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The partial sum of the states of a Markov chain or more gelyemallarkov source is asymptotically normally dis-
tributed under suitable conditions. One of these conditisrthat the variance is unbounded. A simple combinatorial
characterization of Markov sources which satisfy this dtimd is given in terms of cycles of the underlying graph of
the Markov chain. Also Markov sources with higher dimenaiaiphabets are considered.

Furthermore, the case of an unbounded covariance betwearotwdinates of the Markov source is combinatorically
characterized. If the covariance is bounded, then the twodimates are asymptotically independent.

The results are illustrated by several examples, like timeb@r of specific blocks ifi-1-sequences and the Hamming
weight of the widthw non-adjacent form.
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central limit theorem

1 Introduction

We investigate the random vector defined asrtktl partial sum of a Markov source over a higher di-
mensional alphabet. Under suitable conditions, this remdariable is asymptotically jointly normally
distributed. Its mean and variance-covariance matrixnsdr in the number of summands (cﬂ. [6, The-
orem 2.22]). On the one hand, these conditions includeugibidity and aperiodicity of the underlying
graph of the Markov chain, which can be checked easily fovargMarkov chain. On the other hand, we
also have to check that the variance-covariance matrigislae, which requires technical computations.
In this article, we give a simple combinatorial charactaizn of Markov sources whose corresponding
variance-covariance matrix is singular.

The covariance between two coordinates of this random vectdso of interest: If it is bounded, then
these two coordinates are asymptotically independentiseaaf the joint normal distribution. We give a
combinatorial characterization of this case.

These characterizations are given in terms of subgrapheeainderlying graph of the Markov chain:
For the variance-covariance matrix, we only have to comsaflecycles. A regular variance-covariance
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2 Sara Kropf

matrix will be proven to be equivalent to the linear indepemeke of certain functions of cycles of the
underlying graph of the Markov chain. For the characteidrabtf an unbounded covariance, we have
to consider functional digraphs. This result is proven ggin extension of the Matrix-Tree Theorem in
(6. 291

As Markov sources are closely related to automata and tuaess, our results can also be used for
the asymptotic analysis of sequences which can be compytedrsducers. This includes the Hamming
weight of many syntactically defined digit expansions asquered in [11,[1p[ 15[ 19, 14]. Furthermore,
occurrences of digits or subwords can also be computed bgdtecers. Their variance (and covariance)
is analyzed in[[12] 2, 19] 8, 1B, 8] 10].

In [@], the variance of the output of a transducer as welhascbvariance between the input and the
output were analyzed. In this article, we consider the mereegal setting of Markov chains. The proofs
are similar as those in [IL8], but the results are valid in aabdes context and can be formulated more
clearly. In contrast to[[18], we allow the input sequencehaf transducer to be generated by a Markov
source. This allows us to model an input sequence for a trexesavhose letters do not occur with equal
probabilities and/or have dependencies between thedetlére precise relation between the setting of
this article and that of[18] is given in Sectifj 3.

As an example, we prove that the Hamming weight of the sedalidth« non-adjacent form is
asymptotically jointly normally distributed for two diffent values ofv > 2. The width«w non-adjacent
form is a binary digit expansion with digits if0, £1,+3,...,+(2*~! — 1)} and the syntactical rule
that at most one of any adjacent digits is non-zero. This digit expansion existsiarunique for every
integer (cf. Dl]). Furthermore, it has minimal Hammingight among all digit expansions with this
base and digit set.

The outline of this article is as follows: In Sectiﬂn 2, we defour setting and the types of graphs we use
to state the combinatorial characterization of indepehdetput sums and singular variance-covariance
matrices. These characterizations are given in Sefftiod @eamples are given in Sectifin 4. In Secfipn 5,
we finally prove the results of Sectiﬁh 3.

2 Preliminaries

In this article, dfinite Markov chairconsists of a finite state spag, . .., M}, a finite set of transitions
& between the states, each with a positive transition prdibalaind a uniqu initial statel. We denote
the transition probability for a transitianby p.. Then we have

Z pe:1

eck
e starts i
for all statesi. Note that for all transitions € &, we requirep. > 0. Further note that there may be
multiple transitions between two states but always only igefimlumber of them. This may be useful for
different outputs later on.
The transition probabilities induce a probability distiiion on the paths of length starting in the
initial statel. Let X, be a random path of lengthaccording to this model.

O This is no restriction as we can always add an additionak statl the transitions starting in this state with probagdicorre-
sponding to the non-degenerate initial distribution. Thipat functions are then extended by mapping these transito0.
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Fig. 1: A small example of a transducer.

All states of the underlying digraph of the Markov chain asewaned to be accessible from the initial
state. Contracting each strongly connected componengafriterlying digraph gives an acyclic digraph,
the so-called condensation. We assume that this condendss only one leaf (i.e., one vertex with
out-degred). The strongly connected component corresponding to #aikis calledfinal component
We assume that the period (i.e., the greatest common digfstire lengths of all cycles) of this final
componentid. We call such Markov chairfinally connected@ndfinally aperiodic

Additionally we useoutput functiong: £ — R. The corresponding random varialfg, is the sum of
all values ofk along a random patly,,. We call K, the output sunof the Markov chain with respect to
k. We use several output functiohs, ..., k,,, and the corresponding random variabléqg), K,(Lm)
simultaneously for one Markov chain.

Remark2.1. Usually, one is interested in a function evaluated at theisege of random states of the
Markov chain. This is equivalent to this setting with an autfunction of the transitions: For the one
direction, the restriction of the output function to theguaing transitions of one state is constant for every
state. For the other direction, we use the standard cotistnuaf the Markov chain with state space
{(,5) | 1<i,j < M}

Thus, our setting can be seen as a Markov source with a fintitd sedimensional vectors as alphabet.

We are interested in the joint distribution of the randoma.biesK,(f), . ,K,(Lm). For one coordinate,

we will prove that the expected value ﬁfff) is e;n + O(1) for constants;. The variance-covariance

matrix of £\, ..., K™ will turn out to beXn + O(1) for a matrixX. We call ¥ the asymptotic
variance-covariance matrix and its entries the asymptati@nces and covariances.

We will combinatorically characterize Markov chains withtput functions such that the variance-
covariance matrix is regular. Furthermore, we give a coiioinal characterization of the case that the
asymptotic covariance is zero. As this is only influencedry dutput functions, we restrict ourselves to
K andK? in this case.

Remark2.2. Markov chains with output functions are closely relatedremsducers with a probability
distribution for the input: A transducer is defined to cohefsa finite set of states, an initial state, a set
of final states, an input alphabet, an output alphabet andta et of transitions, where a transition starts
in one state, leads to another state and has an input andurt taitel from the corresponding alphabets.
See ﬂl Chapter 1] for a more formal definition. An example whasducer is given in Figuﬂa 1. We label
the transitions with “input labgloutput label”. The initial state is marked by an ingoing arsgarting at
no other state and the final states are marked by outgoingsifeading to no other state.

A Markov chain with one output function can be obtained byaa$ducer with additional probability
distributions for the outgoing transitions of each state lay deleting the input labels of the transducer.

If we have two transducers where only the outputs of the itians are different, we can choose
probability distributions for the outgoing transitionsexdch state. Then we obtain a Markov chain with
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two output functions. Thus, we can use our results for twpotfunctions (see Examplgs}.2 dnd 4.3).

Remark2.3. We can additionally haviénal output functiong: {1,..., M} — R for each output function
k and redefine the random variaklig, as the sum of the values of the output functioalong a random
path X, plus the final outpujf of the final state of this path. We will see that this does naingfe the
main terms of the asymptotic behavior. Thus, the resultse'miSnB are still valid (see also Rem5.5).

Remark2.4. The Parry measure are probabilitigssuch that every path of lengthhas the same weight
up to a constant factor (cI]jZEZS]). If we are interesteg@riobabilities such that every path of length
starting in the initial staté has exactly the same weight, we have to use the Parry meaghradditional
exit weights Each path is additionally weighted by these exit weightsading to the final state of the
path (cf. [1f, Lemma 4.1]).

However, the sum of the weights of all paths of lengtts no longer normalized: It differs frorm by
an exponentially small error term far — co. This gives an approximate equidistribution of all paths of
lengthn. As we are interested in the asymptotic behaviorfer oo, the expected value and the variance
of the corresponding measurable functigp can still be defined as usual.

If we use these exit weight®, in our setting, the main terms of the asymptotic behaviorrare
changed. Thus, the theoremsin Secﬁbn 3 are still vaIide(MeRemarS).

These exit weights can also be used to simulate final and nahstiates of a transducer by setting the
weights of non-final states @ However, not all exit weights of the final component arevadid to be
Zero.

Next, we define some subgraphs of the underlying graph of taédomponent and extend the proba-
bilities and the output functions to these subgraphs.

Definition 2.5. We define the following types of directed graphs as subgraptig final component of
the Markov chain.

¢ A rooted treds a weakly connected digraph with one vertex which has egrel), while all other
vertices have out-degrée The vertex with out-degregis called theroot of the tree.

¢ A functional digraphs a digraph whose vertices have out-dedreleach component of a functional
digraph consists of a directed cycle and some trees rootegttites of the cycle. For a functional
digraphD, letCp be the set of all cycles db.

The probabilitiegp. can be multiplicatively extended to a weight function fobitnary subgraphs of
the Markov chain: LefD be any subgraph of the underlying graph of the Markov chaien define the

weight of D by
bPD = H De-

ecD

For a pathP of lengthn, this is exactly the probabilitf (X,, = P).
However, the output functiokis additively extended to cycl€s of the underlying graph of the Markov
chain by

k(C) = k(e).

ecC

This can further be extended to functional digraphs:
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Definition 2.6. Let D; andD,, be the sets of all spanning subgraphs of the final componénédflarkov
chain M which are functional digraphs and have one and two compsnegpectively.
For functionsg andh: £ — R, we define

90y = S o 3 9(0),

DeD; CeCp

(9,h)(D1) = Z Pp Z 9(C)L(C),

DeD; CeCp

(g.W)(D2)= > pp >, Y. g(Ci)h(Ca).

DeDs C1€Cp C2eCp
27#C1

As functionsg andh, we use the output functiorts, ..., k,, and the constant functiah(e) = 1.

3 Main Results

In this section, we present the combinatorial charactgoz®f output functions of Markov chains which
are asymptotically independent and of Markov chains wittpoufunctions with a singular variance-
covariance matrix. The proofs can be found in Sedfjon 5.

If the underlying directed graph of the Markov chainjisegular, every transition has probability;,
we only have two output functions and the first output functio: £ — {0,1,...,j— 1} is such that the
restrictions ofk; to the outgoing transitions of one state is bijective forrg\atate, then these results are
stated in [18] (see also Remdrk]2.2).

The next definition describes a sequence of random varialfilese difference from its expected value
is bounded for all elements.

Definition 3.1. The output suni,, of a Markov chain is calleduasi-deterministid there is a constant
a € R such that
K, =an+0O(1)

holds for alln.

Next we give the combinatorial characterization of outpumhs with bounded variance in the case of a
not necessarily independent identically distributed trgmguence.

Theorem 1. For a finite, finally connected and finally aperiodic Markowaai M with an output function
k, the following assertions are equivalent:

(a) The asymptotic varianceof the output sum i8.
(b) There exists a stateof the final component and a constant R such that
k(C) =al(C)
holds for every closed walK of the final component visiting the statexactly once.
(c) There exists a constaate R such that
k(C) =al(C)

holds for every directed cycle of the final component o¥1.
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In that casean + O(1) is the expected value of the output sum and Statnt (kp fooldll statess
of the final component.
If M is furthermore strongly connected, the following asseri®also equivalent:

(d) The random variablés,, is quasi-deterministic with constaat

In the case that the value of the output function isr 1 for each transition, there are only two trivial
output functions with asymptotic variance zero.

Corollary 3.2. Letk: £ — {0,1}. Then the asymptotic varianeeis zero if and only if the output
functionk is constant on the final component.

The next theorem extends Theorﬂm 1 to the joint distributioseveral simultaneous output sums by
combinatorically describing the case of a singular vaaocavariance matrix.

Theorem 2. Let M be a finite, finally connected, finally aperiodic Markov chaith m output functions
k1, ..., km. Then the variance-covariance matdixis regular if and only if the functions, &1, ..., k,
are linearly independent as functions from the vector spzfagycles of the final component to the real
numbers, i.e. there do not exist real constaiys. . ., a,,, hot all zero, such that

aO]l(C)—i-alkl(C)—l—---—i—amkm((}'):0 (1)
holds for all cycles (or equivalently, for all closed walks)of the final component.
The random variableg’\”, ..., K™ are asymptotically jointly normally distributed if and grif
is regular.

Remark3.3. Theoremd]1 anf] 2 and Corollgy]3.2 are independent of theetudithe probabilities of
the transitions. Only the structure of the underlying grapthe Markov chain and the output functions
influence the result. Note, however, that according to onege assumptions, all transitions haasitive
probability.

The next theorem gives a combinatorial characterizatiasugifut functions of a Markov chain which
are asymptotically independent. As this characterizaaiven by the covariance, we can restrict our-
selves to two output functions without loss of generality.

Theorem 3. Let M be afinite, finally connected, finally aperiodic Markov chaith two output functions
k1 and ko. )

Then the random variabl&”” has the expected valegn + O(1) and the variance;n + O(1) where
the constants are

€= 2=, (2)

v, = ((kl — eill, kz — €Zﬂ)(D1) — (kl — 61'117 kz — €Zﬂ)(D2))

fori=1,2.
The covariance ok\") and K% is cn + O(1) with the constant

((kl - 61]1, kg - 62]1)(2)1) — (kl — 61]1, kg — 62]1)(2)2)).
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Fig. 2: Transduce¥ (w) to compute the Hamming weight of the widihnon-adjacent form.

The random variable®’ (" and K{? are asymptotically independent if and only if
(kl — 61]1, kQ — 62]1)(D1) = (/{1 — 811[, /{2 — 6211)(D2).

In the case that the expected valueif(ﬁ) andK,(f) are both bounded, i.e; = e5 = 0, these random
variables are asymptotically independent if and only if

(K1, k2)(D1) = (k1, k2)(Da).

4 Examples

In this section, we first prove the asymptotic joint normatdbution of the Hamming weights of two
different digit expansions by using Theorﬂn 2. Then we itigate the independence of lengttblocks
of 0-1-sequences by using Theonﬂn 3. In both cases we start wittrawsducers to construct a Markov
chain with two output functions, once as a Cartesian prqodunte via Remar@.z
Example4.1 (Width<«w non-adjacent forms)Let 2 < w; < wy be integers. We consider the asymp-
totic joint distribution of the Hamming weight of the width; non-adjacent form«(;-NAF) and the
Hamming weight of thevs-NAF. The width«w non-adjacent form is a binary digit expansion with digit
set{0,+1,43,...,£(2¥~! — 1)} and the syntactical rule that at most one of anwadjacent digits is
non-zero.

It will turn out that this distribution is normal if and only the variance-covariance matrix is regu-
lar. Using Theoren[|2, we have to find closed walks in the cparding Markov chain such that all
coefficients in JL) have to be zero.
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The transducef (w) in Figure[jz computes the Hamming weight of theNAF of the integem when
the input is the binary expansion af(cf. [@]). It hasw + 1 states. Next, we construct the Cartesian
product of the transducers fan, andw, and choose any non-degenerate probability distributienwiith
all probabilities non-zero, for the outgoing transitiofigstate. Thus, we obtain a Markov chalitt with
(w1 + 1)(w2 + 1) states with two different output functiohs andh, corresponding to the outputs of the
transducers fotw; andw,, respectively. We can now use TheorEm 2 to prove that thesétamming
weights are asymptotically jointly normally distributed.

The Cartesian product of two closed walksfirfw;) and 7 (wz) with the same input sequence is a
closed walk inM. We construct three different closed walks and prove tHahete coefficients in[[l)
have to be zero. For brevity, we denote a closed walk in thée€ian produciM and its projections to
T (w1) andT (w2) by the same letter.

First, we choose the closed walk starting in state with input sequencé. We obtaink,(Cy) = 0
in 7(w1), ha(C1) = 0in T (wz) and1(Cy) = 1. Second, we choose the closed wélk starting inl
with input sequencé0*2—1. Becausar; < w, and the loop at state, C, is a closed walk irf7 (w1 )
and7 (wz). We obtainhy (C2) = 1in T (wy), ha(C2) = 1in T (wz) and1(Cy) = wy. The third choice
depends on whether; = ws — 1 or not:

e wy # wo — 1: We choose the closed walk; starting in1 with input sequencé0®:—110%1=10
wherea = max(wy — 2wy, 0). On the one hand, this is a closed walKJiifw; ) consisting of two
times the cycld — w; — 1 anda times the loop at state. On the other hand, this is a closed
walk in 7 (wy) consisting of the cyclé — ws — 1 and the correct number of loops at statéVe
Obtainh1(03) =2in ’T(wl), hQ(Cg) =1in T(U)Q) andﬂ(c:;) = Inax(w2, 211)1)

e w; = wy—1: We choose the closed walk starting inl with input sequencgo™: 110w ~t10%: 1,
Onthe one hand, this is a closed walKfiiw, ) consisting of three times the cyde— w; — 1. On
the other hand, this is a closed walki{ws) consisting of the closed walk— ws — wa + 1 —
wy — 1 and the correct number of loops at statéMe obtaini, (Cs) = 3 in T (w1), ha(Cs) = 2
in T(wg) and]l(C3) = 3w;.

This yields a system of linear equations for the coefficiepts; andas with coefficient matrix

1 0 0 1 00
w2 11 or we 1 1],
max(wsg,2w;) 2 1 3w; 3 2

which only has the trivial solution. Thus, the Hamming wegbf thew;-NAF and thew,-NAF are
asymptotically jointly normally distributed, independligrof the choice of the distributions for the Markov
chain.

The next two examples investigate the asymptotic indeparedef length two blocks df-1-sequences.
Exampled4.2 (10- and11-blocks) The two transducers in Figuﬂs 3 count the numbdiefand11-blocks
in 0-1-sequences. After deleting the outputs, both transducertha same. Thus, any non-degenerate
probability distribution on the outgoing edges of the stafises a Markov chain with two output functions
k1o (for the10-blocks) andky; (for the11-blocks).

Because of the two loops and the cyble-» 1 — 0, Theorenﬂz implies that the number 4i- and
11-blocks is asymptotically normally distributed.
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110 0]0 111 0]0
0]1 0]0
110 110
(A) 10-blocks (B) 11-blocks

Fig. 3: Transducers to compute the numbet@fand11-blocks.

(% (¥ (v (¥ (v (%

(A) D

B

(B) Dy

Fig. 4: Functional digraphs of the transducers of Examp@add 4 B.
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The next question is: For which choices of probability digttions is the number af0- and11-blocks
asymptotically independent? All functional digraphs watlie or two components are given in Figﬂe 4,
Using TheorerﬂB, we obtain the following system of equatfonthe values of the probabilities such that
the numbers of 1-blocks andl0-blocks are asymptotically independent: first by definition

1 = po—o + Po—1,
1=piso0+pis1,

then by [B)
o — Po—1P1—0
10 — )
Po—1P1—1 + 2P0—1P1—0 + Po—0P1-0
o — Po—1P1—1
11

 Do1P1o1 + 2P0—1P10 + Po—0P1—0

and finally for the independence

Po—1P1-1(—€10)(1 — €e11) + po—1p1-0(1 — 2e10)(—2e11) + Po—op1—o(—e€io0)(—e11)
= p0—>0p1—>1(—€10)(—€11) +p0—>0p1—>1(—€10)(1 - 611)-

This system has non-trivial real solutions, i.e. solutiafiere all probabilities are non-zero, with

1 1
Po—0 = —=P1s1+2 — 5\/13%%1 —8p11 +38

2
forall 0 < p1_,; < 1. Thenwe have — v/2 < po_o < 1.
Thus, for these transition probabilities, the number@fblocks and the number dfl-blocks are
asymptotically independent.
One such example of a non-trivial solutionzis .1 = p10 = 0.5, poo ~ 0.7192 andpg_1 ~
0.2808. Note that for the symmetric distributiong_,o = po—1 = p1s1 = P10 = 0.5, we obtain
asymptotic dependence of the numbet@f and11-blocks.

Example4.3 (00- and11-blocks) The two transducersin Figuﬂa 5 count the numbelosfand11-blocks

in 0-1-sequences. They have the same underlying graph and theirgambéabels. Thus, choosing any
non-degenerate probability distribution of the outgoidges of the states yields a Markov chain with two
output functions.

Because of the two loops and the cyble+ 1 — 0, Theorerrﬂz implies that the number @¥- and
11-blocks is asymptotically normally distributed.

The next question is: For which choices of probability disttions is the number of0- and 11-
blocks asymptotically independent? The functional digsapf the final component are the same as in
Example[4.p, see again Figyie 4. By Theof¢m 3, the systemuaitieqs for the transition probabilities
pe such that the two output functions are asymptotically iredefent are: first by definition

1 =po—o + Pos1,
1 =pis0+ D151,
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(A) 00-blocks (B) 11-blocks

Fig. 5: Transducers to compute the numbebd@fand11-blocks.

then by [)
e — Po—0P1—0
00 — )
Po—1P1—1 + 2P0—1P1—0 + Po—0P1-0
o — Po—1P1—1
11

 Pos1P1o1 + 2P0—1P10 + Po—0P1—0

and finally for the independence

Po—1P1-1(—€00)(1 — e11) + po—1P1-0(—2€00)(—2€11) + Po—op1—0(1 — €0o)(—e11)
= po—op1>1(1 — ego)(1 — e11) + po—op1—1(—eoo)(—e11).

These equations have no solution with< p. < 1 for all transitionse. Thus, the numbers @f)- and
11-blocks are asymptotically dependent for all choices ofitipait distributions, as expected.

5 Proofs

In this section, we prove the results from Secﬂ)n 3. Moshefproofs follow along the same ideas as in
[@]. The main differences are that one has to replace “cetapiansducer” by “Markov chain” and the
input sum by the output suriV.

We first prove Theorerﬂ 3 with the help of two lemmas. For onde$é lemmas, we use a version of
the Matrix-Tree Theorem for weighted directed forests ptbin ﬁ,]. At the end of this section, we

prove Theoremf 1 ar[di 2.

Definition 5.1. Let A, B C {1,..., N}. Let F4 p be the set of all forests which are spanning subgraphs
of the final component of the Markov chavt with | A| trees such that every tree is rooted at some vertex
a € A and contains exactly one vertex B.
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LetA = {i1,...,in,y@andB = {j1,...,jn} Withiy < --- < i, andj; < --- < j,. FOrF € Fy p,
we define a functiog: B — A by g(j) = ¢ if j is in the tree off” which is rooted in vertex. We further
define the functiorh: A — B by h(ix) = jr fork = 1,...,n. The compositioyo h: A — Aisa
permutation ofA. We definesign F' = sign g o h.

If |A| # |B|, thenF4 5 = 0. If |A] = |B| = 1, thensign F' = 1 and F 4 g consists of all spanning
trees rooted i € A.

Theorem (All-Minors-Matrix-Tree Theorem [||5|:i|O]) For a directed, weighted graph with loops and
multiple edges, lek = (1;;)1<i j<~ be the Laplacian matrix, that @jyzl lij =0foreveryi=1,...,N
and—;; is the sum of the weighis of all edges: fromyi to j for ¢ # j. Then, for|A| = | B|, the minor
det L 4 p satisfies
det Ly p = (—1)Zi€Ai+2j€Bj Z prsign F
FeFaB
whereL 4 g is the matrixL whose rows with index il and columns with index ifs are deleted.

The All-Minors-Matrix-Tree Theorem is still valid ford| # | B| if we assume that the determinant of
a non-square matrix i$. For notational simplicity, we use this convention in thstref this section.

Definition 5.2. The transition matri¥V (x4, ..., x,,) of a Markov chain with)M states andn output
functionsky, ..., k., isaM x M matrix whos€g(i, j)-th entry is
e:i1—j

wherep, is the probability of the transitioa.
Let A(z1,...,z.,) be theN x N transition matrix of the final component of the Markov chaliret
the order of the states be such that the transition matrikefithole Markov chaiV (x4, . .., z,,) has

the block structure
* *
W= () )

wherex denotes any matrix. If the Markov chain is strongly connécthe matrices: are not present
(they have) rows).

We first use the All-Minors-Matrix-Tree Theorem to conndet tlerivatives of the characteristic poly-
nomial of the transition matrix with a sum of weighted dignapn the next lemma.

Lemma 5.3. For f(z1, 22,2) = det(I — zA(z1,22)), we have

fo,(1,1,1) = —ki(Dr), farao(1,1,1) = (K1, k2)(Da) — (K1, k2)(D1),
f2(1,1,1) = =1(Dy), fo,2(1,1,1) = (ki, 1)(D2) — (ki, 1)(D1),
foiw,(LL 1) + f2,(1,1,1) = (ki ki )(D2) — (ki, ki) (D1),
fe=(LL1) 4+ f2(1,1,1) = (1,1)(D2) — (1,1)(Dy)

)=
)=

fori=1,2.
This lemma can be proven in the same Way@; [18, Lemma 5.3} ulsén All-Minors-Matrix-Tree

Theorem [b[20].

The following lemma will be used fat, > 2 output functions later on.



Variance and Covariance of Simultaneous Outputs of a Matdoain 13

Lemma 5.4. Let f(x1,...,2Zm,2) = det(I — zA(x1,...,2m,)). Then there is a unique dominant root
z = p(x1,...,z,) Of f inaneighborhood ofl, ..., 1).
The moment generating function(dt’,(ll), cey K,(f")) has the asymptotic expansion

E(exp(si KM + o 4 5, K{M)) = gulstsm)ntolsnnsm) (1 4 (k"))

n

wherex < 1,

u(s1,...,8m) = —logp(e®,... e"m),
andv(sy, ..., sn) are analytic functions in a small neighborhood(6f. . ., 0).
Proof: The moment generating function @K,(f), . ,K,(Zm)) is

E(exp(s1 KM + - 4+ 5 KIM)) = [zt (I — 2W (e, .., e¥m)) Lug(e™, ..., e"m)

for the initial vectorv,, and a vectows(z1, ..., z,,) encoding all the final information of the st@s
where we writd2"]b(z) for the coefficient o™ in the power series. Because of the block structure of
the transition matriXV" of the whole Markov chain ir{[3), we obtain

K@ K (m) Fl(l'l,...,(Em,Z)
]E noo,.. mn — n
(1 v K8 ey e P——
n Fi(z1,...,xm, 2)
= [2"]
Fy(x1,. . yxm, 2) f(x1, -, Tm, 2)

for “polynomials” F; and F; , i.e. finite linear combinations af]" - z&m 2P for a; € R and a non-
negative integer. The functioR, corresponds to the determinant of the non-final part of thekia
chain.

We obtain the coefficient of” by singularity analysis (cf.[[?]): Since the final componemftM
is again a Markov chain, the dominant singularitylgff(1,...,1, z) is 1 by the theorem of Perron—
Frobenius (cf. |I|9]). By the aperiodicity of the final compoehis dominant singularity is unique and it
isp(l,...,1)=1.

Next, we consider the non-final components of the Markovrthaing the same arguments asE [18].
The corresponding non-final compone¥t is not a Markov chain as the transition matrix is not stochas-
tic. Let M be the Markov chain that is obtained froi, by adding loops with the missing probabilities
where necessary. The dominant eigenvalue of the transitatrix of M is 1. As the transition matrices

of My and M satisfy element-wise inequalities but are not equal{at. .., z,,) = (1,...,1)), the
theorem of Perron—Frobenius (dﬂ. [9, Theorem 8.8.1]) iegpthat the dominant eigenvalues/ef, have
absolute value less than Thus, the dominant singularities 68(1,...,1,z) ! are at|z| > 1.

As A(1,...,1,2) = (1 — 2)~!, we obtainFy(1,...,1) #0.
Thus, there is a is the unique, dominant singularity of
Fl(l,...,l,z)
F(1,...,1,2)f1,...,1,2)’

() This information is the final output (see Rem 2.3) and ttieveeight (see Remar@A) included as:c{l(i) S LA™
thei-th coordinate ob2 (21, . .., zm). This does not change the asymptotic behavior (see R k 5.
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which isp(1,...,1) = 1. This also holds fofz1,...,z,,) in a small neighborhood dft, ..., 1) by
the continuity of the eigenvalues of the transition masicehus,o(z1, . .., x.,) is this uniqgue dominant
singularity.

Now, singularity analysis (cf[|[7]) implies the statemehttos lemma. O

Remark5.5. The main term of the asymptotic expansion of the moment geingr function only de-
pends onp(x1,...,x,) and therefore orf(z1,...,z,2). It does not depend on the “polynomials”
Fi(x1,...,2m,2)andFy(z1, ..., Tm, 2). Thus, only the final component influences the main term. Nei-
ther the states in the non-final part of the Markov chain nerfital outputs and exit weights influence
the main term.

Now, we can use the previous two lemmas to prove The&em 3.

Proof of Theorem[3.: By Lemmg[5.}4 for two output functioris andk-, the moment generating function
satisfies the conditions of the Quasi-Power Theo@n [18piidra 5.1], which yields the expected value

E(KWM, K2 = ngradu(0) + O(1)

and the variance
VKD, KP) = nH,(0) + O(1)

with grad u(0) and H,,(0) the gradient and the Hessianwoft 0, respectively. Furthermore, we obtain
an asymptotic joint normal distribution of the standardizandom vector if the Hessian is not singular
by [@ Theorem 3.9]. Otherwise, the limiting random vedsogither a pair of degenerate random vari-
ables, or a degenerate and normally distributed one, oearimansformation thereof. Thus, the random
variablesK,(Ll) andK,(f) are asymptotically independent if and only if the covar@isczero.

By implicit differentiation, we obtain the following formas for the constants of the moments in terms
of the partial derivatives of:

o = 12
13 fz 17
1
U = F(fi(fzz + fz) + ff(fmlml + fml) - 2f17fzfmlz) v
1
c= F(lefmz(fzz + f2) + fz2f11962 = faofofure = far fofunz) 1
fori=1,2.
Now, Lemmd 513 implies the results as stated in the theorem. O
Proof of Theorem ﬂ: This follows by the same arguments asm [18, Theorem 3.1]. O
Proof of Corollary Q: This follows by the same arguments aSE [18, Corollary 3.6]. O

Proof of Theorem [2: WLOG, we assume that k) = O(1) fori = 1,...,m by subtracting the
corresponding constant of the expected value from eachubfupction. There exists a unitary matrix
T = (tji)1<j,:<m Such that the variance-covariance maftixan be diagonalized &XTT = D. The
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diagonal matrixD is the variance-covariance matrix of the linearly transfed random vecto¥’,, =
TK,.
ThenX is singular if and only if the diagonal matriX is singular. This is equivalent to
V(tp KD + -+ tm KI™) = O(1) 4)

holds for aj € {1,...,m}. Now consider the output functian ky + - - - + t;m k. By Theoren{lL,[(4)
is equivalent to

ti1tk1(C) + -+ tjmkn(C) =0

holding for all cycles of the final component (since the expéwalue of this output function i9(1)).

If we shift back the output function such that the expectddevsés no longer bounded, we obtain an
additional summandy1(C).

The asymptotic joint normal distribution follows from Lem@ and the multidimensional Quasi-
Power Theoren{]6, Theorem 2.22]. O
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