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For the given bipartite graphs G1, G2, . . . , Gt, the multicolor bipartite Ramsey number BR(G1, G2, . . . , Gt) is the
smallest positive integer b, such that any t-edge-coloring of Kb,b contains a monochromatic subgraph isomorphic to
Gi, colored with the ith color for some 1 ≤ i ≤ t. We compute the exact values of the bipartite Ramsey numbers
BR(C8, C2n) for n ≥ 2.
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1 Introduction
Since 1956, when Erdös and Rado published the fundamental paper Erdös and Rado (1956), Ramsey
theory has grown into one of the most active areas of research in combinatorics while interacting with
graph theory, number theory, geometry, and logic Rosta (2004). Ramsey theory has many applications
in several branches of mathematics. We refer to Graham et al.; Parsons to see these diverse applications.
In particular, one can see the bipartite Ramsey numbers have many applications, and this motivated us
to conduct a study on bipartite Ramsey numbers. The classical Ramsey number for the given numbers
n1, . . . , nk, is the smallest integer n in a way that there is some 1 ≤ i ≤ k for each k-coloring of the edges
of complete graph Kn, such that there is a complete subgraph of size ni whose edges are all the ith color.
However, there is no loss to work in any class of graphs and their subgraphs instead of complete graphs.
If G1, G2, . . . , Gt be bipartite graphs, the multicolor bipartite Ramsey number BR(G1, G2, . . . , Gt) is
defined as the smallest positive integer b, such that any t-edge-coloring of the complete bipartite graph
Kb,b contains a monochromatic subgraph isomorphic to Gi, colored with the ith color for some i. The
existence of such a positive integer is guaranteed by a result of Erdős and Rado Erdös and Rado (1956).
Recently, new versions of Ramsey numbers, such as multipartite Ramsey numbers have been defined.
One can refer to Day et al. (2001), Rowshan et al. (2021), Rowshan and Gholami (2023), Rowshan and
their references for further studies.
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The exact values of the bipartite Ramsey numbers BR(Pn, Pm) of two paths follow from the results
of Faudree and Schelp Faudree and Schelp (1975) and Gyárfás and Lehel Gyárfás and Lehel (1973). The
bipartite Ramsey numbers BR(K1,n, Pm) are given by Hatting and Henning in Hattingh and Henning
(1998). The multicolor bipartite Ramsey numbers BR(G1, G2, . . . , Gt) when G1, G2, . . . , Gt are either
stars and stripes, or stars and paths, has been studied in Raeisi (2015). In Bucic et al. (2019), authors
have determined asymptotically the 4-colour bipartite Ramsey number of paths and cycles. The same
authors have determined asymptotically the 3-colour bipartite Ramsey number of paths and cycles in
Bucić et al. (2019). The three-colour bipartite Ramsey number BR(G1, G2, P3) is considered in Lakshmi
and Sindhu (2020). New values of the bipartite Ramsey number BR(C4,K1,n) using induced subgraphs
of the incidence graph of a projective plane are given in Hatala et al. (2021). Bipartite Ramsey numbers
of Kt,s in many colors and bipartite Ramsey numbers of cycles for random graphs have been discussed
in Wang et al. (2021.) and Liu and Li (2021) respectively. Xuemei Zhang et.al have done a research on
multicolor bipartite Ramsey numbers for quadrilaterals and stars Zhang et al. (2023). The exact value of
BR(nP2, nP2, ...., nP2) has been obtained in Qiao et al. (2021). The exact value of BR(P3, P3, Pn), and
BR(P3, P3, ..., Pn) for n ≥ 4r + 2, and BR(P4, P4, Pn) for n ≥ 4 have been computed in Wang et al.
(2021). We intend to compute the exact values of the multicolor bipartite Ramsey numbers BR(C8, C2n).
Actually, we prove the following theorem:

Theorem 1.1. For any n ≥ 2, we have:

BR(C8, C2n) =

{
8 n = 4,

n+ 3 otherwise.

In this paper, we are only concerned with undirected, simple, and finite graphs. We follow Bondy et al.
(1976) for terminology and notations not defined here. Let G be a graph with vertex set V (G) and edge set
E(G). The degree of a vertex v ∈ V (G) is denoted by degG(v), or simply by deg(v). The neighborhood
NG(v) of a vertex v is the set of all vertices of G adjacent to v and satisfies |NG(v)| = degG(v). The
minimum and maximum degrees of vertices of G are denoted by δ(G) and ∆(G), respectively. Let C
be a set of colors {c1, c2, ..., cm} and E(G) be the edges of a graph G, an edge coloring f : E → C
assigns each edge in E(G) to a color in C. If an edge coloring uses k colors on a graph, it is known
as a k-colored graph. As usual, Cn stands for a cycle on n vertices. The complete bipartite graph with
bipartition (X,Y ), where |X| = m and |Y | = n is denoted by Km,n. We use [X,Y ] to indicate the set
of edges between a bipartition (X,Y ) of G. Let W ⊆ V (G) be any subset of vertices of G, the induced
subgraph G⟨W ⟩ is the graph whose vertex set is W and whose edge set consists of all of the edges in
E(G) that have both endpoints in W . The complement of a graph G, denoted by G, is the graph with the
same vertices as G and contains those edges which are not in G. G is n-colorable to (G1, G2, . . . , Gn) if
there exists an n-edge decomposition (H1, H2, . . . ,Hn) of G, where Gi ⊈ Hi for each i = 1, 2, . . . , n.

2 Some basic results
To prove our main results, namely Theorem 1.1, we need to establish some preliminary results. We start
with the following simple but helpful lemma:

Lemma 2.1. Let G be a subgraph of Kt,t with a cycle C : x1y1x2 . . . xkykx1 of length 2k, where
t ≥ k + 1. If x and y be two vertices of G not in C, where xi, xi+1 ∈ NG(y) and yi, yi+1 ∈ NG(x), or



The bipartite Ramsey numbers BR(C8, C2n) 3

xy ∈ E(G), in which xi ∈ NG(y) and yi ∈ NG(x) for some i, 1 ≤ i ≤ k, then G has a cycle of length
2k + 2.

Proof: Consider C ′ = x1y1x2 . . . yi−1xiyxi+1yixyi+1xi+2 . . . xkykx1, where xi, xi+1 ∈ NG(y) and
yi, yi+1 ∈ NG(x). Also, consider C ′′ = x1y1x2 . . . xiyxyixi+1 . . . xkykx1, where xy ∈ E(G), xi ∈
NG(y), and yi ∈ NG(x).

Lemma 2.2. Let G be a spanning subgraph of Kt,t with a cycle C of length 2k, where t ≥ k + 1 and
k ≥ 4. Let x and y be the vertices of G not in C. Assume that x, y are adjacent to at least k − 1 vertices
of C where xy /∈ E(G), or x and y are adjacent to at least ⌈k

2 ⌉ + 1 vertices of C where xy ∈ E(G).
Then G has a cycle of length 2k + 2.

Proof: If xy /∈ E(G), the lemma is proven by Zhang et al. in Zhang et al. (2013), hence we may assume
that x, y are adjacent to at least ⌈k

2 ⌉ + 1 vertices of C where xy ∈ E(G). Without loss of generality
(W.l.g.), assume that C2k = x1y1x2y2 . . . xkykx1. In this case, it is easy to check that there is at least one
i, 1 ≤ i ≤ k, such that xyi and xiy belong to E(G). Therefore by Lemma 2.1, we have C2k+2 ⊆ G and
the proof is complete.

In the following two theorems, the authors in Rui and Yongqi (2011) and Zhang et al. (2013) have
determined the exact value of the bipartite Ramsey number of BR(C2m, C2n) for m = 2, 3, respectively.

Theorem 2.3. For any n ≥ 2, we have:

BR(C4, C2n) =

{
5 n = 2, 3,

n+ 1 otherwise.

Theorem 2.4. For any n ≥ 3, we have:

BR(C6, C2n) =

{
6 n = 3,

n+ 2 otherwise.

Proposition 2.5. Let G be a subgraph of K8,8 where K3,4 ⊆ G, then either C8 ⊆ G or C8 ⊆ G.

Proof: Let (X = {x1, . . . , x8}, Y = {y1, . . . , y8}) be a bipartition of K8,8 and K3,4 ⊆ G[X1, Y1], where
X1 = {x1, x2, x3}, Y1 = {y1, . . . , y4}. Assume that C8 ⊈ G. Thus we have |NG(x) ∩ Y1| ≤ 1 for each
x ∈ X \X1. Otherwise, C8 ⊆ G. Consider X2 = X \X1 and Y2 = Y1 ∪ {y5}. Since BR(C8, C4) = 5
and C8 ⊈ G, we have C4 ⊆ G[X2, Y2]. Hence y5 ∈ V (C4); otherwise, C8 ⊆ G. W.l.g., we may assume
that C4 = x4y4x5y5x4. Therefore we have [{x4, x5}, {y1, y2, y3}], [{x1, x2, x3}, {y5}] ⊆ G, other-
wise, C8 ⊆ G. If |NG(y5) ∩ {x6, x7, x8}| ≥ 2, then C8 ⊆ G[X2, {y1, y2, y3, y5}], a contradiction. So
|NG(y5)∩{x6, x7, x8}| ≥ 2. Let x6y5, x7y5 ∈ E(G), hence K4,3

∼= [{x4, x5, x6, x7}, {y1, y2, y3}] ⊆ G.
Therefore, |NG(y)∩{x4, x5, x6, x7}| ≤ 1 for each y ∈ {y6, y7, y8}, that is |NG(y)∩{x4, x5, x6, x7}| ≥ 3
for each y ∈ {y6, y7, y8}. So, we have K3,4

∼= [{x1, x2, x3}, {y5, y6, y7, y8}] ⊆ G. Therefore for each
x ∈ {x4, x5, x6, x7}, we have |NG(x)∩{y6, y7, y8}| ≤ 1; otherwise, C8 ⊆ G[{x1, x2, x3, x}, {y5, y6, y7, y8}]
which is a contradiction. Afterwards one can check that C8 ⊆ G[{x4, x5, x6, x7}, {y5, y6, y7, y8}] and
the proof is complete.
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3 Proof of the main results
In this section, we compute the exact value of the bipartite Ramsey numbers BR(C8, C2n) for n ≥ 2.

Also, we guess that for m,n ≥ 3, we have BR(C2n, C2m) =

{
m+ n n = m,

m+ n− 1 n ̸= m.
. It should

be noted that, after the authors posted the current article on arXiv, the correctness of the conjecture was
proved by Yan and Peng Yan and Peng (2021).
In order to simplify the comprehension, let us split the proof of Theorem 1.1 into small parts. We begin
with a simple but very useful general lower bound in the following theorem:

Theorem 3.1. Rui and Yongqi (2011) We have BR(C2m, C2n) ≥ m+ n− 1 for all m,n ≥ 2.

Proof: Let G1 and G2 denote vertex-disjoint induced subgraphs of Km+n−2,m+n−2 (m,n ≥ 2), which
are isomorphic to complete bipartite graphs Km−1,m+n−2 and Kn−1,m+n−2, respectively. Clearly,
E(Km+n−2,m+n−2) = E(G1)∪E(G2). As C2m ⊈ G1 and C2n ⊈ G2, it follows that BR(C2m, C2n) ≥
m+ n− 1, as required.

Lemma 3.2. Rui and Yongqi (2011) BR(C8, C4) = 5.

Lemma 3.3. Zhang et al. (2013) BR(C8, C6) = 6.

In the following two theorems, we determine the exact values of the bipartite Ramsey number of
BR(C8, C2n) for n = 4, 5.

Theorem 3.4. BR(C8, C8) = 8.

Proof: To prove the lower bound, consider a bipartition (X,Y ) of K7,7, where X = {x1, x2, . . . , x7}
and Y = {y1, y2, . . . , y7}. Let (G,G) be a 2-edge-coloring of K7,7, where G is given in Figure 1. Hence
it is easy to see that C8 ⊈ G and G ∼= G \ x4y4, that is we have C8 ⊈ G. Therefore, BR(C8, C8) ≥ 8.

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

G

Fig. 1: Edge disjoint subgraphs G and G of K7,7

To complete the proof, suppose on the contrary that BR(C8, C8) > 8, that is K8,8 is 2-colorable to
(C8, C8), say C8 ⊈ G and C8 ⊈ G for some G ⊆ K8,8. Since BR(C6, C8) = 6 and C8 ⊈ G, G
has a subgraph C ∼= C6. Let (X,Y ) be a bipartition of K8,8, where X = {x1, x2, . . . , x8} and Y =
{y1, y2, . . . , y8}. Set X1 = V (C)∩X , Y1 = V (C)∩Y . W.l.g., we may assume that X1 = {x1, x2, x3},
Y1 = {y1, y2, y3}, and C6 = x1y1x2y2x3y3x1. Consider X2 = X \ {x1, x2} and Y2 = Y \ {y1, y2}.
Since BR(C6, C8) = 6, |X2| = |Y2| = 6, and C8 ⊈ G, G[X2, Y2] has a subgraph C ′ ∼= C6. Let
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X ′
1 = V (C ′)∩X2 and Y ′

1 = V (C ′)∩ Y2. Now we consider the |{x3, y3} ∩ V (C ′)|, there are three cases
as follows:

Case 1. |{x3, y3} ∩ V (C ′)| = 2.
W.l.g., we may assume that X ′

1 = {x3, x4, x5} and Y ′
1 = {y3, y4, y5}. If x3y3 /∈ E(C ′), then we have

{x3y4, x3y5, y3x4, y3x5} ⊆ E(C ′) and there is at least one edge x′y′ between {x4, x5} and {y4, y5} in
G. Since x3y3 ∈ E(C) and x3y

′, y3x
′ are belong to E(C ′), by Lemma 2.1 we have C8 ⊆ G[X1 ∪

{x′}, Y1 ∪ {y′}], which is a contradiction. Hence, assume that x3y3 ∈ E(C ′), and w.l.g. assume that
C ′ = x3y3x4y4x5y5x3. Now since C8 ⊈ G, and by Figure 2, it is easy to check that

{x1y2, x1y4, x2y4, x2y5, x4y1, x4y5, x5y1, x5y2} ⊆ E(G)

That is, C8 = x1y2x5y1x4y5x2y4x1 ⊆ G, a contradiction again.

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8

C ∪ C ′

Fig. 2: x3y3 ∈ E(C′)

Case 2. |{x3, y3} ∩ V (C ′)| = 1.
W.l.g., we may assume that x3 ∈ V (C ′), X ′

1 = {x3, x4, x5}, Y ′
1 = {y4, y5, y6}, and C ′ = x3y4x4y5x5y6x3.

Since C8 ⊈ G, by Figure 3, it is easy to check that K2,3
∼= [{x4, x5}, {y1, y2, y3}] ⊆ G, K2,3

∼=
[{x1, x2}, {y4, y5, y6}] ⊆ G. Now we have the following claim:

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8

C ∪ C ′

Fig. 3: |{x3, y3} ∩ V (C′)| = 1 (x3 ∈ V (C′))

Claim 1. If there exists a vertex x of X ′
2 = {x6, x7, x8}, such that |NG(x) ∩ {y2, y3}| ≠ 0, then

|NG(x) ∩ Y ′
1 | = 0.

Proof: Let xy2 ∈ E(G). For other cases, the proof is the same. Hence if xy4 or xy6 belong to E(G),

then we have C8 ⊆ G, and if xy5 ∈ E(G), then we set C ′ = x3y2xy5x4y4x3 and the proof is the same
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as case 1 when Y2 = Y \ {y1, y3}.

Similar to the proof of Claim 1, we have the following claim, which is easily verifiable.

Claim 2. If there exist a vertex x of X ′
2 = {x6, x7, x8}, such that |NG(x) ∩ {y4, y6}| ≠ 0, then

|NG(x) ∩ Y1| = 0.
Now by Claim 1, there are at least two vertices x6 and x7 of X ′

2 = {x6, x7, x8}, such that [{x6, x7}, {y2, y3}] ⊆
G; otherwise, we have K4,3 ⊆ G[{x1, x2, x6, x7, x8}, Y ′

1 ] and the proof is complete by Proposition 2.5.
Therefore by Claim 2, we have |NG(x) ∩ {y4, y6}| = 0 for at least one vertex of {x6, x7}. Otherwise,
we have K4,3

∼= [{x4, x5, x6, x7}, Y1] ⊆ G and the proof is complete by Proposition 2.5. Hence we
may assume that |NG(x7) ∩ {y4, y6}| = 0, that is x7y4, x7y6 ∈ E(G). So it is easy to check that
x1y2, x2y3, x4y6, x5y4, x6y4, x6y5, x6y6 ∈ E(G); otherwise, C8 ⊆ G. Hence x6y1 ∈ E(G); other-
wise, C8 ⊆ G. Now x7y1 ∈ E(G), if not we have K4,3

∼= [{x4, x5, x6, x7}, Y1] ⊆ G and the proof
is complete by Proposition 2.5. We should also have x7y5 ∈ E(G), if not C8 ⊆ G, that is we have
K3,3

∼= [{x4, x5, x6}, Y1] ⊆ G and K3,3
∼= [{x1, x2, x7}, Y ′

1 ] ⊆ G. Now consider N(x8), by Claims
1 and 2, we have |NG(x8) ∩ {y2, y3}| = |NG(x8) ∩ {y4, y6}| = 0, otherwise we have K4,3 ⊆ G and
the proof is complete by Proposition 2.5. Therefore {y2, y3, y4, y6} ⊆ NG(x8) and one can check that
C8 = x8y6x1y5x2y4x7y2x8 ⊆ G and the proof is complete.

Case 3. |{x3, y3} ∩ V (C ′)| = 0.
We may assume that X ′

1 = {x4, x5, x6}, Y ′
1 = {y4, y5, y6}, and C ′ = x4y4x5y5x6y6x4. In this case,

for each x ∈ X1, x′ ∈ X ′
1, y ∈ Y1, and y′ ∈ Y ′

1 , we have |NG(x) ∩ Y ′
1 | ≤ 1, |NG(x

′) ∩ Y1| ≤ 1,
|NG(y

′) ∩X1| ≤ 1, and |NG(y) ∩X ′
1| ≤ 1. Otherwise, the proof is the same as case 2. Therefore it is

easy to show that the following claim is true.

Claim 3. K3,3 \ e ⊆ G[X1, Y
′
1 ] and K3,3 \ e ⊆ G[X ′

1, Y1], in other words, there is at most one edge
between [X1, Y

′
1 ] and [X ′

1, Y1] in G.
Now by Claim 3, one can check that [X1, Y1] ⊆ G or [X ′

1, Y
′
1 ] ⊆ G; otherwise, C8 ⊆ G. W.l.g., we

may assume that [X1, Y1] ⊆ G. Hence we have [X1, Y
′
1 ] ⊆ G or [X ′

1, Y1] ⊆ G, if not, we have C8 ⊆ G,
which is a contradiction. W.l.g., assume that [X1, Y

′
1 ] ⊆ G. Now consider x7y7 and w.l.g. assume that

x7y7 ∈ E(G). For other cases, the proof is the same. If |NG(x7) ∩ Y1| ̸= 0, by Lemma 2.1, we have
|NG(y7) ∩ X1| = 0, hence K3,4

∼= [X1, Y
′
1 ∪ {y7}] ⊆ G and the proof is complete by Proposition

2.5. So let |NG(x7) ∩ Y1| = 0. Therefore by Claim 3, there exists one edge between [X ′
1, Y1] in G;

otherwise, K3,4 ⊆ G and the proof is the same. Assume that x4y1 ∈ E(G), if |NG(x7) ∩ Y ′
1 | = 0 or

|NG(y7)∩X1| = 0, then K4,3
∼= [X1 ∪{x7}, Y ′

1 ] ⊆ G or K3,4
∼= [X1, Y

′
1 ∪{y7}] ⊆ G, respectively and

the proof is complete by Proposition 2.5. Hence w.l.g. assume that x7y4, x1y7 ∈ E(G). Therefore one
can check that C8 = x1y7x7y4x4y1x2y2x1 ⊆ G, a contradiction again.
Now by cases 1, 2, and 3, the proof is complete and the theorem holds.

Theorem 3.5. BR(C10, C8) = 8.

Proof: The lower bound holds by Theorem 3.1. To complete the proof, by contrary suppose that
BR(C10, C8) > 8, that is K8,8 is 2-colorable to (C10, C8), say C10 ⊈ G and C8 ⊈ G for some G ⊆ K8,8.
Since BR(C8, C8) = 8 and C8 ⊈ G, G has a subgraph C ∼= C8. Let (X,Y ) be a bipartition of K8,8,
where X = {x1, x2, . . . , x8} and Y = {y1, y2, . . . , y8}. Set X1 = V (C)∩X and Y1 = V (C)∩Y . W.l.g.,
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we may assume that X1 = {x1, x2, x3, x4}, Y1 = {y1, y2, y3, y4}, and C = x1y1x2y2x3y3x4y4x1.
Since C8 ⊈ G, there is at least one edge other than E(C) between X1 and Y1 in G, w.l.g. assume that
x1y2 ∈ E(G) (for other cases, the proof is the same). Consider X2 = X\{x1, x2} and Y2 = Y \{y1, y2}.
Since BR(C6, C8) = 6, |X2| = |Y2| = 6, and C8 ⊈ G, G[X2, Y2] has a subgraph C ′ ∼= C6. Let
X ′

1 = V (C ′) ∩ X1, Y ′
1 = V (C ′) ∩ Y1. Now consider the (|X ′

1|, |Y ′
1 |). By symmetry we note that

(|X ′
1|, |Y ′

1 |) = (|Y ′
1 |, |X ′

1|), so (|X ′
1|, |Y ′

1 |) ∈ {(0, 0), (1, 0), (2, 0), (1, 1), (2, 1), (2, 2)}, now we have the
following cases:

Case 1. (|X ′
1|, |Y ′

1 |) = (0, 0).
Assume that V (C ′) = {x5, x6, x7, y5, y6, y7} and C ′ = x5y5x6y6x7y7x5. Set X ′

2 = {x5, x6, x7} and
Y ′
2 = {y5, y6, y7}. Since C10 ⊈ G, one can check that either K3,4

∼= [X ′
2, Y1] ⊆ G or K4,3

∼= [X1, Y
′
2 ] ⊆

G; otherwise, assume to the contrary that there exists at least one edge between X ′
2 and Y1 in G, along with

there exists at least one edge between X1 and Y ′
2 in G. Utilizing symmetry and without loss of generality,

let’s consider that x5y1 ∈ E(G). Subsequently, let’s posit that |NG(y5) ∩X1| ≠ 0. For other cases, the
proof remains consistent. Since both x5y5 and x5y1 are edges in G, if x1y5 or x2y5 are also edges in G,
then by lemma 2.1 it can be deduced tha C10 ⊆ G. Therefore, let’s assume that either x3y5 ∈ E(G) or
x4y5 ∈ E(G). In the instance of x3y5 ∈ E(G), we have C = x5y1x2y2x1y4x4y3x3y5x5 is a copy of
C10 in G. The proof remains analogous in the scenario where x4y5 ∈ E(G).
Hence, w.l.g., we may assume that K3,4

∼= [X ′
2, Y1] ⊆ G. If there exists a vertex x of X \ X ′

2, such
that |NG(x) ∩ Y1| ≥ 2, then C8 ⊆ G, a contradiction. Hence |NG(x) ∩ Y1| ≥ 3 for each x ∈ X \X ′

2,
that is |NG(x8) ∩ Y1| ≥ 3. Therefore by Lemma 2.1, we have |NG(y) ∩X1| ≤ 1 for each y ∈ Y \ Y1;
otherwise, C10 ⊆ G. If there exist y, y′ ∈ {y5, y6, y7}, such that |NG(y) ∩ X1| = |NG(y

′) ∩ X1| = 1
and NG(y)∩X1 ̸= NG(y

′)∩X1, one can check that C10 ⊆ G, a contradiction again (for example w.l.g.,
assume that NG(y5)∩X1 = {x1} and NG(y6)∩X1 = {x2}. Hence C10 := y5x1y4x4y3x3y2x2y6x6y5 ⊆
G). Therefore, w.l.g. we may assume that {x1, x2, x3} ⊆ NG(y) for each y ∈ {y5, y6, y7}. If there are at
least two vertices y5, y6 of Y ′

2 , such that |NG(yi)∩X1| = 4 for i = 5, 6, then C8 ⊆ G[X1, Y \Y1]. In other
words, there are at least two vertices y5, y6 of Y ′

2 , such that NG(yi) ∩X1 = {x4}. Hence x8yi ∈ E(G)
for i = 5, 6, if not, C10 ⊆ G, a contradiction. Now one can check that C8 ⊆ G[{x1, x2, x3, x8}, Y \ Y1]
and the proof is complete.

Case 2. (|X ′
1|, |Y ′

1 |) = (1, 0).
Assume that X ′

1 = {x4}. For the case that X ′
1 = {x3}, the proof is the same. Hence w.l.g. assume that

V (C ′) = {x4, x5, x6, y5, y6, y7} and C ′ = x4y5x5y6x6y7x4. Set X ′′
2 = {x1, x2, x3}, X ′

2 = {x5, x6},
and Y ′

2 = {y5, y6, y7}. Since C10 ⊈ G, we have K3,3
∼= [X ′′

2 , Y
′
2 ] ⊆ G and K2,4

∼= [X ′
2, Y1] ⊆ G.

Now consider the vertices {x7, x8}, one can check that for at least one vertex x of {x7, x8}, we have
|NG(x) ∩ Y1| ≥ 2; otherwise, byK2,4

∼= [X ′
2, Y1] ⊆ G one can say that C8 ⊆ G[X \ X1, Y1]. W.l.g.,

assume that |NG(x7) ∩ Y1| ≥ 2 and thus |NG(x7) ∩ Y ′
2 | = 0; otherwise, C10 ⊆ G. Therefore, we have

K4,3
∼= [X ′′

2 ∪ {x7}, Y ′
2 ] ⊆ G, that is |NG(y8) ∩ (X ′′

2 ∪ {x7})| ≤ 1, if not, C8 ⊆ G[X ′′
2 ∪ {x7}, Y2].

Since |NG(x7) ∩ Y1| ≥ 2 and |NG(y8) ∩X ′′
2 | ≥ 2, if x7y8 ∈ E(G), using Lemma 2.1, it can be easily

checked that C10 ⊆ G. So let x7y8 ∈ E(G), that is X ′′
2 ⊆ NG(y8) and thus |NG(x7) ∩ Y1| = 2

and NG(x7) ∩ Y1 = {y3, y4}. Otherwise by Lemma 2.1, we have C10 ⊆ G and the proof is complete.
Similarly |NG(x8) ∩ Y1| ≤ 2; otherwise, by Lemma 2.2, C10 ⊆ G[X1 ∪ {x8}, Y1 ∪ {y8}]. If |NG(x8) ∩
Y1| ≤ 1, then C8 ⊆ G[X \ X1, Y1]. Hence |NG(x8) ∩ Y1| = 2 and x8y8 /∈ E(G), if not, one can by
Lemma 2.1, check that C10 ⊆ G[X1 ∪ {x8}, Y1 ∪ {y8}]. Thus we have Y \ Y1 ⊆ NG(xi) for i = 7, 8.
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That is, C8 ⊆ G[{x1, x2, x7, x8}, Y \ Y1] and the proof is complete.

Case 3. (|X ′
1|, |Y ′

1 |) = (1, 1).
W.l.g., we may assume that V (C ′) = {x, x5, x6, y, y5, y6}, where x ∈ {x3, x4} and y ∈ {y3, y4}. If
xy /∈ E(C), then x = x3 and y = y4. Let x3y4 ∈ E(C ′), and w.l.g. we may assume that C ′ =
x3y4x5y5x6y6x3. In this case, we have C10 = x1y1x2y2x3y6x6y5x5y4x1 ⊆ G, a contradiction. So let
x3y4 /∈ E(C ′) and w.l.g. we may assume that C ′ = x3y5x5y4x6y6x3. Consider the following figure:

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 4: x = x3, y = y4 and x3y4 /∈ E(C′)

By Figure 4, it is easy to check that xiyj ∈ E(G), where i ∈ {5, 6}, j ∈ {1, 2, 3}. Similarly,
xjyi ∈ E(G), where i ∈ {5, 6}, j ∈ {1, 2, 4}, and x2y3, x4y2 ∈ E(G). Hence we have C8 ⊆
G[{x2, x4, x5, x6}, {y1, y2, y3, y5}], a contradiction too. So let xy ∈ E(C), that is xy ∈ {x3y3, y3x4, x4y4}.
In this case, the proof is the same as the case that x = x3 and y = y4, where x3y4 ∈ E(C ′) and we get a
contradiction again.

Case 4. (|X ′
1|, |Y ′

1 |) = (2, 0).
W.l.g., let V (C ′) = {x3, x4, x5, y5, y6, y7} and C ′ = x3y5x4y6x5y7x3. In this case, we have C10 =
x1y1x2y2x3y7x5y6x4y4x1 ⊆ G, which is a contradiction.

Case 5. (|X ′
1|, |Y ′

1 |) = (2, 1).
W.l.g., we may assume that V (C ′) = {x3, x4, x5, y, y5, y6}, where y ∈ {y3, y4}. If y = y3 or y = y4
and x3y4 ∈ E(C ′), by considering the edges of C and C ′, in any case, it is easy to check that C10 ⊆
G[V (C) ∪ V (C ′)]. For example, assume that y = y3 and C ′ = x3y3x4y5x5y6x3, hence we have
C10 := y6x5y5x4y4x1y1x2y2x3y6 ⊆ G. For other cases, the proof is the same.

Hence, assume that y = y4, and x3y4 /∈ E(C ′). W.l.g., assume that C ′ = x4y4x5y5x3y6x4. Consider
the following figure:

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 5: x3, x4 ∈ X ′
1, y4 ∈ Y ′

1 and x3y4 /∈ E(C′)
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By Figure 5, it is easy to check that:

{x1y3, x1y5, x1y6, x2y3, x2y5, x2y6, x4y5, x5y2, x5y3, x5y6} ⊆ E(G)

Otherwise, C10 ⊆ G. For example by contrary assume that x1y3 ∈ E(G), it can be seen that C10 :=
x1y1x2y2x3y5x5y4x4y3x1 ⊆ G. For other cases, the proof is the same. Now, consider x4y2. If x4y2 ∈
E(G), then we have C8 = x1y3x5y2x4y5x2y6x1 ⊆ G, a contradiction. Hence assume that x4y2 ∈ E(G),
therefore C10 = x1y1x2y2x4y6x3y5x5y4x1 ⊆ G, which is a contradiction again.

Case 6. (|X ′
1|, |Y ′

1 |) = (2, 2).
W.l.g., we may assume that V (C ′) = {x3, x4, x5, y3, y4, y5}. If x5y5 /∈ E(C ′), we have x5yj , y5xj ∈
E(C ′) for j = 3, 4. Thus by Lemma 2.1, we have C10 ⊆ G, which is a contradiction. Now let x5y5 ∈
E(C ′). If x4y5 ∈ E(C ′), then by Lemma 2.1, the proof is the same. So let x4y5 /∈ E(C ′). Therefore, we
have x3y5 ∈ E(C ′). If x5y3 ∈ E(C ′), the proof is the same. Hence C ′ = x3y3x4y4x5y5x3 ⊆ G. Since
C10 ⊈ G, and by Figure 6, it is easy to check that:

{x1y3, x1y5, x2y3, x2y5, x4y1, x4y2, x4y5, x5y1, x5y2, x5y3} ⊆ E(G).

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 6: (|X ′
1|, |Y ′

1 |) = (2, 2) and x4y5, x5y3 ∈ E(G)

Now we have the following claim:

Claim 4. |NG(x5) ∩ {y6, y7, y8}| = 0.
Proof: By contradiction we may assume that |NG(x5) ∩ {y6, y7, y8}| ≠ 0, say x5y6 ∈ E(G). In

this case, we have {x1, x2, x4} ⊆ NG(y6); otherwise, C10 ⊆ G which is a contradiction. Now, since
{x1, x2, x4} ⊆ NG(y6), one can check that C8 = y6x4y1x5y3x1y5x2y6 ⊆ G, a contradiction again.
Hence the assumption does not hold and the claim follows.

Therefore by Claim 4, {y6, y7, y8} ⊆ NG(x5), and we have the following claim:

Claim 5. {x1, x2} ⊆ NG(yi) for i = 6, 7, 8.
Proof: By contradiction, let there is at least one edge between {x1, x2} and {y6, y7, y8} in G, say x1y6 ∈

E(G). Hence C8 = x1y3x2y5x4y1x5y6x1 ⊆ G, a contradiction.
Now by Lemma 2.1 and Claim 4, for each i = 6, 7, 8, x4yi ∈ E(G); otherwise, C10 ⊆ G, a contradiction.
If there exists a vertex x of {x6, x7, x8}, such that |NG(x) ∩ {y6, y7, y8}| ≥ 2, then we have C8 ⊆ G,
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a contradiction as well. Hence, for each i = 6, 7, 8, we have |NG(x) ∩ {y6, y7, y8}| ≥ 2. Assume that
x6y6, x6y7 ∈ E(G), therefore it is easy to check that C10 ⊆ G[X1 ∪ {x6}, Y1 \ {y1} ∪ {y6, y7}], a
contradiction again.

Now by cases 1, 2, . . . , 6, the proof is complete and the theorem holds.

In the following theorem, we determine the exact value of the bipartite Ramsey number BR(C8, C2n)
for n ≥ 5.

Theorem 3.6. BR(C8, C2n) = n+ 3 for each n ≥ 5.

Proof: The lower bound holds by Theorem 3.1. We use induction to prove the upper bound. For the base
step of the induction, the theorem holds by Theorem 3.5. Suppose that n ≥ 6 and BR(C8, C2n′) = n′+3
for each n′ < n. We will show that BR(C8, C2n) ≤ n + 3. To complete the proof, by contrary suppose
that BR(C8, C2n) > n + 3, that is there exists a subgraph G of Kt,t, such that neither C2n ⊆ G
nor C8 ⊆ G, where t = n + 3. Since BR(C8, C2(n−1)) = n + 2 and C8 ⊈ G, G has a subgraph
C ∼= C2(n−1). Let (X,Y ) be a bipartition of Kt,t, where X = {x1, x2, . . . , xt} and Y = {y1, y2, . . . , yt}.
Set X1 = V (C) ∩X and Y1 = V (C) ∩ Y . W.l.g., we may assume that X1 = {x1, x2, . . . xn−2, xn−1},
Y1 = {y1, y2, . . . , yn−2, yn−1}, and C = x1y1x2y2 . . . xn−2yn−2xn−1yn−1x1. Since C8 ⊈ G, there is
at least one edge other than E(C) between X1 and Y1 in G. Now we have the following cases.

Case 1. There exists xiyk ∈ E(G) for some i ∈ {1, 2, . . . , n− 1}, where k − i = 1( mod n− 1) or
i− k = 2( mod n− 1).
W.l.g., assume that x1y2 ∈ E(G). For other cases, the proof is the same. Set X2 = {xn−2, xn−1, . . . , xn+3},
Y2 = {yn−2, yn−1, . . . , yn+3}, X ′′ = {x1, x2, xn−2, xn−1}, and Y ′′ = {y1, y2, yn−2, yn−1}. Since
BR(C6, C8) = 6, |X2| = |Y2| = 6 and C8 ⊈ G, G[X2, Y2] has a subgraph C ′ ∼= C6. Let X ′

1 =
V (C ′)∩X1 and Y ′

1 = V (C ′)∩Y1. Now consider the (|X ′
1|, |Y ′

1 |), we note that (|X ′
1|, |Y ′

1 |) = (|Y ′
1 |, |X ′

1|),
hence we have (|X ′

1|, |Y ′
1 |) ∈ {(0, 0), (1, 0), (2, 0), (1, 1), (2, 1), (2, 2)}. Now we have the following sub-

cases:

Subcase 1-1. (|X ′
1|, |Y ′

1 |) = (0, 0).
W.l.g. assume that V (C ′) = {xn, xn+1, xn+2, yn, yn+1, yn+2} and C ′ = xnynxn+1yn+1xn+2yn+2xn.
Set X ′

2 = {xn, xn+1, xn+2}, Y ′
2 = {yn, yn+1, yn+2}. Since C2n ⊈ G, one can check that either K3,4

∼=
[X ′

2, Y
′′] ⊆ G or K4,3

∼= [X ′′, Y ′
2 ] ⊆ G. Otherwise, let’s assume the contrary: there is at least one

edge between the sets X ′
2 and Y ′′ within the graph G, and there exists at least one edge between X ′′

and Y ′
2 in G. Without loss of generality and due to symmetry, let’s assume that xny1 ∈ E(G). Now,

let’s assume that |NG(yn) ∩ X1| ̸= 0. The proof remains the same for other cases. As xnyn ∈ E(G)
and xny1 ∈ E(G), if either x1yn or x2yn ∈ E(G), then, according to Lemma 2.1 it can be concluded
that C2n ⊆ G. Therefore, let’s suppose that either xn−2y5n ∈ E(G) or x−1nyn ∈ E(G). Assuming
xn−2yn ∈ E(G), it follows that C = xny1x2y2x3y3 . . . xn−3yn−3xn−2ynxn+1yn+1xn+2yn+2xn forms
a copy of C2n in G. The proof remains the same in the scenario where xn−1yn ∈ E(G).
Now w.l.g. let K3,4

∼= [X ′
2, Y

′′}] ⊆ G. So for each x ∈ X \X ′
2, we have |NG(x) ∩ Y ′′| ≤ 1; otherwise,

C8 ⊆ G, which is a contradiction. That is, |NG(x)∩Y ′′| ≥ 3 for each x ∈ X ′′ and |NG(xn+3)∩Y ′′| ≥ 3.
Thus, one can assume that |NG(y) ∩ X ′′| ≤ 1 for each y ∈ Y \ Y1. If this were not the case, assume
by contradiction that |NG(y) ∩ X ′′| ≥ 2 for at least one y ∈ Y \ Y1. Considering the situation, where
|NG(x) ∩ Y ′′| ≥ 3 holds true for every x ∈ X ′′ and |NG(xn+3) ∩ Y ′′| ≥ 3, it becomes evident that
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there is an i ∈ {1, 2, n − 2, n − 1}, such that xiyixi+1yi+1 forms a part of a copy of C2n−2 within
G[X1, Y1]. In this configuration, xi, xi+1 ∈ NG(y) and yi, yi+1 ∈ NG(xn+3). By utilizing Lemma 2.1,
it is concluded that C2n ⊆ G, leading to a contradiction. If there exist y, y′ ∈ {yn, yn+1, yn+2}, such that
|NG(y)∩X ′′| = |NG(y

′)∩X ′′| = 1 and NG(y)∩X ′′ ̸= NG(y
′)∩X ′′, then one can check that C2n ⊆ G,

a contradiction too. W.l.g., we may assume that {x1, x2, xn−2} ⊆ NG(y) for each y ∈ {yn, yn+1, yn+2}.
If there are at least two vertices of {yn, yn+1, yn+2}, say yn, yn+1, such that |NG(yi) ∩ X ′′| = 4 for
i = n, n+1, then C8 ⊆ G[X ′′, Y \Y1]. In other words, there are at least two vertices of {yn, yn+1, yn+2},
say yn, yn+1, such that NG(yi)∩X ′′ = {xn−1}. Therefore xn+3yi ∈ E(G) for i = n, n+ 1; otherwise,
C2n ⊆ G, a contradiction again. Now one can check that C8 ⊆ G[{x1, x2, xn−2, xn+3}, Y \ Y1] and the
proof is complete.

Subcase 1-2. (|X ′
1|, |Y ′

1 |) = (1, 0).
W.l.g., assume that V (C ′) = {xn−1, xn, xn+1, yn, yn+1, yn+2} and C ′ = xn−1ynxnyn+1xn+1yn+2xn−1.
Set X ′′

2 = {x1, x2, xn−2}, X ′
2 = {xn, xn+1}, and Y ′

2 = {yn, yn+1, yn+2}.
Hence, one can assume that K3,3

∼= [X ′′
2 , Y

′
2 ] ⊆ G. Otherewise, let |NG(y) ∩ X ′′

2 | ≠ 0 for at least one
y ∈ Y ′

2 . W.l.g, assume that x1yn ∈ E(G), the proof for other cases follows similarly. In this case, we ob-
serve that the cycle C = ynx1y2x3y3 . . . xn−2yn−2xn−1yn+2xn+1yn+1xnyn forms a copy of C2n within
G, which is a contradiction. Applying symmetry, we can similarly deduce that K2,4

∼= [X ′
2, Y

′′] ⊆ G.
Now consider the vertices {xn+2, xn+3}. One can check that |NG(x) ∩ Y ′′| ≥ 2 for at least one
x ∈ {xn+2, xn+3}; otherwise, we have C8 ⊆ G[{xn, xn+1, xn+2, xn+3}, Y ′′]. W.l.g., we may as-
sume that |NG(xn+2) ∩ Y ′′| ≥ 2, hence we have |NG(xn+2) ∩ Y ′

2 | = 0, if not, C2n ⊆ G. There-
fore K4,3

∼= [X ′′
2 ∪ {xn+2}, Y ′

2 ] ⊆ G, and so |NG(yn+3) ∩ (X ′′
2 ∪ {xn+2})| ≤ 1; otherwise, C8 ⊆

G[X ′′
2 ∪{xn+2}, Y ′

2 ∪{yn+3}]. Since |NG(xn+2)∩Y ′′| ≥ 2 and |NG(yn+3)∩X ′′
2 | ≥ 2, if xn+2yn+3 ∈

E(G) then by Lemma 2.1, we have C2n ⊆ G. Hence xn+2yn+3 ∈ E(G), that is X ′′
2 ⊆ NG(yn+3).

Thus |NG(xn+2) ∩ Y ′′| = 2 and NG(xn+2) ∩ Y ′′ = {yn−2, yn−1}; otherwise, by Lemma 2.1, we
have C2n ⊆ G and the proof is complete. Similarly |NG(xn+3) ∩ Y ′′| ≤ 2, if not, by Lemma 2.1,
C2n ⊆ G[X1 ∪ {xn+3}, Y1 ∪ {yn+3}]. If |NG(xn+3) ∩ Y ′′| ≤ 1, we have C8 ⊆ G[X \ X1, Y

′′].
So |NG(xn+3) ∩ Y ′′| = 2 and xn+3yn+3 /∈ E(G); otherwise, by Lemma 2.1, it is easy to check that
C2n ⊆ G[X1 ∪ {xn+3}, Y1 ∪ {yn+3}]. Thus we have Y \ Y1 ⊆ NG(xi) for i = n+2, n+3. That is, we
have C8 ⊆ G[{x1, x2, xn+2, xn+3}, Y \ Y1], and the proof is complete.

Subcase 1-3. (|X ′
1|, |Y ′

1 |) = (1, 1).
W.l.g., assume that V (C ′) = {x, xn, xn+1, y, yn, yn+1}, where x ∈ {xn−2, xn−1} and y ∈ {yn−2, yn−1}.
If xy /∈ E(C), then x = xn−2 and y = yn−1. Let xn−2yn−1 ∈ E(C ′) and assume that C ′ =
xn−2yn−1xnynxn+1yn+1xn−2. In this case, we have C2n = x1y1x2y2 . . . xn−2yn+1xn+1ynxnyn−1x1 ⊆
G, a contradiction. Assume that xn−2yn−1 /∈ E(C ′) and w.l.g. let C ′ = xn−2ynxnyn−1xn+1yn+1xn−2.
By considering Figure 7, it is easy to check that:

{x2yn−2, x2yn, xn−1yn, xn−1yn+1, xnyn−3, xnyn+1, xn+1yn−2, xn+1yn−1} ⊆ E(G)

Therefore one can check that C8 = x2ynxn−1yn+1xnyn−3xn+1yn−2x2 ⊆ G, a contradiction again. So,
assume that xy ∈ {xn−2yn−2, xn−1yn−2, xn−1yn−1}, that is xy ∈ E(C). Hence the proof is the same
as the case that x = xn−1, y = yn−1, where xy ∈ E(C ′), now we can check that C2n ⊆ G, which is a
contradiction.
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y1 y2 yi−1 yi yi+1 yn−3 yn−2 yn−1 yn yn+1 yn+2 yn+3

x1 x2 x3 xi xi+1 xi+2 xn−2 xn−1 xn xn+1 xn+2 xn+3

Fig. 7: (|X ′
1|, |Y ′

1 |) = (1, 1) and xn−2yn−1 /∈ E(C′)

Subcase 1-4. (|X ′
1|, |Y ′

1 |) = (2, 0).
Assume that V (C ′) = {xn−2, xn−1, xn, yn, yn+1, yn+2} and C ′ = xn−2ynxn−1yn+1xnyn+2xn−2. In
this case, we have:

C2n = x1y1 . . . yn−3xn−2yn+2xnyn+1xn−1yn−1x1 ⊆ G

Which is a contradiction.

Subcase 1-5. (|X ′
1|, |Y ′

1 |) = (2, 1).
W.l.g., we may assume that V (C ′) = {xn−2, xn−1, xn, y, yn, yn+1}, where y ∈ {yn−2, yn−1}. In
this case, by considering the edges of C ′ and using Lemma 2.1, it is easy to check that in any case
C2n ⊆ G, unless for the case that y = yn−1 and xn−2yn−1 ∈ E(G). W.l.g., we may assume that
C ′ = xn−1yn−1xnynxn−2yn+1xn−1. Consider the Figure 8.

y1 y2 yi−1 yi yi+1 yn−3 yn−2 yn−1 yn yn+1 yn+2 yn+3

x1 x2 x3 xi xi+1 xi+2 xn−2 xn−1 xn xn+1 xn+2 xn+3

Fig. 8: (|X ′
1|, |Y ′

1 |) = (2, 1), y = yn−1 and xn−2yn−1 ∈ E(G)

By Figure 8, it is easy to check that:

{x1yn−2, x1yn, x1yn+1, x2yn−2, x2yn, x2yn+1, xn−1yn, xnyn−3, xnyn−2, xnyn+1} ⊆ E(G)

Otherwise, we have C2n ⊆ G. Now consider xn−1yn−3. If xn−1yn−3 ∈ E(G), we have C8 =
x1yn−2xnyn−3xn−1ynx2yn+1x1 ⊆ G, a contradiction. Hence assume that xn−1yn−3 ∈ E(G), therefore
we have C2n = x1yn−1xnynxn−2yn−2xn−1yn−3xn−3yn−4 . . . x3y2x2y1x1 ⊆ G, which is a contradic-
tion again.

Subcase 1-6. (|X ′
1|, |Y ′

1 |) = (2, 2).
W.l.g., we may assume that V (C ′) = {xn−2, xn−1, xn, yn−2, yn−1, yn}. If xnyn /∈ E(C ′), then
xnyj , ynxj ∈ E(C ′) for j ∈ {n − 2, n − 1} and by Lemma 2.1, we have C2n ⊆ G. Hence assume
that xnyn ∈ E(C ′). Hence, it can be concluded that |NG(xn) ∩ {yn−2, yn−1}| ≥ 1 and |NG(yn) ∩
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{xn−2, xn−1}| ≥ 1. Considering that xn−2yn−2, yn−2xn−1, xn−1yn−1 ∈ E(C), if we have either
xn−1yn ∈ E(C ′) or xnyn−2 ∈ E(C ′), then the proof follows the same logic, as indicated by Lemma 2.1.
Therefore, it can be say that C ′ = xn−2yn−2xn−1yn−1xnynxn−2 ⊆ G. Since C2n ⊈ G, by Figure 9,
one can check that:

{x1yn−2, x1yn, x2yn−2, x2yn, xn−1yn−3, xn−1yn, xnyn−3, xnyn−2} ⊆ E(G)

Now we have the following claim:

Claim 6. |NG(xn) ∩ {yn+1, yn+2, yn+3}| = 0.
Proof: By contradiction assume that |NG(xn) ∩ {yn+1, yn+2, yn+3}| ̸= 0, say xnyn+1 ∈ E(G). Hence

{x1, xn−1} ⊆ NG(yn+1); otherwise, C2n ⊆ G[X1 ∪ {xn}, Y1 ∪ {yn+1}] which is a contradiction. Since
{x1, xn−1} ⊆ NG(yn+1), we have C8 = x1ynx2yn−2xnyn−3xn−1yn+1x1 ⊆ G, a contradiction again.
So the assumption does not hold and the claim holds.

Therefore by Claim 6, {yn+1, yn+2, yn+3} ⊆ NG(xn). Now we have the following claim:

Claim 7. {x1, x2} ⊆ NG(yi) for i ∈ {n+ 1, n+ 2, n+ 3}.
Proof: By contradiction we may assume that x1yn+1 ∈ E(G) (for other cases, the proof is identical).

Therefore C8 = yn+1x1yn−2x2ynxn−1yn−3xnyn+1 ⊆ G, a contradiction.

Now by Lemma 2.1 and Claim 7, for i ∈ {n+1, n+2, n+3} we have {xn−1yi, xn−1y1, xny1} ⊆ E(G);
otherwise, C2n ⊆ G, a contradiction. If there exists a vertex x of {xn+1, xn+2, xn+3}, such that |NG(x)∩
{yn+1, yn+2, yn+3}| ≥ 2, then C8 ⊆ G, a contradiction too. Hence, for each i ∈ {n+ 1, n+ 2, n+ 3},
we have |NG(x) ∩ {yn+1, yn+2, yn+3}| ≥ 2. W.l.g., we may assume that xn+1yn, xn+1yn+1 ∈ E(G)
and thus one can check that C2n ⊆ G[X1 ∪ {xn+1}, (Y1 \ {y1})∪ {yn, yn+1}], which is a contradiction.

y1 y2 yi−1 yi yi+1 yn−3 yn−2 yn−1 yn yn+1 yn+2 yn+3

x1 x2 x3 xi xi+1 xi+2 xn−2 xn−1 xn xn+1 xn+2 xn+3

Fig. 9: (|X ′
1|, |Y ′

1 |) = (2, 2), xnyn ∈ E(C′)

Case 2. For any i ∈ {1, 2, . . . , n − 1}, each xiyk ∈ E(G) if k − i = 1( mod n − 1) or i − k = 2(
mod n− 1).
Set X2 = {xn−2, xn−1, . . . , xn+3} and Y2 = {yn−2, yn−1, . . . , yn+3}. Since BR(C6, C8) = 6, |X2| =
|Y2| = 6, and C8 ⊈ G, G[X2, Y2] has a subgraph C ′ ∼= C6. Let X ′

1 = V (C ′)∩X1 and Y ′
1 = V (C ′)∩Y1.

As the same as case 1, we have the following subcases:

Subcase 2-1. (|X ′
1|, |Y ′

1 |) = (0, 0).
W.l.g., assume that V (C ′) = {xn, xn+1, xn+2, yn, yn+1, yn+2} and C ′ = xnynxn+1yn+1xn+2yn+2xn.
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Set X ′′
2 = {xn, xn+1, xn+2}, Y ′′

2 = {yn, yn+1, yn+2}. Since C8 ⊈ G, there is at least one edge between
X1 and Y ′′

2 , or at least one edge between X ′′
2 and Y1. W.l.g., assume that xnyn−1 ∈ E(G). For other

cases, the proof is the same. Hence we have K3,2
∼= [{xn−3, xn−2, xn−1}, {yn, yn+1}] ⊆ G. Similarly

we have y1xn+1, y1xn+2, yn−2xn+1, yn−2xn+2 ∈ E(G). Therefore C8 ⊆ G, a contradiction.

Subcase 2-2. (|X ′
1|, |Y ′

1 |) = (1, 0).
Assume that V (C ′) = {xn−1, xn, xn+1, yn, yn+1, yn+2} and C ′ = xn−1ynxnyn+1xn+1yn+2xn−1 ⊆
G. Now one can check that K2,4

∼= [{xn, xn+1}, {y1, yn−3, yn−2, yn−1}] ⊆ G and xn−3yn, xn−3yn+2 ∈
E(G). Otherwise, we have C2n ⊆ G, a contradiction. For example, by contrary assume that xny1 ∈
E(G), so it can be seen that C2n := xny1x2y2x2 . . . xn−2yn−2xn−1yn+2xn+1yn+1xn ⊆ G. For other
cases, the proof is the same.
Since xn−4yn−3, xn−3yn−2, xn−2yn−1 ∈ E(G), if xn−2yn or xn−2yn+2 belong to E(G), then we have
C8 ⊆ G. Hence assume that xn−2yn, xn−2yn+2 ∈ E(G) and thus xn−4yn ∈ E(G), if not, C2n ⊆ G. So
C8 = y1xn+1yn−2xn−3ynxn−4yn−3xny1 ⊆ G, a contradiction too.

Subcase 2-3. (|X ′
1|, |Y ′

1 |) = (2, 0).
Let us make the assumption, without loss of generality, that V (C ′) = {xn−2, xn−1, xn, yn, yn+1, yn+2}.
Furthermore, leveraging of symmetry and without loss of generality, we can assume that C ′ has a form
like C ′ = xn−2ynxn−1yn+1xnyn+2xn−2. In this scenario, the following contradiction arises:

C2n = x1y1x2y2 . . . xn−3yn−3xn−2yn+2xnyn+1xn−1yn−1x1 ⊆ G

Subcase 2-4. (|X ′
1|, |Y ′

1 |) = (1, 1).
W.l.g., assume that V (C ′) = {x, xn, xn+1, y, yn, yn+1}, where x ∈ {xn−2, xn−1} and y ∈ {yn−2, yn−1}.
If xy /∈ E(C), then x = xn−2 and y = yn−1. Let xn−2yn−1 ∈ E(C ′) and assume that C ′ =
xn−2yn−1xnynxn+1yn+1xn−2. In this case, we have C2n = x1y1x2y2 . . . xn−2yn+1xn+1ynxnyn−1x1 ⊆
G, a contradiction. Assume that xn−2yn−1 /∈ E(C ′) and w.l.g. let C ′ = xn−2ynxnyn−1xn+1yn+1xn−2.
Since C2n ⊈ G, it is easy to check that:

{x1yn, x1yn+1, xn−1yn, xn−1yn+1, xnyn−2, xnyn−3, xn+1yn−2, xn+1yn, xnyn+1} ⊆ E(G)

For example, by contrary assume that x1yn ∈ E(G), hence it can be checked that G has at least one
copy of C2n, namely C2n := x1y1x2y2 . . . xn−3yn−3xn−2yn+1xn+1yn−1xnynx1. For other cases, the
proof is the same.
Since xn−1yn−3 ∈ E(G), we have C8 = x1yn+1xn−1yn−3xnyn−2xn+1ynx1 ⊆ G, a contradiction
again. Therefore, assume that xy ∈ {xn−2yn−2, xn−1yn−2, xn−1yn−1}, that is xy ∈ E(C). Hence the
proof is the same as the case that x = xn−1, y = yn−1 where xy ∈ E(C ′),that is we can check that
C2n ⊆ G, a contradiction.

Subcase 2-5. (|X ′
1|, |Y ′

1 |) = (2, 1).
W.l.g., we may assume that V (C ′) = {xn−2, xn−1, xn, y, yn, yn+1} where y ∈ {yn−2, yn−1}. In
this case by considering the edges of C ′ and by Lemma 2.1, it is easy to check that C2n ⊆ G for
any case, unless for the case that y = yn−1 and xn−2yn−1 ∈ E(G). W.l.g., we may assume that
C ′ = xn−1yn−1xnynxn−2yn+1xn−1. Now it is easy to check that:

{x1yn−2, x1yn, x1yn+1, x2yn, x2yn+1, xn−1yn, xnyn−3, xnyn−2, xnyn+1} ⊆ E(G)
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Otherwise, C2n ⊆ G. For example, by contrary assume that x1yn−2 ∈ E(G), hence it can be checked
that G has at least one copy of C2n, namely C2n := x1y1x2y2 . . . xn−3yn−3xn−2ynxnyn−1xn−1yn−2x1.
For other cases, the proof is the same.
Since xn−1yn−3 ∈ E(G), we have C8 = x1yn−2xnyn−3xn−1ynx2yn+1x1 ⊆ G, a contradiction again.

Subcase 2-6. (|X ′
1|, |Y ′

1 |) = (2, 2).
W.l.g., we may assume that V (C ′) = {xn−2, xn−1, xn, yn−2, yn−1, yn}. If xnyn /∈ E(C ′), then
xnyj , ynxj ∈ E(C ′) for j ∈ {n − 2, n − 1}, and by Lemma 2.1 we have C2n ⊆ G. Hence as-
sume that xnyn ∈ E(C ′). Now, one can say that |NG(xn) ∩ {yn−2, yn−1}| ≥ 1 and |NG(yn) ∩
{xn−2, xn−1}| ≥ 1. Now, since xn−2yn−2, yn−2xn−1, xn−1yn−1 ∈ E(C), if xn−1yn ∈ E(C ′)
or xnyn−2 ∈ E(C ′), then by Lemma 2.1, the proof is complete. Therefore, one can assume that
C ′ = xn−2yn−2xn−1yn−1xnynxn−2 ⊆ G. Since C2n ⊈ G, one can check that:

{x1yn−2, x1yn, xn−1yn−3, xn−1yn, xnyn−3, xnyn−2} ⊆ E(G)

Set X3 = {xn+1, xn+2, xn+3}, Y3 = {yn+1, yn+2, yn+3}. There exists at least one vertex of X3

or Y3, say yn+1, such that |NG(yn+1) ∩ X3| ≥ 2; otherwise, we have C6 ⊆ G[X3, Y3] and the
proof is the same as subcase 2-1. Assume that xn+1yn+1, xn+2yn+1 ∈ E(G). Therefore, for each
x ∈ {xn+1, xn+2}, we have |NG(x) ∩ {yn−3, yn−2, yn}| ≥ 2; otherwise, C2n ⊆ G, a contradiction.
If |NG(x) ∩ {yn−3, yn−2, yn}| ≥ 2 for some x ∈ {xn+1, xn+2} or NG(xn+1) ∩ {yn−3, yn−2, yn} ̸=
NG(xn+2) ∩ {yn−3, yn−2, yn}, then we have C8 ⊆ G, a contradiction. That is, we have |NG(x) ∩
{yn−3, yn−2, yn}| = 1 for each x ∈ {xn+1, xn+2} and one can check that NG(x) ∩ {yn−3, yn−2, yn} =
{yn}. Therefore we have x1yn+1, xn−1yn+1 ∈ E(G), if not, C2n ⊆ G, which is a contradiction. Now,
we have Cn = x1y1x2y2 . . . xn−yn−3xn−2ynxnyn−1xn−1yn+1x1 ⊆ G, a contradiction again.

Hence by Cases 1, 2, the proof is complete and the theorem holds.

Therefore by Lemmas 3.2 and 3.3 and by Theorems 3.1, 3.4, 3.5 and 3.6, Theorem 1.1 holds.
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