T ′
v | v ∈ G} is the same as G. ✷

Interestingly, not every interval graph has an exactly hittable interval representation. In this paper, we present

a forbidden structure characterization for the class of interval graphs that have an exactly hittable interval rep-

resentation. In this section, we prove that every graph in F (see Definition 1) is a forbidden structure for EHIG.

First, we state and prove one direction of Theorem 1.

We use the following notations throughout the section. H ′ denotes an interval representation of G. We denote

the open neighbourhood of vertex v by N(v). N(P ) denotes open neighbourhood of all vertices in path P ,

excluding the vertices in P . I(P ) denotes the set of intervals in H ′ corresponding to vertices in path P , XN(P )

denotes the set of independent vertices in N(P ) and I(XN(P )) denotes set of intervals in H ′ corresponding to

XN(P ).
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Lemma 2 Let G be an interval graph. Let F ∈ F be any forbidden structure. If G contains F as an induced

subgraph, then G is not an Exactly Hittable Interval Graph.

Proof: Our proof is by contradiction. Let H ′ be any exactly hittable interval representation of G and let G
contain F ∈ F as an induced subgraph. Let F contain P , an induced path of length k in G that has an

independent set of at least k + 3 vertices in its neighbourhood. Let S be an exact hitting set of H ′. Recall that

I(P ) denotes the set of intervals in H ′ corresponding to vertices in path P . By our assumption that G contains

F , the number of intervals in I(XN(P )) is at least k + 3. Hence |I(XN(P )) ∩ S| ≥ k + 3. Since XN(P ) is an

independent set, there can be at most two intervals in I(XN(P )) that have at least one endpoint each outside the

union of intervals in I(P ) - one on either side of P . Therefore, even if these two intervals in I(XN(P )) are hit

outside the intervals in I(P ) at either ends, the remaining k + 1 independent intervals have to be hit inside the

union of intervals in I(P ). Hence |I(P ) ∩ S| ≥ k + 1. But there are only k intervals inside I(P ). Therefore,

by the pigeonhole principle, at least one interval among the intervals in I(P ) has to be hit more than once. Thus

S cannot be an exact hitting set of H ′. We have arrived at a contradiction to the assumption that H ′ is exactly

hittable. Since we started with an arbitrary exactly hittable representation and arrived at a contradiction, we

conclude that G is not exactly hittable. ✷

Now, we prove the other direction of Theorem 1, i.e, an interval graph G which contains no graph from the set

F as an induced subgraph is exactly hittable. Let O = {Q1, Q2 . . . Qt} be a linear ordering of maximal cliques

in G (refer Theorem 4 and Section 2). Let HG be the canonical interval representation of G obtained from O.

We use the following notations in this section. We denote a minimum clique cover of the neighbourhood of a

vertex v, which is formed by the minimum number of maximal cliques in O, by C(N [v]). Recall that a clique

cover for a vertex set S is a set of cliques such that each vertex in S appears in at least one clique. Note that

such a clique cover exists.

We prove a simple observation here.

Observation 3 If Qi . . . Qj, i, j ∈ [1, t], i ≤ j denote the maximal cliques containing vertex v ∈ V , then

Qj ∈ C(N [v]).

Proof: We prove this by contradiction. Let us assume that Qj /∈ C(N [v]). As Qj 6= Qj−1, there exists a

vertex u in Qj which is not in Qj−1. It follows that u is not contained in any maximal cliques that occur before

Qj−1 in O since the maximal cliques containing a vertex occur consecutively in the linear ordering of maximal

cliques of an interval graph. Therefore, if Qj /∈ C(N [v]), then u is not covered. It contradicts the fact that

C(N [v]) is a clique cover of N [v]. It follows that Qj ∈ C(N [v]). ✷

From now on, when we refer to a minimum clique cover of the input graph, we mean a minimum clique cover

formed by the minimum number of maximal cliques in O unless specified otherwise. Let |C(N [v])| denote the

number of cliques in C(N [v]). Similarly, we denote a minimum clique cover of vertices in the maximal cliques

Qi to Qj in the orderingO, i < j, by C(Qi, . . . , Qj).
Our proof is based on the structural properties of a path P in G, the construction of which is presented in

Algorithm 1. The structural properties of path P are proved as lemmas later in the section.

Outline of Algorithm 1:

We construct an induced path P which contains a minimal set of vertices from graph G. The vertices in path

P are selected such that every maximal clique in O has a non-empty intersection with path P . Further, we

incrementally construct a clique cover of G by taking the clique cover of the closed neighbourhood of each of

the individual vertices in P .

Let {v1, v2, . . . , vp} be the ordered set of vertices in the constructed path P with respect to the linear ordering

O. Let vi, . . . , vj , 1 ≤ i ≤ j ≤ p be any subset of vertices in path P . We use CC(N [vi, vi+1, . . . , vj ]), i ≤ j
to denote a clique cover of (N [vi] ∪N [vi+1] ∪ . . . ∪N [vj ]) and |CC(N [vi, vi+1, . . . , vj ])| to denote the num-

ber of cliques in CC(N [vi, vi+1, . . . , vj ]). Note that CC(N [vi, . . . , vj ]) is a clique cover of graph G when

i = 1, j = p. Thus obtained clique cover of G, CC(N [v1, . . . , vp]), is stored in K. We denote the maxi-

mal cliques which constitute K in the order in which they appear in CC(N [v1, . . . , vp]), by K1,K2, . . . ,Kα′ .



10 K.K. Nisha, N.S. Narayanaswamy, S.M. Dhannya

Algorithm 1: Construction of path P and computation of clique cover

Input: An interval graph G with a linear ordering of maximal cliquesO = {Q1, Q2 . . . Qt}
Output: Path P

1: i = 1
2: v1 ← Interval in Q1 with largest right endpoint

3: P ← v1
4: Q1

r = Maximal clique in which v1 ends

5: C(N [v1]) = Minimum clique cover of N [v1]
6: Q1

r′ = Maximal clique immediately preceding Q1
r in C(N [v1])

7: CC(N [v1]) = C(N [v1])
8: while Qi

r 6= Qt do

9: i = i+ 1
10: vi = Interval I ∈ Qi−1

r \Qi−1
r′ which has largest right endpoint; If there

are more than one such vertex, then the one with the smallest left

endpoint is chosen

11: P ← P ∪ vi
12: Qi

r = Maximal clique in which vi ends

13: CC(N [v1, . . . , vi]) = CC(N [v1, . . . , vi−1]) ∪ C(Qi−1
r+1, . . . , Q

i
r), where Qi−1

r+1 is the maximal

clique immediately succeeding Qi−1
r in O

14: Qi
r′ = Maximal clique immediately preceding Qi

r in CC(N [v1, . . . , vi])
15: end while

16: K = CC(N [v1, . . . , vi])
17: return P

Here the notationα′ is used to indicate thatK is a minimal clique cover ofG rather than a minimum clique cover.

In any perfect graph, the size of a minimum clique cover equals the size of a maximum independent set. Based

on this and the fact that interval graphs are perfect graphs, we state an observation which we use in proving

some important properties of the constructed clique cover of the neighbourhood of vertices in path P .

Observation 4 In any perfect graph G′, for each maximal clique K in a minimum clique cover K of G′, there

exists a vertex u ∈ K such that u does not belong to any other maximal clique in K.

Lemma 3 For 1 ≤ i ≤ p, |C(N [vi])| ≤ 3.

Proof: The proof is by contradiction. Let | C(N [vi]) |> 3. By definition, C(N [vi]) contains only the maximal

cliques from the linear orderingO. From Observation 4, it follows that for each maximal clique Q ∈ C(N [vi]),
there exists a vertex w which is unique to Q. Since |C(N [vi])| > 3, there exists at least 4 such vertices each

belonging to different maximal cliques in C(N [vi]). Let those vertices be denoted as w1, w2, w3, w4. We can

easily see that the vertices w1, w2, w3, w4 form an independent set, since each of them belong only to their

respective maximal cliques. It follows that vi together with w1, w2, w3, w4 form a forbidden structure K1,4

(refer Fig. 1 (i)). This is a contradiction to our premise that G does not contain any forbidden structure. ✷

Qi−2
r Qi−1

r Qi−1
r+1 Qi

r Qt

vi−1

vi

Fig. 5: Construction of path P
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Lemma 4 In the path P , if for any vertex vi, 1 ≤ i < p , |C(N [vi])| = 3, then |C(N [vi+1])| ≤ 2.

Proof: The proof is by contradiction. Assume that there exists a vertex vi ∈ P, 1 ≤ i ≤ p for which

|C(N [vi])| = 3 and |C(N [vi+1])| ≥ 3. Also note that by Lemma 3, |C(N [vi+1])| cannot exceed 3. Vertices vi

Qi
r′ Qi

r

vi

vi+1

Fig. 6: Forbidden structure formation

and vi+1, being adjacent, form an edge in the path P . We consider the following cases based on the cardinality

of C(N [vi]) ∪C(N [vi+1]).

Case when | C(N [vi]) ∪ C(N [vi+1]) |= 4: Recall from Algorithm 1 that Qi−1
r and Qi

r are the maximal

cliques in the ordering O which contains the right endpoints of the intervals corresponding to vi−1 and vi re-

spectively. For any vertex vi ∈ P, Qi−1
r ∈ C(N [vi]) and Qi

r ∈ C(N [vi]). By our choice of vi+1 in the

construction of path P , vi+1 ∈ {Qi
r \ Q

i
r′}. Thus vi+1 is covered by Qi

r in C(N [vi]). As per our assumption,

| C(N [vi]) ∪ C(N [vi+1]) | = 4, and by our premise, | C(N [vi]) | = 3. Therefore those vertices of N [vi+1]
which are not covered byQi

r have to be covered by exactly one more clique. It follows that | C(N [vi+1]) | = 2,

which is a contradiction to our assumption that | C(N [vi+1]) | = 3. This, in turn, is a contradiction to our ini-

tial premise that | C(N [vi]) ∪ C(N [vi+1]) |= 4. Thus the only possibility is, | C(N [vi]) ∪ C(N [vi+1]) |= 5,

which we discuss in the next case. Observe that | C(N [vi]) ∪ C(N [vi+1]) | cannot be greater than 5 since

vi+1 ∈ Qi
r and | C(N [vi+1]) | = 3. Therefore, if | C(N [vi]) ∪ C(N [vi+1]) | is greater than 5, then those

vertices in N [vi+1] which are not covered in Qi
r will be covered by 3 maximal cliques, which would make

| C(N [vi+1]) |= 4. This is again a contradiction to the assumption that | C(N [vi+1]) | = 3.

Case when | C(N [vi]) ∪ C(N [vi+1]) |= 5: The proof is by contradiction to our premise that G does not

contain any forbidden structure. We first show that C(N [vi]) ∪ C(N [vi+1]) is indeed a minimum clique cover

of N [vi] ∪N [vi+1]. Then, using Observation 4, we show that there exists a forbidden structure. By definition,

C(N [vi]) is a minimum clique cover of N [vi]. Therefore, each of the three maximal cliques in C(N [vi]) has

atleast one unique vertex which does not belong to any other maximal clique. Since vi+1 ∈ Qi
r and Qi

r ∈
C(N [vi]), Q

i
r ∈ C(N [vi+1]). Let the other two maximal cliques in C(N [vi+1] be Qj and Qk. By Observation

4, Qj and Qk contain a unique vertex each. It follows that any minimum clique cover of N [vi] ∪ N [vi+1]
contains all three maximal cliques of C(N [vi]) along with Qj and Qk. Hence C(N [vi]) ∪ C(N [vi+1]) is a

minimum clique cover of N [vi] ∪ N [vi+1]. By Observation 4, on C(N [vi]) ∪ C(N [vi+1]), there is a set V ′

of 5 vertices in C(N [vi]) ∪ C(N [vi+1]) that are mutually disjoint and form an independent set of size five.

The edge (vi, vi+1), together with V ′ form a forbidden structure (see Definition 2). Thus we have arrived at a

contradiction. Therefore, if | C(N [vi]) | = 3, then | C(N [vi+1]) | ≤ 2. ✷

Observation 5 For each vertex v ∈ P \ vp, | C(N [v]) |≥ 2.

Proof: By construction of path P ,

CC(N [v1, . . . , vi]) = CC(N [v1, . . . , vi−1]) ∪ C(Qi−1
r+1, . . . , Q

i
r)

Qi−1
r is the rightmost maximal clique in CC(N [v1, . . . , vi−1]) and it covers vi, since vi ∈ Qi−1

r . Qi
r is the right-

most maximal clique which vi belongs to, in the orderingO. Note that C(N [vi]) = Qi−1
r ∪C(Qi−1

r+1, . . . , Q
i
r).
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vi

vj

vi+1 vi+2

l − 2

Fig. 7: Vertices vi and vj belong to three consecutive cliques in the clique cover

Let A = N [vi] ∩ (Qi−1
r+1 ∪ · · · ∪ Qi

r). Since vi 6= vp, we know that there is vi+1 ∈ P which is chosen

such that vi+1 /∈ Qi−1
r and vi+1 ∈ N [vi]. It follows that A 6= ∅. By choice of vi, it has the rightmost right

endpoint among all vertices in Qi−1
r \ Qi−1

r′ and vi 6= vp. Hence ∃u ∈ A which is not covered by Qi−1
r .

Therefore, there exists at least one Q ∈ C(Qi−1
r+1, . . . , Q

i
r) that covers all the vertices in A,. In other words,

C(Qi−1
r+1, . . . , Q

i
r) 6= ∅. It follows that C(N [vi]) is of size at least 2. ✷

From Lemma 4 and Observation 5, we present the following claim.

Lemma 5 In path P , there is at most one vertex v where | C(N [v]) | = 3.

Proof: The proof of this claim is again by contradiction. Assume that there is more than one vertex with size

of minimum clique cover equal to 3 in path P . Let vi be the first such vertex in P in the increasing order of

left endpoints. By Lemma 4, we know that the minimum clique cover of vi+1 is of size less than 3. By our

assumption, ∃j > i + 1 such that minimum clique cover of vj is of size 3. Let the number of vertices in the

subpath of P from vi to vj (including both vi and vj) be l. It follows from Observation 5 that for each vertex

vk ∈ P, k ∈ [i+1, j−1], the minimum clique cover is of size 2. We computeCC(N [vi, . . . , vk]) with respect to

CC(N [vi, . . . , vk−1]). Note that vk is already covered in CC(N [vi, . . . , vk−1]) and CC(N [vi, . . . , vk]) addi-

tionally covers N [vk]\N [vk−1]. Since |C(N [vk])| = 2, it adds just 1 to the number of cliques in CC(N [vi, . . . ,
vk−1]). That is,

| CC(N [vi, . . . , vk]) | = | CC(N [vi, . . . , vk−1]) | + 1

It follows that each of the l − 2 vertices in {vi+1, . . . , vj−1} increments the size of the clique cover by 1. That

is, | CC(N [vi+1, . . . , vj−1]) |= l − 2. Thus

| CC(N [vi, . . . , vj ]) | = | C(N [vi]) | + | CC(N [vi+1, . . . , vj−1]) | + (| C(N [vj ]) | −1)

= 3 + (l − 2) + 3− 1

= l + 3

Note that we deduct 1 from | C(N [vj ]) | since vj is already covered by CC(N [vi+1], . . . , N [vj−1]). We can

see that the vertices from vi to vj form a path of length l which has an independent set of size l + 3 in its

neighbourhood. The vertices from vi to vj , together with the independent set of size l+ 3 in its neighbourhood

forms a forbidden structure. We have arrived at a contradiction to our premise that G does not contain any

forbidden structures. Therefore it is proved that in path P , there is at most one vertex which has a minimum

clique cover of size 3. ✷

3.1 Computing the exact hitting set from K

We now complete the characterization of EHIGs. We first prove the characterization when p is at most 3

and then complete the proof by an inductive argument. From Algorithm 1, we use the minimal clique cover,

K = {K1,K2 . . .Kα′}, which consists of maximal cliques inO and the path P consisting of vertices v1, . . . , vp
from left to right, in the arguments below. Further, for each 1 ≤ i ≤ α′, we use Di to denote the gadget

corresponding to Ki. For each 1 ≤ i ≤ p, let Li and Ri denote the leftmost and rightmost, respectively,

maximal cliques in O which contains vi. DLi and DRi denote the gadgets in HG corresponding to Li and Ri,
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respectively. Recall that HG denotes the canonical interval representation of G. It is useful to note that DL1

and D1 both denote the gadget associated with K1, and DRp and Dα′ both denote the gadget associated with

Kα′ . The inductive argument below refers to two interval graphs G and G′, and the gadgets we refer to are in

HG or HG′ , and will be clear from the context. In all our arguments that follow, we use the maximal clique

ordering O to reason about the position of a maximal clique with respect to another maximal clique. We thus

use the words and phrases before, after, at or before, at or after with respect to O. These relationships are also

represented by <,>,≤,≥, whenever it is more convenient to use these symbols.

We now prove the characterization based on the different cases for p. For p = 1, we explicitly present the

hitting set, and when 2 ≤ p ≤ 3, we present the exact hitting sets which satisfy some additional properties.

These additional properties are useful in the inductive argument for p ≥ 3. In all the following lemmas in

this section, we assume that G is an interval graph which does not have an F ∈ F as an induced subgraph.

Further, all the statements are based on the value of p which is the number of vertices in the path P computed

by Algorithm 1, and K.

Lemma 6 Let v1 be the only vertex in P . Then the canonical interval representation HG satisfies one of the

following two statements.

• Let N [v1] have a minimum clique cover of size 2, which is {K1,K2}. Then {z1, z2 +1} and {z1− 1, z2}
are two exact hitting sets of HG.

• Let N [v1] have a minimum clique cover of size 3, which is {K1,K2,K3}. Let w1 = |K1 ∩K2| and let

w3 = |K2 ∩K3|. Then {z1 − w1, z2, z3 + w3} is an exact hitting set of HG.

Proof: In the first case, K1 and K2 are the first and last cliques of O, respectively. Let D1 and D2 be the

gadgets corresponding to K1 and K2, respectively, in G. By the definition of HG, the interval associated with

v1 has z1 as the left endpoint and z2 as the right endpoint. Consider the set {z1, z2 +1}. z1 hits all the intervals

whose left endpoint is in D1, and z2 +1 hits all the intervals whose left endpoint is to the right of D1, and right

endpoint is to the right of z2 in D2. Further, each interval is hit, and no interval is hit twice. By a symmetric

argument, {z1 − 1, z2} is also an exact hitting set.

In the second case, consider the cliques B1 = K1 \K2, B3 = K3 \K2, and B2 = K2. Let w1 = |K1 ∩K2|
and w3 = |K3 ∩ K2|. We show that the set {z1 − w1, z2, z3 + w3} is an exact hitting set of HG. First, we

observe that the point z2 hits all the intervals in D2. Further, from the construction of HG it follows that, if I1
is an interval in D1 \ D2 and I2 is an interval in D1 ∩ D2, then in D1 the left endpoint of I1 is smaller than

the left endpoint of I2. Thus, among the w1 intervals in D1 ∩ D2, the longest interval has the left endpoint in

z1 and the remaining w1 − 1 intervals start at different points in {(z1 − 1), . . . , (z1 − (w1 − 1))}. Therefore,

the point z1 − w1 does not hit any of the w1 intervals that belong to D1 ∩ D2. Further, it hits all the intervals

in D1 \D2. A symmetric argument shows that z3 + w3 hits all the intervals in D3 \D2 and does not hit any

interval in D3 ∩D2. The remaining intervals are all in D2, and they are not hit by either z1 − w1 or z3 + w3,

and they all contain z2 which is the zero-point of gadget D2. Thus, this base case is proved. ✷

Lemma 7 Let P consist of only v1 and v2. Then, the following statements hold for HG.

• Let N [v1] and N [v2] have minimum clique cover of size 2. In K = {K1,K2,K3}, let w1 = |K1 ∩ L2|
and let w2 = |K3 ∩K2|. Then {z1 − w1, z2, z3 + w3} is an exact hitting set of HG.

• Let N [v1] have minimum clique cover of size 2 and N [v2] have minimum clique cover of size 3. In

K = {K1,K2,K3,K4}, let w1 = |K1 ∩ L2| and w4 = |K4 ∩ K3|. Then HG has an exact hitting set

which contains {z1 − w1, z4 + w4}.

• Let N [v1] have minimum clique cover of size 3 and N [v2] have minimum clique cover of size 2. In

K = {K1,K2,K3,K4}, let w1 = |K1 ∩K2| and w4 = |K4 ∩K3|. Then HG has an exact hitting set

which contains {z1 − w1, z4 + w4}.

Proof: If p = 2, then K either has 3 maximal cliques or 4 maximal cliques. Thus α′ which is the index of the

last clique in K is in {3, 4}. Further, in all the cases, z1 − w1 is in D1 and for α′ ∈ {3, 4}, zα′ + wα′ is in
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Dα′ . Consider the point z1 − w1 which is in D1. In the first two cases, z1 − w1 hits the intervals associated

with vertices in K1 \L2 and does not hit any interval associated with vertices in K1 ∩L2. Consider the interval

graph obtained by removing K1 \ L2. Since N [v1] has a clique cover of size 2, it follows that L2 \K1 ⊂ K2.

Consider the maximal cliques from K2 to K3. v2 is common to all of these cliques. We now consider the first

case and the second case separately.

In the first case, the minimum clique cover of N [v2] is of size 2. Let w3 be the number of vertices in K2∩K3.

Consider the exact hitting set {z2, z3 + w3}. Clearly, z2 hits all the intervals in D2, and z3 + w3 hits all the

intervals in D3 \ D2 and does not hit anything in D2; this is because the right endpoints of the intervals in

D2 ∩D3 are smaller than z3 +w3. Thus, for the first case {z1−w1, z2, z3 +w3} is an exact hitting set of HG.

In the second case, the minimum clique cover of N [v2] is of size 3. Since the first clique containing v2 is

L2, the minimum clique cover of N [v2] is L2,K3,K4. Consider G′ to be the interval graph induced by N [v2]
and consider HG′ . L2 is the first maximal clique in G′ and in this case let z denote the zero-point of the gadget

of DL2 in HG. By using the second case of Lemma 6, consider the exact hitting set {z − |L2 ∩K3|, z3, z4 +
|K3∩K4|} of HG′ . From this set, we construct an exact hitting set of HG based on the following two subcases.

The first subcase is that there are vertices in L2 \K1 whose leftmost clique is L2, and whose rightmost clique is

before K3. Then, the interval in HG′ of such a vertex is hit by z − |L2 ∩K3| and this also hits all the intervals

associated with vertices in L2 \ K3. Thus, in this subcase, we get an exact hitting set for HG consisting of

{z1−w1, z− |L2 ∩K3|, z3, z4 + |K3 ∩K4|}. In the second subcase, for all the vertices whose leftmost clique

is L2, the rightmost clique is at or after K3. Let h be the intermediate point just preceding DL2, which is the

gadget associated with L2 in HG. Consider the set {z1 −w1, h, z3, z4 + |K3 ∩K4|}. z1 −w1 hits all intervals

associated with vertices in K1 \ L2, h hits all intervals associated with vertices in L2 \ (L2 ∩K3), and this set

includes K1 ∩L2. z3 hits all intervals associated with vertices in (L2 ∩K3) ∪ (K3 ∩K4), and z4 + |K3 ∩K4|
hits all intervals associated with vertices in K4 \K3 (that is, the intervals in D4 \D3). Further, it is clear that

it is an exact hitting set. Thus, the first two cases are proved. The third case is symmetric to the second case(i),

and thus it is also true. Hence the lemma. ✷

Remark: The approach of obtaining an exact hitting set for HG from an exact hitting set for HG′ , by using

a preceding or following intermediate point, is a template that repeats in the following proofs. However, this

template is used in different contexts, and it seems that the repeated case-by-case usage of this template is

unavoidable.

Lemma 8 Let P consist of only v1, v2, v3, and let N [v2] have a minimum clique cover of size 3. Further, let

w1 = |K1∩L2| and let wα′ = |Kα′∩Kα′−1|. Then HG has an exact hitting set containing {z1−w1, zα′+wα′}.

Proof: Consider the interval graph G′ obtained by removing K1 \ L2. Let HG′ be the canonical interval

representation. The path obtained from Algorithm 1 on G′, using the cliques from L2 to Kα′ is the path

consisting of v2 and v3 only. The first maximal clique in HG′ is L2 which is the leftmost clique containing

v2. Further, the rightmost clique containing v2 is Kα′−1, and the minimum clique cover of N [v2] is 3 and the

minimum clique cover of N [v3] is 2 (from Lemma 5). Let S be an exact hitting set of HG′ obtained from using

Lemma 7. Let z denote the zero-point of the gadget DL2. For some w > 0, let z − w be in S. Also, in the

construction of S it is ensured that the interval associated with v2 is not hit by z − w. From the structure of S
defined in Lemma 7, {z − w, zα′−1, zα′ + wα′} ⊆ S. We get an exact hitting set for HG from S based on two

cases.

The first case is that there are vertices in L2\K1 for which the leftmost clique is L2 and the interval associated

with them are hit by z − w in HG′ . Such vertices will also occur in the rightmost clique containing v1, since

N [v1] has a clique cover of size 2 in G. Thus in this case, S ∪ {z1 − w1} is an exact hitting set for HG. The

main reason is that the intervals associated with the vertices in L2 \K1 whose leftmost clique is at or before L2

will all be hit by z − w. Further, z1 − w1 hits all the intervals associated with vertices in K1 \ L2.

In the second case, all the intervals in L2 \K1 whose leftmost clique is L2 are not hit by z − w; they are hit

by another element of S. Thus, z − w is in the hitting set of HG′ only to hit intervals whose left endpoint is

to the left of DL2 in HG. Let h be the intermediate point just to preceding the gadget associated with DL2 in

HG. Consider the set S \ {z −w} ∪ {z1 −w1, h}. This is an exact hitting set of HG since S is an exact hitting

(i) A detailed description of the symmetry is presented in the inductive argument in Lemma 9
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set of HG′ , the intervals associated with the vertices in L2 \K1 whose leftmost clique is before L2 will all be

hit by h, and z1 − w1 hits all the intervals associated with vertices in K1 \ L2. Hence the lemma. ✷

Lemma 9 Let G be an interval graph which does not have an F ∈ F as an induced subgraph. Then the

canonical interval representation HG has an exact hitting set. Further, if p ≥ 2, there is an exact hitting

satisfying the following two additional properties:

• The intervals corresponding to the vertices in K1 \ N [v2] are hit by a point in D1 to the left of z1 and

D1 ∩N [v2] is hit by a point in DL2 which is to the left of the zero-point of DL2 or the intermediate point

just before DL2.

• The intervals corresponding to vertices in Kα′ \N [vp−1] are hit by a point in Dα′ to the right of zα′ and

Dα′ ∩N [vp−1] is hit by a point in Dα′−1 to the right of the zero-point of Dα′−1 or the intermediate point

just after Dα′−1.

Proof: The proof when p = 1 follows from Lemma 6. The proof is by induction on p ≥ 2. The base case is

for p = 2, and from Lemma 7 we know HG has a hitting set which satisfies the additional properties. We now

prove the claim for all p ≥ 3.

First, we consider the case in which minimum clique cover of either N [v1] or N [v2] is of size 3 and the

minimum clique cover of either N [vp−1] or N [vp] is of size 3. From Lemma 5, we know that there is at most

one vertex in P which has a minimum clique cover of size 3. Therefore, in this case, it follows that p = 3, and

N [v2] has a minimum clique cover of size 3. From Lemma 8, we know that HG has an exact hitting set which

satisfies the additional properties.

Next we consider the case in which either the minimum clique cover of N [v1] and N [v2] are both of size 2

and if not, the minimum clique cover of N [vp−1] and N [vp] are both of size 2. The induction hypothesis is that

the claim is true for all natural numbers in the set {2, . . . , p− 1}. Given this, we prove that the claim is true for

p.

Let us first consider the case when N [v1] and N [v2] both have a minimum clique cover of size 2. By

construction, in Algorithm 1, we know thatK2 is the rightmost clique inOwhich contains v1. From Observation

3, we know that K2 is in a minimum clique cover of N [v1]. Any vertex in N [v1] which is not present in K2 will

be present in K1, since minimum clique cover of N [v1] is 2. Let L2 be the leftmost clique in O which contains

v2. We know that K1 < L2 ≤ K2. That is, L2 is a clique to the right of K1 and is not later than K2 in O.

Consider the partition of K1 into K1 \ L2 and K1 ∩ L2. Let w1 be the number of vertices in K1 ∩ L2.

Let B1 = K1 \ L2 = K1 \ N [v2]. Consider the point z1 − w1 in the gadget D1 in HG. By the nature of

the construction of HG, this point is to the left of the starting point of the intervals associated with vertices in

K1 ∩ L2. Consider the interval graph G′ obtained by removing B1 from G. Since the elements in N [v1] are

in the cliques K1 and K2, the first clique in the maximal clique ordering of G′ is L2. Further, among all the

vertices in L2, v2 is the vertex in L2 for which the rightmost clique containing it has the largest index in O.

Thus, Algorithm 1 on G′ will compute the path P \ v1 which has the p− 1 vertices v2, v3, . . . vp. Let L3 denote

the leftmost maximal clique in G′ which contains v3. The additional properties satisfied by G′ are as follows:

• For each vertex v in G′ for which the leftmost clique containing it (in O) is after K1 and before L2, the

rightmost clique containing v is before K3. Otherwise, the choice for v2 by the algorithm is violated.

• For each vertex v in K1 ∩ L2, the rightmost clique (in O) containing v is at or before K2.

• For each vertex u in N [v2] for which the leftmost clique containing it is to the right of L2, u is also present

in K3. Otherwise, let there exist such a vertex u for which the rightmost clique containing it is before

K3. Then u along with one vertex each in L2 and K3 form an independent set of size 3. Thus, minimum

clique cover of N [v2] is 3. This contradicts our premise that for both N [v1] and N [v2] have a minimum

clique cover of size 2.

• L3 is after K2 and not later to K3 in O.



16 K.K. Nisha, N.S. Narayanaswamy, S.M. Dhannya

By the induction hypothesis applied to G′, HG′ has an exact hitting set such that the intervals corresponding

to the vertices in L2 \ N [v3] are hit at a point to the left of the zero-point of the gadget DL2 in HG′ and the

intervals corresponding to vertices in L2∩N [v3] are hit by a point to the left of the zero-point of the gadget DL3

or by the intermediate point just before DL3. In particular, v2 which is in L2 ∩N [v3] is hit by a point to the left

of the zero-point in the gadget DL3 or by the intermediate point just before DL3. Note that the intermediate

point just before DL3 exists since DL3 is to the right of D2. Let this hitting set be denoted by S. Let h∗ ∈ S
be the point in the gadget DL2 in HG′ . Note that DL2 is the leftmost gadget in HG′ .

We first show that h∗ hits the intervals in HG′ corresponding to the vertices in K1 ∩ L2. This is because, by

the construction of P , for each vertex in K1, the rightmost clique containing it is at or before K2, and L3 is

after K2. Thus, the point in HG′ that hits any interval corresponding to a vertex in K1∩L2 has to be in a gadget

to the left of D2. If this point is different from h∗, then it would also hit v2. This contradicts the fact that in

the exact hitting set S, v2 is hit by a point to the left of the zero-point in the gadget DL3 or to the intermediate

point just before DL3. Clearly, both these points are different from h∗ which is a point in the gadget DL2 and

we know that DL2 is different from DL3.

To construct the exact hitting set in HG from S, we define a point h in HG as follows based on two cases:

• The first case is when there is a vertex such that the leftmost clique containing it is L2 and the rightmost

clique containing it is before K3 (in O). Among all such vertices, let u be the vertex such that the

rightmost clique containing it has the largest index in O. By construction of HG the left endpoint of the

interval associated with u would have been the largest among all such vertices. We take h to be the left

endpoint of the interval assigned to u in HG.

• In the second case there is no vertex such that the leftmost clique containing it is L2 and the rightmost

clique containing it is before K3 (in O). In this case, h is the intermediate point between DL2 and

the preceding gadget in HG. Such a point exists, since L2 is different from the first clique K1, and by

construction of HG, the gadget for every clique in O except K1 has a point to its left.

Then S \ {h∗} ∪ {z1 − w1, h} is a hitting set of HG, where z1 − w1 hits all the intervals in B1. h hits all the

intervals associated with vertices in L2 whose rightmost endpoint is before K3, and these are not hit by any

other point in S, due to the induction hypothesis, and they are not hit by z1−w1. Further, the vertices in B1 are

not elements of L2, and thus are hit only by z1 −w1. Finally, the intervals associated with all the other vertices

are hit exactly once by S in gadgets different from the gadgets associated with L2 and K1, and these gadgets

have the same structure in HG′ as in HG. Therefore, S \ {h∗}∪ {z1−w1, h} is an exact hitting set of HG, and

it also satisfies the two additional properties.

Next, we consider the case when N [v1] or N [v2] has a minimum clique cover of size 3. Then, since p ≥ 4,

we know that both N [vp−1] and N [vp] has a minimum clique cover of two cliques. Further, vp−1 and vp are

distinct from v1 and v2. From Observation 3, we know that Kα′ is in the minimum clique cover of N [vp].
Consider vp−1 in P and we know that Dα′−1 denotes the rightmost clique in O which contains vp−1. To

prove the claim in this case, we consider the reversed maximal clique ordering O, and the path obtained by

executing Algorithm 1 on this ordering. Due to the symmetry of the vertices chosen during the algorithm

to be added to the path, it is clear that the path computed will be the reversal of P . Also, we know that

Lp−1 ≤ Kα′−2 < Lp ≤ Kα′−1 < Kα′ . We consider the argument for the previous case by using the reversal

of O, the canonical representation constructed using the reversal of O, and the reversal of P . We compare the

execution of Algorithm 1 using the reversal of O and its execution using O: Kα′ will be in the place of K1,

Kα′−1 in the place of L2, Lp in the place of K2, Kα′−2 in the place of L3, and Lp−1 in place of K3. By an

argument symmetric with the argument using the induction hypothesis for the previous case, using the canonical

representation constructed using the reversal ofO, it follows that S \ {h∗} ∪ {zα′ + wα′ , h} is an exact hitting

set of HG, and it satisfies the two additional properties. Hence the lemma. ✷

We complete the proof of the forbidden structure characterization for EHIGs.

Theorem 1 An interval graph G is exactly hittable if and only if it does not contain any graph from the set F
as an induced subgraph.
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Proof: From Section 2, we know that every interval graph G has a unique canonical interval representation,

which we denote by HG. Furthermore, if G does not have an F ∈ F as an induced subgraph, then by Lemma 9,

HG has an exact hitting set. We have shown in Lemma 2 that if G has an exactly hittable interval representation,

then G does not have any F ∈ F as an induced subgraph. This proves the theorem. ✷

Using the above theorem, we prove Theorem 2.

Theorem 2 Let G be an interval graph. Let HG be its canonical interval representation constructed as de-

scribed in Section 2. Then, G is exactly hittable if and only if HG is exactly hittable.

Proof: Let the hypergraph HG constructed from interval graph G has an exact hitting set. By Lemma 1,

the intersection graph G′ of HG is isomorphic to G. It follows that if G′ has an exactly hittable interval

representation, then G also has one. Thus, G is exactly hittable.

To show the other direction, let G be an EHIG. By Theorem 1, if G is exactly hittable, then G does not have

any forbidden structure. Then, it follows from Lemma 9 that the canonical representation HG of G has an exact

hitting set. ✷

3.2 Algorithm to recognize exactly hittable interval graphs

In this section, we present an algorithm to recognize an exactly hittable interval graph. This algorithm makes

use of the canonical interval representation in Section 2 and the result by Dom et al. (2006) for MMSC problem

(described in Section 1) on interval hypergraphs. In their paper, Dom et al. showed that an integer linear pro-

gramming (ILP) formulation, say L, for MMSC problem on interval hypergraphs can be solved in polynomial

time. The coefficients of inequalities in L results in a totally unimodular matrix and the polyhedron correspond-

ing to L is an integer polyhedron. If the input instance to ILP is an exactly hittable instance, then the solution

returned is 1. We use this algorithm below to test if a given interval hypergraph instance is exactly hittable.

Algorithm isEHIG: Given an interval graph G, construct the canonical interval representation as described in

Section 2. Let HG be the resulting interval representation. Run MMSC algorithm by Dom et al. (2006) on HG

as input. If the algorithm returns value 1, then return yes. Else return no.

Lemma 10 Algorithm isEHIG(G) outputs yes if and only if G is exactly hittable in polynomial time.

Proof: The proof follows from Lemma 1, Theorem 2 and the correctness of algorithm for MMSC problem on

interval hypergraphs. ✷

It is also clear that the inductive argument in Lemma 9 can be converted into a polynomial time combinatorial

algorithm to check if HG has an exact hitting set. This leverages the fact that a minimum clique cover of a

perfect graph can be computed in polynomial time.

3.3 Proper Interval Graphs is a subclass of EHIG

We now recall and complete the proof of Theorem 3.

Theorem 3 Proper interval graphs⊂ EHIG ⊂ Interval Graphs.

Proof: Let G be a proper interval graph and let it be the intersection graph of the interval hypergraphH = (V , I)
in which no interval properly contains another. Since H is a proper interval hypergraph, no two intervals in I
can have the same left endpoint. Hence order intervals in I according to increasing order of their left endpoints.

Let this ordering be I1 < I2 < . . . < Im. Add r(I1) (which is the smallest right endpoint among all intervals)

to set S. Remove all intervals hit by r(I1). Recurse on the remaining set of intervals until all the intervals are

hit by S. Clearly, S is an exact hitting set.

To show the strict containment, we show that the graph K1,3 which is a forbidden structure (Roberts (1978))

for Proper Interval Graphs has an exactly hittable interval representation. Let the vertices of the K1,3 be

{u, a, b, c} and edges be {(u, a), (u, b), (u, c)}. The intervals assigned to the vertices a, b, c and u are shown in

Fig. 8. Hence the lemma. ✷
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a b c

u
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Fig. 8: Exactly hittable interval representation of K1,3 (here, {1,3,5} is an exact hitting set)

4 Discussion

Our results indicate that there is an interesting hierarchy among the class of interval graphs based on the number

of times an interval is hit by a hitting set. We have shown that proper interval graphs have an exactly hittable

interval representation. Further it is a strict subclass of the set of EHIGs. The natural question is to characterize

interval graphs which have a representation such that each interval is hit at most k times by a hitting set. We

also believe that the recognition problem for such graphs is fundamental and interesting.
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J. Chalopin and D. Gonçalves. Every planar graph is the intersection graph of segments in the plane. In

Proceedings of the forty-first annual ACM Symposium on Theory of Computing, pages 631–638, 2009.

P. Cheilaris and S. Smorodinsky. Conflict-free coloring with respect to a subset of intervals. arXiv preprint

arXiv:1204.6422, 2012.

P. Cheilaris, B. Keszegh, and D. Pálvölgyi. Unique-Maximum and Conflict-Free Coloring for Hyper-

graphs and Tree Graphs, pages 190–201. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN

978-3-642-27660-6. doi: 10.1007/978-3-642-27660-6 16. URL http://dx.doi.org/10.1007/

978-3-642-27660-6_16.

P. Cheilaris, L. Gargano, A. A. Rescigno, and S. Smorodinsky. Strong conflict-free coloring for intervals.

Algorithmica, 70(4):732–749, Dec. 2014. ISSN 0178-4617. doi: 10.1007/s00453-014-9929-x. URL http:

//dx.doi.org/10.1007/s00453-014-9929-x.
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