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Mixed graphs have both directed and undirected edges. We consider mixed graphs that are regular in both directed and

undirected degree and with given girth. Araujo-Pardo, Hernández-Cruz, and Montellano-Ballesteros recently established

a lower bound for regular mixed graphs with directed degree one that generalizes the Moore bound. In this paper we

show that, in at least one non-trivial case, their bound can be achieved. For a few other specific values of direct degree,

undirected degree and girth we are able to identify graphs (mixed cages) of minimum possible order. We also obtain

some fairly tight bounds for a few other cases.
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1 Introduction

The cage problem, which asks for the identification of smallest regular graphs of given girth, has been

extensively studied for graphs and for digraphs. A series of survey papers have tracked progress on the

problem for graphs Wong (1982); Biggs (1998); Exoo and Jajcay (2013). The digraph version of the problem

was first considered in 1970 by Behzad, Chartrand and Wall Behzad et al. (1970). Recently, Araujo-Pardo,

Hernández-Cruz, and Montellano-Ballesteros Araujo-Pardo et al. (2019) considered the problem for mixed

graphs and raised a number of interesting questions.

Finding graphs that give reasonable upper bounds and proving lower bounds both seem to be difficult

problems for the undirected case. The situation appears to be different for digraphs. It is generally believed

that the extremal digraphs were correctly identified by Behzad, Chartrand and Wall Behzad et al. (1970),

who proposed a fundamental conjecture discussed below. For mixed graphs, as suggested in Araujo-Pardo

et al. (2019), the level of difficulty in finding good candidate graphs may depend on the relative sizes of the

directed and undirected degrees.

In this paper, we address and resolve some of the questions raised in Araujo-Pardo et al. (2019). In partic-

ular, it is shown below that the Moore-like bound they established for directed degree 1 can be achieved. In

the next section, we review basic notation and terminology. Then we review the basic bounds of Moore, of

Behzad, Chartrand and Wall, and of Araujo-Pardo, Hernández-Cruz, and Montellano-Ballesteros. Finally,

we present a number of new results.

2 Notation and Terminology

A mixed graph is a graph with both directed and undirected edges. We refer to directed edges as arcs and

undirected edges as edges. The sets of vertices, edges, and arcs for a mixed graph G are denoted V (G),
E(G), and A(G), respectively. The degree of a vertex v in a mixed graph G is the number of edges incident

with the vertex and is denoted deg(v,G) or simply deg(v) if G is clear from the context. Similarly, the
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in-degree and out-degree of v, denoted ideg(v,G) and odeg(v,G), are the numbers of arcs incident to and

from v. A mixed graph G is regular if the degree and out-degree are constant as v ranges over the vertices

of G. If, in addition, the in-degree is constant then the graph is totally regular.

A cycle in a mixed graph is a sequence of vertices v0, v1, · · · , vk such that v0 = vk, and each pair of

consecutive vertices (vi, vi+1) is either joined by an edge or an arc (directed from vi to vi+1), and there

are no repeated edges or arcs. The girth of a mixed graph is the length of a shortest cycle. Note that the

definition considers the possibility of 1-cycles (loops) and 2-cycles. As usual, we use Ck to denote an

undirected k-cycle, and ~Ck to denote a directed k-cycle.

An (r, z, g)-graph(i) is a regular mixed graph with degree r, out-degree z, and girth g. We are interested

in cases where r, z > 0 and g ≥ 5. An (r, z, g)-cage is an (r, z, g)-graph of minimum possible order. We

denote this minimum order by f(r, z, g).
For graphs or digraphs G and H , the graph composition G[H ] is the graph with vertex set V (G)×V (H)

where (g1, h1) is adjacent to (g2, h2) if g1 is adjacent to g2 or if g1 = g2 and h1 is adjacent to h2 Harary

(1969). This is also known as the lexicographic product.

Finally, we note that modular arithmetic on subscripts will frequently be employed when specifying con-

structions. In obvious cases, we will try to avoid cluttering the presentation with frequent reminders. In one

case we use expressions of the form a + b mod c and remind the reader that the modulus operator has the

precedence of multiplication.

3 Basic Bounds

The following conjecture is fundamental to the cage problem for directed graphs.

Conjecture 1 (Behzad-Chartrand-Wall, Behzad et al. (1970)). The order of a smallest r regular digraph of

girth g is n = r(g − 1) + 1.

Behzad, Chartrand and Wall also identified the digraphs, for each r and g, that they believed to be ex-

tremal, These digraphs, which we denoted BCW (r, g), have orders r(g − 1) + 1 with vertices vi for

0 ≤ i ≤ r(g − 1) and arcs vivi+j for 1 ≤ j ≤ r. A small example is shown in Figure 1.

In Araujo-Pardo et al. (2019) Araujo-Pardo, Hernández-Cruz, and Montellano-Ballesteros considered the

problem of finding mixed cages. They focused on the case z = 1 and found a lower bound for f(r, 1, g)
based on the well known Moore bound for undirected graphs. Their idea is to attach undirected Moore trees

to each vertex of a directed path of order g, choosing trees whose depth is as large as possible while still

guaranteeing that all tree vertices are distinct.

Recall that the Moore bound for an r-regular graph of diameter d is given by:

n(r, d) ≥
r(r − 1)d − 2

r − 2
(1)

Let v0, v1, · · · , vg−1 be the vertices of a path of order g. Attach a Moore tree of depth i to vi and vg−1−i

(if distinct), for 0 ≤ i ≤ ⌊g/2⌋. This gives the following bound.

Theorem 1 (The AHM Bound).

f(r, 1, g) ≥

g−1
∑

i=0

n(r, min(i, g−i−1))

(i) This notation is compatible with most of the degree/diameter literature. In Araujo-Pardo et al. (2019) a notation is used that reverses

the order of r and z.
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Fig. 1: The Behzad-Chartrand-Wall Graph for degree 3 and girth 5 has order 13.

A small example AHM tree is shown in Figure 2. We will see that this bound can, at least occasionally,

be achieved. A central question for mixed cages is to determine how often it is achieved.

Fig. 2: The AHM Tree for r = 3, z = 1, g = 6.

Upper bounds on f(r, 1, g) can be obtained from known cages (or candidates) of degree r + 2 and girth

g whenever the graph is Hamiltonian (or at least has a 2-factor with no short cycles). We shall refer to the

upper bound obtained this way as the Cage Bound. In general, the Cage Bound is probably weak, but in at

least one case it may be useful. The Hoffman-Singleton graph is the (7, 5)-cage, and is Hamiltonian. If any

Hamiltonian cycle is cyclically oriented, a (5, 1, 5) mixed graph of order 50 is obtained.

It appears that most cages are Hamiltonian. A theorem of Singer Singer (1938) on collineations implies

that girth 6 cages constructed from field planes are Hamiltonian. More recently, Lazebnik, Mellinger and

Vega Lazebnik et al. (2013) showed that the incidence graphs of all finite projective planes are Hamiltonian.

This author has tested all the remaining cages and cage candidates listed in Table 6 of the Dynamic Cage

Survey Exoo and Jajcay (2013) that are relevant to the results in this paper and found them all to be Hamil-

tonian. The cage bound may at least serve as a useful benchmark. One might view finding (r, 1, g)-graphs

whose orders are less that the orders of the (r+2, g)-cages (or candidates) as significant first steps.

4 The Case r + z ≤ 3

In this section, mixed cages for r, z ≤ 2 are determined. The first theorem uses what could be viewed as a

degenerate case of the AHM bound, as it employs Moore trees of degree one, which are single edges.
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Theorem 2.

f(1, 1, g) = 2g − 2

Proof: The lower bound follows from the AHM bound. The AHM bound is achieved by the Möbius ladder,

where the outer cycle (see Figure 3) is cyclically oriented. �

Fig. 3: The Möbius ladder of order 8: the (1, 1, 5)-cage. An AHM tree can be found by using any directed

path of length four and the three edges incident with the non-endvertices of the path.

In Araujo-Pardo et al. (2019) the authors consider and resolve the case, r = 2, z = 1.

Theorem 3 (AHM Araujo-Pardo et al. (2019)).

f(2, 1, g) =











g2 + 1

2
, g odd

g2

2
, g even

The extremal graphs in Araujo-Pardo et al. (2019) are derived from the Behzad, Chartrand and Wall

digraphs by replacing one directed spanning cycle by an undirected cycle. The lower bound follows from

the AHM bound, giving the first examples where the bound is achieved.

The value of f(1, 2, g) can be determined using the r = 2 case of Behzad-Chartrand-Wall Conjecture,

proved by Behzad, and by the graph ~Cg[K2].

Theorem 4.

f(1, 2, g) = 2g

Proof: Let G be a (1, 2, g)-graph. Consider the directed subgraph. The result of Behzad Behzad (1973) on

the case r = 2 of the Behzad-Chartrand-Wall Conjecture implies that G must have at least 2g − 1 vertices.

But since r is odd, the order of G must be even. So f(1, 2, g) ≥ 2g. The extremal graph is ~Cg[K2]. The

graph ~C7[K2] is shown in Figure 4. �

5 The Case r = 2

In this section we present three theorems that provide upper bounds for f(2, z, g). When r = 2, a simple

upper bound can be obtained using subgraphs of ~Cg[Cg]. Behzad et al. (1970); Araujo-Pardo et al. (2019).

Theorem 5.

f(2, z, g) ≤ g2, for z ≤ g.
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Fig. 4: The graph ~C7[K2] of order 14 with (r, z, g) = (1, 2, 7).

Proof: The required graphs are all subgraphs of ~Cg[Cg]. Construct a (2, z, g)-graph G as follows. The

vertices of G are {vi,j | 0 ≤ i, j < g}, with edges vi,jvi,j+1, and arcs vi,jvi+1,j+k for 0 ≤ k < z (subscript

arithmetic is modulo g). �

For a restricted range of z, we can remove one of the g-cycles and still maintain the girth.

Theorem 6.

f(2, z, g) =







g2 − g, g even and z ≤ g/2

g2 − 1, g odd and z ≤ (g+1)/2

Proof: If g is even, let g = 2h, and then z ≤ h. Construct a (2, z, g)-graph G of order g2 − g as follows.

Let V (G) = {vi,j | 0 ≤ i < g − 1 and 0 ≤ j < g}, E(G) = {vi,jvi,j+1| 0 ≤ j < g − 1 and 0 ≤ j < g}.

The arc set is a bit more complex:

A(G) ={vi,jvi+1,(j+k)modh| 0 ≤ i < g−2, 0 ≤ j < h, 0 ≤ k < z} ∪

{vi,h+jvi+1,h+(j+k)modh| 0 ≤ i < g−2, 0 ≤ j < h, 0 ≤ k < z} ∪

{vg−2,jv0,h+(j+k)modh| 0 ≤ j < h, 0 ≤ k < z} ∪

{vg−2,j+hv0,(j+k)modh| 0 ≤ j < h, 0 ≤ k < z}.

�

A small example of the construction in Theorem 6 is shown in Figure 5.

Finally, when r = z = 2 we reduce the coefficient of g2 in the upper bound to 3/4.

Theorem 7.

f(2, 2, g) ≤

⌈

g

2

⌉⌊

3g

2

⌋

=







3g2

4 g even,

3g2+2g−1
4 g odd
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Fig. 5: A (2, 2, 6)-graph with 5 undirected 6-cycles.
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Proof: Let s =
⌈

g

2

⌉

, and t =
⌊

3g
2

⌋

. We describe a graph G of order st with r = z = 2, and girth g. Let

V (G) = {vi,j | 0 ≤ i < s, 0 ≤ j < t}.

The undirected subgraph of G consists of s disjoint t-cycles, where the first subscript of a vertex indicates

which cycle the vertex is on, and the second subscript indicates its position on the cycle. We imagine the

cycles are numbered according to the first coordinate their vertices, and refer to cycle 0, cycle 1, on up to

cycle s− 1, with the vertices of each cycle numbered in the natural order.

Next we specify the arcs so that all arcs from vertices on cycle i go to vertices on cycle i + 1. So

vi1,j1vi2,j2 ∈ A(G) if i1 + 1 = i2 < s and either j1 = j2 or j1 + 1 = j2.

Finally the arcs from cycle s−1 back to cycle 0: vs−1,j1v0,j2 is an arc if j1+
⌊

g/2
⌋

= j2 or j1+
⌊

g/2
⌋

+

1 = j2.

Note that the function that maps vi,j to vi,j+1 is a graph automorphism.

Any possible cycle of length less than g must contain arcs, since the undirected subgraph consists of

disjoint t-cycles. But any cycle containing an arc contains at least t arcs and at least one arc joining each

pair of consecutive t-cycles. Hence it also contains at least one vertex from each of the undirected cycles. So

by symmetry, if there is a cycle of length less than g there is such a cycle containing vertex 0. But any such

cycle must contain exactly r arcs and fewer than g−r = ⌈ g
2⌉ edges. By construction, this is impossible. �

Note that if this construction were modified for f(2, 3, g) we would need undirected cycles of length 2g
and would no longer have an improvement over the upper bound in Theorem 5.

For the case (2, 2, 5), a graph of order 19 was found by Claudia De La Cruz and Miguel Pizaña (personal

communication). Their graph can viewed as a mixed orientation of the cubic residue graph. The graph in

Figure 6 is a smallest (2, 2, 6)-graph.

Fig. 6: A (2, 2, 6)-graph of order 27. Only one pair of arcs from the green cycle to the blue cycle are shown.

The others are obtained by rotation.
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6 The Case z = 1

As noted in Araujo-Pardo et al. (2019), the cases where z = 1 may result in graphs most similar to undirected

cages. In these cases the directed subgraph consists of a set of disjoint cycles whose lengths partition the

order of the graph.

The case (3, 1, 5) was considered in Araujo-Pardo et al. (2019) where they established the bounds 20 ≤
f(3, 1, 5) ≤ 28. We settle this case below.

Theorem 8. f(3,1,5) = 24

Proof: The AHM bound in this case is 20, so one needs to show that (3, 1, 5)-graphs of orders 20 and 22 do

not exist. This was done by exhaustive computer searches, which made heavy use of the nauty and Traces

McKay and Piperno (2014) package. The searches were completed by two different programs.

The first program breaks the task into cases based on the structure of the (maximal) directed subgraph

of a putative (3, 1, 5)-graph. This subgraph must be a union of cycles. The lengths of these cycles give a

partition of 20 (respectively 22) with no part less than 5. There are 13 (resp. 18) such partitions. For each

case, the program then does an exhaustive search for an undirected subgraph.

The other program reverses the procedure, and divides the search into cases according to the structure of

the undirected subgraph. This subgraph must be a cubic graph whose girth is at least 5. There are 5784
such graphs of order 20 and 90940 of order 22 McKay and Piperno (2014). While this leaves more cases to

consider than the first program, the exhaustive search for each case is much faster.

After completing the searches for n = 20 and n = 22, and finding no graphs, the first of these methods

was applied to the case n = 24, and 23 different graphs were generated. The most symmetric of these graphs

is depicted in Figure 7. �



On Mixed cages 9

Fig. 7: A graph of order 24 with (r, z, g) = (3, 1, 5). There are edges joining inner vertices to all outer

vertices of the same color.

Fig. 8: One of the two cubic graphs of order 12 with girth 5. Each of the three inner vertices is adjacent to

the three vertices on the 9-cycle having the matching color.

The undirected subgraph in Figure 7 is isomorphic to two copies of this graph.

The undirected subgraph of the graph in Figure 7 is isomorphic to two copies of the cubic graph of girth
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5 and order 12 shown in Figure 8. An alternate view of the (3, 1, 5)-graph is given in Figure 9. In this graph

we fix an ordering of the colors red, blue, yellow, white, green, gray, and refer to red as color 0, blue as

color 1, etc. The directed edges of the graph are given as follows. For each of the three central vertices (in

both subgraphs), we add an arc from the vertex in color i to the vertex (in the other subgraph) in color i+ 1
(mod 6). This gives the directed 6-cycle from Figure 7.

Next pick any red (color 0) vertex on the outer 9-cycle of the left subgraph, call it v0. Then pick any blue

(color 1) vertex on the outer 9-cycle of the right subgraph, call it v1. Add an arc from v0 to v1. Next let v2
be the yellow (color 2) vertex in the left subgraph adjacent to v0. Add an arc from v1 to v2. Then v3 is the

white (color 3) vertex in the right subgraph adjacent to v1, and add an arc from v2 to v3. Continue in this

manner to complete the directed 18 cycle as in Figure 7.

Fig. 9: An alternate view of the (3, 1, 5)-graph.

The next construction was presented in Exoo (2022) and shows that the AHM bound can be achieved in

at least one case where r > 2.

Theorem 9. f(3, 1, 6) = 30

Proof: In this case the AHM bound is 30. To construct a (3, 1, 6)-graph G of order 30, define the vertex set

V (G) = X ∪ Y ∪ Z , where

X ={xi | 0 ≤ i < 10}

Y ={yi | 0 ≤ i < 10}

Z ={zi | 0 ≤ i < 10}

The set of arcs A(G) is

{xixi+1|0 ≤ i < 10} ∪ {yiyi+1|0 ≤ i < 10} ∪ {zizi+1|0 ≤ i < 10}

The set of edges E(G) is

{xiyi±2|0 ≤ i < 10} ∪ {zizi+5|0 ≤ i < 10}.
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In all cases, addition of subscripts is done modulo 10. �

The graph described in the above proof is depicted in Figure 10.

Next we present a few constructions where we were able to come relatively close to the AHM bound.

Theorem 10.

a) 52 ≤ f(3, 1, 7) ≤ 60

b) 74 ≤ f(3, 1, 8) ≤ 76

c) 29 ≤ f(4, 1, 5) ≤ 34

d) 46 ≤ f(4, 1, 6) ≤ 48

e) 40 ≤ f(5, 1, 5) ≤ 50

f) 66 ≤ f(5, 1, 6) ≤ 72

All lower bounds are derived from the AHM bound. The upper bound constructions are handled sepa-

rately.

(a) f(3, 1, 7) ≤ 60
The directed subgraph for the (3, 1, 7)-graph consists of 6 disjoint directed 10-cycles. Each of these cycles

is represented by a node in Figure 11. It will be useful to imagine the 60 vertices of the graph labeled vi,j
for 0 ≤ i < 6 and 0 ≤ j < 10. In this way, node i in the figure represents all vertices with first subscript i.
Each these sets of 10 vertices induces a directed 10-cycle labeled in the natural order.

Various pairs of 10-cycles are connected by undirected matchings. The arcs in the figure do not represent

arcs in the graph, but are there to specify the matching between pairs of 10-cycles. For example, the arc

from node 1 to node 2 is labeled with a 4. This means there is a matching connecting 10-cycle number 1 to

10-cycle number 2 such that vertex i in the first 10-cycle is adjacent to vertex i + 4 in the second 10-cycle,

i.e., v1,i is adjacent to v2,i+4, and again subscript addition is modulo 10.

The reader familiar with voltage graphs can think of the arc labels as voltage assignments from the cyclic

group of order 10.

(b) f(3, 1, 8) ≤ 76
Construct a (3, 1, 8)-graph G on vertices vi,j for 0 ≤ i < 2 and 0 ≤ j < 38. For fixed i, the 38 vertices

vi,j form a directed cycle, labeled in the natural order. The edge set of G is comprised of edges of one of the

following forms:

v0,jv0,j+7
v0,jv0,j−7
v1,jv1,j+11
v1,jv1,j−11
v0,jv1,j

The automorphism group of G has order 38, with each directed 38-cycle comprising an orbit.

(c) f(4, 1, 5) ≤ 34
An example (4, 1, 5)-graph of order 34 is shown in Figure 12. The directed subgraph consists of two

17-cycles, as shown in the right half of the figure. The undirected subgraph is shown in the left half of the

figure. We identify the vertices in the left figure with the corresponding vertices in the right figure. Label the

vertices vi,j for 0 ≤ i < 2 and 0 ≤ j < 17, where we imagine the vertices with first subscript 0 are those

on the outer circle. Then there are arcs from v0,i to v0,i+7 and from v1,i to v1,i+6, and edges v0,jv1,j−2 and

v0,jv1,j+2.

(d) f(4, 1, 6) ≤ 48
For this case, refer to Figure 13, which is similar to Figure 11 used for part (a). Here each node in the

figure represents a directed 8-cycle, and various of these 8-cycles are joined by undirected matchings, as in
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part (a). Once again, the reader familiar with voltage graphs can think of the labels as voltage assignments

from the cyclic group of order 8.

(e) f(5, 1, 5) ≤ 50
A (5, 1, 5)-graph can be easily obtained from the Hoffman-Singleton graph by cyclically orienting a di-

rected Hamiltonian cycle, of which there are many.

(f) f(5, 1, 6) ≤ 72
The graph is depicted in Figure 14. This time we replace vertices in the base graph by 12-cycles.
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Fig. 10: The unique smallest (3, 1, 6)-graph of order 30. Vertices in the lower figure are adjacent to vertices

in the upper figure that have the same color.
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0

0

0
4

6

4

0

0

60

1

2

3

4

5

Fig. 11: Structure of an (3, 1, 7)-graph of order 60. Each node represents a directed 10-cycle.

Fig. 12: A (4, 1, 5)-graph of order 34. The figure on the left shows the edges and the figure on the right

shows the arcs.
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0 0

0 0
3

5

0 2

3

6
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4

0

1 2

3

4

5

Fig. 13: Structure of an (4, 1, 6)-graph of order 48. Each node represents a directed 8-cycle.
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5

Fig. 14: Structure of a (5, 1, 6)-graph of order 72. Each node represents a directed 12-cycle.



16 Geoffrey Exoo

7 Further Work

There are at least four areas for further work on this topic.

1. Table 1 lists cases where we were able to either determine an exact value for f(r, z, g) or come

reasonably close. Note that for the case (r, z, g) = (3, 1, 8) there are only two remaining possibilities,

either there is a graph achieving the AHM bound of 74, or else the graph presented here is a cage.

Perhaps techniques from Linear Algebra could be used to eliminate 74 and settle the issue.

2. Recall that the directed subgraph of an (r, 1, g)-graph consists of a set of directed cycles whose lengths

partition the order of the graph. For most of the graph constructions presented here, these partitions

contained equal parts. At first, our computer searches were not restricted to partition with equal parts,

but it turned out that best constructions we found for smaller cases used such partitions. So for cases

where the search space was deemed too large for an exhaustive search, we restricted the search to

partitions with equal parts. In each of the cases listed in the table, there is no smaller graph with

an equal partition. Given enough computer time, one could probably complete exhaustive searches

through all partitions and settle the unresolved cases listed here.

3. In the section on r = 2, three theorems were given providing upper bounds for f(2, z, g). Now the

undirected subgraph of a (2, z, g)-graph consists of disjoint cycles, i.e., (undirected) cages of degree

2. The reader will notice that these theorems could each be generalized for r > 2, replacing the cycles

by r-cages.

4. As noted above, several of the constructions in this paper can be viewed as voltage graphs over cyclic

groups. But they were not found by a search for voltage graphs, so they were not presented as such.

Voltage graphs over more interesting groups might be a good place to look for (r, z, g)-cages.

r z g Lower Exact Upper

2 2 5 19

2 2 6 27

3 1 5 24

3 1 6 30

3 1 7 52 60

3 1 8 74 76

4 1 5 29 34

4 1 6 46 48

5 1 5 40 50

5 1 6 66 72

Tab. 1: Bounds for small f(r, z, g). For each of the values of r, z, and g, either the exact value, or our best

lower and upper bounds are given. The result for (2, 2, 5) is due to Claudia De La Cruz and Miguel Pizaña

(unpublished).
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