On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs
Christian Löwenstein, Dieter Rautenbach, Roman Soták

To cite this version:

HAL Id: hal-01179214
https://hal.inria.fr/hal-01179214
Submitted on 22 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs

Christian Löwenstein
dieter rautenbachroman soták

1 Institut für Optimierung und Operations Research, Universität Ulm, Germany
2 Faculty of Sciences, P.J. Šafárik University Košice, Slovakia

For a positive integer $n \in \mathbb{N}$ and a set $D \subseteq \mathbb{N}$, the distance graph G_n^D has vertex set $\{0, 1, \ldots, n-1\}$ and two vertices i and j of G_n^D are adjacent exactly if $|j-i| \in D$. The condition $\gcd(D) = 1$ is necessary for a distance graph G_n^D being connected. Let $D = \{d_1, d_2\} \subseteq \mathbb{N}$ be such that $d_1 > d_2$ and $\gcd(d_1, d_2) = 1$. We prove the following results.

- If n is sufficiently large in terms of D, then G_n^D has a Hamiltonian path with endvertices 0 and $n-1$.
- If d_1d_2 is odd, n is even and sufficiently large in terms of D, then G_n^D has a Hamiltonian cycle.
- If d_1d_2 is even and n is sufficiently large in terms of D, then G_n^D has a Hamiltonian cycle.

Keywords: Distance graph; Toeplitz graph; circulant graph; Hamiltonian path; Hamiltonian cycle; traceability

1 Introduction

For a finite set of positive integers $D \subseteq \mathbb{N}$, the infinite distance graph G^D has vertex set $V(G^D) = \mathbb{Z}$ and two vertices u and v of G^D are adjacent exactly if $|u-v| \in D$. For a graph G and a subset $U \subseteq V(G)$ of the vertex set, we denote by $G[U]$ the subgraph of G induced by U. For $i, j \in \mathbb{Z}$, $i \leq j$, we denote by $[i, j] = \{k \in \mathbb{Z} \mid i \leq k \leq j\}$. For a positive integer $n \in \mathbb{N}$, the distance graph (also called Toeplitz graph in many papers) $G_n^D = G^D[[0, n-1]]$ is the subgraph of G^D induced by the vertices in $[0, n-1]$.

Infinite distance graphs and especially their colourings were first studied by Eggleton, Erdős, and Skilton [10,11]. Most of the research on distance graphs focused on their colourings [6,8,9,14,18,19,28]. Distance graphs generalize the very well-studied class of circulant graphs [2,16,17,26]. In fact, circulant graphs coincide exactly with the regular distance graphs [23]. Circulant graphs have been proposed for numerous network applications and many of their properties such as connectedness and diameter [4,2,16,17], cycle and path structure [1,3,5], and isomorphism testing and recognition [12,22] have

‡Email: christian.loewenstein@uni-ulm.de
§Email: dieter.rautenbach@uni-ulm.de
¶Email: roman.sotak@upjs.sk

1365–8050 © 2014 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
been studied in great detail. Several fundamental results concerning circulant graphs were extended to the more general class of distance graphs in [7, 23, 24, 25]. The complexity of the connectedness problem for distance graphs was recently settled by Gómez et al. [13]. In [25, 27, 15] the existence of long paths and cycles in distance graphs is studied. The following main result from [21] confirmed a conjecture from Penso et al. [25]. [20] gives an overview on Hamiltonian cycles and paths in vertex-transitive graphs.

Theorem 1 (Löwenstein et al. [21]) For a finite set \(D \subseteq \mathbb{N} \) with \(|D| \geq 2\) and \(\gcd(D) = 1 \), there are infinitely many \(n \in \mathbb{N} \) such that \(G^D_n \) has a Hamiltonian cycle and \(G^D_{n+1} \) has a Hamiltonian path with endvertices 0 and \(n \).

We conjecture that the conclusion of the last theorem holds
- for all \(n \) that are sufficiently large in terms of \(D \) if not all elements of \(D \) are odd and
- for all even \(n \) that are sufficiently large in terms of \(D \) if all elements of \(D \) are odd.

The purpose of the present paper is to confirm this conjecture in the case that \(D \) contains just two elements. In Section 2 we introduce suitable terminology and collect some properties of distance graphs. In Section 3 we confirm our conjecture proving the existence of Hamiltonian paths. Finally, in Section 4 we provide similar results for Hamiltonian cycles.

2 The structure of \(G^D \)

Let \(D = \{d_1, d_2\} \) for two positive integers \(d_1 \) and \(d_2 \) such that \(\gcd(d_1, d_2) = 1 \) and \(d_1 > d_2 \).

We define coordinates \((x, y) \in (\mathbb{Z}/(d_1 + d_2)\mathbb{Z}) \times \mathbb{Z}\) for the vertices of the distance graph \(G^D \) by
\[
(x, y) := y(d_1 + d_2) + a_x,
\]
where \(a_x = xd_1 \mod (d_1 + d_2) \). Note that this bidimensional relabelling of the vertices of \(G^D \) is a bijection. A vertex \((x, y)\) satisfying \(0 \leq xd_1 \mod (d_1 + d_2) < d_2 \) is called lower. A vertex \((x, y)\) satisfying \(d_2 \leq xd_1 \mod (d_1 + d_2) < d_1 \) is called middle. A vertex \((x, y)\) satisfying \(d_1 \leq xd_1 \mod (d_1 + d_2) < d_1 + d_2 \) is called upper.

For a lower vertex \((x, y)\), we have
\[
\begin{align*}
(x, y) + d_1 & = (x + 1, y), \\
(x, y) + d_2 & = (x - 1, y), \\
(x, y) - d_1 & = (x - 1, y - 1), \\
(x, y) - d_2 & = (x + 1, y - 1),
\end{align*}
\]
which implies that a lower vertex \((x, y)\) is adjacent to the vertices \((x + 1, y), (x - 1, y), (x + 1, y - 1), \) and \((x - 1, y - 1)\).

Similarly, for a middle vertex \((x, y)\), we have
\[
\begin{align*}
(x, y) + d_1 & = (x + 1, y + 1), \\
(x, y) + d_2 & = (x - 1, y), \\
(x, y) - d_1 & = (x - 1, y - 1), \\
(x, y) - d_2 & = (x + 1, y),
\end{align*}
\]
On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs

which implies that a middle vertex \((x, y)\) is adjacent to the vertices \((x + 1, y)\), \((x - 1, y)\), \((x + 1, y + 1)\), and \((x - 1, y - 1)\).

Finally, for an upper vertex \((x, y)\), we have

\[
\begin{align*}
(x, y) + d_1 &= (x + 1, y + 1), \\
(x, y) + d_2 &= (x - 1, y + 1), \\
(x, y) - d_1 &= (x - 1, y), \\
(x, y) - d_2 &= (x + 1, y),
\end{align*}
\]

which implies that an upper vertex \((x, y)\) is adjacent to the vertices \((x + 1, y)\), \((x - 1, y)\), \((x + 1, y + 1)\), and \((x - 1, y - 1)\).

See Figure 1 for an illustration of these observations.

For \(c \in \mathbb{Z}/(d_1 + d_2)\mathbb{Z}\), all vertices \((x, y)\) of \(G^D\) with \(x = c\) form the column \(c\). Similarly, for \(r \in \mathbb{Z}\), all vertices \((x, y)\) satisfying \(y = r\) form the row \(r\). Note that the vertices in a column are either all lower, or all middle, or all upper. A column that consists of lower (middle, upper) vertices is called lower (middle, upper). See Figure 2 for an illustration.

Lemma 2

(i) For \(c \in \mathbb{Z}/(d_1 + d_2)\mathbb{Z}\), the column \(c\) is lower if and only if the column \(c + 1\) is upper.

(ii) Column 0 is lower.

(iii) Column 1 is upper.

Proof: For \(x \in \mathbb{Z}/(d_1 + d_2)\mathbb{Z}\), we have \(0 \leq xd_1 \mod (d_1 + d_2) < d_2\) if and only if \(d_1 \leq (x + 1)d_1 \mod (d_1 + d_2) < d_1 + d_2\), which proves (i). (ii) follows, because \(0 \leq 0 = 0d_1 \mod (d_1 + d_2) < d_2\). Finally, (i) and (ii) imply (iii).

The columns \(x, x + 1, \ldots, x + l - 1\) form a block of length \(l\), if column \(x\) is lower, column \(x + l\) is lower, and none of the columns \(x + 1, \ldots, x + l - 1\) is lower. The block that contains column 0 is denoted by \(B_0\). Let \(l\) be the length of block \(B_1\) and let column \(x\) be the unique lower column that belongs to block

![Fig. 1: Neighborhood of (a) a lower, (b) a middle, and (c) an upper vertex.](image)
Fig. 2: The distance graph $G_{85}^{[8,3]}$. Note that the vertices of column 0 are drawn twice. In order to simplify the drawing, we adopt the convention that such a vertex is adjacent to the union of the neighbors of the two copies, i.e. vertex 22 is adjacent to the vertices 19, 30, 14, and 25.

Figure 3 shows the blocks of $G_{85}^{[12,5]}$.

Fig. 3: Blocks of $G_{85}^{[12,5]}$. Note that 4 equals -1 in $\mathbb{Z}/5\mathbb{Z}$, that is, $B_4 = B_{-1}$.

Lemma 3

(i) The length of a block is either $\left\lfloor \frac{d_1}{d_2} \right\rfloor + 1$ or $\left\lceil \frac{d_1}{d_2} \right\rceil + 1$.

(ii) The length of B_0 is $\left\lfloor \frac{d_1}{d_2} \right\rfloor + 1$.

(iii) The length of B_{-1} is $\left\lceil \frac{d_1}{d_2} \right\rceil + 1$.
(iv) The number of blocks is d_2.

Proof: Let $x, x + 1, \ldots, x + l - 1$ be the columns of a block B of length l. By definition and Lemma 2 (i), x is the unique lower column of block B, $x + 1$ is the unique upper column of block B, and $x + l$ is a lower column. Hence, for all $y \in \mathbb{Z}$ and $x + 1 \leq k \leq x + l - 1$, we have $(k, y) - (k + 1, y) = d_2$ and therefore $(x + 1, y) - (x + l, y) = d_2(l - 1)$. Since column $x + 1$ is upper and column $x + l$ is lower, we have $d_1 - d_2 + 1 \leq (x + 1, y) - (x + l, y) \leq d_1 - d_2 - 1$, which implies (i).

If $B = B_0$, then $x = 0$ and $(x + 1, y) \equiv d_1 \pmod{d_1 + d_2}$ for all $y \in \mathbb{Z}$. Hence $(x + 1, y) - (x + l, y) \leq d_1$. Together with $(x + 1, y) - (x + l, y) = d_2(l - 1)$, this implies (ii).

If $B = B_1$, then $x + l = 0$ and $(x + l, y) \equiv d_2 \pmod{d_1 + d_2}$ for all $y \in \mathbb{Z}$. Since column $x + 1$ is upper, we have $(x + 1, y) - (x + l, y) \geq d_1$. Together with $(x + 1, y) - (x + l, y) = d_2(l - 1)$, this implies (iii).

Since the function $f : \{0, \ldots, d_1 + d_2 - 1\} \rightarrow \{0, \ldots, d_1 + d_2 - 1\}$ with $f(x) = xd_1 \pmod{d_1 + d_2}$ is bijective for $\gcd(d_1, d_2) = 1$, there are exactly d_2 lower columns and therefore d_2 blocks, which proves (iv). \qed

3 Hamiltonian paths of G_n^D

The main result of this section is the following.

Theorem 4 For every $D = \{d_1, d_2\} \subseteq \mathbb{N}$ with $d_1 > d_2$ and $\gcd(d_1, d_2) = 1$, there is some $n_0 \in \mathbb{N}$ such that for all integers n with $n \geq n_0$, the distance graph G_n^D has a Hamiltonian path with endvertices 0 and $n - 1$.

As before let $D = \{d_1, d_2\}$ for two positive integers d_1 and d_2 such that $\gcd(d_1, d_2) = 1$ and $d_1 > d_2$. For two lower vertices (x, y) and (x', y') with $x \neq x'$ and $y < y'$ in the distance graph G_n^D, a path in G_n^D with endvertices (x, y) and (x', y') whose vertex set consists of all vertices in the rows $y, y + 1, \ldots, y' - 1$ and the vertex (x', y') is called an (x, y)-(x', y')-climbing path of G_n^D. See Figure 5 for an illustration.

Before we proceed to the proof of Theorem 4 we establish a series of lemmas concerning the existence of climbing paths.

Lemma 5 If B_i is a block of even length in G_n^D, then G_n^D has an (x_i, y)-$(x_{i+1}, y + 2)$-climbing path for all y.

Proof: Let

$$P : (x_i+1 - 1, y), (x_{i+1} - 1, y + 1), (x_{i+1} - 1, y + 1), (x_{i+1} - 2, y),$$

$$(x_{i+1} - 3, y), (x_{i+1} - 2, y + 1), (x_{i+1} - 3, y + 1), (x_{i+1} - 4, y),$$

$$\ldots, (x_i + 3, y), (x_i + 4, y + 1), (x_i + 3, y + 1), (x_i + 2, y).$$

The sequence

$$(x_i, y), (x_i - 1, y), \ldots, (x_{i+1}, y),$$

$$(x_i + 1, y), (x_i + 2, y + 1), (x_i + 1, y + 1), \ldots, (x_{i+1} + 1, y + 1),$$

$$((x_{i+1}, y + 2)$$

On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs
Lemma 6 If B_{i-1} is a block of even length in G^D, then G^D has an $(x_i, y)-(x_{i-1}, y+2)$-climbing path for all y.

Proof: Let

$$P : (x_{i-1} + 3, y + 1), (x_{i-1} + 2, y), (x_{i-1} + 3, y), (x_{i-1} + 4, y + 1),$$

$$(x_{i-1} + 5, y + 1), (x_{i-1} + 4, y), (x_{i-1} + 5, y), (x_{i-1} + 6, y + 1),$$

$$\ldots, (x_i - 1, y + 1), (x_i - 2, y), (x_i - 1, y), (x_i, y + 1).$$

Fig. 4: P for a block B_i of length 8.

Fig. 5: An $(x_i, y)-(x_{i+1}, y+2)$-climbing path for block B_i of length 8.

Fig. 6: P for a block B_{i-1} of length 8.
The sequence
\[(x_i, y), (x_i + 1, y), \ldots, (x_{i-1} + 1, y), (x_{i-1}, y + 1), (x_{i-1} + 1, y + 1), (x_{i-1} + 2, y + 1), P, (x_i + 1, y + 1), (x_i + 2, y + 1), \ldots, (x_{i-1} - 1, y + 1), (x_{i-1}, y + 2)\]
defines an \((x_i, y)-(x_{i-1}, y + 2)\)-climbing path of \(G^D\). See Figures 6 and 7 for an illustration. \(\square\)

Lemma 7 If \(G^D\) has at least \(j + 2\) blocks for some \(j \geq 1\) and for some \(i \in \mathbb{Z}/d_2\mathbb{Z}\), the blocks \(B_1, B_{i+1}, \ldots, B_{i+j}\) of \(G^D\) are such that \(B_i\) and \(B_{i+j}\) are of odd length and \(B_{i+1}, \ldots, B_{i+j-1}\) are of even length at least 4, then \(G^D\) has an \((x_i, y)-(x_{i+j+1}, y + 3)\)-climbing path for all \(y\).

Proof: By Lemma 3 the blocks \(B_i\) and \(B_{i+j}\) are of length at least 3.

Let
\[P_{i+j} : (x_{i+j+1} - 1, y), (x_{i+j+1} + 1, y + 1), (x_{i+j+1} + 2, y + 1), (x_{i+j+1} - 1, y + 1), (x_{i+j+1} - 2, y), (x_{i+j+1} - 3, y), (x_{i+j+1} - 2, y + 1), (x_{i+j+1} - 3, y + 1), (x_{i+j+1} - 4, y), \ldots, (x_{i+j} + 2, y), (x_{i+j} + 3, y + 1), (x_{i+j} + 2, y + 1), (x_{i+j} + 1, y)\]

For \(1 \leq q \leq j - 1\), let
\[P_{i+q} : (x_{i+q} + 3, y + 2), (x_{i+q} + 2, y + 1), (x_{i+q} + 3, y + 1), (x_{i+q} + 4, y + 2), (x_{i+q} + 5, y + 2), (x_{i+q} + 4, y + 1), (x_{i+q} + 5, y + 1), (x_{i+q} + 6, y + 2), \ldots, (x_{i+q+1} - 3, y + 2), (x_{i+q+1} - 4, y + 1), (x_{i+q+1} - 3, y + 1), (x_{i+q+1} - 2, y + 2)\]
and let
\[P'_{i+q} : P_{i+q}, (x_{i+q+1} - 1, y + 2), (x_{i+q+1} - 2, y + 1), (x_{i+q+1} - 1, y + 1), (x_{i+q+1} + 1, y + 1), (x_{i+q+1} + 1, y + 1), (x_{i+q+1} + 1, y + 2), (x_{i+q+1} + 1, y + 2), (x_{i+q+1} + 2, y + 2)\]

Note that \(P_{i+q}\) is empty if \(B_{i+q}\) is of length 4. Furthermore, let
\[P_i : (x_{i+1} - 2, y + 2), (x_{i+1} - 3, y + 1), (x_{i+1} - 4, y + 1), (x_{i+1} - 3, y + 2), (x_{i+1} - 4, y + 2), (x_{i+1} - 5, y + 1), (x_{i+1} - 6, y + 1), (x_{i+1} - 5, y + 2), \ldots, (x_i + 3, y + 2), (x_i + 2, y + 1), (x_i + 3, y + 1), (x_i + 2, y + 2)\]
Note that P_i is empty if B_i is of length 3.

Now, the sequence

$$(x_i, y), (x_i - 1, y), \ldots, (x_{i+j+1}, y), P_{i+j},$$

$$(x_{i+j}, y), (x_{i+j} - 1, y), \ldots, (x_{i+1} - 1, y),$$

$$(x_{i+1}, y + 1), (x_{i+1} + 1, y + 1), (x_{i+1}, y + 2), (x_{i+1} + 1, y + 2), (x_{i+1} + 2, y + 2),$$

$$P'_{i+1}, P'_{i+2}, \ldots, P'_{i+j-1},$$

$$(x_{i+j} + 3, y + 2), (x_{i+j} + 4, y + 2), \ldots, (x_{i+j+1}, y + 2),$$

$$(x_{i+j+1} + 1, y + 1), (x_{i+j+1} + 2, y + 1), \ldots, (x_i + 1, y + 1),$$

$$(x_i + 1, y), (x_i + 2, y), \ldots, (x_{i+1} - 2, y),$$

$$(x_{i+1} - 1, y + 1), (x_{i+1} - 2, y + 1), (x_{i+1} - 1, y + 2), P_i,$$

$$(x_i + 1, y + 2), (x_i, y + 2), \ldots, (x_{i+j+1} + 1, y + 2),$$

$$(x_{i+j+1}, y + 3)$$

defines an (x_i, y)-$(x_{i+j+1}, y + 3)$-climbing path of G^D. See Figures 8 and 9 for an illustration.

Lemma 8 If G^D has at least $j + 2$ blocks for some $j \geq 1$ and for some $i \in \mathbb{Z}/d_2\mathbb{Z}$, the blocks $B_i, B_{i+1}, \ldots, B_{i+j}$ of G^D are such that B_i and B_{i+j} are of length 3 and $B_{i+1}, \ldots, B_{i+j-1}$ are of length 2, then G^D has an (x_i, y)-$(x_{i+j+1}, y + j + 2)$-climbing path for all y.

Proof: Note that $x_{i+j+1} = x_i + 2j + 4$. For $1 \leq q \leq j - 1$, let

$$P_q : (x_i + 2j + 2, y + q), (x_i + 2j + 3, y + q + 1), (x_i + 2j + 4, y + q + 2),$$

$$(x_i + 2j + 5, y + q + 2), \ldots, (x_{i+j+1}, y + j + 2).$$
On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs

\[(x_i + 2j + 5, y + q + 1), (x_i + 2j + 6, y + q + 1), \ldots, (x_i, y + q + 1),
(x_i + 1, y + q), (x_i + 2, y + q), \ldots, (x_i + 2j - 2q + 2, y + q),
(x_i + 2j - 2q + 1, y + q + 1), (x_i + 2j - 2q + 2, y + q + 1), \ldots, (x_i + 2j + 1, y + q + 1).\]

\[\text{Fig. 10: } P_q \text{ for } j = 4 \text{ and } q = 1.\]

Now, the sequence

\[(x_i, y), (x_i - 1, y), \ldots, (x_i + 2j + 4, y),
(x_i + 2j + 3, y), (x_i + 2j + 4, y + 1), (x_i + 2j + 3, y + 1), (x_i + 2j + 4, y + 2),
(x_i + 2j + 5, y + 1), (x_i + 2j + 6, y + 1), \ldots, (x_i, y + 1),
(x_i + 1, y), (x_i + 2, y), \ldots, (x_i + 2j + 2, y),
(x_i + 2j + 1, y + 1),
P_1, P_2, \ldots, P_{j-1},
(x_i + 2j + 2, y + j),
(x_i + 2j + 3, y + j + 1)(x_i + 2j + 2, y + j + 1), \ldots, (x_i + 3, y + j + 1),
(x_i + 2, y + j), (x_i + 1, y + j),
(x_i + 2, y + j + 1)(x_i + 1, y + j + 1), \ldots, (x_i + 2j + 5, y + j + 1),
(x_i + 2j + 4, y + j + 2)\]

defines an \((x_i, y)-(x_{i+j+1}, y + j + 2)\)-climbing path of \(D^G\). See Figures 10 and 11 for an illustration. \(\square\)

We are now in a position to prove the main result of this section. A path \(P\) in \(D^G\) with \(V(P) = [\min(V(P)), \max(V(P))]\) is called \textit{special}, if the endvertices of \(P\) are \(\min(V(P))\) and \(\max(V(P))\).

\textbf{Proof of Theorem 4.} If \(d_2 = 1\), then the statement of the theorem is trivial. Hence we assume that \(d_2 > 1\). The idea of the proof is to show the existence of two distinct positive integers \(p_1\) and \(p_2\) with
Let d_1, d_2 be such that $d_1 + d_2 + 1$ has a Hamiltonian path with endvertices 0 and $d_1 + d_2$. Hence, for p_1, we choose $d_1 + d_2$.

For p_2, we show that there is a positive integer p_2 with $p_2 \equiv -1 \pmod{d_1 + d_2}$, such that $G_{d_1+d_2+1}$ has a special path of length p_2, thus $\gcd(p_1, p_2) = 1$.

Let x' be such that $x'd_1 \equiv -1 \pmod{d_1 + d_2}$. By definition and Lemma 3(i), column x' is upper and column $x' - 1$ is lower. In order to get a special path with endvertices $(0, 0)$ and (x', y') for some y', we concatenate climbing paths to form a $(0, 0)$-$(x' - 1, y')$-climbing path and append the path $(x' - 2, y'), (x' - 3, y'), \ldots, (x, y')$.

Let k be such that the block B_k contains column x', that is, $x_k = x' - 1$. Since column x' is upper, column $x' - 2$ belongs to block B_{k-1}.

Since $\gcd(d_1, d_2) = 1$, at least one of d_1 and d_2 is odd.

Case 1 One of d_1 and d_2 is even and G^D has at most 2 blocks of odd length.

Since $d_1 + d_2$ is odd, the number of blocks of odd length is odd, that is, it equals 1.

We first assume that all blocks $B_0, B_1, \ldots, B_{k-1}$ are of even length. By Lemma 5, there exists an $(x_i, 2i)$-$(x_{i+1}, 2i + 2)$-climbing path P_i for $0 \leq i \leq k - 1$. Since $x' - 1 = x_k$, the concatenation of the paths $P_0, P_1, \ldots, P_{k-1}$ forms a $(0, 0)$-$(x' - 1, y')$-climbing path for $y' = 2k$.
Next, we assume that all blocks $B_{k}, B_{k+1}, \ldots, B_{-1}$ are of even length. Then, by Lemma 5 there exists an $(x_{i+1}, 2(d_{1} + d_{2} - i) - 2)\cdot (x_{i}, 2(d_{1} + d_{2} - i))$-climbing path P_{i} for $k \leq i \leq d_{1} + d_{2} - 1$. Since $x' - 1 = x_{k}$, the concatenation of the paths $P_{d_{1} + d_{2} - 1}, P_{d_{1} + d_{2} - 2}, \ldots, P_{k}$ forms a $(0, 0)\cdot (x' - 1, y')$-climbing path for $y' = 2(d_{1} + d_{2} - k)$. This concludes the first case.

Case 2 One of d_{1} and d_{2} is even and G^{D} has at least 3 blocks of odd length.

Since $d_{1} + d_{2}$ is odd, the number of blocks of odd length is odd. This implies that one of the two sequences $B_{0}, B_{1}, \ldots, B_{-1}$ and $B_{0}, B_{1}, \ldots, B_{-1}$, $B_{0}, B_{1}, \ldots, B_{k-1}$ has an even number of blocks with odd length. We call this sequence S. We can partition S into subsequences $S_{1}, S_{2}, \ldots, S_{t}$, where each subsequence is either a block of even length or a sequence $B_{i}, B_{i+1}, \ldots, B_{i+j}$ of blocks $i \in \mathbb{Z}/d_{2}\mathbb{Z}$ and $j \geq 1$, such that block B_{i} has odd length, block B_{i+j} has odd length, and blocks $B_{i+1}, \ldots, B_{i+j-1}$ have even length. For a subsequence S_{q}, $1 \leq q \leq t$, that consists of one block B_{i} with $i \in \mathbb{Z}/d_{2}\mathbb{Z}$, Lemma 5 implies that there exists an $(x_{i}, y)-(x_{i+1}, y + 2)$-climbing path $P_{q,y}$ for every y. If $\frac{d_{1}}{d_{2}} < 2$, then Lemma 3 implies that the lengths of the blocks are 2 and 3. For a subsequence S_{q}, $1 \leq q \leq t$, that consists of at least two blocks $B_{i}, B_{i+1}, \ldots, B_{i+j}$ with $i \in \mathbb{Z}/d_{2}\mathbb{Z}$ and $j \geq 1$, Lemma 8 implies that there exists an $(x_{i}, y)-(x_{i+j+1}, y + j + 2)$-climbing path $P_{q,y}$ for every y. If $\frac{d_{1}}{d_{2}} \geq 2$, then Lemma 3 implies that the lengths of the blocks are at least 3. For a subsequence S_{q}, $1 \leq q \leq t$, that consists of at least two blocks $B_{i}, B_{i+1}, \ldots, B_{i+j}$ with $i \in \mathbb{Z}/d_{2}\mathbb{Z}$ and $j \geq 1$, Lemma 7 implies that there exists an $(x_{i}, y)-(x_{i+j+1}, y + 3)$-climbing path $P_{q,y}$ for every y. The concatenation of the paths $P_{1,y_{1}}, P_{2,y_{2}}, \ldots, P_{1,y_{t}}$ forms a $(0, 0)\cdot (x' - 1, y')$-climbing path for $y_{1} = 0$, suitable y_{t}'s, where $2 \leq q \leq t$, and $y' = y_{t}$. This concludes the second case.

If both d_{1} and d_{2} are odd, then $d_{1} + d_{2}$ is even, which implies that the number of blocks of odd length is even and exactly those vertices are even integers that are in a column with an even index. This implies that x' is odd and $x_{k} = x' - 1$ is even. Since column 0 and column $x' - 1$ are lower, the sequence $B_{0}, B_{1}, \ldots, B_{k-1}$ has an even number of blocks with odd length.

Case 3 Both d_{1} and d_{2} are odd and G^{D} has at most 2 blocks of odd length.

Since $d_{2} \geq 2$, G has exactly 2 blocks of odd length. This implies that one of the two sequences $B_{0}, B_{1}, \ldots, B_{-1}$ and $B_{k}, B_{k+1}, \ldots, B_{-1}$ has only blocks of even length. Now we are in the same situation as in Case 1. Arguing as in Case 1 completes this case.

Case 4 Both d_{1} and d_{2} are odd and G^{D} has at least 4 blocks of odd length.

Since the sequence $B_{0}, B_{1}, \ldots, B_{k-1}$ has an even number of blocks of odd length, we are in the same situation as in Case 2. Arguing as in Case 2 completes this case, which concludes the proof of the theorem.

\[\square \]

4 Hamiltonian cycles of G^{D}_{n}

The main results of this section are the following.

Theorem 9 For every $D = \{d_{1}, d_{2}\} \subseteq \mathbb{N}$ with $d_{1} > d_{2}$, $d_{1}d_{2}$ odd, and $\gcd(d_{1}, d_{2}) = 1$, there is some $n_{0} \in \mathbb{N}$ such that for all even integers n with $n \geq n_{0}$, the distance graph G^{D}_{n} has a Hamiltonian cycle.
Theorem 10 For every $D = \{d_1, d_2\} \subseteq \mathbb{N}$ with $d_1 > d_2$, d_1d_2 even, and $\gcd(d_1, d_2) = 1$, there is some $n_0 \in \mathbb{N}$ such that for all integers n with $n \geq n_0$, the distance graph G_D^n has a Hamiltonian cycle.

Note that the distance graphs considered in Theorem 9 are necessarily bipartite. Therefore, they can only have a Hamiltonian cycle if their order is even.

As in Section 3 we establish several lemmas before proceeding to the proofs of Theorems 9 and 10.

For two lower vertices (x, y) and (x', y') with $x \neq x'$, $0 \not\in \{x' + 1, x' + 2, \ldots, x\}$, and $y < y'$ in the distance graph G_D, a set of vertex disjoint paths $R_y, R_{y+1}, \ldots, R_{y'-1}$ in G_D is called an (x, y)-(x', y')-path-collection of G_D, if it satisfies the following conditions:

- for $y \leq i < y'$, P_i has the endvertices $(0, i)$ and $(-1, i + 1)$,
- for $y \leq i < y'$, the path $(0, i), (1, i), \ldots, (x', i)$ is a subpath of P_i,
- for $y \leq i < y'$, the path $(x + 1, i + 1), \ldots, (-1, i + 1)$ is a subpath of P_i,
- the union of the vertex sets of the paths consists of all vertices in the rows $y + 1, y + 2, \ldots, y' - 1$, the vertices $(0, y), (1, y), \ldots, (x - 1, y)$, and the vertices $(x', y'), (x' + 1, y'), \ldots, (1, y')$, and
- no edge of the form $\{(-1, z), (0, z')\}$ for some $z, z' \in \mathbb{Z}$ is in the union of the edge sets of the paths.

See Figures 13, 15, and 16 for an illustration. Note, that (x, y) does not belong to any path of an (x, y)-(x', y')-path-collection.

Lemma 11 If for some $i \neq -1$, B_i is a block of even length in G_D, then G_D has an (x_{i+1}, y)-$(x_i, y + 1)$ path collection for all y.

Proof: Let

$$P : (x_i + 3, y + 1), (x_i + 2, y), (x_i + 3, y), (x_i + 4, y + 1),$$
$$\quad (x_i + 5, y + 1), (x_i + 4, y), (x_i + 5, y), (x_i + 6, y + 1),$$
$$\quad \ldots, (x_{i+1} - 1, y + 1), (x_{i+1} - 2, y), (x_{i+1} - 1, y), (x_{i+1}, y + 1).$$

Fig. 12: P for a block B_i of length 8.
The sequence

\[(0, y), (1, y), \ldots, (x_i + 1, y),
(x_i, y + 1), (x_i + 1, y + 1), (x_i + 2, y + 1), P_i,
(x_i + 1 + 1, y + 1), (x_i + 2 + 1, y + 1), \ldots, (-1, y + 1)\]

defines an \((x_{i+1}, y)-(x_i, y + 1)\)-path-collection in \(G^D\). See Figures 12 and 13 for an illustration. □

Lemma 12 If for some \(i \in Z/dZ\) and for some \(j \geq 1\), the blocks \(B_i, B_{i+1}, \ldots, B_{i+j}\) of \(G^D\) are such that \(-1 \notin \{i, i+1, \ldots, i+j\}\), \(B_i\) and \(B_{i+j}\) are of odd length and \(B_{i+1}, \ldots, B_{i+j-1}\) are of even length at least 4, then \(G^D\) has an \((x_{i+j+1}, y)-(x_i, y + 2)\)-path-collection for all \(y\).

Proof: By Lemma 3 the blocks \(B_i\) and \(B_{i+j}\) are of length at least 3.

Let

\[
P_i : (x_i + 1, y), (x_i + 2, y + 1), (x_i + 3, y + 1), (x_i + 2, y),
(x_i + 3, y), (x_i + 4, y + 1), (x_i + 5, y + 1), (x_i + 4, y),
\ldots, (x_{i+1} - 2, y), (x_{i+1} - 1, y + 1), (x_{i+1}, y + 1), (x_{i+1} - 1, y).
\]

For \(1 \leq q \leq j - 1\), let

\[
P_{i+q} : (x_{i+q}, y), (x_{i+q} + 1, y),
(x_{i+q} + 2, y), (x_{i+q} + 3, y + 1), (x_{i+q} + 4, y + 1), (x_{i+q} + 3, y),
(x_{i+q} + 4, y), (x_{i+q} + 5, y + 1), (x_{i+q} + 6, y + 1), (x_{i+q} + 5, y),
\ldots, (x_{i+q+1} - 2, y), (x_{i+q+1} - 1, y + 1), (x_{i+q+1}, y + 1), (x_{i+q+1} - 1, y).
\]

Furthermore, let

\[
P_{i+j} : (x_{i+j} + 2, y), (x_{i+j} + 3, y + 1), (x_{i+j} + 4, y + 1), (x_{i+j} + 3, y),
(x_{i+j} + 4, y), (x_{i+j} + 5, y + 1), (x_{i+j} + 6, y + 1), (x_{i+j} + 5, y),
\ldots, (x_{i+j+1} - 3, y), (x_{i+j+1} - 2, y + 1), (x_{i+j+1} - 1, y + 1), (x_{i+j+1} - 2, y).
\]

For \(1 \leq q \leq j\), let

\[
Q_{i+q} : (x_{i+q-1} + 4, y + 2), (x_{i+q-1} + 5, y + 2), \ldots, (x_{i+q} + 2, y + 2),
(x_{i+q} + 1, y + 1), (x_{i+q} + 2, y + 1), (x_{i+q} + 3, y + 2).
\]

Fig. 13: An \((x_{i+1}, y)-(x_i, y + 1)\)-path-collection for a block \(B_i\) of length 8.
Now, R_y and R_{y+1}, where

$$R_y : (0, y), (1, y), \ldots, (x_i, y),$$
$$P_i,$$
$$P_{i+1}, P_{i+2}, \ldots, P_{i+j-1},$$
$$(x_{i+j}, y), (x_{i+j} + 1, y), P_{i+j}, (x_{i+j+1} - 1, y),$$
$$(x_{i+j+1}, y + 1), (x_{i+j+1} + 1, y + 1), \ldots, (-1, y + 1)$$

and

$$R_{y+1} : (0, y + 1), (1, y + 1), \ldots, (x_i + 1, y + 1),$$
$$(x_i, y + 2), (x_i + 1, y + 2), (x_i + 2, y + 2), (x_i + 3, y + 2),$$
$$Q_{i+1}, Q_{i+2}, \ldots, Q_{i+j},$$
$$(x_{i+j+1} - 1, y + 2), (x_{i+j+1}, y + 2), \ldots, (-1, y + 2)$$

define an (x_{i+j+1}, y)-$(x_i, y + 2)$-path-collection of G^D. See Figures 14 and 15 for an illustration. □

Lemma 13 If for some $i \in \mathbb{Z}/d_2\mathbb{Z}$ and for some $j \geq 1$, the blocks $B_i, B_{i+1}, \ldots, B_{i+j}$ of G^D are such that $-1 \notin \{i, i + 1, \ldots, i + j\}$, B_i and B_{i+j} are of length 3 and $B_{i+1}, \ldots, B_{i+j-1}$ are of length 2, then G^D has an (x_{i+j+1}, y)-$(x_i, y + j + 1)$-path-collection for all y.

Proof: Note that $x_{i+j+1} = x_i + 2j + 4$. For $0 \leq q \leq j - 1$, let

$$R_{i+q} : (0, y + q), (1, y + q), \ldots, (x_i + 1, y + q),$$

...
Proof: for all \(y\) blocks of \(G\) if for some \(l \geq 3\) and \(2\) \((\text{a block of even length or a sequence that consists of one even block})\), Lemma 13 implies that there exists an \((i, y + j)\)-path-collection for every \(y\) and for all \(i\).

Now, \(R_i, R_{i+1}, \ldots, R_{i+q}\) define an \((x_{i+j+1}, y)\)-(\(x_i, y + j + 1\))-path-collection of \(G_D\). See Figure 16 for an illustration.

\[
\begin{align*}
R_{i+j} & : (0, y + j), (1, y + j), \ldots, (x_i + 1, y + j), \\
R_{i+3} & : (x_i + 2, y + j), (x_i + 3, y + j), \ldots, (x_i + 2j + 3, y + j), \\
R_{i+2} & : (x_i + 2j + 4, y + j), (x_i + 2j + 5, y + j + 1), \ldots, (1, y + j + 1).
\end{align*}
\]

Fig. 16: An \((x_{i+j+1}, y)-(x_i, y + j + 1)\)-path-collection for \(j = 4\).

Lemma 14 If for some \(i \in \mathbb{Z}/d_2\mathbb{Z}\) and for some \(j \geq 0\), the sequence \(S = B_i, B_{i+1}, \ldots, B_{i+j}\) of blocks of \(G_D\) is such that \(-1 \not\in \{i, i+1, \ldots, i+j\}\) and the number of blocks of odd length among \(B_i, B_{i+1}, \ldots, B_{i+j}\) is even, then \(G_D\) has an \((x_{i+j+1}, y)-(x_i, y + \Delta y)\)-path-collection for some \(\Delta y\) and for all \(y\).

Proof: By definition, the union of suitable path-collections is a path-collection: If for some \(x, x', x'', y, y', y''\), \(G_D\) has an \((x, y)-(x', y')\)-path-collection and an \((x', y')-(x'', y'')\)-path-collection, then \(G_D\) has an \((x, y)-(x'', y'')\)-path-collection. We can partition \(S\) into subsequences, where each subsequence is either a block of even length or a sequence \(B_k, B_{k+1}, \ldots, B_{k+l}\) of blocks with \(k \in \mathbb{Z}/d_2\mathbb{Z}\) and \(l \geq 1\), such that blocks \(B_k\) and \(B_{k+1}\) have odd length and blocks \(B_{k+1}, \ldots, B_{k+l-1}\) have even length. For a subsequence that consists of one even block \(B_k\) with \(k \in \mathbb{Z}/d_2\mathbb{Z}\), Lemma 11 implies that there exists a \((x_k, y + 1)\)-(\(x_k, y + 1\)) path collection for every \(y\). If \(\frac{a_1}{a_2} < 2\), then Lemma 3 implies that the lengths of the blocks are \(2\) and \(3\). For a subsequence that consists of at least two blocks \(B_{k}, B_{k+1}, \ldots, B_{k+i}\) with \(k \in \mathbb{Z}/d_2\mathbb{Z}\) and \(l \geq 1\), Lemma 13 implies that there exists an \((x_k+y+1, y)-(x_k, y + l + 1)\)-path-collection for every \(y\). If \(\frac{a_1}{a_2} > 2\), then Lemma 3 implies that the lengths of the blocks are at least \(3\). For a subsequence that consists
of at least two blocks \(B_k, B_{k+1}, \ldots, B_{k+l}\) with \(k \in \mathbb{Z}/d_2\mathbb{Z}\) and \(l \geq 1\), Lemma 12 implies that there exists an \((x_{k+i+1}, y)\)\(-(x_k, y + 2)\)-path-collection for every \(y\). Hence, a suitable union of path-collections forms an \((x_{i+j+1}, y)\)\-(\(x_i, y + \Delta y\))\-path-collection for a suitable \(\Delta y\) and all \(y\).

\[\square\]

Lemma 15 If for some \(-i \in \mathbb{Z}/d_2\mathbb{Z}\), the blocks \(B_{-i}, B_{-i+1}, \ldots, B_{-1}\) of \(G^D\) are such that \(B_{-i}\) is of odd length and \(B_{-i+1}, \ldots, B_{-1}\) are of even length at least 4, then for all \(y\), \(G^D\) has a path with endvertices \((-1, y + 1)\) and \((-1, y + 2)\) that consists of all vertices of rows \(y\) and \(y + 1\) and the vertices \((x_{-i}, y + 2), (x_{-i} + 1, y + 2), \ldots, (-1, y + 2)\).

Proof: For \(1 \leq q \leq i - 1\), let

\[Q_{-q} : (x_{-q+1} - 3, y), (x_{-q+1} - 4, y), \ldots, (x_{-q}, y), (x_{-q} - 1, y), (x_{-q} - y + 1), (x_{-q} - 2, y)\]

and let

\[Q_{-i} : (x_{-i+1} - 3, y), (x_{-i+1} - 2, y + 1), (x_{-i+1} - 3, y + 1), (x_{-i+1} - 4, y), (x_{-i+1} - 5, y), (x_{-i+1} - 4, y + 1), (x_{-i+1} - 5, y + 1), (x_{-i+1} - 6, y), \ldots, (x_{-i} + 2, y), (x_{-i} + 3, y + 1), (x_{-i} + 2, y + 1), (x_{-i} + 1, y)\]

Furthermore, let for \(1 \leq q \leq i - 1\)

\[P_{-q} : (x_{-q}, y + 2), (x_{-q} + 1, y + 2), (x_{-q} + 2, y + 2), (x_{-q} + 1, y + 1), (x_{-q} + 2, y + 1), (x_{-q} + 3, y + 2), (x_{-q} + 4, y + 2), (x_{-q} + 3, y + 1), (x_{-q} + 4, y + 1), (x_{-q} + 5, y + 2), \ldots, (x_{-q+1} - 2, y + 2), (x_{-q+1} - 3, y + 1), (x_{-q+1} - 2, y + 1), (x_{-q+1} - 1, y + 2)\]

Now, the sequence

\[(-1, y + 1), (-2, y), Q_{-1},Q_{-2}, \ldots, Q_{-i}, \ldots, (x_{-i}, y), (x_{-i} - 1, y), \ldots, (-1, y), (0, y + 1), (1, y + 1), \ldots, (x_{-i} + 1, y + 1), (x_{-i}, y + 2), (x_{-i} + 1, y + 2), \ldots, (x_{-i+1} - 1, y + 2), P_{-i+1}, P_{-i+2}, \ldots, P_{-1}\]
defines a path that satisfies the conditions of the lemma. See Figures 17 and 18 for an illustration.

Lemma 16 For every $D = \{d_1, d_2\} \subseteq \mathbb{N}$ with $d_1 > d_2$, $d_1 \text{ and } d_2$ even, and $\gcd(d_1, d_2) = 1$, there is some $n \in \mathbb{N}$ with $n \equiv 0 \pmod{d_1 + d_2}$ such that G^D has a special cycle C of order $n+1$ with $V(C) = [0, n]$.

Proof: Clearly, vertex n is in column 0. Since $d_1 d_2$ is even and $\gcd(d_1, d_2) = 1$, we obtain that $d_1 + d_2$ is odd and hence the number of blocks of odd length is odd, i.e. at least 1. Let $i \in \mathbb{Z}/d_2\mathbb{Z}$, such that block B_i is of odd length and the blocks B_{i+1}, \ldots, B_{i-1} are of even length. Clearly, by Lemma 3, the length of the blocks B_0, \ldots, B_{i-1} of odd length is even, by Lemma 14, G^D has an $(x_i, 2)$-$(0, y')$-path-collection R for some y'. Note, that if G^D has only one block of odd length, then $R = \emptyset$. In this case we define $y' = 2$. Let

$$P = \left(Q \cup \bigcup_{R \in \mathcal{R}} R \right) + \bigcup_{y=1}^{y'-2} \{(−1, y), (0, y+1)\}.$$

Fig. 19: The path P.

A cycle C in G^D is called special, if $V(C) = [\min(V(C)), \max(V(C))]$.
By construction, P is a path with endvertices $(-1, y'-1)$ and $(-1, y')$ that consists of all vertices of rows $0, 1, \ldots, y'$. The vertex $(0, y')$ has the neighbors $(1, y'-1)$ and $(1, y')$ in P. Since the vertex $(1, y')$ is an upper vertex, $(1, y')$ has the neighbors $(0, y')$ and $(2, y')$ in P and $\{(1, y'-1), (2, y')\} \in E(G^D)$. Now,

$$C = P + \{\{(1, y'-1), (2, y')\}, \{(-1, y'-1), (0, y')\}, \{(-1, y'), (0, y'+1)\}, \{(0, y'+1), (1, y')\}\}$$

is a special cycle of G^D of order $n+1$ with $n = (y'+1)(d_1 + d_2)$ and $V(C) = [0, n]$. See Figures 19 and 20 for an illustration.

Lemma 17 For every $D = \{d_1, d_2\} \subseteq \mathbb{N}$ with $d_1 > d_2$, d_1d_2 odd, and $\gcd(d_1, d_2) = 1$, there is some $n \in \mathbb{N}$ with $n \equiv 0 \pmod{d_1 + d_2}$ such that G^D has a special cycle C of order $n+2$ with $V(C) = [0, n+1]$.

Proof: Clearly, vertex n is in column 0. First we assume that $d_2 = 1$. In that case, G^D has only one block and the vertex $n+1$ is in column -1. Let $P = \emptyset$ for $d_1 = 3$, otherwise let

$$P : \quad (1, 0), (2, 1), (3, 1), (2, 0), \quad (3, 0), (4, 1), (5, 1), (4, 0), \quad \ldots, (-5, 0), (-4, 1), (-3, 1), (-4, 0).$$

The sequence

$$C : \quad (0, 0), P, (-3, 0), (-2, 0), (-1, 1), (-2, 1), (-1, 2), (0, 2), (1, 1), (0, 1), (-1, 0), (0, 0)$$

defines a special cycle of G^D of order $2(d_1 + d_2) + 2$ with $V(C) = [0, 2(d_1 + d_2) + 1]$. See Figure 21 for an illustration.
Now we assume that $d_2 > 1$. Hence, by Lemma 3 G^D has more than one block. This implies that vertex $n+1$ is lower. Let $k \in \mathbb{Z}/d_2\mathbb{Z}$, such that vertex $n+1$ belongs to block B_k. Since $d_1 + d_2$ is even, exactly those vertices are even integers that are in a column with an even index. Since vertex $n+1$ is lower and an odd integer, the number of blocks among $B_k, B_{k+1}, \ldots, B_{-1}$ of odd length is odd, i.e. at least one. Let $i \in \mathbb{Z}/d_2\mathbb{Z}$ be such that block B_i is of odd length and the blocks $B_{i+1}, B_{i+2}, \ldots, B_{-1}$ are of even length. Clearly, by Lemma 3 the length of the blocks $B_{i+1}, B_{i+2}, \ldots, B_{-1}$ are at least 4. By Lemma 15 G^D has a path Q_1 with endvertices $(-1,1)$ and $(-1,2)$ that consists of all vertices of rows 0 and 1 and the vertices $(x_i,2), (x_i + 1,2), \ldots, (-1,2)$. Since the number of blocks of $B_k, B_{k+1}, \ldots, B_{-1}$ of odd length is even, by Lemma 14 G^D has an $(x_i,2)-(x_k,y')$-path-collection \mathcal{R}_1 for some y'. Note, that if $i = k$, then $\mathcal{R}_1 = \emptyset$. In this case we define $y' = 2$. By the same arguments, G^D has a path Q_2 with endvertices $(-1,y' + 2)$ and $(-1,y' + 3)$ that consists of all vertices of rows $y' + 1$ and $y' + 2$ and the vertices $(x_i,y' + 3), (x_{i+1},y' + 3), \ldots, (-1,y' + 3)$ and G^D has an $(x_i,y' + 3)-(x_k,2y' + 1)$-path-collection \mathcal{R}_2.

By definition, for every $y' + 1 \leq y \leq 2y'$, the edges $\{(0,y'),(1,y')\}$ and $\{(x_k - 1,y),(x_k,y)\}$ belong to Q_2 or a path in \mathcal{R}_2. Furthermore, the path

$$P_0 : (x_k + 1,2y'), (x_k,2y' + 1), (x_k + 1,2y' + 1), (x_k + 2,2y' + 1)$$

is a subpath of a path in $\{Q_2\} \cup \mathcal{R}_2$. Let

$$P_1 : (0,y'), (1,y'), \ldots, (x_k - 1,y')$$

and let

$$P_2 : (x_k,2y' + 1), (x_k + 1,2y' + 1), (x_k,2y' + 2), (x_k - 1,2y' + 1), (x_k - 2,2y' + 1), \ldots, (1,2y' + 1).$$

Now,

$$C = (Q_1 \cup Q_2 \cup \mathcal{R}_1 \cup \mathcal{R}_2)
- \left(E(P_0) \cup \bigcup_{y=y'+1}^{2y'} \{(0,y),(1,y)\} \cup \bigcup_{y=y'+1}^{2y'} \{(x_k - 1,y),(x_k,y)\} \right)
+ E(P_1) \cup E(P_2)
+ \bigcup_{y=1}^{y'} \{(-1,y),(0,y+1)\}$$
defines a special cycle of G^D of order $n + 2$ with $n = (2y' + 2)(d_1 + d_2) + 2$ and $V(C) = [0, n + 1]$. See Figures 22 and 23 for an illustration.

Let C be a special cycle of G^D and let $n' = \max(V(C))$. If for all $a, b \in V(C)$ with $n' - d_1 + 1 \leq a < b \leq n'$, $\{a, b\} \neq \{n' - 2d_2, n' - d_2\}$, and $\{a, b\} \in D$, we have $\{a, b\} \in E(C)$, then we call C good.

We are now in a position to prove the main results of this section.

Proof of Theorem 9 If $D = \{1, 3\}$, then the result follows by induction on n. $C : 0, 1, 2, 3, 0$ is a Hamiltonian cycle of G^D_4. Let C_n be a Hamiltonian cycle of G^D_n. Since the vertex $n - 1$ has degree 2 in
On Hamiltonian Paths and Cycles in Sufficiently Large Distance Graphs

Fig. 23: The cycle \(C \) in the proof of Lemma 17.

\[\begin{align*}
G_n^D, \{n - 2, n - 1\} &\in E(C_n). \text{ Hence,} \\
C_{n+2} &= C_n + \{\{n - 2, n + 1\}, \{n + 1, n\}, \{n, n - 1\}\} - \{\{n - 2, n - 1\}\}
\end{align*} \]

is a Hamiltonian cycle of \(G_{n+2}^D \).

Hence we can assume that \(D \neq \{1, 3\} \). Note that we can shift special cycles: If \(C : v_0, \ldots, v_l, v_0 \) is a special cycle in \(G^D \), then also \(C + h : v_0 + h, \ldots, v_l + h, v_0 + h \) is a special cycle in \(G^D \). Furthermore, we can merge special cycles: If \(C_1 \) and \(C_2 \) are special cycles with \(\min(V(C_2)) = \max(V(C_1)) + 1 \), \(\{a, b\} \in E(C_1), \{c, d\} \in E(C_2) \), and \(\{a, c\}, \{b, d\} \in E(G^D) \), then

\[(C_1 \cup C_2) + \{\{a, c\}, \{b, d\}\} - \{\{a, b\}, \{c, d\}\}\]

is a special cycle with vertex set \([\min(V(C_1)), \max(V(C_2))] \). If for \(i \leq a < b \leq j \), \(\{a, b\} \) is an edge of \(G^D \) and at least one of \(a, b \) has degree 2 in \(G^D[i, j] \), then the edge \(\{a, b\} \) belongs to every special cycles \(C \) of \(G^D \) with \(V(C) = [i, j] \).

Claim 1 If \(C_1 \) and \(C_2 \) are good special cycles of \(G^D \) with \(\min(V(C_2)) = \max(V(C_1)) + 1 \) and \(D \neq \{1, 3\} \), then there is a good special cycle \(C \) with \(V(C) = [\min(V(C_1)), \max(V(C_2))] \).

Proof of Claim: Let \(n' = \max(V(C_1)) \).

Case 1 \(d_1 \neq 2d_2 + 1 \).
Since \(d_1 \neq 2d_2 + 1 \) and \(C_1 \) is good, \(e_1 = \{ n' - d_1 + 1, n' - d_1 + d_2 + 1 \} \in E(C_1) \). Clearly, \(e_2 = \{ n' + 1, n' + d_2 + 1 \} \in E(C_2) \). Hence,
\[
C = (C_1 \cup C_2) + \{ n' - d_1 + 1, n' + 1 \}, \{ n' - d_1 + d_2 + 1, n' + d_2 + 1 \} - \{ e_1, e_2 \}
\]
is a good special cycle with \(V(C) = [\min(V(C_1)), \max(V(C_2))] \). This concludes the first case.

Case 2 \(d_1 = 2d_2 + 1 \).

Since \(D \neq \{1, 3\} \), we have \(d_2 > 1 \). Since \(d_1 = 2d_2 + 1 \), and \(C_1 \) is good, \(e_1 = \{ n' - d_1 + 2, n' - d_1 + d_2 + 2 \} \in E(C_1) \). Since \(d_2 > 1 \), \(e_2 = \{ n' + 2, n' + d_2 + 2 \} \in E(C_2) \). Hence,
\[
C = (C_1 \cup C_2) + \{ n' - d_1 + 2, n' + 2 \}, \{ n' - d_1 + d_2 + 2, n' + d_2 + 2 \} - \{ e_1, e_2 \}
\]
is a good special cycle with \(V(C) = [\min(V(C_1)), \max(V(C_2))] \). This concludes the second case and the proof of Claim 1.

Claim 2 \(G^D \) has a good special cycle of order \(2 \pmod{d_1 + d_2} \).

Proof of Claim 2. By Lemma 17, \(G^D \) has a special cycle of order \(2 \pmod{d_1 + d_2} \). Let \(C_1 \) be a special cycle of \(G^D \) of order \(2 \pmod{d_1 + d_2} \) and let \(n' = \max(V(C_1)) \). It follows from \(25 \) that \(G^D \) has a special cycle of order \(d_1 + d_2 \). Note that every vertex in \(\{ j, j + 1, \ldots, j + d_1 + d_2 - 1 \} \) has degree 2 in \(G^D[i, j + d_1 + d_2 - 1] \), for \(j \in \mathbb{Z} \) and hence a special cycle of order \(d_1 + d_2 \) is good. Let \(C_2 \) be a special cycle of \(G^D \) of order \(d_1 + d_2 \) with \(\min(V(C_2)) = n' + 1 \). Since vertex \(n' \) has degree 2 in \(G^D[V(C_1)], \{ n' - d_2, n' \} \in E(C_1) \) and since vertex \(n' + 1 \) has degree 2 in \(G^D[V(C_2)], \{ n' + d_1 - d_2, n' + d_1 \} \in E(C_2) \). Hence,
\[
(C_1 \cup C_2) + \{ n' - d_2, n' + d_1 - d_2 \}, \{ n', n' + d_1 \} - \{ n' - d_2, n' \}, \{ n' + d_1 - d_2, n' + d_1 \}
\]
is a good special cycle of \(G^D \). This concludes the proof of Claim 2.

Let \(p_1 \) with \(p_1 \equiv 2 \pmod{d_1 + d_2} \), such that \(G^D \) has a good special cycle of order \(p_1 \). By Claim 2, such a \(p_1 \) exists. As said before, \(G^D \) has a good special cycle of order \(p_2 = d_1 + d_2 \). Since \(\gcd(p_1, p_2) = 2 \), it follows from the extended Euclidean algorithm that every sufficiently large even integer is a positive integral linear combination of \(p_1 \) and \(p_2 \). Therefore and by Claim 1 the desired result follows by shifting and merging copies of good special cycles of order \(p_1 \) and \(p_2 \).

Proof of Theorem 10: The proof is analogous to the proof of Theorem 9. Instead of using Lemma 17 we use Lemma 16. Proceeding as in the proof of Theorem 9 we obtain \(p_1 \) with \(p_1 \equiv 1 \pmod{d_1 + d_2} \) and hence \(\gcd(p_1, p_2) = 1 \). This clearly allows to establish the theorem for all sufficiently large \(n \) and not just for sufficiently large even \(n \).

Acknowledgements

Christian Löwenstein and Dieter Rautenbach acknowledge partial support from the DFG project “Cycle Spectra of Graphs” RA873/5-1. Roman Soták acknowledges support by the Slovak Science and Technology Assistance Agency under the contract APVV-0023-10.
References

