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The explicit molecular expansion of the
combinatorial logarithm

Gilbert Labelle

LaCIM et Dép. de Mathématiques, UQAM, CP 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8 Canada.

Abstract. Just as the power series of log(1+X) is the analytical substitutional inverse of the series of exp(X)−1, the
(virtual) combinatorial species, Lg(1 +X), is the combinatorial substitutional inverse of the combinatorial species,
E(X) − 1, of non-empty finite sets. This combinatorial logarithm, Lg(1 +X), has been introduced by A. Joyal in
1986 by making use of an iterative scheme. Given a species F (X) (with F (0) = 1), one of its main applications
is to express the species, F c(X), of connected F -structures through the formula F c = Lg(F ) = Lg(1 + F+) where
F+ denotes the species of non-empty F -structures. Since its creation, equivalent descriptions of the combinatorial
logarithm have been given by other combinatorialists (G. L., I. Gessel, J. Li), but its exact decomposition into irre-
ducible components (molecular expansion) remained unclear. The main goal of the present work is to fill this gap by
computing explicitly the molecular expansion of the combinatorial logarithm and of −Lg(1−X), a “ cousin ” of the
tensorial species, Lie(X), of free Lie algebras.

Résumé. Tout comme la série de puissances de log(1 + X) est l’inverse substitutionnel analytique de la série de
exp(X) − 1, l’espèce de structures (virtuelle) Lg(1 + X), est l’inverse substitutionnel combinatoire de l’espèce,
E(X)−1, des ensembles finis non vides. Ce logarithme combinatoire, Lg(1+X), a été introduit par A. Joyal en 1986
en faisant appel à un schéma itératif. Étant donnée une espèce F (X) (telle que F (0) = 1), l’une de ses principales
applications est d’exprimer l’espèce, F c(X), des F -structures connexes par la formule F c = Lg(F ) = Lg(1 + F+)

où F+ désigne l’espèce des F -structures non vides. Depuis sa création, des descriptions équivalentes du logarithme
combinatoire ont été formulées par d’autres combinatoriciens (G. L., I, Gessel, J. Li), mais sa décomposition exacte
en composantes irréductibles (développement moléculaire) est demeurée obscure. Le but principal du présent travail
est de combler cette lacune en calculant explicitement le développement moléculaire du logarithme combinatoire et
de −Lg(1−X), un “ cousin ” de l’espèce tensorielle, Lie(X), des algèbres de Lie libres.

Keywords: combinatorial species, combinatorial logarithm, molecular expansion, generating functions

1 Introduction
1.1 Counting connected structures
Since simple graphs are assemblies of connected simple graphs, it is well known that the exponential
generating series, G(x), which counts simple graphs, satisfies G(x) = exp(Gc(x)), where Gc(x) is the
exponential generating series of connected simple graphs. Now, taking the (analytical) logarithm of both
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sides of this equation gives,

Gc(x) = log(G(x)) = log
∑
n≥0

2n(n−1)/2xn/n!, (1.1)

from which connected simple graphs can be counted exactly, recursively or asymptotically. More gener-
ally, the analogous formula,

F c(x) = log(F (x)), (1.2)

holds for the exponential generating series of any species of structures, F and F c, for which F -structures
are assemblies of F c-structures. That is, for which the combinatorial equation,

F (X) = E ◦ F c(X), (1.3)

holds, where ◦ denotes the substitution of species, E is the species of finite sets (E stands for ensembles,
in French) and X is the species of singletons (that is, one-element sets). Taking the cycle index series of
both members of (1.3) yields, ZF = ZE ◦ZF c , where ◦ now denotes the classical plethystic substitution.
Since ZE = exp

∑
1
kpk, this can be written explicitly as(i)

ZF (p1, p2, p3, . . . ) = exp
∑
k≥1

1

k
ZF c(pk, p2k, p3k, · · · ). (1.4)

Taking the logarithm of both sides of (1.4) and using Möbius inversion gives (see [BLL98]) the following
refinement of (1.2),

ZF c(p1, p2, p3, . . . ) =
∑
k≥1

µ(k)

k
logZF (pk, p2k, p3k, · · · ), (1.5)

where µ denotes the classical Möbius function. As a consequence, the (ordinary) generating series, F̃ c(x),
which counts unlabeled F c-structures is obtained via the substitutions, pi := xi, i = 1, 2, . . . , in (1.5).
All of this is classical in Pólya theory in the context of combinatorial species. For an introduction to
species, the reader can consult the basic paper of A. Joyal [Joy81] or the book [BLL98] by Bergeron,
Labelle, and Leroux.

1.2 Solving the combinatorial equation F = E ◦ F c for the species F c

In 1986, Joyal [Joy86] went a step further by solving the combinatorial equation (1.3) for the species F c

in terms of the species F , thereby refining simultaneously both (1.2) and (1.5). He proceeded along the
following lines. Let 1 denote the species of the empty set. We have E = 1 +E+, where E+ is the species
of non empty finite sets and F = 1 + F+, where F+ is the species of F -structures on non empty finite
sets(ii). Combinatorial equation (1.3) is then equivalent to

F+(X) = E+ ◦ F c(X). (1.6)

(i) The variables pk stand for the power sums and are often denoted by xk in the theory of combinatorial species.
(ii) Since an empty assembly of F c-structures is the empty set.
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Now, E+ = X + E≥2, where E≥2 is the species of finite sets having at least 2 elements. By his implicit
species theorem (see [Joy81]), Joyal concluded that E+ has a substitutional inverse, E<−1>

+ , in the realm
of virtual species (that is, formal differences of species). By adapting the Newton interpolation formula
to species (using a special “ difference operator ” δ), he also gave the following combinatorial formula for
this substitutional inverse,

E<−1>
+ (X) =

∑
n≥0

(−1)nWn(X) =
∑
n: even

Wn(X)−
∑
n: odd

Wn(X), (1.7)

where Wn = Wn(X) are species defined by the recursive scheme,

W0 = X, Wn = δWn−1 = Wn−1 ◦ E+ −Wn−1, n ≥ 1. (1.8)

Hence, aWn-structure, on a finite set U , is a strictly increasing sequence, 0̂ = R0 < R1 < · · · < Rn = 1̂,
in the lattice of equivalence relations on U , where 0̂ and 1̂ respectively denote the finest and the coarsest
equivalence relation on U . Applying E<−1>

+ to (1.6) and using (1.7) finally gives,

F c(X) = E<−1>
+ ◦ F+(X) =

∑
n≥0

(−1)nWn(F+(X)). (1.9)

In the present paper, we use the notation, Lg(1 +X), to denote E<−1>
+ (X) and call it the combinatorial

logarithm(iii), by analogy with the fact that, in analysis, the power series of log(1+X) is the substitutional
inverse of that of exp(X)− 1. Summarizing, we have,

Lg(1 +X) =
def

E<−1>
+ (X) and F c = Lg(1 + F+) = Lg(F ). (1.10)

Note that (1.10) associates a virtual species F c to any species F for which F (0) = 1, even in the case
where F does not possess connected structures. For this reason, Lg(1 + X) = (1 + X)c is sometimes
called, by abuse of language, the virtual species of “ connected ” (1+X)-structures. Although very useful
and conceptually elegant, it turns out that the species

∑
n: evenWn and

∑
n: oddWn in Joyal’s expression

for the combinatorial logarithm have plenty of subspecies in common. That is,

Lg(1 +X) =
∑
n: even

Wn −
∑
n: odd

Wn, (1.11)

is not a completely reduced expression as a difference of species. Other equivalent − but still not com-
pletely reduced − expressions for the combinatorial logarithm have been given using special classes of
graphs. For example, Gessel and Li in [GL11], found formula (1.12a), where Qc is the species of con-
nected co-point-determining graphs and Pc

≥2 is that of connected point-determining graphs having at
least two vertices. Later, J. Li [Li12] found the further reduced formula (1.12b), where T c is the species
of connected co-point-determining cographs and Sc

≥2 is that of connected point-determining cographs
having at least two vertices.

a) Lg(1 +X) = Qc − Pc
≥2, b) Lg(1 +X) = T c − Sc

≥2. (1.12)

Our main goal is to give a completely reduced expression for the combinatorial logarithm. In Section 2,
we describe the irreducible components of F c = Lg(F ) and, in particular, of Lg(1+X) and−Lg(1−X),
together with their exact multiplicities. Section 3 contains a compact table for the combinatorial logarithm
up to degree 10.
(iii) Joyal uses the notation log(1+X) for the combinatorial logarithm, but we use it for the analytical logarithm in the present text.
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2 Explicit molecular expansions
2.1 Molecular expansions in general
We first recall the general notions of molecular and atomic species. A species M is molecular if M 6= 0
and any two M -structures are isomorphic. Equivalently, M is irreducible under the combinatorial sum.
A molecular species A is atomic if A 6= 1 and is irreducible over the combinatorial product. Y. N. Yeh
proved in [Yeh86] that every molecular species can be written in a unique way (up to isomorphism) as a
commutative finite product of atomic species. The sets M of all molecular species and A of all atomic
species (up to isomorphism) are countable and we have, up to degree three,

M = {1, X,E2, X
2, E3, C3, XE2, X

3, . . .}, A = {X,E2, E3, C3, . . .}, (2.1)

where Xn is the species of linear orderings of length n, Cn is the species of oriented n-cycles, and
En is the species of n-sets. Note that M is the free commutative monoid (under combinatorial prod-
uct) generated by A. Moreover, each molecular species, M , is completely determined by the stabi-
lizer H = Stab(s) ≤ Sn of anyone of its structures, say s on [n], where n is the degree of M and
[n] = {1, 2, . . . , n}. We write M = Xn/H = linear orderings of length n modulo H. In particular,
we have Xn = Xn/{1}, En = Xn/Sn, Cn = Xn/〈(1 2 ... n)〉. Two molecular species, Xn/H
and Xm/K, are isomorphic (and we write, Xn/H = Xm/K) if and only if n = m and H and K are
conjugate in Sn. Let now F be any species, not necessarily molecular. Then, one can always write F as
a (countable) linear combination with nonnegative integer coefficients of molecular species,

F =
∑
M∈M

fMM ∈ N[[A]], (2.2)

where fM denotes the number of subspecies of F that are isomorphic to M . The coefficient fM is
called the multiplicity of M in F . Summation (2.2) is unique and is called the molecular expansion
of F . This expansion is very strong since it is a common refinement of the classical generating series,
F (x), F̃ (x), ZF (p1, p2, p3, . . . ), associated to the species F . For an example of molecular expansion,
consider the well-known species T = T (X) of rooted trees, defined by the combinatorial functional
equation T = XE(T ). Up to degree 6, we have (see the book [BLL98] by Bergeron, Labelle, and
Leroux, for example),

T = X +X2 +XE2 +X3 +XE3 + 2X4 +X2E2 +XE4 + 3X3E2 +X·(E2 ◦X2) + 3X5

+X2E3 +X2E4 + 6X4E2 + 2X2·(E2 ◦X2) + 3X3E3 +X2E2
2 +XE5 + 6X6 + · · · .

(2.3)
Note that the species, E2 ◦ X2, which occurs in this expansion is atomic. The usual combinatorial op-
erations (sum, product, composition, differentiation, etc), as well as molecular expansions, have been
extended by Joyal and Yeh ([Joy85], [Yeh86]) to virtual species, that is formal differences

Φ = F −G, (2.4)

of (ordinary) species F and G. The molecular expansion of Φ is defined by,

Φ =
∑
M∈M

φMM =
∑
M∈M

(fM − gM )M ∈ Z[[A]], (2.5)
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where
∑
M∈M fMM and

∑
M∈M gMM are the molecular expansions of F andG, respectively(iv). Every

virtual species, Φ, can be represented in the form (2.4) in an infinite number of way, just as−5 = 0− 5 =
1 − 6 = 2 − 7 = · · · , in the context of the ring, Z, of integers. The less F and G have subspecies in
common, the more representation (2.5) is said to be reduced. It is always possible to canonically choose
F and G in such a way that they have no subspecies in common (i.e., are “ stranger ” species, to use a
terminology taken from the theory of signed measures). The corresponding representation is denoted,

Φ = Φ+ − Φ−, (2.6)

and is called the (completely) reduced form of the virtual species Φ. The species Φ+ (resp., Φ−) is called
the positive (resp., negative) part of Φ and the coefficients φM in (2.5) satisfy φM > 0 if M appears in
Φ+ and φM < 0 if M appears in Φ− (otherwise, φM = 0). Note that Φ+ and Φ− are characterized by
the fact that no molecular species appears in both of their molecular expansions.

2.2 The explicit expansions of Lg(1 +X) and of −Lg(1−X)

Let us start by taking a closer look at the Joyal species, Wn, defined by (1.8). It is easy to see that,

Wn =
∑

0≤k≤n

(−1)k
(
n

k

)
E<n−k>+ , (2.7)

where E<i>+ denotes the i-fold iterate of E+ under ◦ (with E<0>
+ = X). Using the expansion formulas,

E+ = E − 1 = X + E2 + E3 + · · · , E(mA+ nB + · · · ) = E(A)mE(B)n · · · , (2.8)

massive simplification and cancellation of terms occur in (2.7) and (1.11), and we have, up to degree 6,
the molecular expansions,

Lg(1 +X)+ = X +XE2 +XE3 + E2 ◦ E2 +X3E2 +XE4 + E2E3 +X3E3

+ 2X2E2
2 +XE5 + E2E4 + E3 ◦ E2 + E2 ◦ E3 + · · · ,

(2.9)

Lg(1 +X)− = E2 + E3 +X2E2 + E4 +X2E3 +XE2
2 + E5 +X4E2 +X2E4

+ 2XE2E3 + E2 · (E2 ◦ E2) + E6 + E2 ◦ (XE2) + · · · ,
(2.10)

Of course, the molecular species that appear in Lg(1 +X)+ and Lg(1 +X)− are all set-like (that is, they
are build from theEn’s using only products and substitutions), but their exact nature and multiplicities are
far from being obvious. In fact, these “ surviving ” molecular species are strictly included in the class of
set-like molecular species, since, for example, the set-like molecular species,X ·(E2◦E2), neither appears
in (2.9) nor in (2.10). We will exhibit their exact form and describe their multiplicities explicitly, using
special kinds of integer partitions together with an arithmetical function related to the Möbius function. To
do so, we will need to work in the more general setting, Q[[A]], of rational species, that is, of countably
summable linear combinations of molecular species with rational coefficients(v). All usual combinatorial
(iv) As a ring, Z[[A]] is the completion (under countable summability) of the family, B(Sn)n≥0, of the Burnside rings of virtual

set-like representations of the symmetric groups, Sn, n ≥ 0.
(v) More general settings are also possible, for example, C[[A]], but Q[[A]] is sufficient here.
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operations have been extended to this ring by A. Joyal in [Joy85] and Y.-N. Yeh in [Yeh86]. Since the
classical ring, Q[[X]], of power series in X “ sits ” in Q[[A]], both kinds (analytical and combinatorial)
of exponentials and logarithms are special cases of rational species, with molecular expansions:

exp(X) =
∑
n≥0

1

n!
Xn ∈ Q[[A]], log(1 +X) =

∑
n≥1

(−1)n−1

n
Xn ∈ Q[[A]].

E(X) =
∑
n≥0

En(X) ∈ N[[A]], Lg(1 +X) =
∑
M

ωMM(X) ∈ Z[[A]],
(2.11)

where the coefficients ωM ∈ Z are to be determined explicitely. We need to introduce some preliminary
definitions, lemmas and notation. For technical reasons, in this paper, a partition of an integer n ≥ 0
will be a weakly increasing(vi) sequence λ = (λ1 ≤ λ2 ≤ · · · ≤ λr) of positive integers such that
λ1 + λ2 + · · ·+ λr = n. We write λ ` n. The number λi is called the i-th part of λ and r = #λ, is the
number of parts of λ. As usual, mj = mj(λ), j = 1, . . . , n denotes the multiplicity of part j in λ; that is,
mj(λ) = card{i : λi = j}. The expression 1m12m23m3 · · ·nmn is called the type of λ and n = |λ| is
called the size of λ. It turns out to be useful to freely use the abuse of notation of identifying a partition
with its type; so that,

λ = (λ1, λ2, · · · , λr) = 1m12m2 · · ·nmn , mj = mj(λ), j = 1, . . . , n. (2.12)

Moreover, if λ ` n and d ≥ 1, we denote by λk the partition of kn defined by

λk = 1km12km2 · · ·nkmn ` kn, mj = mj(λ), j = 1, . . . , n. (2.13)

So that λk ` kn have the same parts as λ, but each individual part of λ occurs k times in λk. For example,
(1, 1, 1, 4, 4, 4, 4, 4, 4, 5, 5, 5) = (1, 4, 4, 5)3 ` 42 and (2, 4, 4, 7) = (2, 4, 4, 7)1 ` 17.

Definition 2.1 A partition λ ` n is called,
• primary, if gcd (m1(λ),m2(λ), . . . ,mn(λ)) = 1; • fat, if it has a part λi > 1. Equivalently, λ 6= 1n;
• non-repeating, if λ 6= mk with m ≥ 1, k > 1.

Lemma 2.2 Every non-empty partition λ can be written in the form λ = τk, where τ is a primary
partition. Moreover, λ is fat (resp., non-repeating) if and only if τ is fat (resp., non-repeating). 2

Borrowing notational conventions from the theory of symmetric functions, we now associate a set-like
molecular species, Eλ = Eλ(X), of degree n, to every partition λ ` n, by the combinatorial products,

Eλ =
def

Eλ1
Eλ2
· · ·Eλk = Xm1Em2

2 · · ·Emnn , (E1 = X). (2.14)

Note that, Eλ = Xn/Sλ = Xn/Sλ1,λ2,...,λk , where Sλ denotes the Young subgroup of Sn of type λ.
Also, if α ` m,β ` n, thenEα ◦Eβ = Xm/Sα ◦Xn/Sβ = Xmn/Sα oSβ , where o is the wreath product.

Lemma 2.3 Every molecular species, M 6= 1, can be written canonically in exactly one of the two forms,

M = P k or M = (Eτ ◦Q)k, (2.15)

where τ is a primary fat partition, P,Q are molecular and k ≥ 1.
(vi) Instead of weakly decreasing, contrarily to the usual practice in the theory of partitions.
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Proof: Let M = Aα1
1 Aα2

2 · · · be the atomic factorization of M , take k = gcd (α1, α2, . . .) and consider
the molecular species P = A

α1/k
1 A

α2/k
2 · · · . Clearly, we canonically have M = P k. Now, if P is not of

the form Eτ ◦ Q, with |τ | > 1, then we are done. On the contrary, if P = Eτ ◦ Q, with |τ | > 1, then
τ must be fat since if τ = 1s, s > 1, then M = P k = (E1s ◦ Q)k = (Qs)k = Qsk, contradicting the
fact that k = gcd (α1, α2, . . .), since sk > k. Moreover, τ must be primary, since if τ = φs, s > 1, then
M = P k = (Eφs ◦Q)k = ((Eφ ◦Q)s)k = (Eφ ◦Q)sk, which is again a contradiction. 2

Finally, we need the following special function π defined on the set, P+, of non empty partitions and the
“ Möbius-like ” arithmetical function, ν, defined on the set, N+, of positive integers.

Definition 2.4 The function, π : P+ → Q, is defined, for λ = 1m12m2 · · ·nmn ` n by,

π(λ) =
(−1)#λ−1

#λ

(
#λ

m1, . . . ,mn

)
. (2.16)

In particular, for λ = 1n, π(1n) reduces to the number-theoretic multiplicative function,

θ : N+ → Q, n 7→ (−1)n−1

n
. (2.17)

Definition 2.5 The function, ν : N+ → Q, is the inverse of θ under the Dirichlet (?) convolution(vii).
Explicitly,

ν(n) =

{
1
2µ(i)/i, if n = 2ki, i odd, k ≥ 1,
µ(i)/i, otherwise.

(2.18)

We are now ready to state and prove our main result from which each individual coefficient of the molec-
ular expansion of the combinatorial logarithm, Lg(F ), of a species, F , can be computed from the coef-
ficients of the molecular expansion of its analytical logarithm, log(F ). This analytical logarithm is very
easy to expand, since we have, in view of (2.11),

log(F ) = log(1 + F+) =
∑
n≥1

(−1)n

n
(F+)n. (2.19)

The expansions of Lg(1 +X) and −Lg(1−X) will then follow as special cases (Corollaries 2.7 – 2.8).

Theorem 2.6 Consider a species, F = 1 + F+, with molecular expansion F = 1 +
∑
M 6=1 fMM ,

together with the molecular expansions of its two kinds of logarithms,

Lg(F ) =
∑
M 6=1

gMM, log(F ) =
∑
M 6=1

hMM. (2.20)

Then the coefficients gM can be computed from the coefficients hM via the recursive scheme,

gM = hM −
∑

Eλ◦N=M
|λ|>1

π(λ)gN . (2.21)

(vii) (f ? g)(n) =
∑

d|n f(d)g(n/d).
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More precisely, if M is written in the canonical form (2.15), then

gM =

{
ν(k) ? hPk , if M = P k,
ν(k) ?

(
h(Eτ◦Q)k − π(τk)gQ

)
, if M = (Eτ ◦Q)k,

(2.22)

where (?) denotes Dirichlet convolution.

Proof: Consider the special rational species, X̂ , of pseudo-singletons, that we introduced in [Lab90] as
the analytical logarithm of the species, E, of finite sets. Expanding, we have explicitly (see [Lab08], for
more detail),

X̂ =
def

log(E) = log(1 + E+) =
∑
k≥1

(−1)k−1

k
(E1 + E2 + E3 + · · · )k

= P1 +
1

2
P2 +

1

3
P3 + · · ·+ 1

n
Pn + · · · ∈ Q[[A]],

(2.23)

where Pn = Pn(X) are virtual species that are “ combinatorial liftings ” of the classical power sums
symmetric functions(viii), pn, and can be computed by the “ Newton like ” combinatorial recursive scheme,

P1 = X, Pn = nEn − E1Pn−1 − E2Pn−2 − · · · − En−1P1, n ≥ 2. (2.24)

Taking analytical exponential, exp, of (2.23) gives alternate expressions for the species of finite sets:

E = exp(X̂) = eX̂ = exp

∑
n≥1

1

n
Pn

 . (2.25)

Expanding (2.23) and using (2.16), we get the molecular expansion,

1

n
Pn =

∑
λ`n

π(λ)Eλ. (2.26)

Now, a basic property of Pn is that it behaves linearly (see [Lab08]) under substitution(ix):

Pn ◦ (aA+ bB + · · · ) = aPn ◦A+ bPn ◦B + · · · , a, b, . . . ∈ Q, A,B, . . . ∈ Q[[A]]. (2.27)

Of course, such a linear behavior is far from being true in general. In particular, it is far from being true
for Eλ. Nevertheless, thanks to (2.26)− (2.27), we have,(∑

λ`n

π(λ)Eλ

)
◦ (aA+ bB + · · · ) =

∑
λ`n

π(λ)(aEλ ◦A+ bEλ ◦B + · · · ). (2.28)

(viii) In fact, at the level of linear representations, the cycle index series of Pn is pn. That is, ZPn = pn.
(ix) They even behave plethystic linearly under substitution: for weight variables, s, t, . . . , we have, Pn(asF + btG + · · · ) =
asnPn(F ) + btnPn(G) + · · · .
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This last equation is crucial in the next steps of the present proof. By (2.25), we have,

exp

(∑
n

1

k
Pk

)
◦

∑
N 6=1

gNN

 = E(
∑
N 6=1

gNN) = E(Lg(F )) = F = 1 +
∑
M 6=1

fMM. (2.29)

Taking log, using (2.26) and linearity property (2.28), gives,∑
k,N
λ`k

π(λ)gNEλ ◦N = log(F ) =
∑
M 6=1

hMM. (2.30)

Extracting the coefficient of M on the leftmost and rightmost sides of (2.30), we can write,∑
Eλ◦N=M

π(λ)gN = hM , (2.31)

which is equivalent to the recursive scheme (2.21), since π(1) = 1 and E1 ◦N = X ◦N = N. Finally,
consider the canonical form (2.15) of M . If M = P k, then Eλ ◦ N = M , with |λ| > 1, if and only if
λ = 1d, N = P k/d, with 1 < d|k. So that, (2.21) takes the form,

gPk = hPk −
∑

1<d|k

π(1d)gPk/d = hPk + π(1)gPk − θ(k) ? gPk , (2.32)

which reduces to θ(k) ? gPk = hPk . This is equivalent to gPk = ν(k) ? hPk . On the other hand, if
M = (Eτ ◦ Q)k, where τ is a primary fat partition, then Eλ ◦ N = M , with |λ| > 1, if and only if
λ = 1d, N = (Eτ ◦Q)k/d, with 1 < d|k, or λ = τk, N = Q. This time, (2.21) takes the form,

g(Eτ◦Q)k = h(Eτ◦Q)k − π(τk)gQ −
∑

1<d|k

π(1d)g(Eτ◦Q)k/d

= h(Eτ◦Q)k − π(τk)gQ + g(Eτ◦Q)k − θ(k) ? g(Eτ◦Q)k .

(2.33)

This reduces to θ(k) ? g(Eτ◦Q)k = h(Eτ◦Q)k − π(τk)gQ, which proves (2.22). 2

Corollary 2.7 The molecular expansion of the combinatorial logarithm is explicitly given by,

Lg(1 +X) =
∑
M

ωMM, (2.34)

where each molecular component, M , is of the form of a finite composition,

M = Eφ(1) ◦ Eφ(2) ◦ · · · ◦ Eφ(s) , s ≥ 0, (2.35)

in which each φ(i) is a non-repeating fat partition. The coefficients, ωM ∈ Z\{0}, and their sign,
sgn(ωM ), are given by,

ωM = c(φ(1)) · · · c(φ(s)), sgn(ωM ) = (−1)#φ(1)+···+#φ(s)

, (2.36)

where each factor, for non-repeating fat φ = τk with primary non-repeating fat τ , is given by,

c(φ) = c(τk) = −ν(k) ? π(τk) = −
∑
d|k

ν(k/d)π(τd). (2.37)
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Proof: Take F = 1 + X in Theorem 2.6. Then gM = ωM and, from (2.11), hM = θ(k) = (−1)k−1

k ,
if M = Xk and 0, otherwise. Hence, by (2.22), ωXk = ν(k) ? θ(k) = 1, if k = 1; 0, otherwise. If
M = (Eτ ◦ Q)k = Eτk ◦ Q, with τ primary fat, then, by (2.22), ωE

τk
◦Q = ν(k) ? (0 − π(τk)ωQ) =

−ν(k) ? π(τk)ωQ = c(τk)ωQ. In particular, if τk = mk, with 1 < m ∈ N, then ωE
mk
◦Q = ν(k) ? (0−

π(mk)ωQ) = −ν(k) ? θ(k)ωQ = −ωQ if k = 1; 0, otherwise. Summarizing, let φ = τk, be fat, then,
ωEφ◦Q = c(φ)ωQ, where c(φ) is defined by (2.37). Moreover, if φ = mk, with k > 1, i.e., when φ is
repeating, then ωEφ◦Q = 0. This means that the molecular species that can contribute to Lg(1 + X) are
of the form X or of the form Eφ ◦ Q, where φ is non-repeating fat and Q also contribute to Lg(1 + X).
This implies that formula (2.36) for ωM holds, since, in this case, ωEφ◦Q = c(φ)ωQ. The sign of ωM
follows from the fact that the leading term in (2.37) corresponds to d = k and its sign is (−1)#φ. 2

The virtual species,−Lg(1−X) = Lg 1
(1−X) , of “ connected ” linear orders, is a “ cousin” of the tensorial

species, Lie(X), of free Lie algebras (see A. Joyal in [Joy86] and C. Reutenauer in [Reu86]).

Corollary 2.8 The following molecular expansion holds,

−Lg(1−X) =
∑
M

`MM, (2.38)

where each molecular component, M , is of the form of a finite composition,

M = Eφ(1) ◦ Eφ(2) ◦ · · · ◦ Eφ(s) ◦X2j , s ≥ 0, j ≥ 0, (2.39)

in which each φ(i) is a non-repeating fat partition. The coefficients, `M ∈ Z\{0}, and their sign, sgn(`M ),
are given by,

`M = c(φ(1)) · · · c(φ(s)), sgn(`M ) = (−1)
∑s
i=1 #φ(i)

. (2.40)

Proof: Take F = 1−X in Theorem 2.6 and argue as in the proof of Corollary 2.7. A simpler proof is to
use 1

1−X = (1 +X)(1 +X2)(1 +X4) · · · (1 +X2j ) · · · and apply Corollary 2.7, to obtain,

−Lg(1−X) = Lg

(
1

1−X

)
=
∑
j≥0

Lg(1 +X2j ) =
∑

M 6=1,j≥0

ωMM(X2j ). (2.41)

2

Of course, from (1.5), we have the underlying cycle index series,

ZLg(1+X) =
∑
k≥1

µ(k)

k
log(1 + pk), Z−Lg(1−X) = −

∑
k≥1

µ(k)

k
log(1− pk). (2.42)

Many other applications of Theorem 2.6 are possible. But, due to lack of space, we conclude with a Table,
obtained using Maple, which gives the explicit molecular expansion of the combinatorial logarithm up to
degree 10. Much more extended tables are easily obtained.
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3 Compact table for the combinatorial logarithm up to degree 10
Note that for s = 0 in (2.35), the sequence, φ(1), . . . , φ(s), of non-repeating fat partitions is empty. So that
the corresponding s-fold composition is a 0-fold composition, hence is equal to X , which is the neutral
element under composition. Moreover, the corresponding product (2.36) being empty, is equal to 1. This
is coherent with the fact that the molecular expansion of Lg(1 +X) starts with X (see (2.9)). Moreover,
if M = Eφ(1) ◦ · · · ◦ Eφ(s) , is a molecular component in (2.34) then, for any permutation, σ ∈ Ss,
Mσ = Eφ(σ(1)) ◦ · · · ◦Eφ(σ(s)) , is also a molecular component and the coefficients are equal: ωM = ωMσ .
Table 1, below(x), gives the molecular expansion (2.34) up to degree 10 and uses this fact to compact its
size. The following convention is used, for s > 1 and M = Eφ(1) ◦ · · · ◦ Eφ(s) :

M =
def

∑
N∈Λ

N, Λ = {Mσ : σ ∈ Ss}. (3.1)

Acknowledgements. The authors would like to thank Jérôme Tremblay for his LATEXand Maple help.

n Compact form for the terms of degree n in the combinatorial logarithm Lg(1 +X)

0 0

1 X

2 −E2

3 −E3 + E1,2

4 −E4 + E1,3 − E12,2 + E2 ◦ E2

5 −E5 + E1,4 + E2,3 − E12,3 − E1,22 + E13,2

6 −E6 + E1,5 + E2,4 − E12,4 − 2E1,2,3 + E13,3 + 2E12,22 − E14,2 + E2 ◦ E3 − E2 ◦ E1,2

7 −E7 + E1,6 + E2,5 + E3,4 − E12,5 − 2E1,2,4 − E1,32 − E22,3 + E13,4 + 3E12,2,3 + E1,23

−E14,3 − 2E13,22 + E15,2

8 −E8 + E1,7 + E2,6 + E3,5 − E12,6 − 2E1,2,5 − 2E1,3,4 − E22,4 − E2,32 + E13,5 + 3E12,2,4

+2E12,32 + 3E1,22,3 − E14,4 − 4E13,2,3 − 2E12,23 + E15,3 + 2E14,22 − E16,2 + E2 ◦ E4

−E2 ◦ E1,3 + E2 ◦ E12,2 − E2 ◦ E2 ◦ E2

9 −E9 + E1,8 + E2,7 + E3,6 + E4,5 − E12,7 − 2E1,2,6 − 2E1,3,5 − E1,42 − E22,5 − 2E2,3,4

+E13,6 + 3E12,2,5 + 3E12,3,4 + 3E1,22,4 + 3E1,2,32 + E23,3 − E14,5 − 4E13,2,4 − 2E13,32

−6E12,22,3 − E1,24 + E15,4 + 5E14,2,3 + 3E13,23 − E16,3 − 3E15,22 + E17,2 + E3 ◦ E3

−E3 ◦ E1,2 + E1,2 ◦ E1,2

10 −E10 + E1,9 + E2,8 + E3,7 + E4,6 − E12,8 − 2E1,2,7 − 2E1,3,6 − 2E1,4,5 − E22,6 − 2E2,3,5

−E2,42 − E32,4 + E13,7 + 3E12,2,6 + 3E12,3,5 + 2E12,42 + 3E1,22,5 + 6E1,2,3,4 + E1,33

+E23,4 + 2E22,32 − E14,6 − 4E13,2,5 − 4E13,3,4 − 6E12,22,4 − 6E12,2,32 − 4E1,23,3 + E15,5

+5E14,2,4 + 2E14,32 + 10E13,22,3 + 2E12,24 − E16,4 − 6E15,2,3 − 5E14,23 + E17,3 + 4E16,22

−E18,2 + E2 ◦ E5 − E2 ◦ E1,4 − E2 ◦ E2,3 + E2 ◦ E12,3 + E2 ◦ E1,22 − E2 ◦ E13,2

Tab. 1: Compact form for the terms of degree n in the combinatorial logarithm, for 0 ≤ n ≤ 10.

(x) Made using the Maple package combinat together with the define(’linear’) command.
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