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The partial sum of the states of a Markov chain or more generally a Markov source is asymptotically normally dis-
tributed under suitable conditions. One of these conditions is that the variance is unbounded. A simple combinatorial
characterization of Markov sources which satisfy this condition is given in terms of cycles of the underlying graph of
the Markov chain. Also Markov sources with higher dimensional alphabets are considered.

Furthermore, the case of an unbounded covariance between two coordinates of the Markov source is combinatorically
characterized. If the covariance is bounded, then the two coordinates are asymptotically independent.

The results are illustrated by several examples, like the number of specific blocks in0-1-sequences and the Hamming
weight of the width-w non-adjacent form.

Keywords: Markov source, variance, covariance, independence, Hamming weight, Matrix-Tree Theorem, transducer,
central limit theorem

1 Introduction
We investigate the random vector defined as then-th partial sum of a Markov source over a higher di-
mensional alphabet. Under suitable conditions, this random variable is asymptotically jointly normally
distributed. Its mean and variance-covariance matrix is linear in the number of summands (cf. [6, The-
orem 2.22]). On the one hand, these conditions include irreducibility and aperiodicity of the underlying
graph of the Markov chain, which can be checked easily for a given Markov chain. On the other hand, we
also have to check that the variance-covariance matrix is regular, which requires technical computations.
In this article, we give a simple combinatorial characterization of Markov sources whose corresponding
variance-covariance matrix is singular.

The covariance between two coordinates of this random vector is also of interest: If it is bounded, then
these two coordinates are asymptotically independent because of the joint normal distribution. We give a
combinatorial characterization of this case.

These characterizations are given in terms of subgraphs of the underlying graph of the Markov chain:
For the variance-covariance matrix, we only have to consider all cycles. A regular variance-covariance
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matrix will be proven to be equivalent to the linear independence of certain functions of cycles of the
underlying graph of the Markov chain. For the characterization of an unbounded covariance, we have
to consider functional digraphs. This result is proven using an extension of the Matrix-Tree Theorem in
[5, 20].

As Markov sources are closely related to automata and transducers, our results can also be used for
the asymptotic analysis of sequences which can be computed by transducers. This includes the Hamming
weight of many syntactically defined digit expansions as performed in [11, 16, 15, 13, 14]. Furthermore,
occurrences of digits or subwords can also be computed by transducers. Their variance (and covariance)
is analyzed in [12, 2, 19, 3, 22, 8, 10].

In [18], the variance of the output of a transducer as well as the covariance between the input and the
output were analyzed. In this article, we consider the more general setting of Markov chains. The proofs
are similar as those in [18], but the results are valid in a broader context and can be formulated more
clearly. In contrast to [18], we allow the input sequence of the transducer to be generated by a Markov
source. This allows us to model an input sequence for a transducer whose letters do not occur with equal
probabilities and/or have dependencies between the letters. The precise relation between the setting of
this article and that of [18] is given in Section 3.

As an example, we prove that the Hamming weight of the so-called width-w non-adjacent form is
asymptotically jointly normally distributed for two different values ofw ≥ 2. The width-w non-adjacent
form is a binary digit expansion with digits in{0,±1,±3, . . . ,±(2w−1 − 1)} and the syntactical rule
that at most one of anyw adjacent digits is non-zero. This digit expansion exists and is unique for every
integer (cf. [21, 1]). Furthermore, it has minimal Hamming weight among all digit expansions with this
base and digit set.

The outline of this article is as follows: In Section 2, we define our setting and the types of graphs we use
to state the combinatorial characterization of independent output sums and singular variance-covariance
matrices. These characterizations are given in Section 3 and examples are given in Section 4. In Section 5,
we finally prove the results of Section 3.

2 Preliminaries
In this article, afinite Markov chainconsists of a finite state space{1, . . . ,M}, a finite set of transitions
E between the states, each with a positive transition probability, and a unique(i) initial state1. We denote
the transition probability for a transitione by pe. Then we have

∑

e∈E
e starts ini

pe = 1

for all statesi. Note that for all transitionse ∈ E , we requirepe > 0. Further note that there may be
multiple transitions between two states but always only a finite number of them. This may be useful for
different outputs later on.

The transition probabilities induce a probability distribution on the paths of lengthn starting in the
initial state1. LetXn be a random path of lengthn according to this model.

(i) This is no restriction as we can always add an additional state and the transitions starting in this state with probabilities corre-
sponding to the non-degenerate initial distribution. The output functions are then extended by mapping these transitions to0.
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1 | 0

0 | 1
0 | 11 | 1

Fig. 1: A small example of a transducer.

All states of the underlying digraph of the Markov chain are assumed to be accessible from the initial
state. Contracting each strongly connected component of the underlying digraph gives an acyclic digraph,
the so-called condensation. We assume that this condensation has only one leaf (i.e., one vertex with
out-degree0). The strongly connected component corresponding to this leaf is calledfinal component.
We assume that the period (i.e., the greatest common divisorof the lengths of all cycles) of this final
component is1. We call such Markov chainsfinally connectedandfinally aperiodic.

Additionally we useoutput functionsk : E → R. The corresponding random variableKn is the sum of
all values ofk along a random pathXn. We callKn theoutput sumof the Markov chain with respect to
k. We use several output functionsk1, . . . ,km and the corresponding random variablesK

(1)
n , . . . ,K(m)

n

simultaneously for one Markov chain.

Remark2.1. Usually, one is interested in a function evaluated at the sequence of random states of the
Markov chain. This is equivalent to this setting with an output function of the transitions: For the one
direction, the restriction of the output function to the outgoing transitions of one state is constant for every
state. For the other direction, we use the standard construction of the Markov chain with state space
{(i, j) | 1 ≤ i, j ≤ M}.

Thus, our setting can be seen as a Markov source with a finite set of m-dimensional vectors as alphabet.

We are interested in the joint distribution of the random variablesK(1)
n , . . . ,K(m)

n . For one coordinate,
we will prove that the expected value ofK(i)

n is ein + O(1) for constantsei. The variance-covariance

matrix of K(1)
n , . . . , K(m)

n will turn out to beΣn + O(1) for a matrixΣ. We callΣ the asymptotic
variance-covariance matrix and its entries the asymptoticvariances and covariances.

We will combinatorically characterize Markov chains with output functions such that the variance-
covariance matrix is regular. Furthermore, we give a combinatorial characterization of the case that the
asymptotic covariance is zero. As this is only influenced by two output functions, we restrict ourselves to
K

(1)
n andK(2)

n in this case.

Remark2.2. Markov chains with output functions are closely related to transducers with a probability
distribution for the input: A transducer is defined to consist of a finite set of states, an initial state, a set
of final states, an input alphabet, an output alphabet and a finite set of transitions, where a transition starts
in one state, leads to another state and has an input and an output label from the corresponding alphabets.
See [4, Chapter 1] for a more formal definition. An example of atransducer is given in Figure 1. We label
the transitions with “input label| output label”. The initial state is marked by an ingoing arrow starting at
no other state and the final states are marked by outgoing arrows leading to no other state.

A Markov chain with one output function can be obtained by a transducer with additional probability
distributions for the outgoing transitions of each state and by deleting the input labels of the transducer.

If we have two transducers where only the outputs of the transitions are different, we can choose
probability distributions for the outgoing transitions ofeach state. Then we obtain a Markov chain with
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two output functions. Thus, we can use our results for two output functions (see Examples 4.2 and 4.3).

Remark2.3. We can additionally havefinal output functionsf : {1, . . . ,M} → R for each output function
k and redefine the random variableKn as the sum of the values of the output functionk along a random
pathXn plus the final outputf of the final state of this path. We will see that this does not change the
main terms of the asymptotic behavior. Thus, the results in Section 3 are still valid (see also Remark 5.5).

Remark2.4. The Parry measure are probabilitiespe such that every path of lengthn has the same weight
up to a constant factor (cf. [24, 23]). If we are interested inprobabilities such that every path of lengthn
starting in the initial state1 has exactly the same weight, we have to use the Parry measure with additional
exit weights: Each path is additionally weighted by these exit weights according to the final state of the
path (cf. [17, Lemma 4.1]).

However, the sum of the weights of all paths of lengthn is no longer normalized: It differs from1 by
an exponentially small error term forn → ∞. This gives an approximate equidistribution of all paths of
lengthn. As we are interested in the asymptotic behavior forn → ∞, the expected value and the variance
of the corresponding measurable functionKn can still be defined as usual.

If we use these exit weightsws in our setting, the main terms of the asymptotic behavior arenot
changed. Thus, the theorems in Section 3 are still valid (seealso Remark 5.5).

These exit weights can also be used to simulate final and non-final states of a transducer by setting the
weights of non-final states to0. However, not all exit weights of the final component are allowed to be
zero.

Next, we define some subgraphs of the underlying graph of the final component and extend the proba-
bilities and the output functions to these subgraphs.

Definition 2.5. We define the following types of directed graphs as subgraphsof the final component of
the Markov chain.

• A rooted treeis a weakly connected digraph with one vertex which has out-degree0, while all other
vertices have out-degree1. The vertex with out-degree0 is called theroot of the tree.

• A functional digraphis a digraph whose vertices have out-degree1. Each component of a functional
digraph consists of a directed cycle and some trees rooted atvertices of the cycle. For a functional
digraphD, letCD be the set of all cycles ofD.

The probabilitiespe can be multiplicatively extended to a weight function for arbitrary subgraphs of
the Markov chain: LetD be any subgraph of the underlying graph of the Markov chain, then define the
weight ofD by

pD =
∏

e∈D

pe.

For a pathP of lengthn, this is exactly the probabilityP(Xn = P ).
However, the output functionk is additively extended to cyclesC of the underlying graph of the Markov

chain by

k(C) =
∑

e∈C

k(e).

This can further be extended to functional digraphs:
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Definition 2.6. LetD1 andD2 be the sets of all spanning subgraphs of the final component ofthe Markov
chainM which are functional digraphs and have one and two components, respectively.

For functionsg andh : E → R, we define

g(D1) =
∑

D∈D1

pD
∑

C∈CD

g(C),

(g, h)(D1) =
∑

D∈D1

pD
∑

C∈CD

g(C)h(C),

(g, h)(D2) =
∑

D∈D2

pD
∑

C1∈CD

∑

C2∈CD

C2 6=C1

g(C1)h(C2).

As functionsg andh, we use the output functionsk1, . . . ,km and the constant function1(e) = 1.

3 Main Results
In this section, we present the combinatorial characterization of output functions of Markov chains which
are asymptotically independent and of Markov chains with output functions with a singular variance-
covariance matrix. The proofs can be found in Section 5.

If the underlying directed graph of the Markov chain isj-regular, every transition has probability1/j,
we only have two output functions and the first output functionk1 : E → {0, 1, . . . , j− 1} is such that the
restrictions ofk1 to the outgoing transitions of one state is bijective for every state, then these results are
stated in [18] (see also Remark 2.2).

The next definition describes a sequence of random variableswhose difference from its expected value
is bounded for all elements.

Definition 3.1. The output sumKn of a Markov chain is calledquasi-deterministicif there is a constant
a ∈ R such that

Kn = an+O(1)

holds for alln.

Next we give the combinatorial characterization of output sums with bounded variance in the case of a
not necessarily independent identically distributed input sequence.

Theorem 1. For a finite, finally connected and finally aperiodic Markov chainM with an output function
k, the following assertions are equivalent:

(a) The asymptotic variancev of the output sum is0.

(b) There exists a states of the final component and a constanta ∈ R such that

k(C) = a1(C)

holds for every closed walkC of the final component visiting the states exactly once.

(c) There exists a constanta ∈ R such that

k(C) = a1(C)

holds for every directed cycleC of the final component ofM.
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In that case,an+O(1) is the expected value of the output sum and Statement (b) holds for all statess
of the final component.

If M is furthermore strongly connected, the following assertion is also equivalent:

(d) The random variableKn is quasi-deterministic with constanta.

In the case that the value of the output function is0 or 1 for each transition, there are only two trivial
output functions with asymptotic variance zero.

Corollary 3.2. Let k : E → {0, 1}. Then the asymptotic variancev is zero if and only if the output
functionk is constant on the final component.

The next theorem extends Theorem 1 to the joint distributionof several simultaneous output sums by
combinatorically describing the case of a singular variance-covariance matrix.

Theorem 2. LetM be a finite, finally connected, finally aperiodic Markov chainwithm output functions
k1, . . . ,km. Then the variance-covariance matrixΣ is regular if and only if the functions1, k1, . . . ,km
are linearly independent as functions from the vector spaceof cycles of the final component to the real
numbers, i.e. there do not exist real constantsa0, . . . ,am, not all zero, such that

a01(C) + a1k1(C) + · · ·+ amkm(C) = 0 (1)

holds for all cycles (or equivalently, for all closed walks)C of the final component.
The random variablesK(1)

n , . . . ,K(m)
n are asymptotically jointly normally distributed if and only if Σ

is regular.

Remark3.3. Theorems 1 and 2 and Corollary 3.2 are independent of the choice of the probabilities of
the transitions. Only the structure of the underlying graphof the Markov chain and the output functions
influence the result. Note, however, that according to our general assumptions, all transitions havepositive
probability.

The next theorem gives a combinatorial characterization ofoutput functions of a Markov chain which
are asymptotically independent. As this characterizationis given by the covariance, we can restrict our-
selves to two output functions without loss of generality.

Theorem 3. LetM be a finite, finally connected, finally aperiodic Markov chainwith two output functions
k1 andk2.

Then the random variableK(i)
n has the expected valueein+O(1) and the variancevin+O(1) where

the constants are

ei =
ki(D1)

1(D1)
, (2)

vi =
1

1(D1)

(

(ki − ei1, ki − ei1)(D1)− (ki − ei1, ki − ei1)(D2)
)

for i = 1, 2.
The covariance ofK(1)

n andK(2)
n is cn+O(1) with the constant

c =
1

1(D1)

(

(k1 − e11, k2 − e21)(D1)− (k1 − e11, k2 − e21)(D2)
)

.
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1

0

2
0

w + 1

1

w
0

1 | 1

0 | 0
1 | 0

0 | 0

0 | 1

1 | 0

0
| 0

1 | 0

Fig. 2: TransducerT (w) to compute the Hamming weight of the width-w non-adjacent form.

The random variablesK(1)
n andK(2)

n are asymptotically independent if and only if

(k1 − e11, k2 − e21)(D1) = (k1 − e11, k2 − e21)(D2).

In the case that the expected values ofK
(1)
n andK(2)

n are both bounded, i.e.e1 = e2 = 0, these random
variables are asymptotically independent if and only if

(k1, k2)(D1) = (k1, k2)(D2).

4 Examples
In this section, we first prove the asymptotic joint normal distribution of the Hamming weights of two
different digit expansions by using Theorem 2. Then we investigate the independence of length2 blocks
of 0-1-sequences by using Theorem 3. In both cases we start with twotransducers to construct a Markov
chain with two output functions, once as a Cartesian product, once via Remark 2.2.
Example4.1 (Width-w non-adjacent forms). Let 2 ≤ w1 < w2 be integers. We consider the asymp-
totic joint distribution of the Hamming weight of the width-w1 non-adjacent form (w1-NAF) and the
Hamming weight of thew2-NAF. The width-w non-adjacent form is a binary digit expansion with digit
set{0,±1,±3, . . . ,±(2w−1 − 1)} and the syntactical rule that at most one of anyw adjacent digits is
non-zero.

It will turn out that this distribution is normal if and only if the variance-covariance matrix is regu-
lar. Using Theorem 2, we have to find closed walks in the corresponding Markov chain such that all
coefficients in (1) have to be zero.
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The transducerT (w) in Figure 2 computes the Hamming weight of thew-NAF of the integern when
the input is the binary expansion ofn (cf. [15]). It hasw + 1 states. Next, we construct the Cartesian
product of the transducers forw1 andw2 and choose any non-degenerate probability distribution, i.e. with
all probabilities non-zero, for the outgoing transitions of a state. Thus, we obtain a Markov chainM with
(w1 +1)(w2 +1) states with two different output functionsh1 andh2 corresponding to the outputs of the
transducers forw1 andw2, respectively. We can now use Theorem 2 to prove that these two Hamming
weights are asymptotically jointly normally distributed.

The Cartesian product of two closed walks inT (w1) andT (w2) with the same input sequence is a
closed walk inM. We construct three different closed walks and prove that all three coefficients in (1)
have to be zero. For brevity, we denote a closed walk in the Cartesian productM and its projections to
T (w1) andT (w2) by the same letter.

First, we choose the closed walkC1 starting in state1 with input sequence0. We obtainh1(C1) = 0
in T (w1), h2(C1) = 0 in T (w2) and1(C1) = 1. Second, we choose the closed walkC2 starting in1
with input sequence10w2−1. Becausew1 < w2 and the loop at state1, C2 is a closed walk inT (w1)
andT (w2). We obtainh1(C2) = 1 in T (w1), h2(C2) = 1 in T (w2) and1(C2) = w2. The third choice
depends on whetherw1 = w2 − 1 or not:

• w1 6= w2 − 1: We choose the closed walkC3 starting in1 with input sequence10w1−110w1−10α

whereα = max(w2 − 2w1, 0). On the one hand, this is a closed walk inT (w1) consisting of two
times the cycle1 → w1 → 1 andα times the loop at state1. On the other hand, this is a closed
walk in T (w2) consisting of the cycle1 → w2 → 1 and the correct number of loops at state1. We
obtainh1(C3) = 2 in T (w1), h2(C3) = 1 in T (w2) and1(C3) = max(w2, 2w1).

• w1 = w2−1: We choose the closed walkC3 starting in1with input sequence10w1−110w1−110w1−1.
On the one hand, this is a closed walk inT (w1) consisting of three times the cycle1 → w1 → 1. On
the other hand, this is a closed walk inT (w2) consisting of the closed walk1 → w2 → w2 + 1 →
w2 → 1 and the correct number of loops at state1. We obtainh1(C3) = 3 in T (w1), h2(C3) = 2
in T (w2) and1(C3) = 3w1.

This yields a system of linear equations for the coefficientsa0, a1 anda2 with coefficient matrix




1 0 0
w2 1 1

max(w2, 2w1) 2 1



 or





1 0 0
w2 1 1
3w1 3 2



 ,

which only has the trivial solution. Thus, the Hamming weights of thew1-NAF and thew2-NAF are
asymptotically jointly normally distributed, independently of the choice of the distributions for the Markov
chain.

The next two examples investigate the asymptotic independence of length two blocks of0-1-sequences.

Example4.2 (10- and11-blocks). The two transducers in Figure 3 count the number of10- and11-blocks
in 0-1-sequences. After deleting the outputs, both transducers are the same. Thus, any non-degenerate
probability distribution on the outgoing edges of the states gives a Markov chain with two output functions
k10 (for the10-blocks) andk11 (for the11-blocks).

Because of the two loops and the cycle0 → 1 → 0, Theorem 2 implies that the number of10- and
11-blocks is asymptotically normally distributed.
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01
0 | 1

0 | 0

1 | 0

1 | 0

(A) 10-blocks

01
0 | 0

0 | 0

1 | 0

1 | 1

(B) 11-blocks

Fig. 3: Transducers to compute the number of10- and11-blocks.

01 01 01

(A) D1

01

(B) D2

Fig. 4: Functional digraphs of the transducers of Examples 4.2 and 4.3.
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The next question is: For which choices of probability distributions is the number of10- and11-blocks
asymptotically independent? All functional digraphs withone or two components are given in Figure 4.
Using Theorem 3, we obtain the following system of equationsfor the values of the probabilities such that
the numbers of11-blocks and10-blocks are asymptotically independent: first by definition

1 = p0→0 + p0→1,

1 = p1→0 + p1→1,

then by (2)

e10 =
p0→1p1→0

p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0
,

e11 =
p0→1p1→1

p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0
,

and finally for the independence

p0→1p1→1(−e10)(1 − e11) + p0→1p1→0(1− 2e10)(−2e11) + p0→0p1→0(−e10)(−e11)

= p0→0p1→1(−e10)(−e11) + p0→0p1→1(−e10)(1− e11).

This system has non-trivial real solutions, i.e. solutionswhere all probabilities are non-zero, with

p0→0 = −1

2
p1→1 + 2− 1

2

√

p21→1 − 8p1→1 + 8

for all 0 < p1→1 < 1. Then we have2−
√
2 < p0→0 < 1.

Thus, for these transition probabilities, the number of10-blocks and the number of11-blocks are
asymptotically independent.

One such example of a non-trivial solution isp1→1 = p1→0 = 0.5, p0→0 ≈ 0.7192 andp0→1 ≈
0.2808. Note that for the symmetric distributionsp0→0 = p0→1 = p1→1 = p1→0 = 0.5, we obtain
asymptotic dependence of the number of10- and11-blocks.

Example4.3 (00- and11-blocks). The two transducers in Figure 5 count the number of00- and11-blocks
in 0-1-sequences. They have the same underlying graph and the sameinput labels. Thus, choosing any
non-degenerate probability distribution of the outgoing edges of the states yields a Markov chain with two
output functions.

Because of the two loops and the cycle0 → 1 → 0, Theorem 2 implies that the number of00- and
11-blocks is asymptotically normally distributed.

The next question is: For which choices of probability distributions is the number of00- and 11-
blocks asymptotically independent? The functional digraphs of the final component are the same as in
Example 4.2, see again Figure 4. By Theorem 3, the system of equations for the transition probabilities
pe such that the two output functions are asymptotically independent are: first by definition

1 = p0→0 + p0→1,

1 = p1→0 + p1→1,
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0

1

1
|0

0 | 1

1 | 0

1 | 0

0 | 0

0
|0

(A) 00-blocks

0

1

1
|0

0 | 0

1 | 0

1 | 1

0 | 0

0
|0

(B) 11-blocks

Fig. 5: Transducers to compute the number of00- and11-blocks.

then by (2)

e00 =
p0→0p1→0

p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0
,

e11 =
p0→1p1→1

p0→1p1→1 + 2p0→1p1→0 + p0→0p1→0
,

and finally for the independence

p0→1p1→1(−e00)(1 − e11) + p0→1p1→0(−2e00)(−2e11) + p0→0p1→0(1 − e00)(−e11)

= p0→0p1→1(1 − e00)(1− e11) + p0→0p1→1(−e00)(−e11).

These equations have no solution with0 < pe < 1 for all transitionse. Thus, the numbers of00- and
11-blocks are asymptotically dependent for all choices of theinput distributions, as expected.

5 Proofs
In this section, we prove the results from Section 3. Most of the proofs follow along the same ideas as in
[18]. The main differences are that one has to replace “complete transducer” by “Markov chain” and the
input sum by the output sumK(1)

n .
We first prove Theorem 3 with the help of two lemmas. For one of these lemmas, we use a version of

the Matrix-Tree Theorem for weighted directed forests proved in [5, 20]. At the end of this section, we
prove Theorems 1 and 2.

Definition 5.1. LetA, B ⊆ {1, . . . , N}. LetFA,B be the set of all forests which are spanning subgraphs
of the final component of the Markov chainM with |A| trees such that every tree is rooted at some vertex
a ∈ A and contains exactly one vertexb ∈ B.
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Let A = {i1, . . . , in} andB = {j1, . . . , jn} with i1 < · · · < in andj1 < · · · < jn. ForF ∈ FA,B,
we define a functiong : B → A by g(j) = i if j is in the tree ofF which is rooted in vertexi. We further
define the functionh : A → B by h(ik) = jk for k = 1, . . . , n. The compositiong ◦ h : A → A is a
permutation ofA. We definesignF = sign g ◦ h.

If |A| 6= |B|, thenFA,B = ∅. If |A| = |B| = 1, thensignF = 1 andFA,B consists of all spanning
trees rooted ina ∈ A.

Theorem (All-Minors-Matrix-Tree Theorem [5, 20]). For a directed, weighted graph with loops and
multiple edges, letL = (lij)1≤i,j≤N be the Laplacian matrix, that is

∑N

j=1 lij = 0 for everyi = 1, . . . , N
and−lij is the sum of the weightspe of all edgese from i to j for i 6= j. Then, for|A| = |B|, the minor
detLA,B satisfies

detLA,B = (−1)
∑

i∈A i+
∑

j∈B j
∑

F∈FA,B

pF signF

whereLA,B is the matrixL whose rows with index inA and columns with index inB are deleted.

The All-Minors-Matrix-Tree Theorem is still valid for|A| 6= |B| if we assume that the determinant of
a non-square matrix is0. For notational simplicity, we use this convention in the rest of this section.

Definition 5.2. The transition matrixW (x1, . . . , xm) of a Markov chain withM states andm output
functionsk1, . . . ,km is aM ×M matrix whose(i, j)-th entry is

∑

e : i→j

pex
k1(e)
1 · · ·xkm(e)

m

wherepe is the probability of the transitione.
Let A(x1, . . . , xm) be theN × N transition matrix of the final component of the Markov chain.Let

the order of the states be such that the transition matrix of the whole Markov chainW (x1, . . . , xm) has
the block structure

W (x1, . . . , xm) =

(

∗ ∗
0 A(x1, . . . , xm)

)

(3)

where∗ denotes any matrix. If the Markov chain is strongly connected, the matrices∗ are not present
(they have0 rows).

We first use the All-Minors-Matrix-Tree Theorem to connect the derivatives of the characteristic poly-
nomial of the transition matrix with a sum of weighted digraphs in the next lemma.

Lemma 5.3. For f(x1, x2, z) = det(I − zA(x1, x2)), we have

fxi
(1, 1, 1) = −ki(D1), fx1x2(1, 1, 1) = (k1, k2)(D2)− (k1, k2)(D1),

fz(1, 1, 1) = −1(D1), fxiz(1, 1, 1) = (ki,1)(D2)− (ki,1)(D1),

fxixi
(1, 1, 1) + fxi

(1, 1, 1) = (ki, ki)(D2)− (ki, ki)(D1),

fzz(1, 1, 1) + fz(1, 1, 1) = (1,1)(D2)− (1,1)(D1)

for i = 1, 2.

This lemma can be proven in the same way as [18, Lemma 5.3] using the All-Minors-Matrix-Tree
Theorem [5, 20].

The following lemma will be used form ≥ 2 output functions later on.



Variance and Covariance of Simultaneous Outputs of a MarkovChain 13

Lemma 5.4. Let f(x1, . . . , xm, z) = det(I − zA(x1, . . . , xm)). Then there is a unique dominant root
z = ρ(x1, . . . , xm) of f in a neighborhood of(1, . . . , 1).

The moment generating function of(K
(1)
n , . . . ,K

(m)
n ) has the asymptotic expansion

E(exp(s1K
(1)
n + · · ·+ smK(m)

n )) = eu(s1,...,sm)n+v(s1,...,sm)(1 +O(κn))

whereκ < 1,

u(s1, . . . , sm) = − log ρ(es1 , . . . , esm),

andv(s1, . . . , sm) are analytic functions in a small neighborhood of(0, . . . , 0).

Proof: The moment generating function of(K(1)
n , . . . ,K

(m)
n ) is

E(exp(s1K
(1)
n + · · ·+ smK(m)

n )) = [zn]vt1(I − zW (es1 , . . . , esm))−1v2(e
s1 , . . . , esm)

for the initial vectorv1, and a vectorv2(x1, . . . , xm) encoding all the final information of the states(ii)

where we write[zn]b(z) for the coefficient ofzn in the power seriesb. Because of the block structure of
the transition matrixW of the whole Markov chain in (3), we obtain

E(x
K(1)

n

1 · · ·xK(m)
n

m ) = [zn]
F1(x1, . . . , xm, z)

det(I − zW (x1, . . . , xm))

= [zn]
F1(x1, . . . , xm, z)

F2(x1, . . . , xm, z)f(x1, . . . , xm, z)

for “polynomials”F1 andF2 , i.e. finite linear combinations ofxα1
1 · · ·xαm

m zβ for αi ∈ R andβ a non-
negative integer. The functionF2 corresponds to the determinant of the non-final part of the Markov
chain.

We obtain the coefficient ofzn by singularity analysis (cf. [7]): Since the final componentof M
is again a Markov chain, the dominant singularity of1/f(1, . . . , 1, z) is 1 by the theorem of Perron–
Frobenius (cf. [9]). By the aperiodicity of the final component, this dominant singularity is unique and it
is ρ(1, . . . , 1) = 1.

Next, we consider the non-final components of the Markov chain using the same arguments as in [18].
The corresponding non-final componentM0 is not a Markov chain as the transition matrix is not stochas-
tic. LetM+

0 be the Markov chain that is obtained fromM0 by adding loops with the missing probabilities
where necessary. The dominant eigenvalue of the transitionmatrix ofM+

0 is 1. As the transition matrices
of M0 andM+

0 satisfy element-wise inequalities but are not equal (at(x1, . . . , xm) = (1, . . . , 1)), the
theorem of Perron–Frobenius (cf. [9, Theorem 8.8.1]) implies that the dominant eigenvalues ofM0 have
absolute value less than1. Thus, the dominant singularities ofF2(1, . . . , 1, z)

−1 are at|z| > 1.
AsA(1, . . . , 1, z) = (1− z)−1, we obtainF1(1, . . . , 1) 6= 0.
Thus, there is a is the unique, dominant singularity of

F1(1, . . . , 1, z)

F2(1, . . . , 1, z)f(1, . . . , 1, z)
,

(ii) This information is the final output (see Remark 2.3) and the exit weight (see Remark 2.4) included aswix
f1(i)
1 · · ·x

fm(i)
m in

thei-th coordinate ofv2(x1, . . . , xm). This does not change the asymptotic behavior (see Remark 5.5).
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which is ρ(1, . . . , 1) = 1. This also holds for(x1, . . . , xm) in a small neighborhood of(1, . . . , 1) by
the continuity of the eigenvalues of the transition matrices. Thus,ρ(x1, . . . , xm) is this unique dominant
singularity.

Now, singularity analysis (cf. [7]) implies the statement of this lemma.

Remark5.5. The main term of the asymptotic expansion of the moment generating function only de-
pends onρ(x1, . . . , xm) and therefore onf(x1, . . . , xm, z). It does not depend on the “polynomials”
F1(x1, . . . , xm, z) andF2(x1, . . . , xm, z). Thus, only the final component influences the main term. Nei-
ther the states in the non-final part of the Markov chain nor the final outputs and exit weights influence
the main term.

Now, we can use the previous two lemmas to prove Theorem 3.

Proof of Theorem 3.:By Lemma 5.4 for two output functionsk1 andk2, the moment generating function
satisfies the conditions of the Quasi-Power Theorem [18, Theorem 5.1], which yields the expected value

E(K(1)
n ,K(2)

n ) = n gradu(0) +O(1)

and the variance
V(K(1)

n ,K(2)
n ) = nHu(0) +O(1)

with gradu(0) andHu(0) the gradient and the Hessian ofu at 0, respectively. Furthermore, we obtain
an asymptotic joint normal distribution of the standardized random vector if the Hessian is not singular
by [18, Theorem 3.9]. Otherwise, the limiting random vectoris either a pair of degenerate random vari-
ables, or a degenerate and normally distributed one, or a linear transformation thereof. Thus, the random
variablesK(1)

n andK(2)
n are asymptotically independent if and only if the covariance is zero.

By implicit differentiation, we obtain the following formulas for the constants of the moments in terms
of the partial derivatives off :

ei =
fxi

fz

∣

∣

∣

1

,

vi =
1

f3
z

(f2
xi
(fzz + fz) + f2

z (fxixi
+ fxi

)− 2fxi
fzfxiz)

∣

∣

∣

1

,

c =
1

f3
z

(fx1fx2(fzz + fz) + f2
z fx1x2 − fx2fzfx1z − fx1fzfx2z)

∣

∣

∣

1

for i = 1, 2.
Now, Lemma 5.3 implies the results as stated in the theorem.

Proof of Theorem 1: This follows by the same arguments as in [18, Theorem 3.1].

Proof of Corollary 3.2: This follows by the same arguments as in [18, Corollary 3.6].

Proof of Theorem 2: WLOG, we assume thatEK(i)
n = O(1) for i = 1, . . . ,m by subtracting the

corresponding constant of the expected value from each output function. There exists a unitary matrix
T = (tji)1≤j,i≤m such that the variance-covariance matrixΣ can be diagonalized asTΣT⊤ = D. The
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diagonal matrixD is the variance-covariance matrix of the linearly transformed random vectorY n =
TKn.

ThenΣ is singular if and only if the diagonal matrixD is singular. This is equivalent to

V(tj1K
(1)
n + · · ·+ tjmK(m)

n ) = O(1) (4)

holds for aj ∈ {1, . . . ,m}. Now consider the output functiontj1k1 + · · ·+ tjmkm. By Theorem 1, (4)
is equivalent to

tj1k1(C) + · · ·+ tjmkm(C) = 0

holding for all cycles of the final component (since the expected value of this output function isO(1)).
If we shift back the output function such that the expected value is no longer bounded, we obtain an

additional summanda01(C).
The asymptotic joint normal distribution follows from Lemma 5.4 and the multidimensional Quasi-

Power Theorem [6, Theorem 2.22].
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Lecture Notes in Comput. Sci., vol. 4783, Springer Berlin Heidelberg, 2007, pp. 62–72.

[11] Peter J. Grabner, Clemens Heuberger, and Helmut Prodinger, Distribution results for low-weight
binary representations for pairs of integers, Theoret. Comput. Sci.319(2004), 307–331.

[12] Peter J. Grabner, Clemens Heuberger, Helmut Prodinger, and Jörg Thuswaldner,Analysis of linear
combination algorithms in cryptography, ACM Trans. Algorithms1 (2005), 123–142.

[13] Peter J. Grabner and Jörg M. Thuswaldner,On the sum of digits function for number systems with
negative bases, Ramanujan J.4 (2000), no. 2, 201–220.

[14] Florian Heigl and Clemens Heuberger,Analysis of digital expansions of minimal weight, 23rd Intern.
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms
(AofA’12), DMTCS Proceedings, 2012, pp. 399–411.

[15] Clemens Heuberger and Sara Kropf,Analysis of the binary asymmetric joint sparse form, Combin.
Probab. Comput.23 (2014), 1087–1113.

[16] Clemens Heuberger, Sara Kropf, and Helmut Prodinger,Output sum of transducers: Limiting distri-
bution and periodic fluctuation, Electron. J. Combin.22 (2015), no. 2, 1–53.

[17] , Analysis of carries in signed digit expansions, Monatsh. Math. (2016), published online
first, doi:10.1007/s00605-016-0917-x.

[18] Clemens Heuberger, Sara Kropf, and Stephan Wagner,Variances and covariances in the central
limit theorem for the output of a transducer, European J. Combin.49 (2015), 167–187.

[19] Clemens Heuberger and Helmut Prodinger,Analysis of alternative digit sets for nonadjacent repre-
sentations, Monatsh. Math.147(2006), 219–248.

[20] John W. Moon,Some determinant expansions and the matrix-tree theorem, Discrete Math.124
(1994), 163–171.

[21] James A. Muir and Douglas R. Stinson,Minimality and other properties of the width-w nonadjacent
form, Math. Comp.75 (2006), 369–384.

[22] Pierre Nicodème, Bruno Salvy, and Philippe Flajolet,Motif statistics, Theoret. Comput. Sci.287
(2002), no. 2, 593–617.

[23] William Parry,Intrinsic Markov chains, Trans. Amer. Math. Soc.112(1964), 55–66.

[24] Claude E. Shannon,A mathematical theory of communication, Bell System Tech. J.27 (1948), 379–
423.


