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This paper is devoted to the study of particular geometrically defined intersection classes of graphs. Those were
previously studied by Magnant and Martin, who proved that these graphs have arbitrary large chromatic number,
while being triangle-free. We give several structural properties of these graphs, and we raise several questions.
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1 Introduction
A lot of graph classes studied in the literature are defined by a geometric model, where vertices are
represented by geometric objects (e.g. intervals on a line, disks in the plane, chords inscribed in a circle...)
and the adjacency of two vertices is determined according to the relation between the corresponding
objects. A large amount of graph classes consider the intersection relation (e.g. interval graphs, disk
graphs or circle graphs). However some other relations might be considered such as the containment, the
overlap or also the contact between objects. Recently several groups of authors started to study graph
classes defined by contact models, as for example Contact of Paths in a grid (CPG) [10], Contact of L
shapes in R2 or even contact of triangles in the plane [9]. In this note we consider a new class defined by
a contact model. More precisely we consider the class of graphs defined by contact of axis parallel boxes
in Rd where the contact occurs on (d− 1)-dimensional object in only one direction (CBU) .

When considering graph defined by axis-parallel boxes in Rd and the adjacency relation is given by
the intersection it corresponds to the important notion of boxicity introduced by Roberts [31], when the
adjacency relation is given by the containment relation it correspond to comparability graphs and it is
connected to the poset dimension introduced by Dushnik & Miller [12]

The motivation for this class of graphs originate from an article of Magnant and Martin [26] where a
wireless channel assignment is considered. The problem considers rectangular rooms in a building and
asks to find a channel assignment for each room. In order to avoid interferences rooms sharing the same
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wall, floor or ceiling need to use different channels. The question was to determine whether a constant
number of channels would suffice to answer this problem. The first negative answer was provided by Reed
and Allwright [30] that a constant number of channels is not sufficient. Magnant and Martin strengthened
their result that for any integer k there exists a building that requires exactly k channels. In addition, their
construction only requires floor-ceiling contacts.

We provide the first structural properties of this class. We first establish some links with the well-
known notion of boxicity in Section 4. Then in Section 7 we consider the recognition problem and
we prove that it is NP-complete to determine if a graph is d-CBU for any integer d ≥ 3. Then we
provide a characterization in terms of an acyclic orientation of the class of general CBU. Thanks to this
characterization, it is immediate to realize that the class of CBU constitutes a proper sub-class of Hasse
diagram graph (A Hasse diagram graph is the undirected graph obtained from a Hasse diagram associated
to a poset). Finally we prove in Section 9 that several well studied optimization problems remains NP-hard
on either 2- or 3-CBU graphs.

2 Preliminaries
We consider Rd and d orthogonal vectors e1, . . . , ed and we introduce a new class of geometric intersec-
tion graphs. Here, the vertices correspond to interior disjoint d-dimensional axis-parallel boxes in Rd, and
two such boxes are only allowed to intersect on a (d − 1)-dimensional box orthogonal to e1. This class
of graphs is denoted by d-CBU, for Contact graphs of d-dimensional Boxes with Unidirectional contacts.
We denote CBU the union of d-CBU for all d.

Note that 1-CBU correspond to the forests of paths.

Claim 1 For every d ≥ 1, d-CBU graphs are triangle-free.

Indeed, note that orienting the edges according to vector e1 and labeling each arc with the coordinate of
the corresponding (d − 1)-hyperplane, one obtains an acyclic orientation such that for every vertex, all
the outgoing arcs have the same label, all the ingoing arcs have the same label, and the label of ingoing
arcs is smaller than the label of outgoing arcs. We call such a labeling of the arcs an homogeneous arc
labeling. Note that an oriented cycle cannot admit such a labeling. A triangle abc oriented acyclically is,
up to automorphism, such that d+(a) = 2, d+(b) = 1, and d+(c) = 0. Now ab and ac should have the
same label, such as ac and bc, but ab and bc should be distinct, a contradiction. Thus a triangle cannot
admit a homogeneous arc labeling. This completes the proof of the claim.

With similar arguments one obtains the following for short cycles. See Figure 1.

Claim 2 For any homogeneous arc labeling of a graph G, its restriction to a short cycle is as follows.

• For a 4-cycle, the orientation is either such that there are two sources and two sinks, or it is such
that there is one source and one sink linked by two oriented paths of length 2.

• For a 5-cycle, the orientation is such that there is one source and one sink linked by two oriented
paths, one of length 2 and one of length 3.

3 Relation with Cover Graphs
An undirected graph is a cover graph if it is the underlying graph of the Hasse diagram of some partial
order. It was shown by Brightwell [5] and also by Nešetřil and Rödl [27, 28, 29] that deciding whether a
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Figure 1: (i) Example of a good orientation of a C5 with some valid labels, (ii) example of bad orientation.
Once a label x is fixed for one arc, this label is propagated to all the arcs leading to the conclusion that
x < x. (iii) the two valid orientations of a C4

graph is a cover graph is NP-complete. However, they came up with a simple characterization in terms of
acyclic orientations.

Their characterization states that a graph is a cover graph if and only if there exists an acyclic orienta-
tion without a quasi-cycle. A quasi-cycle, being an orientation of a cycle (v1, v2, . . . , vn) with the arcs
(vi, vi+1) for all 1 ≤ n − 1 plus the arc (v1, vn). From a homogeneous arc labelling, the orientation
provided by the labelling clearly fulfills the above defined condition.

Claim 3 For any homogeneous arc labeling of a graph G, the orientation of G does not contain any
quasi-cycle.

Corollary 4 The class of CBU graphs is contained in the class of cover graphs.

From the previous result, it is natural to ask whether both classes are equivalent. The following remark
provides the answer.

Remark 5 The class of CBU graphs is strictly contained in the class of cover graphs. In Lemma 16 we
will exhibit a graph that is not CBU but is a cover graph.

We will see in the following that an orientation of a triangle-free graph G, fulfilling the conditions of
Claim 2 and of Claim 3 may not admit a homogeneous arc labeling.

4 Boxicity
The boxicity box(G) of a graph G, is the minimum dimension d such that G admits an intersection repre-
sentation with axis-aligned boxes. Of course, the graphs in d-CBU have boxicity at most d. The converse
cannot hold for the graphs containing a triangle, as those are not in CBU. However, some relations hold
for triangle-free graphs. Let us begin with bipartite graphs.

Theorem 6 Every bipartite graphs of boxicity b belongs to (b+ 1)-CBU.

Proof: Consider a bipartite graph G with vertex sets A and B. Consider a boxicity b representation of G
and slightly expand each box in such a way that the intersection graph remains unchanged (we stop the
expansion of the boxes before creating new intersections). Now, any two intersecting boxes intersect on a
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b-dimensional box. Assume that this representation is drawn in the space spanned by e2, . . . , eb+1, and let
us set for the first dimension (spanned by e1) that the vertices of A and B, correspond to the intervals [0, 1]
and [1, 2], respectively. As A and B are independent sets, it is clear that the boxes in the representation
are interior disjoint and that any two intersecting boxes intersect on a b-dimensional box orthogonal to e1.
The obtained representation is thus a (b+ 1)-CBU representation of G. 2

Theorem 6 does not extend to triangle-free graphs. We will see in the following section that there exists
triangle-free graphs with bounded boxicity that are not d-CBU, for any value d. Actually, Lemma 16 tells
that there exists such graphs with girth 5. In other words, for a 3 ≤ g ≤ 5, there is no function fg such
that every graph G, of girth at least g and of boxicity b belongs to (fg(b))-CBU.

Problem 7 For g ≥ 6, is there a function fg such that every graph G, of girth at least g and of boxicity b
belongs to (fg(b))-CBU?

By Theorem 12, we know that if f6 exists, then f6(2) is at least 3. Nevertheless, the following theorem
shows that subdividing the edges enables to consider every triangle-free graph. An intersection represen-
tation is said proper if two objects intersect if and only if some point of the representation belongs to these
2 objects, only.

Theorem 8 For every graph G having a proper intersection representation with axis-parallel boxes in
Rb, the 1-subdivision of G belongs to (b+ 1)-CBU.

Proof: Consider such a representation of G and slightly expand each box in such a way that the intersec-
tion graph remains unchanged, and any two intersecting boxes intersect on a b-dimensional box. Assume
that this representation is drawn in the space spanned by e2, . . . , eb+1, and for the first dimension (spanned
by e1) let us consider any vertex ordering, v1, . . . , vn. For the first dimension, a vertex vi, corresponds to
the interval [2i, 2i + 1]. Clearly, none of these boxes intersect. Let us now add the boxes for the vertices
added by subdividing the edges of G. For any edge vivj , in the space spanned by e2, . . . , eb+1, the ex-
pansion ensured that the intersection of vi and vj contains a box Bij , that does not intersect any other box
of the representation. If i < j, the subdivision vertex of vivj , is represented by [2i + 1, 2j] × Bi,j . The
obtained representation is clearly a (b+ 1)-CBU representation of the subdivision of G. 2

Corollary 9 For every triangle-free graph G of boxicity b, the 1-subdivision of G belongs to (b+1)-CBU.

5 Planar graphs
While planar graphs have boxicity at most 3 [35, 18, 4], many subclasses of planar graphs are known
to have boxicity at most 2. This is the case for 4-connected planar graphs [34], and their subgraphs.
The subgraphs of 4-connected graphs include every triangle-free planar graph (see Lemma 4.1 in [20]).
As observed earlier, for those the representation is necessarily proper. For general planar graphs, the
representation in R3 provided in [18] is clearly proper. So Theorem 8 implies the following.

Corollary 10 For every planar graph G, the 1-subdivision of G belongs to 4-CBU. Furthermore, if G is
triangle-free then it even belongs to 3-CBU.
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Figure 2: The top boxes with respect to ℓ1, ℓ2, and ℓ3 are b, d, and a, respectively. The top sequence of
this 2-CBU representation is a, b, d, e, a, g, h, g, a.

5.1 2-CBU graphs
Given a 2-CBU representation of a graph G, and a vertical line ℓ, the top box of this representation with
respect to ℓ is the highest box intersecting ℓ. Now, the top sequence of a 2-CBU representation is the
sequence of top boxes obtained when parsing the representation with ℓ from left to right (see Figure 2).

One can easily see that 2-CBU graphs are planar graphs, and that every forest is a 2-CBU graph.
Actually, this class contains every triangle-free outerplanar graph.

Theorem 11 Every triangle-free outerplanar graph is 2-CBU.

Proof: Let us prove that for any connected outerplanar graph G, and any facial walk v1, v2, . . . , vk, vk+1 =
v1 on the outerboundary of G (with separating vertices appearing several times in this walk), there exists
a 2-CBU representation of G with top sequence v1, v2, . . . , vk, vk+1.

We proceed by induction on the number of vertices in G. The statement clearly holds if G has only
one vertex. A connected triangle-free outerplanar graph with more vertices contains either a vertex vi of
degree one, or a cycle vi, . . . , vj of length at least four (i.e. j − i ≥ 3), whose vertices vi+1, . . . , vj−1

have degree two in G.
In the first case we can add the box of vi in the representation of G \ vi obtained by induction (see

Figure 3, left). In the second case we consider the representation of G \ {vi+1, . . . , vj−1} obtained by
induction. Note that vi and vj now appear consecutively in its outerboundary, such as in the top sequence.
It is thus easy to add the boxes of vi+1, . . . , vj−1 in the representation (see Figure 3, right). 2

Theorem 12 There are series-parallel graphs of girth 6 that are not 2-CBU.

Proof: Consider a graph G with two vertices, a and b, linked by 9 disjoint ab-paths of length three axiyib,
for i ∈ {1, . . . , 9}. Then for each edge xiyi add a length 5 path from xi to yi. The obtained graph has
girth 6 and is series-parallel (see Figure 5).

Note that in a 2-CBU representation of G, the box of a (resp. b) has at most four neighbors such that
their intersection contains a corner of a (resp. b). Thus, there exists an i ∈ {1, . . . , 9} such that one side
of xi is contained in one side of a, and one side of yi is contained in one side of b. Now, whatever the
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vi
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vj−1

Figure 3: Left part : Adding a degree one vertex vi in the representation. This is done in the vertical stripe
where the neighbor of vi, vi−1 = vi+1, is the top box. Right part : Adding vi+1, . . . , vj−1. This is done
in the vertical stripe where vi and vj are the top box, successively.
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Figure 4: An example of 2-CBU graph and its associated acyclic orientation
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Figure 5: The series-parallel graph G of Theorem 12.
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Figure 6: The graph W ′
6.

way xi and yi intersect (a side of xi may be contained in a side of yi, or the other way around, or also
their intersection may contain a corner of each box), it is not possible to have the length 5 xiyi-path (see
Figure 5, right). If a side of xi is contained in a side of yi there is no place left around xi to draw a third
neighbor. If the intersection of xi and yi contains a corner of xi and a corner of yi, there is space to draw
a third neighbor for these vertices, say u and v respectively, but in that case the uv-path should go around
a or b, but it would intersect the paths axjyjb with j ̸= i. Thus G does not admit a 2-CBU representation.
2

Problem 13 Is there a girth g such that every series parallel graph of girth at least g belongs to 2-CBU ?

For planar graphs, the following theorem shows that such a bound on the girth does not exist. Let us
denote by W 2

g the double wheel graph, obtained from a cycle Cg by adding two non-adjacent vertices,
each of them being adjacent to every vertex of Cg . An edge incident to one of these two vertices (i.e., an
edge not contained in Cg) is called a ray. Now, let W ′

g be the graph obtained from W 2
g by subdividing

⌊g/2⌋ times every ray (see Figure 6). This graph is planar and has girth g.

Theorem 14 The graph W ′
g does not belong to 2-CBU.

Proof: For any 2-CBU representation of the cycle C of length g there is a rectangle R, for example the
one with the leftmost right side, such that none of the top or bottom side of R is incident to the inner
region. It is thus impossible to connect R with a ray in the inner region. On the other hand, there is no
planar embedding of W ′

g where C bounds an inner face. 2

5.2 3-CBU graphs
Bipartite planar graphs are known to be contact graphs of axis-aligned segments in R2 [3, 8], and their
boxicity is thus at most two. By Theorem 6, we thus have the following.

Corollary 15 Every bipartite planar graph belongs to 3-CBU.

The following lemma tells us that this property does not generalize, in a strong sense, to triangle-free
planar graphs.
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Figure 7: The graph G3 is planar and non CBU. It is however a cover graph.

Lemma 16 There exists a girth 4 planar graph that is not CBU.

Proof: Let us consider the graph G1 represented in Figure 7. One can show that this graph does not admit
any valid CBU orientation where in the C4 induced by a, b, c and d, a is a source and d is a sink (nor the
converse). Let us assume that there exists a CBU orientation such that a is a source and d is a sink. By
fixing the orientation of edges ab and ac from a to b and from a to c respectively, and by Claim 2, the
edges be and cf have to be oriented from b to e and from c to f . The edge ef is oriented in any direction,
w.l.o.g. let us say from e to f . But in that case, in the C5 induced by b, e, f, c and d contains two sources
and two sinks, which is not a valid CBU orientation (By Claim 2).

By adding a path of length 3 between a and d, we obtain the graph G2. From the previous observation,
we can conclude the same property for vertices b and c. Hence, in the valid orientation of G2, a and d are
sources and b and c are sinks (or the converse). Let us now consider the graph G3 obtained by gluing two
copies of G2 in a special manner (see Figure 7). Let us remark that the graph obtained is planar. Let us
consider, w.l.o.g., that a and d are sources and b and c are sinks in the C4 induced by a, b, c, and d. Recall
that a valid orientation of a C5 contains exactly one source and one sink. Thus, in the C5 induced by the
vertices a, c, d, k, and j, the vertex c has to be a sink from the already fixed orientation. Hence, it forces
the edge aj to be oriented from j to a and the edge dk from k to d (the edge k, j can be oriented in any
direction), since the length of a path from a source to a sink in an orientation is exactly 2 for one path and
3 for the other.

Then in the partial orientation obtained, we can conclude that in the C4 induced by a, c, i, and j, the
vertex c will be a sink and vertex j will be a source. However, as mentioned in the beginning of this proof,
this orientation will not lead to valid orientation, since j and c play the same role as a and d in G1. Hence,
G3 does not admit a valid CBU orientation. 2
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Remark 17 The graph G3 used in the proof of Lemma 16 is actually a cover graph. In Figure 7, the
bottom picture depicts its Hasse diagram.

Since every planar graph with girth at least 10 has circular chromatic number at most 5/2 [14], the
forthcoming Theorem 35 implies that such a graph necessarily belongs to CBU.

Problem 18 What is the lowest g ∈ [5, . . . , 10] such that every planar graph G with girth at least g
belongs to CBU.

6 Structural properties of d-CBU and CBU
Theorem 19 For every d ≥ 1, the class of d-CBU graphs is strictly contained in the class of (d+1)-CBU
graphs.

The case d = 1 follows from the earlier observation that 1-CBU graphs correspond to forests of paths, and
from the many examples of 2-CBU graphs provided above. For d ≥ 2, the following structural lemma
allows us to translate the strict containment of boxicity b bipartite graphs, to the strict containment of
d-CBU. Indeed, it is known that the graph obtained from the complete bipartite graph K2b,2b by removing
a perfect matching has boxicity exactly b [33].

Lemma 20 Given a connected bipartite graph B, with parts X and Y , let B′ be the graph obtained from
B, by adding a path xzy and by connecting x and y to every vertex in X and Y , respectively. Then, B
has boxicity at most d if and only if B′ belongs to (d+ 1)-CBU.

Proof: Let us begin with the simpler "only if" part. We proceed as in the proof of Theorem 6 in order
to obtain a (d + 1)-CBU representation of B such that every vertex of X (resp. Y ) corresponds to
[0, 1] (resp. [1, 2]) in the space spanned by e1. Then it suffices to add the boxes for x, y and z. For
a sufficiently large Ω, x is represented by [−1, 0] × [−Ω,+Ω] × . . . × [−Ω,+Ω], y is represented by
[2, 3]× [−Ω,+Ω]× . . .× [−Ω,+Ω], and z is represented by [0, 2]× [Ω− 1,Ω]× . . .× [Ω− 1,Ω].

For the "if" part, consider a (d+1)-CBU representation of B′, and the homogeneous arc labeling of B′

induced by this representation. We first prove that all the arcs between X and Y are oriented in the same
direction. Towards a contradiction, consider a path x1y2x3 with x1, x3 ∈ X and y2 ∈ Y , and such that
the edges are oriented from x1 to y2, and from y2 to x3. This forces the remaining edges of the 4-cycle
yx1y2x3 to be oriented from x1 to y, and from y to x3 (see Claim 2). Now we cannot orient the edge
y2x, xz, zy in such a way to fulfill Claim 2 for the 5-cycles xzyx1y2 and xzyx3y2. Indeed for the first
one, yz should be oriented from y to z, while for the second one it should be oriented from z to y, a
contradiction.

This orientation ensures that the labels of all the arcs is the same. This implies that there is an hyper-
plane H orthogonal to e1 such that for any pair of intersecting boxes x′ ∈ X and y′ ∈ Y , their intersection
belongs to H. This implies that projecting the (d+1)-CBU representation (restricted to B) along e1 leads
to a boxicity d representation of B. 2

It is clear that CBU is hereditary (i.e. closed under induced subgraphs) but actually it is also closed
under subgraphs.

Theorem 21 For any subgraph H of G, G ∈ CBU implies that H ∈ CBU. More precisely, if there is a
complete bipartite graph Ka,b such that V (Ka,b) ⊆ V (G), and such that E(H) = E(G)\E(Ka,b), then
if G belongs to d-CBU then H belongs to (d+ 1)-CBU.



10 D. Gonçalves, V. Limouzy, P. Ochem

Proof: Let A,B be the parts of Ka,b. Given a CBU representation of G in Rd we are going to build a
CBU representation of H in Rd+1. For this, the first d intervals defining each d-box remain unchanged
while the last interval is [0, 1] for the vertices in A, [2, 3] for the vertices in B, and [0, 3] for the remaining
vertices. It is now easy to check that two boxes intersect if and only if they intersect in G and if they are
not adjacent in Ka,b. It is also clear that the intersections occur on planes orthogonal to e1. 2

The graph class CBU is also closed by the addition of false twins.

Theorem 22 For any graph G and any vertex v of G, consider the graph Gv obtained from G by adding
a new vertex v′ such that N(v′) = N(v). Then G ∈ CBU if and only if Gv ∈ CBU. Furthermore, if
G ∈ d-CBU then Gv ∈ (d+ 1)-CBU.

Proof: The "if" part is obvious as G is an induced subgraph of Gv . For the "only if" part, given a CBU
representation of G in Rd we are going to build a CBU representation of Gv in Rd+1. For this, the first
d intervals defining each d-box remain unchanged, and those of v′ are the same as those of v. The last
interval is [0, 1] for v, [2, 3] for v′, and [0, 3] for all the remaining vertices. It is now easy to check that two
boxes intersect if and only if they intersected and if one of them is distinct from v or v′. It is also clear
that the intersections occur on planes orthogonal to e1. 2

Shift graphs were introduced by P. Erdős and A. Hajnal in [17] (see Theorem 6 therein). Those are the
graphs Hm whose vertices are the ordered pairs (i, j) satisfying 1 ≤ i < j ≤ m, and where two pairs
(i, j) and (k, l) form an edge if and only if j = k or l = i. Note that such graphs admit a homogeneous
arc labeling ℓ defined by ℓ({(i, j), (j, k)}) = j, and by orienting any edge {(i, j), (j, k)} from (i, j) to
(j, k).

Theorem 23 The graph Hm belongs to (m−1)-CBU. Furthermore, Hm has a CBU representation such
that in the first dimension the vertex (i, j) corresponds to interval [i, j].

Proof: This clearly holds for the one vertex graph H2. By induction on m consider a representation of
Hm−1, add a false twin for every vertex (i,m−1) and modify the first interval of these new twins, so that
the interval [i,m− 1] becomes [i,m]. These boxes correspond to the vertices (i,m) with i < m− 1. For
the vertex (m− 1,m), one should add a box [m− 1,m]× [−Ω,+Ω]× . . .× [−Ω,+Ω], for a sufficiently
large Ω. To deal with the intersections between this box and the boxes of the other vertices (i,m), we add
a new dimension such that vertex (m−1,m) has interval [1, 2], the vertices (i,m−1) have interval [1, 2],
the vertices (i,m) with i < m− 1 have interval [3, 4], and all the other vertices have interval [1, 4]. 2

Theorem 24 For every n-vertex graph G the following properties are equivalent.

a) G belongs to CBU.

b) G admits a homogeneous arc labeling.

c) G is the subgraph of a graph Ht
m, obtained from the shift graph Hm by iteratively adding t false

twins, for some values m, t such that m+ t ≤ n+ 1.

d) G belongs to (2n− 1)-CBU.
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Proof: We have already seen that a) ⇒ b). Let us show b) ⇒ c). Consider a homogeneous arc labeling
of G, with labels in [2,m− 1], for the minimum m. By minimality of m, note that all the labels are used,
and thus m−2 ≤ n−1. Let Ht

m be the graph obtained from the shift graph Hm by adding ti,j false twins
of vertex (i, j) if there are ti,j + 1 vertices of G whose incoming arcs are labeled i, and whose outgoing
arcs are labeled j. For the vertices without incoming (resp. outgoing) arcs assume that those are labeled
1 (resp. m). Consider now an injective mapping γ : V (G) −→ V (Ht

m), such that any vertex with
incoming and outgoing arcs labeled i, j is mapped to (i, j) or one of its twins. This mapping ensures us
that G is a subgraph of Ht

m. Indeed, for any two adjacent vertices u, v of G linked by an edge labelled
j oriented from u to v, their incoming and outgoing arcs are labeled i, j and j, k respectively, for some
i < j < k, and thus the vertices γ(u) and γ(v) of Ht

m are adjacent, as they correspond to or are twins of
(i, j) and (j, k).

We now show c) ⇒ d). Consider a graph Ht
m containing G as a subgraph, for some m, t such that

m+ t ≤ n+1. By Theorem 23 and Theorem 22 we have that Ht
m belongs to (m−1+ t)-CBU, and so to

n-CBU. Starting from Ht
m one can obtain G by successively deleting n−1 stars K1,b, so by Theorem 21,

we have that G belongs to (2n− 1)-CBU. Finally, d) ⇒ a) is obvious. 2

It is easy to see that every complete bipartite graph belongs to 3-CBU. By Theorem 21, removing stars
K1,b centered on the smallest part, one obtains that every n-vertex bipartite graph belongs to (⌊n/2⌋ +
3)-CBU. One can reach a slightly better bound from Theorem 6, and the fact that for every graph G,
box(G) ≤ ⌊n/2⌋ [31].

Corollary 25 Every bipartite graph G belongs to CBU. Furthemore, if |V (G)| = n then G belongs to
(⌊n/2⌋+ 1)-CBU.

As already mentioned, some bipartite graphs have arbitrary large boxicity, and thus there is no fixed d
such that every bipartite graph belongs to d-CBU. For large girth graphs it is a different.

Theorem 26 For any g ≥ 3, there exist graphs of girth g not contained in CBU.

Proof: Indeed, for any g ≥ 3 there exist graphs of girth g with fractional chromatic number at least
4 [16]. (Actually, their fractional chromatic number is arbitrarily large). By Theorem 39, such graphs
cannot belong to CBU. 2 Nevertheless, the following remains open.

Problem 27 Are there integers d, g such that every girth g graph G of CBU belongs to d-CBU?

The remarks above imply that testing if a bipartite graph belongs to CBU is obvious (computable in
constant time), while for girth g graphs the question is more involved, as CBU has such graphs included
and some other excluded. The following section treats the computational problem of recognizing CBU
graphs.

7 Recognition
Computing the boxicity of a bipartite graph is a difficult problem. It is known that deciding whether a
bipartite graph has boxicity two is NP-complete [24]. Furthermore, it is proven in [1] that it is not possible
to approximate the boxicity of a bipartite graph within a O(n0.5−ε)-factor in polynomial time, unless
NP = ZPP . By Lemma 20, for every bipartite graph B there is a graph B′ (obtained in polynomial
time) such that the minimum value d for which B′ belongs to d-CBU is exactly d = box(B) + 1.
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Corollary 28 It is NP-complete to decide whether a graph belongs to 3-CBU. Furthermore, unless NP =
ZPP , one cannot approximate in polynomial time and within a O(n0.5−ε)-factor, the minimum value d
for which an input graph G belongs to d-CBU.

This implies that for most values d the problem of deciding whether an input graph belongs to d-CBU,
cannot be computed in polynomial time, unless NP = ZPP . The hypothesis NP = P being stronger
than NP = ZPP , it would be stronger to know that it is NP-complete to decide if an input graph belongs
to d-CBU.

Problem 29 For which values d, is it NP-complete to decide whether a graph belongs to d-CBU? Are
there values d, in particular for d = 2, for which the problem is polynomial?

By Lemma 20, this problem would be solved, for d ≥ 3, if the following problem admits a positive
answer.

Problem 30 For any d ≥ 3, is it NP-complete to decide whether a bipartite graph B has boxicity at most
d?

Another computational problem is testing the membership in CBU.

Problem 31 Is it polynomial to decide whether a graph belongs to CBU?

We have seen that some triangle-free planar graphs, or some graphs with arbitrary large girth, are not
in CBU. We can thus restrict the problem.

Problem 32 Is it polynomial to decide whether a planar graph G belongs to CBU? For some g ≥ 3, is it
polynomial to decide whether a graph G of girth at least g belongs to CBU?

7.1 Recognition through forbidden induced subgraphs
As CBU and d-CBU are closed under induced subgraphs, they are characterized by a set of minimal
excluded induced subgraphs, FCBU and Fd−CBU . If one of these sets is finite, then recognizing the
corresponding class becomes polynomial-time tractable. Thus by Corollary 28, the set F3−CBU (resp.
Fd−CBU for d ≥ 4) is not finite, unless P = NP (resp. unless NP = ZPP ). For the set F2−CBU

(resp. FCBU ), we are sure that it is infinite. Indeed, Theorem 14 (resp. Theorem 26) provides an infinite
sequence of graphs (Gi)i≥0 not in 2-CBU (resp. not in CBU) such that the girth of Gi is at least i. If there
was an n such that every graph in F2−CBU (resp. FCBU ) has at most n vertices, then to exclude Gn+1

one would need to have a tree in F2−CBU (resp. FCBU ). This is not the case as for every tree T , we have
that T ∈ 2-CBU ⊆ CBU .

7.2 Recognition through homogeneous arc labelings
By Theorem 24, a graph G belongs to CBU if and only if it admits a homogeneous arc labeling. If we are
given an orientation of a graph G it is simple to check whether this orientation admits such labeling. For
example, one can use linear programming. For each arc uv, set a variable ℓuv corresponding to a label,
and for any two incident arcs, add a constraint. For two arcs uv and uw (resp. uv and wv), the constraint
is ℓuv = ℓuw (resp. ℓuv = ℓwv). For two arcs uv and vw, the constraint is ℓuv + 1 ≤ ℓvw. Problem 31
thus reduces to deciding whether a graph G admits an orientation that is homogeneously labelable. In the
following we characterize such orientations.
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A cycle (v0, v1, . . . , vn−1) is said badly oriented if there is a vertex vi whose incident arcs are vi−1vi
and vivi+1, and if there is no vertex vj whose incident arcs are vj+1vj and vjvj−1 (indices being consid-
ered mod n).

Theorem 33 An orientation of a graph G admits a homogeneous labeling if and only if there is no badly
oriented cycle.

Proof: For the "only if" part, consider a badly oriented cycle (v0, v1, . . . , vn−1) with arcs vn−1v0 and
v0v1, but with no vertex vj ̸= v0 whose incident arcs are vj+1vj and vjvj−1. This latter condition
implies that in any homogeneous labeling the sequence of labels for the edges (without considering their
orientation) v0v1, v1v2, . . . , vn−2vn−1, vn−1v0 is non-decreasing, while the former condition implies that
the label of v0v1 is greater than the one of vn−1v0, a contradiction. Thus this orientation of G does not
allow any homogeneous labeling.

For the "if" part, consider a graph G oriented without badly oriented cycle, and consider a source u,
and let us denote v1, . . . , vn its out-neighbors. If for every vertex vi, u is its unique in-neighbor, then by
recurrence on the number of vertices we assume that G \ {u} has a homogeneous labeling, and we label
the arcs incident to u with a sufficiently small value, say −Ω. In that case it is easy to check that this
labeling is homogeneous.

Otherwise, let vi and u′ be vertices such that G has arcs from both u and u′ toward vertex vi. In that
case, consider the oriented graph G′ obtained from G \ {u} by adding the arcs u′v1, . . . , u

′vn, if missing.

Claim 34 G′ has no badly oriented cycle.

Proof: If G′ had a badly oriented cycle C, this one should go through a newly added arc u′vj . If vi /∈ C,
by replacing the arc u′vj by the path (u′, vi, u, vj) one would obtain a badly oriented cycle in G, a
contradiction. We thus assume that vi /∈ C, and now by replacing the arc u′vj by the path (u′, vi, u, vj)
we obtain a badly oriented closed walk W (that is a walk where there are consecutive "forward" arcs, but
no consecutive "backward" arcs). Let us denote P and P ′ the sub-paths of C \ {u′vj} ⊊ G linking vi and
vj , and linking u′ and vi, respectively.

Let us show that if the edge incident to vi in P ′ is oriented from vi to the other end, denoted v, then
this arc is backward with respect to C. Indeed, the cycle CP ′ of G formed by P ′ and the arc u′vi, has
consecutive arcs oriented in the same direction, u′vi and viv, and (as G contains no badly oriented cycles)
has consecutive arcs oriented in the other direction. The latter pair of arcs belonging both to P ′ ⊂ C, they
are forward with respect to C, thus viv is backward.

Similarly, let us show that if the edge incident to vi in P is oriented from vi to the other end, denoted
w, then this arc is backward with respect to C. Indeed, they cycle CP of G formed by P and the arcs
uviand uvj , has consecutive arcs oriented in the same direction, uvi and viw, and (as G contains no badly
oriented cycles) has consecutive arcs oriented in the other direction. The latter pair of arcs belong both to
P ⊂ C, or they are the arcs incident to vj . In the former case, these arcs are forward with respect to C,
thus viv is backward. In the latter case, replacing uvj with u′vj , one has that the incident arcs of vj in C
are oriented in the same direction. this direction is thus the forward direction, and in that case also viv is
backward.

We thus have that the arcs incident to vi cannot be oriented in the same direction (they would form
consecutive backward arcs in C), and they are not both oriented from vi to the other end (they would
be both backwards although they have distinct directions). Now we distinguish cases according to the
position of the consecutive forward arcs in C. We have that:
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a) there are two consecutive forward arcs in P ∪ {u′vj}, or

b) there are two consecutive forward arcs in P ′ ∪ {u′vj}.

In case a), the cycle CP of G has consecutive forward arcs (by replacing if necessary the arc u′vj with
uvj). Since this cycle is not badly oriented it also contains consecutive backward arcs. According to the
orientation of the arcs, those backwards arcs cannot be the arcs incident to u, or those incident to vi. Thus
they belong both to P ∪ {uvj}, but this would imply that C also contains consecutive backward arcs, a
contradiction.

In case b), the cycle CP ′ of G has consecutive forward arcs (by replacing if necessary the arc u′vj with
u′vi). Since this cycle is not badly oriented it also contains consecutive backward arcs. According to the
orientation of the arcs, those backwards arcs cannot be the arcs incident to vi. This would imply that C
also contains consecutive backward arcs, a contradiction.

This concludes the proof of the claim 2

So now, by recurrence on the number of vertices we can assume that G′ has a homogeneous labeling,
and let ℓ be the label of the arcs outgoing from u′. In that case one can derive a labeling of G by keeping
the same labels, and by setting the label ℓ for the arcs outgoing from u. It is easy to check that this labeling
is homogeneous. 2

Note that Theorem 33 provides another proof that CBU contains every bipartite graph. Indeed, orienting
all the edges from one part toward the other, the direction of the arcs alternate along any cycle, and so
there is no badly oriented cycle. Actually, we can go a little further.

Theorem 35 Every graph G with circular chromatic number χc(G) ≤ 5/2 belongs to CBU.

Proof: A graph G with circular chromatic number χc(G) ≤ 5/2 has a homomorphism into the circu-
lar complete graph K5/2 that is the 5-cycle. As this graph belongs to CBU the theorem follows from
Theorem 37. 2

Note that we cannot replace 5/2 by 8/3 in Theorem 35, as one can easily check that every orientation
of K8/3 contains a badly oriented cycle.

Problem 36 What is the largest c such that every graph G with χc(G) ≤ c (or with χc(G) < c) belongs
to CBU.

Theorem 37 Given two graphs G,H such that there is an homomorphism γ : V (G) −→ V (H), then if
H ∈ CBU we have that G ∈ CBU.

Proof: By Theorem 24, the graph H admits a homogeneous arc labeling, ℓH . Orient the edges of G in
such a way that uv ∈ E(G) is oriented as the edge γ(u)γ(v) ∈ E(H), that is from u to v if and only
if γ(u)γ(v) is oriented from γ(u) to γ(v) in H . Similarly we copy the labeling of H’s arcs by setting
ℓG(uv) = ℓH(γ(u)γ(v)). One can easily check that this is a homogeneous arc labeling of G, and thus
that G belongs to CBU. 2
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8 Chromatic Number and Independent Sets
While 2-CBU graphs have chromatic number at most 3 (by Grötzsch’s theorem), 3-CBU graphs have
unbounded chromatic number.

Theorem 38 (Magnant and Martin [26]) For any χ ≥ 1, there exists a graph in 3-CBU with chromatic
number χ.

However, these graphs have bounded fractional chromatic number, and thus have linear size independent
sets. Indeed, G. Simonyi and G. Tardos [32] showed that shift graphs have fractional chromatic number
less than 4. As such a bound extends by adding a false twin and by taking a subgraph, we have the
following.

Theorem 39 For any graph G ∈ CBU, χf (G) < 4, and α(G) > |V (G)|/4.

For planar graphs in CBU, this bound on χf can be improved by one, but not more.

Theorem 40 For every planar graph G in CBU we have χf (G) ≤ χ(G) ≤ 3. On the other hand, for
every n ≡ 2 (mod 3) there is a n-vertex planar graph G in CBU such that α(G) = (n+ 1)/3, and thus
χf (G) ≥ n/α(G) = 3− 3

n+1 .

Proof: The first statement follows from Grötzsch’s theorem. The second statement follows from graphs
constructed by Jones [22], which were proved to have independence number α(G) = (n + 1)/3. Those
graphs form a sequence J1, J2, . . . such that J1 is the 5-cycle (a1, b1, c1, d, e), and such that Ji+1 is
obtained from Ji by adding three vertices ai+1, bi+1, ci+1 such that N(ai+1) = {bi, bi+1}, N(bi+1) =
{ai+1, ci+1}, and N(ci+1) = {ai, ci, bi+1} (see Figure 8). It is already known that those graphs are
planar, and it does only remain to show that they belong to CBU. Let us do so by exhibiting a homogeneous
arc labeling ℓ. This labeling is such that for any i ≥ 1 we orient the edges aibi and bici toward bi, we
orient the edges xiyi+1, for x, y ∈ {a, b, c}, from xi towards yi+1, and we set ℓ(aibi) = ℓ(aici+1) = 2i,
ℓ(cibi) = ℓ(cici+1) = 2i, and ℓ(biai+1) = 2i + 1. By examining Figure 8 it is clear that this is a
homogeneous arc labeling. 2

Although 2-CBU lies in the intersection of CBU and planar graphs, it might be the case that the frac-
tional chromatic number of graphs in 2-CBU is bounded by some c < 3. Indeed, Jones graphs Ji, for a
sufficiently large i, seem to not be in 2-CBU.

Problem 41 Is there a c < 3 such that every graph G in 2-CBU has fractional chromatic number
χf (G) ≤ c ?

A positive answer to this question, would give support to two conjectures. Let Pg≥5 be the set of planar
graph with girth at least five, and let Pf

g≥4 be the set of planar graph with girth at least four, where every
4-cycle bounds a face. Clearly Pg≥5 ⊊ Pf

g≥4, since these classes avoid Jones graphs it is conjectured that
graphs in Pg≥5, or more generally graphs in Pf

g≥4, have fractional chromatic number at most c, for some
c < 3 [13, 15]. However, our problem is not a sub-case of these conjectures (as K2,t belongs to 2-CBU
\ Pf

g≥4), nor a super-case (as Pg≥5 \ 2-CBU is not empty, by Theorem 14).



16 D. Gonçalves, V. Limouzy, P. Ochem

J1 Ji+1

d

b1

Ji

ci

bi+1

ci+1

c1a1

e

0

2

1
0

2i

2i

2i+ 2
2

2i

2i+ 1

2i

2i+ 2

ai+1

ai

bi

Figure 8: The Jones graphs J1 and Ji+1, with a homogeneous arc labeling. For every i ≥ 1, this embed-
ding is such that the path aibici is on the outer-boundary. Thus, adding vertices ai+1, bi+1, ci+1 does not
break planarity.

9 Computational hardness for many problems
We have seen (c.f. Theorem 8, Corollary 9, and Corollary 10) that many 1-subdivided graphs belong to
CBU, or even to 3- or 4-CBU. For (≥ 2)-subdivided graphs, the picture is even simpler.

Theorem 42 For every graph G, if we subdivide every edge at least twice, the obtained graph belongs to
3-CBU.

Proof: Let us denote v1, . . . , vn the vertices of G, and let m = |E(G)|. To construct a CBU representation
for any (≥ 2)-subdivision, we start by assigning each vertex vi to the box [3i, 3i+1]× [n− i, n− i+1]×
[0, 2m]. Then consider each edge e of G in any given order. For the kth edge e assume it links vi and vj , for
some i < j, and assume e is replaced by the path (vi, u1, . . . , ur, vj) for some r ≥ 2. Here, u1 is assigned
to [3i+1, 3i+2]× [n− j, n− i+1]× [2k− 1, 2k], while the vertices uℓ with 2 ≤ ℓ ≤ r are assigned to
[3i+2+(ℓ−2)(3j−3i−2)/(r−1), 3i+2+(ℓ−1)(3j−3i−2)/(r−1)]× [n−j, n−j+1]× [2k−1, 2k]
(see Figure 9). One can easily check that the obtained representation is a 3-CBU representation of the
subdivided graph. 2

Corollary 43 The problems of MINIMUM FEEDBACK VERTEX SET and CUTWIDTH are NP-hard, even
when restricted to 3-CBU graphs. The problems MAXIMUM CUT, MINIMUM VERTEX COVER, MINI-
MUM DOMINATING SET, and MINIMUM INDEPENDENT DOMINATING SET are APX-hard, even when
restricted to 3-CBU graphs.

Proof: For MINIMUM FEEDBACK VERTEX SET and CUTWIDTH, this follows from the fact that these
problems are NP-hard, and that for any instance, subdividing an edge does not change the solution. For
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Figure 9: Construction of a 3-CBU representation of a 2-subdivision of a graph.
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(1, 1)

(2, 1)(1, 2)

Figure 10: 2-CBU representation of the 4× 4 grid.

MAXIMUM CUT, it follows from its APX-hardness and the fact that the maximum cut of a graph G and
its 2-subdivision G2-sub verify mc(G) = mc(G2-sub) − 2|E(G)| and 3|E(G)|/2 = |E(G2-sub)|/2 ≤
mc(G2-sub) ≤ |E(G2-sub)| = 3|E(G)|. The other problems are shown APX-hard even when restricted to
6-subdivided graphs [6]. 2

When restricted to 2-CBU some of these problems become simpler to handle, as every graph in 2-CBU
is planar. Indeed, the MAXIMUM CUT problem turns out to be polynomial time solvable [11], while MIN-
IMUM VERTEX COVER, MINIMUM DOMINATING SET, and MINIMUM INDEPENDENT DOMINATING
SET admit PTAS [2, 25] (with standard techniques), such as MINIMUM FEEDBACK VERTEX SET [23].
However, many problems remain NP-hard when restricted to 2-CBU.

Theorem 44 The problems MAXIMUM INDEPENDENT SET, MINIMUM VERTEX COVER, MINIMUM
DOMINATING SET, HAMILTONIAN PATH, and HAMILTONIAN CYCLE are NP-complete, even when re-
stricted to 2-CBU graphs.

Proof: As these problems belong to NP, it remains to show that they are NP-hard for 2-CBU graphs. Let
us first show that the induced subgraphs of grids (so called grid graphs) belong to 2-CBU. Consider the
n× n grid G such that V (G) = {1, . . . , n} × {1, . . . , n}, and such that the neighbors of any vertex (i, j)
are {(i, j − 1)(i− 1, j), (i, j + 1), (i+ 1, j)} ∩ {1, . . . , n} × {1, . . . , n}. Since it suffices to delete some
boxes to obtain an induced subgraph, the claim follows by constructing a 2-CBU representation for any
such grid G. This construction is obtained by mapping any vertex (i, j) to the box [i + j − 1, i + j] ×
[2i− 2j, 2i− 2j + 3] (see Figure 10). As DOMINATION [7], HAMILTONIAN PATH, and HAMILTONIAN
CYCLE [21] are NP-hard for grid graphs, those problems are NP-hard for 2-CBU graphs.

For the problems MAXIMUM INDEPENDENT SET and MINIMUM VERTEX COVER, we have to con-
sider a variant of grid graphs, the graph R′(n1, n2) depicted in Figure 11, and it is easy to see how to
modify the construction above in order to obtain a 2-CBU representation of this type of graphs. Again,
this implies that every induced subgraph of such a graph belongs to 2-CBU. As the problems MAXIMUM
INDEPENDENT SET and MINIMUM VERTEX COVER are NP-hard for this class (see the proof of Theorem
10 in [19]), those problems are NP-hard for 2-CBU graphs 2
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(i− 1, j) (i, j − 1)

(i+ 1, j)(i, j + 1)

(i− 1, j + 1) (i+ 1, j − 1)

Figure 11: The graph R′(n1, n2) and the local modification to obtain its 2-CBU representation. From the
2-CBU representation of the grid given above, one has to delete the box of every vertex (i, j), where i and
j are even, and if i+ j ≡ 2 mod 4 one has to replace the box by 4 smaller boxes.

References
[1] Abhijin Adiga, Diptendu Bhowmick, and L. Sunil Chandran. The hardness of approximating the

boxicity, cubicity and threshold dimension of a graph. Discret. Appl. Math., 158(16):1719–1726,
2010.

[2] Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the ACM, 41:153–180, 1994.

[3] Irith Ben-Arroyo Hartman, Ilan Newman, and Ran Ziv. On grid intersection graphs. Discret. Math.,
87:41–52, 1991.

[4] David Bremner, William Evans, Fabrizio Frati, Laurie Heyer, Stephen G. Kobourov, William J.
Lenhart, Giuseppe Liotta, David Rappaport, and Sue H. Whitesides. On representing graphs by
touching cuboids. In Walter Didimo and Maurizio Patrignani, editors, Graph Drawing, pages 187–
198, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[5] Graham R. Brightwell. On the complexity of diagram testing. Order, 10:297–303, 1993.

[6] Miroslav Chlebík and Janka Chlebíková. The complexity of combinatorial optimization problems
on d-dimensional boxes. SIAM Journal on Discrete Mathematics, 21, 2007.

[7] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete Mathematics,
86(1):165–177, 1990.

[8] Hubert de Fraysseix, Patrice Ossona de Mendez, and Janos Pach. Representation of planar graphs
by segments. Intuit. Geom. (Szeged, 1991), Colloq. Math. Soc. János Bolyai, 63:109–117, 1994.

[9] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosensthiel. On triangle contact graphs.
Probability and Computing, 3, 1994.

[10] Zakir Deniz, Esther Galby, Andrea Munaro, and Bernard Ries. On contact graphs of paths on a grid.
In Therese C. Biedl and Andreas Kerren, editors, Graph Drawing and Network Visualization - 26th
International Symposium, GD 2018, Barcelona, Spain, volume 11282 of LNCS, pages 317–330.
Springer, 2018.



20 D. Gonçalves, V. Limouzy, P. Ochem

[11] Josep Diaz and Marcin Karminski. Max-cut and max-bisection are NP-hard on unit disk graphs.
Theo. Comp. Sci., 377:271–276, 2007.

[12] Ben Dushnik and Edwin Wilkinson Miller. Partially ordered sets. Amer. J. Math., 63, 1941.
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