
ar
X

iv
:1

90
4.

12
50

0v
4

 [
cs

.D
S]

 1
2

A
pr

 2
02

4

Discrete Mathematics and Theoretical Computer Science .

. vol. 26:2 #1 (2024)

Composing dynamic programming

tree-decomposition-based algorithms

Julien Baste

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

revisions 14th Mar. 2023, 25th Jan. 2024; accepted 6th Feb. 2024.

Given two integers ℓ and p as well as ℓ graph classes H1, . . . ,Hℓ, the problems GraphPart(H1, . . . ,Hℓ, p),

VertPart(H1, . . . ,Hℓ), and EdgePart(H1, . . . ,Hℓ) ask, given graph G as input, whether V (G), V (G), E(G) re-

spectively can be partitioned into ℓ sets S1, . . . , Sℓ such that, for each i between 1 and ℓ, G[Si] ∈ Hi, G[Si] ∈ Hi,

(V (G), Si) ∈ Hi respectively. Moreover in GraphPart(H1, . . . ,Hℓ, p), we request that the number of edges with

endpoints in different sets of the partition is bounded by p. We show that if there exist dynamic programming tree-

decomposition-based algorithms for recognizing the graph classes Hi, for each i, then we can constructively create a

dynamic programming tree-decomposition-based algorithms for GraphPart(H1, . . . ,Hℓ, p), VertPart(H1, . . . ,Hℓ),

and EdgePart(H1, . . . ,Hℓ). We apply this approach to known problems. For well-studied problems, like VERTEX

COVER and GRAPH q-COLORING, we obtain running times that are comparable to those of the best known problem-

specific algorithms. For an exotic problem from bioinformatics, called DISPLAYGRAPH, this approach improves the

known algorithm parameterized by treewidth.

Keywords: graph partition, treewidth, parameterized complexity, dynamic programming, dynamic programming

core model

1 Introduction

In one of the first graph partition problems, one is asked, given a graph G and an integer k, whether V (G)
can be partitioned into ℓ sets V1, . . . , Vℓ such that the number of edges between two different sets is small,

see for instance Goldschmidt and Hochbaum (1994). These problems have many applications starting

from clustering genes by Sharan et al. (2003), through optimizing financial problems by Mezuman and

Weiss (2012), parallel scientific computing to image segmentation by Grady and Schwartz (2006) and

Torres and Monteiro (2012), and analysis of social networks by Qian et al. (2010). The above specified

graph partitioning problem favors cutting small sets of isolated vertices in the input graph as shown by Shi

and Malik (2000) and Wu and Leahy (1993). In order to avoid this kind of solution which is often

undesirable for many practical applications, restrictions are often imposed on the sets Vi, i ∈ [1, ℓ]. The

most natural restriction is to require the partition to be balanced as done by Andreev and Racke (2006).

Another one, used in image segmentation, is to consider normalized cuts as done by Shi and Malik (2000),

that is, cuts that maximize the similarity within the sets while minimizing the dissimilarity between the

ISSN 1365–8050 © 2024 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/1904.12500v4
http://dmtcs.episciences.org/
https://doi.org/10.46298/dmtcs.11069

2 Julien Baste

sets. In social networks, the graph clustering problem is a graph partition problem where the graphs G[Vi],
i ∈ [1, ℓ], are required to be dense as studied by Schaeffer (2007). In this paper, we consider the graph

partition problem in a general form defined in the following way. Given ℓ graph classes H1, . . . ,Hℓ and

an integer p, the GraphPart(H1, . . . ,Hℓ, p) problem consists in, given a graph G, determining whether

V (G) can be partitioned into ℓ sets V1, . . . , Vℓ such that {{u, v} ∈ E(G) | u ∈ Vi, v ∈ Vj , i 6= j}, i.e.,

the set of transversal edges, is of size at most p and G[Vi] ∈ Hi for each i ∈ [1, ℓ].
Coloring problems are special kinds of graph partition problems where the number of transversal edges

is not relevant anymore. So, in the VertPart(H1, . . . ,Hℓ) problem, the task is to determine whether the

vertex set of the input graph G can be partitioned into ℓ sets V1, . . . , Vℓ such that G[Vi] ∈ Hi for each

i ∈ [1, ℓ]. The most famous coloring problem is the GRAPH 3-COLORABILITY problem corresponding to

VertPart(I, I, I) where I is the class of edgeless graphs. This problem is one of the first problems proved

to be NP-hard by Karp (1972) and has attracted a lot of attention. While GRAPH 3-COLORABILITY is

the best known, several other graph classes are also under study. For instance, Yang and Yuan (2004),

Rajasingh and Shanthi (2013), and Yuan and Wang (2003) consider the induced matching partition where

each vertex set of the partition should induce a graph of maximum degree 1. Chang et al. (2004) focus

on VertPart(H1, . . . ,Hℓ) where ℓ is a fixed integer, H1 = . . . = Hℓ = R, and R is either the class of

every tree or the class of every forest. These problems are called TREE ARBORICITY when R is the class

of every tree and VERTEX ARBORICITY when R is the class of every forest. They provide polynomial

time algorithms for block-cactus graph, series-parallel graphs, and cographs. Yang and Yuan (2007) focus

on planar graphs of diameter two. As shown by Janssen et al. (2019), these problems have, in particular,

applications in bioinformatics for constructing phylogenetic trees.

The treewidth of a graph is a structural parameter that measures the similarity of the graph to a for-

est, see Section 2 for the formal definitions. Courcelle (1990) shows that every problem that can be

expressed in monadic second-order logic can be solved in FPT-time parameterized by treewidth, i.e., in

time f(tw) · nO(1) for some function f where n (resp. tw) denotes the number of vertices (resp. the

treewidth) of the input graph. Rao (2007) shows that if there is a monadic second-order logic formula

that recognizes a graph class H, then for any fixed integer ℓ, VertPart(H1, . . . ,Hℓ), with Hi = H for all

i ∈ [1, ℓ], can be solved in polynomial time on graphs of bounded treewidth. If Courcelle (1990) and Rao

(2007) provide powerful meta-algorithms, the claimed running times may be far from being optimal. For

instance, Courcelle (1990) provides an 22
O(tw)

· nO(1) algorithm for GRAPH 3-COLORING when it is well

known that an 2O(tw) · nO(1) algorithm exists, see for instance (Cygan et al., 2015, Theorem 7.9).

Recently, treewidth has found several applications in bioinformatics when dealing with the so-called

display graphs as illustrated in the work of Bryant and Lagergren (2006), Scornavacca et al. (2014),

and Baste et al. (2017). In order to solve the DISPLAYGRAPH problem, Janssen et al. (2019) want to

determine whether a given graph of bounded treewidth is a positive instance of VertPart(T , T) where T

is the class of all trees. Using Courcelle’s theorem, they provide a 22
O(tw)

· nO(1) algorithm. Using the

approach developed in this paper, we obtain, as Corollary 14, an algorithm running in time 2O(tw) · nO(1)

for this same problem.

The dynamic programming core model is a formalism introduced by Baste et al. (2022). It was first

introduced in order to construct meta-algorithms for what are called diverse problems. It provides a

formalism for dynamic programming algorithms that process a tree decomposition, once, in a bottom-up

approach. This kind of algorithm is indeed widely used when working with treewidth. Therefore the

Composing dynamic programming tree-decomposition-based algorithms 3

dynamic programming core model allows us to manipulate most of the known algorithms that process a

tree decomposition.

In the present paper, we use the expressive power of this formalism and show that, with some enhance-

ment, it can be used to easily provide algorithms, with good running times, that solve the graph partition

problems parameterized by treewidth. Roughly speaking, given ℓ graph classes H1, . . . ,Hℓ, we show

that solving GraphPart(H1, . . . ,Hℓ, p) or VertPart(H1, . . . ,Hℓ) is not much harder than recognizing

each Hi, using a dynamic programming tree-decomposition-based algorithm. Moreover, we provide, in

Theorem 10 and Theorem 11, the explicit running time needed for solving GraphPart(H1, . . . ,Hℓ, p)
and VertPart(H1, . . . ,Hℓ) respectively as a function of the running time needed for recognizing each

Hi. We provide, in Theorem 12, similar result for the case where we want to partition the edge set of the

graph, that is, for the graph problem EdgePart(H1, . . . ,Hℓ) that, given a graph G, consists in determining

whether E(G) can be partitioned into ℓ sets S1, . . . , Sℓ such that (V (G), Si) ∈ Hi for each i ∈ [1, ℓ].
The main feature of our contribution is to present a meta-approach that provides easy-to-build and

efficient algorithms for exotic problems. Moreover the running time obtained for known problems are

comparable to the best-known algorithms specifically designed for each given known problem.

In Section 2, we introduce the notations and useful definitions. Section 3 is devoted to the definition of

the dynamic programming core model together with some examples of dynamic cores. The main results

are given in Section 4. In Section 5, we show how these results can be applied to reproduce known results

and to provide unknown algorithms for exotic problems. We provide a short conclusion in Section 6.

2 Preliminaries

We denote by N the set of nonnegative integers. Given two integers a and b we define [a, b] the set of

every integer c such that a ≤ c ≤ b. Let G be a graph. Let ℓ be an integer and A = (m1, . . . ,mℓ) be

a ℓ-tuple. For each i ∈ [1, ℓ], we use the notation A.(i) to refer to the i-th coordinate of A, i.e., in this

case to mi. Note that the coordinates are numbered from 1 to ℓ. Given a set S, we denote by 2S the set

of every subset of S. Given an alphabet Σ, we denote by WΣ the set of every finite words over Σ. We

denote by Γ the set of three special letters denoted “(”, “)”, and “,”.

We use V (G) and E(G) to denote the vertex and edge sets, respectively, of the graph G. Through out

this paper, we assume that vertices are represented as elements of N. Given a set S ⊆ V (G), we denote by

G[S] the subgraph of G induced by S. Given a set S ⊆ E(G), we denote by G[S] the graph (V (G), S).
Given two sets S1, S2 ⊆ V (G), we denote by edgeG(S1, S2) the set of every edge of G with one endpoint

in S1 and the other endpoint in S2. We also denote by G the set of every graph. We denote by I the class

of edgeless graphs. Given an integer p, we denote by Gp the class of every graph with at most p vertices.

We also denote by T the set of every tree and by F the set of every forest. Given a tree T rooted at r,

for each t ∈ V (T), we denote by child(t) the set of every child of t in T and by desc(t) the set of every

descendent of t in T .

A rooted tree decomposition of a graphG is a tupleD = (T, r,X), where T is a tree rooted at r ∈ V (T)
and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such that:

•
⋃

t∈V (T) Xt = V (G),

• for every edge {u, v} ∈ E, there is a t ∈ V (T) such that {u, v} ⊆ Xt, and

4 Julien Baste

• for each {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T , Xx∩Xy ⊆ Xz .

The width of a tree decomposition D = (T, r,X), denoted by w(D), is defined as

maxt∈V (T) |Xt| − 1. The treewidth of a graph G, denoted by tw(G), is the smallest integer w such

that there exists a tree decomposition of G of width at most w. We also define Yt = Xt ∪
⋃

t′∈child(t)Xt′

and Zt = Xt ∪
⋃

t′∈desc(t) Xt′ .

It is well known, see for instance Kloks (1994), that given a rooted tree decomposition D = (T, r,X),
we can, without loss of generality, assume that Xr = ∅, that, for each t ∈ V (T), t has at most 2 children

and that |Yt| ≤ |Xt| + 1. In the following we always assume that the rooted tree decompositions have

these properties.

Given a graph G, a rooted tree decomposition D = (T, r,X) of G, and a set S ⊆ V (G), we define

D[S] to be (T, r, {Xt ∩ S | t ∈ V (T)}). Note that D[S] is a rooted tree decomposition of G[S].

3 Dynamic programming core model

In this section we define and use an improvement of the dynamic programming core model introduced

by Baste et al. (2022). The main idea of this model is to formalize what is a dynamic programming

algorithm based on a tree decomposition. This will allow us to manipulate these algorithms in their

generic form in order to construct meta-algorithms.

Definition 1 (Dynamic Core). A dynamic core C over an alphabet Σ is a set of four functions:

• AcceptC : G → 2WΣ ,

• ProcessC,0 : G → 2WΣ ,

• ProcessC,1 : G × G → 2W
2
Σ , and

• ProcessC,2 : G × G × G → 2W
3
Σ .

In the following, we always assume that the associated alphabet is implicitly given when a dynamic

core is mentioned and we denote by ΣC the alphabet associated to a dynamic core C. Given a dynamic

core C, a graph G and a rooted tree decomposition D = (T, r,X) of G, the data of C associated to (G,D)
are, for each t ∈ V (T):

AcceptC,G,D = AcceptC(G[Xr])

ProcessC,G,D(t) =

ProcessC,0(G[Xt]) if child(t) = ∅,

ProcessC,1(G[Xt], G[Xt′]) if child(t) = {t′}, and

ProcessC,2(G[Xt], G[Xt′], G[Xt′′]) if child(t) = {t′, t′′}.

We would like to highlight that Definition 1 is the main addition of this paper, concerning the definition

of the dynamic programming core model, compared to Baste et al. (2022). The functions ProcessC,0,

ProcessC,1, and ProcessC,2 can be viewed as the rules to update the table of the given dynamic pro-

gramming algorithm, and so allow to easily and naturally construct a dynamic core from a dynamic pro-

gramming algorithm that is based on a tree decomposition. Note that these rules are given independently

of the tree decomposition as it is usual to do for a dynamic programming algorithm. The definitions

Composing dynamic programming tree-decomposition-based algorithms 5

of AcceptC,G,D and ProcessC,G,D, if we consider Σ = {0, 1}, are similar to the ones initially defined

by Baste et al. (2022).

Note that, in this work, we assume that Xr = ∅ and so Accept
C,G,D = Accept

C
((∅, ∅)). We still keep

the general notation, with Xr, to keep the setting as flexible as possible. Given a function f : K → J and

an input I ∈ K, we denote by τ(f, I) the time needed to compute f(I). Given a dynamic core C, a graph

G and a rooted tree decomposition D = (T, r,X) we let:

τn(C, G,D, t) =

maxA⊆Yt
τ(ProcessC,0, G[A ∩Xt]) if child(t) = ∅,

maxA⊆Yt
τ(ProcessC,1, (G[A ∩Xt], G[A ∩Xt′])) if child(t) = {t′}, and

maxA⊆Yt
τ(ProcessC,2, (G[A ∩Xt], G[A ∩Xt′], G[A ∩Xt′′])) if child(t) = {t′, t′′}.

We also define τg(C, G,D) =
∑

t∈V (T) τn(C, G,D, t) and size(C, G,D, t) = maxA⊆Yt
|ProcessC,G[A],D[A](t)|.

The n of τn stands for node, and the g of τg stands for global. Note that, for each t ∈ V (T), ProcessC,G[Yt],D[Yt](t) =
ProcessC,G,D(t). We say that a dynamic core C is polynomial, if for each graph G, each rooted tree de-

composition D = (T, r,X) of G, and each t ∈ V (T), size(C, G,D, t) and τn(C, G,D, t) are polynomial

in |V (G)| + |V (T)|.

Definition 2. Let C be a dynamic core, G be a graph in G, and D = (T, r,X) be a rooted tree decom-

position of G. A (C, G,D)-witness is a function α : V (T) → Σ∗
C

such that α(r) ∈ AcceptC,G,D and for

each t ∈ V (T),

if child(t) = ∅, α(t)

if child(t) = {t′}, (α(t), α(t′))

if child(t) = {t′, t′′}, (α(t), α(t′), α(t′′))

∈ ProcessC,G,D(t)

The witness provided in Definition 2 can be seen as a proof of the correctness of the algorithms we can

produce using a given dynamic core.

Definition 3. Let H be a class of graphs. We say that a dynamic core C solves H if for each graph G ∈ G,

and each rooted tree decomposition D of G, G ∈ H if and only if a (C, G,D)-witness exists.

As explained by Baste et al. (2022) and summarized in Theorem 4, a dynamic core can be seen as an

algorithm producer. Moreover the running time of the produced algorithms is directly connected to the

definition of the associated dynamic core.

Theorem 4 (Baste et al. (2022)). Let H be a class of graphs and C be a dynamic core that solves H.

Given a graph G ∈ G and a rooted tree decomposition D = (T, r,X) of G, one can decide whether

G ∈ H in time O
(

∑

t∈V (T) |ProcessC,G,D(t)|+ τg(C, G,D)
)

.

3.1 Some examples of dynamic core

In this section we provide a few examples of dynamic cores. We start by a trivial dynamic core that allows

us to produce an algorithm that recognizes that a graph has no edge. This dynamic core solves I, the class

of graphs with no edges.

Observation 5. I can be solved by a polynomial dynamic core C.

6 Julien Baste

Proof: We define C such that for each G,G′, G′′ ∈ G,

AcceptC(G) = {⊤}

ProcessC,0(G) = {⊤ | E(G) = ∅}

ProcessC,1(G,G′) = {(⊤,⊤) | E(G) = ∅}

ProcessC,2(G,G′, G′′) = {(⊤,⊤,⊤) | E(G) = ∅}

In this case, ΣC = {⊤} where ⊤ represents the fact that the already explored part does not contain any

edge. Given G ∈ I and D = (T, r,X) a rooted tree decomposition of G, a (C, G,D)-witness α is such

that, for each t ∈ V (T), α(t) = ⊤.

For the running time, note that given a graph G and a rooted tree decomposition D = (T, r,X) of G,

then for each t ∈ V (T), |ProcessC,G,D(t)| ≤ 1 and τn(C, G,D, t) = O(|Xt|).

We also provide a slightly more involved dynamic core that solves Gp for some integer p, i.e., the class

of graphs with at most p vertices.

Observation 6. Let p be an integer. Gp can be solved by a polynomial dynamic core C.

Proof: We define C such that for each G,G′, G′′ ∈ G,

Accept
C
(G) = {q | q ∈ [0, p]}

ProcessC,0(G) = {0}

ProcessC,1(G,G′) = {(q, q′) | q′ ≥ 0, q ≤ p, and q = q′ + |V (G′) \ V (G)|}

ProcessC,2(G,G′, G′′) = {(q, q′, q′′) | q′, q′′ ≥ 0, q ≤ p, and q = q′ + q′′ + |(V (G′) ∪ V (G′′)) \ V (G)|}

It is now an easy task to show that C solves Gp. In this case, given a graph G ∈ Gp and a rooted

tree decomposition D = (T, r,X), a possible (C, G,D)-witness α is such that, for each t ∈ V (T),
α(t) = |Zt \Xt|. Simply note that we only count the number of vertices in the part that has already been

completely explored and forgotten and that Xr = ∅.

For the running time, note that given a graph G and a rooted tree decomposition D = (T, r,X) of G,

then, for each t ∈ V (T), |ProcessC,G,D(t)| ≤ (p+ 1)2 and τn(C, G,D, t) = O(|ProcessC,G,D(t)|). The

lemma follows.

Observations 5 and 6 show how to construct a dynamic core for trivially solvable problems. We mostly

provided these observations as pedagogical examples. One can then get the intuition that most of the dy-

namic programming algorithms parameterized by treewidth can be translated into dynamic cores. Indeed,

such an algorithm creates a dynamic programming table for each node of the tree decomposition. Theses

tables are updated depending of dynamic programming tables of the children of the node taken into con-

sideration. Transposing how these updates are done into a consistent definition of ProcessC,0, ProcessC,1,

or ProcessC,2, depending on the number of children of the node taken in consideration, will then provide

a dynamic core for the problem.

The rank-based approach, developed by Bodlaender et al. (2015), provides, in particular, a deterministic

algorithm that solves FEEDBACK VERTEX SET in time 2O(tw) · nO(1), where n (resp. tw) stands for the

Composing dynamic programming tree-decomposition-based algorithms 7

size (resp. treewidth) of the input graph. From this algorithm, one can easily obtain a dynamic core for

recognizing if a graph is a tree. We omit the proof of it as it requires to reintroduce several tools presented

by Bodlaender et al. (2015) that are out of the scope of this paper.

Observation 7. The class T of trees can be solved by a dynamic core C such that, for each graph G, each

rooted tree decomposition D = (T, r,X) of G, and each t ∈ V (T):

• |ProcessC,G,D(t)| = 2O(w(D)) · nO(1)

• τg(C, G,D) = 2O(w(D)) · |V (T)| · nO(1)

Note in particular that the dynamic core provided in Observation 7 is not polynomial.

3.2 Union and intersection of dynamic core

In this section we provide some simple combinations of dynamic cores. More precisely, we show how

to take the union and the intersection of two dynamic cores. This will allow us, in Theorems 10, 11, and

12, to consider the union (resp. intersection) of recognizable classes without having to prove each time

that the considered union (resp. intersection) is recognizable. Let H1 and H2 be two graph classes and

let C1 (resp. C2) be a dynamic core that solves H1 (resp. H2). We would like to stress that, in order to

solve H1∪H2 or H1∩H2, the naive procedure, consisting of using C1 and then using C2, would be more

efficient with regard to the running time but will not produce a dynamic core. As the main theorems of the

paper, namely Theorems 10, 11, and 12, rely on the knowledge of a dynamic core, this naive procedure

will not suit.

Lemma 8. Let ℓ be an integer, let H1, . . . ,Hℓ be graph classes and let, for each i ∈ [1, ℓ], Ci be a

dynamic core that solves Hi. There exists a dynamic core C that solves H =
⋂

i∈[1,ℓ]Hi such that, for

each graph G, each rooted tree decomposition D = (T, r,X) of G, and each t ∈ V (T):

• |ProcessC,G,D(t)| =
∏

i∈[1,ℓ] |ProcessCi,G,D(t)|

• τg(C, G,D) =
∑

i∈[1,ℓ] τg(Ci, G,D) +O
(

∑

t∈V (T) |ProcessC,G,D(t)|
)

Proof: We define C such that for each G,G′, G′′ ∈ G,

Accept
C
(G) = {(m1, . . . ,mℓ) | ∀i ∈ [1, ℓ] ,mi ∈ Accept

Ci
(G) },

ProcessC,0(G) = {(m1, . . . ,mℓ) | ∀i ∈ [1, ℓ] ,mi ∈ ProcessCi,0(G) },

ProcessC,1(G,G′) = {((m1, . . . ,mℓ), (m
′
1, . . . ,m

′
ℓ)) |

∀i ∈ [1, ℓ] , (mi,m
′
i) ∈ ProcessCi,1(G,G′) },

ProcessC,2(G,G′, G′′) = {((m1, . . . ,mℓ), (m
′
1, . . . ,m

′
ℓ), (m

′′
1 , . . . ,m

′′
ℓ)) |

∀i ∈ [1, ℓ] , (mi,m
′
i,m

′′
i) ∈ ProcessCi,2(G,G′, G′′) }.

We now prove that C solves H. First note that ΣC = Γ ∪
⋃

i∈[1,ℓ] ΣCi
. Let G be a graph and D =

(T, r,X) be a rooted tree decomposition of G.

8 Julien Baste

Assume first that G ∈ H, then by definition of H, for each i ∈ [1, ℓ], G ∈ Hi. Let, for each i ∈ [1, ℓ],
αi : V (T) → Σ∗

Ci
be a (Ci, G,D)-witness. Note that it exists as Ci solves Hi and G ∈ Hi. We define

α : V (T) → Σ∗
C

such that for each t ∈ V (T), α(t) = (α1(t), . . . , αℓ(t)). By construction of C, α is a

(C, G,D)-witness.

Assume now that there exists a (C, G,D)-witness α : V (T) → Σ∗
C

. Then by definition of C, for each

t ∈ V (T), α(t) is a ℓ-tuple. Let define ℓ functions αi : V (T) → Σ∗
C

, i ∈ [1, ℓ], such that for each

i ∈ [1, ℓ] and each t ∈ V (T), αi(t) = α(t).(i). Then, by definition of C, for each i ∈ [1, ℓ], αi is a

(Ci, G,D)-witness and so G ∈ Hi. Thus G ∈ H.

Let us now analyze the needed running time for this algorithm. Let G be a graph and D = (T, r,X)
be a rooted tree decomposition of G. For each t ∈ V (T), we have, by definition, |ProcessC,G,D(t)| =
∏

i∈[1,ℓ] |ProcessCi,G,D(t)|. In order to construct the data of C associated to (G,D), we need first to

construct the data of Ci associated to (G,D) for each i ∈ [1, ℓ] and then to combine them. Thus, we have

τg(C, G,D) =
∑

i∈[1,ℓ]

τg(Ci, G,D) +O

∑

t∈V (T)

|ProcessC,G,D(t)|

 .

Lemma 9. Let ℓ be an integer, let H1, . . . ,Hℓ be graph classes and let, for each i ∈ [1, ℓ], Ci be a

dynamic core that solves Hi. There exists a dynamic core C that solves H =
⋃

i∈[1,ℓ]Hi such that, for

each graph G, each rooted tree decomposition D = (T, r,X) of G, and each t ∈ V (T):

• |ProcessC,G,D(t)| =
∑

i∈[1,ℓ] |ProcessCi,G,D(t)|

• τg(C, G,D) =
∑

i∈[1,ℓ] τg(Ci, G,D) +O
(

∑

t∈V (T) |ProcessC,G,D(t)|
)

Proof: Let ⊥ be an unused letter. We define C such that for each G,G′, G′′ ∈ G,

Accept
C
(G) = {(m1, . . . ,mℓ) | ∃i ∈ [1, ℓ] ,mi ∈ Accept

Ci
(G) },

ProcessC,0(G) = {(m1, . . . ,mℓ) |

∃i ∈ [1, ℓ] ,mi ∈ ProcessCi,0(G)

∀j ∈ [1, ℓ] \ {i},mj = ⊥ },

ProcessC,1(G,G′) = {((m1, . . . ,mℓ), (m
′
1, . . . ,m

′
ℓ)) |

∃i ∈ [1, ℓ] , (mi,m
′
i) ∈ ProcessCi,1(G,G′)

∀j ∈ [1, ℓ] \ {i}, (mj,m
′
j) = (⊥,⊥) }, and

ProcessC,2(G,G′, G′′) = {((m1, . . . ,mℓ), (m
′
1, . . . ,m

′
ℓ), (m

′′
1 , . . . ,m

′′
ℓ)) |

∀i ∈ [1, ℓ] , (mi,m
′
i,m

′′
i) ∈ ProcessCi,2(G,G′, G′′)

∀j ∈ [1, ℓ] \ {i}, (mj,m
′
j ,m

′′
j) = (⊥,⊥,⊥) }.

We prove, using the same kind of argumentation as for Theorem 8, that C solves H. Note that in this case,

the letter ⊥ is used, in particular, for each coordinate i such that G 6∈ Hi.

Composing dynamic programming tree-decomposition-based algorithms 9

4 Main theorem

In this section we show, given two integers ℓ and p, ℓ graph classes H1, . . . ,Hℓ and ℓ dynamic cores

C1, . . . ,Cℓ such that, for each i ∈ [1, ℓ], Ci solves Hi, how to construct dynamic cores that solve

GraphPart(H1, . . . ,Hℓ, p), VertPart(H1, . . . ,Hℓ), and EdgePart(H1, . . . ,Hℓ).

We start by the graph partition problem, that is the most involved case.

Theorem 10. Let ℓ and p be two integers, let H1, . . . ,Hℓ be graph classes and let, for each i ∈ [1, ℓ], Ci be

a dynamic core that solves Hi. There exists a dynamic core C that solves H = GraphPart(H1, . . . ,Hℓ, p)
such that, for each graph G, each rooted tree decomposition D = (T, r,X) of G, and each t ∈ V (T):

• |ProcessC,G,D(t)| ≤ ℓ|Yt| · (p+ 1)2 ·
∏

i∈[1,ℓ] size(Ci, G,D, t)

• τg(C, G,D) =
∑

t∈V (T)

(

O(|ProcessC,G,D(t)|) + 2|Yt| ·
∑

i∈[1,ℓ] τn(Ci, G,D, t)
)

Proof: We define C such that for each G,G′, G′′ ∈ G,

Accept
C
(G) = {((m1, V1), . . . , (mℓ, Vℓ), q) |

q ≤ p,

V1, . . . , Vℓ is a partition of V (G), and

∀i ∈ [1, ℓ] ,mi ∈ AcceptCi
(G[Vi]) },

ProcessC,0(G) = {((m1, V1), . . . , (mℓ, Vℓ), 0) |

V1, . . . , Vℓ is a partition of V (G) and

∀i ∈ [1, ℓ] ,mi ∈ ProcessCi,0(G[Vi]) },

ProcessC,1(G,G′) = {(((m1, V1), . . . , (mℓ, Vℓ), q), ((m
′
1, V

′
1), . . . , (m

′
ℓ, V

′
ℓ), q

′)) |

U1, . . . , Uℓ is a partition of V (G) ∪ V (G′),

∀i ∈ [1, ℓ] , Vi = Ui ∩ V (G),

∀i ∈ [1, ℓ] , V ′
i = Ui ∩ V (G′),

∀i ∈ [1, ℓ] , (mi,m
′
i) ∈ ProcessCi,1(G[Vi], G

′[V ′
i]),

q ≤ p, and

q = q′ +
∑

i∈[1,ℓ]

|edgeG(Ui \ V (G), (V (G) ∪ V (G′)) \ Ui)| },

10 Julien Baste

ProcessC,2(G,G′, G′′) = {(((m1, V1), . . . , (mℓ, Vℓ), q), ((m
′
1, V

′
1), . . . , (m

′
ℓ, V

′
ℓ), q

′),

((m′′
1 , V

′′
1), . . . , (m′′

ℓ , V
′′
ℓ), q′′)) |

U1, . . . , Uℓ is a partition of V (G) ∪ V (G′) ∪ V (G′′),

∀i ∈ [1, ℓ] , Vi = Ui ∩ V (G),

∀i ∈ [1, ℓ] , V ′
i = Ui ∩ V (G′),

∀i ∈ [1, ℓ] , V ′′
i = Ui ∩ V (G′′),

∀i ∈ [1, ℓ] , (mi,m
′
i,m

′′
i) ∈ ProcessCi,2(G[Vi], G

′[V ′
i], G

′′[V ′′
i]),

q ≤ p, and

q = q′ + q′′ +
∑

i∈[1,ℓ]

|edgeG(Ui \ V (G), (V (G) ∪ V (G′) ∪ V (G′′)) \ Ui)| }.

We now prove that C solves H = GraphPart(H1, . . . ,Hℓ, p). First note that ΣC = Γ∪N∪
⋃

i∈[1,ℓ] ΣCi
.

Let G be a graph and D = (T, r,X) be a rooted tree decomposition of G.

Assume first that G ∈ H. Then, by definition, there exists V1, . . . , Vℓ, partition of V (G) such that for

each i ∈ [1, ℓ], G[Vi] ∈ Hi and
∑

1≤i<j≤ℓ |edgeG(Vi, Vj)| ≤ p. As, for each i ∈ [1, ℓ], D[Vi] is a rooted

tree decomposition of G[Vi] and G[Vi] ∈ Hi, there exists αi : V (T) → Σ∗
Ci

, a (Ci, G[Vi],D[Vi])-witness.

Note that this witness exists as G[Vi] ∈ Hi. We define α : V (T) → Σ∗
C

. such that for each t ∈ V (T),

α(t) = ((α1(t), Xt ∩ V1), . . . , (αℓ(t), Xt ∩ Vℓ),
∑

i∈[1,ℓ]

|edgeG((Zt ∩ Vi) \Xt, Zt \ Vi)|).

By construction of C, α is a (C, G,D)-witness.

Assume now that there exists a (C, G,D)-witness α : V (T) → Σ∗
C

. Then by definition of C, for each

t ∈ V (T), α(t) is a (ℓ + 1)-tuple where the ℓ first coordinates are pairs with the shape (m,V) where

m ∈ Σ∗
C

and V ⊆ V (G), and where α(t).(ℓ + 1) is an integer in [0, p]. For each i ∈ [1, ℓ], let Vi =
⋃

t∈V (T) α(t).(i).(2), and let αi : V (T) → Σ∗
C

be such that for each t ∈ V (T), αi(t) = α(t).(i).(1).

Then by definition of C, for each i ∈ [1, ℓ], αi is a (Ci, G[Vi],Di)-witness, and so, G[Vi] ∈ Hi. Note also

that by definition of AcceptC, ProcessC,0, ProcessC,1, and ProcessC,2, the partition selected by α at step

t ∈ V (T) \ {r} is consistent with the one selected at step t′ where t′ is the parent of t. Combined with

the definition of a tree decomposition, we obtain that (V1, . . . , Vℓ) is a partition of V (G). Moreover, as α

is a (C, G,D)-witness, we have that α(r).(ℓ + 1) ≤ p, and so G ∈ H.

Let us now analyze the needed running time for this algorithm. Let G be a graph and D = (T, r,X)
be a rooted tree decomposition of G. Then for each partition V1, . . . , Vℓ of Yt, there is at most (p + 1)2

ways to combine p′ and p′′ and so there are at most (p+1)2 ·
∏

i∈[1,ℓ] Size(Ci, G,D, t) ways to construct

an element of ProcessC,G,D(t) consistent with the partition. Moreover, we have ℓ|Yt| possible partitions

of the set |Yt| into ℓ sets. Thus |ProcessC,G,D(t)| ≤ ℓ|Yt| · (p + 1)2 ·
∏

i∈[1,ℓ] size(Ci, G,D, t). In order

to construct the data of C associated to (G,D), we first need, for each i ∈ [1, ℓ], to construct the data of

Ci associated to (G[V],D[V], t) for each t ∈ V (T) and V ⊆ Yt, and then, for each t ∈ V (T) try every

Composing dynamic programming tree-decomposition-based algorithms 11

partition of Yt and combine the corresponding data accordingly. Thus, we have

∀t ∈ V (T), τn(C, G,D, t) = O(|ProcessC,G,D(t)|) + 2|Yt| ·
∑

i∈[1,ℓ]

τn(Ci, G,D, t) and

τg(C, G,D) =
∑

t∈V (T)

τn(C, G,D, t).

The theorem follows.

Coloring problems are graph partition problems where it is not needed to keep track of the number of

transversal edges. Thus the dynamic cores we present for the coloring problems are simpler than the one

providing for the graph partition problems.

Theorem 11. Let ℓ be an integer, let H1, . . . ,Hℓ be graph classes and let, for each i ∈ [1, ℓ], Ci be a

dynamic core that solves Hi. There exists a dynamic core C that solves H = VertPart(H1, . . . ,Hℓ) such

that, for each graph G, each rooted tree decomposition D = (T, r,X) of G, and each t ∈ V (T):

• |ProcessC,G,D(t)| ≤ ℓ|Yt| ·
∏

i∈[1,ℓ] size(Ci, G,D, t)

• τg(C, G,D) =
∑

t∈V (T)

(

O(|ProcessC,G,D(t)|) + 2|Yt| ·
∑

i∈[1,ℓ] τn(Ci, G,D, t)
)

Proof: Using the same base as for Theorem 10, we define C such that for each G,G′, G′′ ∈ G,

AcceptC(G) = {((m1, V1), . . . , (mℓ, Vℓ)) |

V1, . . . , Vℓ is a partition of V (G) and

∀i ∈ [1, ℓ] ,mi ∈ AcceptCi
(G[Vi]) },

ProcessC,0(G) = {((m1, V1), . . . , (mℓ, Vℓ)) |

V1, . . . , Vℓ is a partition of V (G) and

∀i ∈ [1, ℓ] ,mi ∈ ProcessCi,0(G[Vi]) },

ProcessC,1(G,G′) = {(((m1, V1), . . . , (mℓ, Vℓ)), ((m
′
1, V

′
1), . . . , (m

′
ℓ, V

′
ℓ))) |

U1, . . . , Uℓ is a partition of V (G) ∪ V (G′),

∀i ∈ [1, ℓ] , Vi = Ui ∩ V (G),

∀i ∈ [1, ℓ] , V ′
i = Ui ∩ V (G′), and

∀i ∈ [1, ℓ] , (mi,m
′
i) ∈ ProcessCi,1(G[Vi], G

′[V ′
i]) },

ProcessC,2(G,G′, G′′) = {(((m1, V1), . . . , (mℓ, Vℓ)), ((m
′
1, V

′
1), . . . , (m

′
ℓ, V

′
ℓ)), ((m

′′
1 , V

′′
1), . . . , (m′′

ℓ , V
′′
ℓ))) |

U1, . . . , Uℓ is a partition of V (G) ∪ V (G′) ∪ V (G′′),

∀i ∈ [1, ℓ] , Vi = Ui ∩ V (G),

∀i ∈ [1, ℓ] , V ′
i = Ui ∩ V (G′),

∀i ∈ [1, ℓ] , V ′′
i = Ui ∩ V (G′′), and

∀i ∈ [1, ℓ] , (mi,m
′
i,m

′′
i) ∈ ProcessCi,2(G[Vi], G

′[V ′
i], G

′′[V ′′
i]) }.

12 Julien Baste

The proof that C solves H = VertPart(H1, . . . ,Hℓ) is omitted as it is similar to the one provided for

Theorem 10 at the difference that this time we do not keep track of the transversal edges.

Edge partitioning problems are really similar to coloring problem at the difference that the subgraphs

we consider are induced by a set of edges instead of a set of vertices.

Theorem 12. Let ℓ be an integer, let H1, . . . ,Hℓ be graph classes and let, for each i ∈ [1, ℓ], Ci be a

dynamic core that solves Hi. There exists a dynamic core C that solves H = EdgePart(H1, . . . ,Hℓ) such

that, for each graph G, each rooted tree decomposition D = (T, r,X) of G, and each t ∈ V (T):

• |ProcessC,G,D(t)| ≤ ℓ|E(G[Yt])| ·
∏

i∈[1,ℓ] size(Ci, G,D, t)

• τg(C, G,D) =
∑

t∈V (T)

(

O(|ProcessC,G,D(t)|) + 2|E(G[Yt])| ·
∑

i∈[1,ℓ] τn(Ci, G,D, t)
)

Proof: We define C such that for each G,G′, G′′ ∈ G,

AcceptC(G) = {((m1, E1), . . . , (mℓ, Eℓ)) |

E1, . . . , Eℓ is a partition of E(G) and

∀i ∈ [1, ℓ] ,mi ∈ AcceptCi
(G[Ei]) },

ProcessC,0(G) = {((m1, E1), . . . , (mℓ, Eℓ)) |

E1, . . . , Eℓ is a partition of E(G) and

∀i ∈ [1, ℓ] ,mi ∈ ProcessCi,0(G[Ei]) },

ProcessC,1(G,G′) = {(((m1, E1), . . . , (mℓ, Eℓ)), ((m
′
1, E

′
1), . . . , (m

′
ℓ, E

′
ℓ))) |

U1, . . . , Uℓ is a partition of E(G) ∪ E(G′),

∀i ∈ [1, ℓ] , Ei = Ui ∩ E(G),

∀i ∈ [1, ℓ] , E′
i = Ui ∩ E(G′), and

∀i ∈ [1, ℓ] , (mi,m
′
i) ∈ ProcessCi,1(G[Ei], G

′[E′
i]) },

ProcessC,2(G,G′, G′′) = {(((m1, E1), . . . , (mℓ, Eℓ)), ((m
′
1, E

′
1), . . . , (m

′
ℓ, E

′
ℓ)), ((m

′′
1 , E

′′
1), . . . , (m

′′
ℓ , E

′′
ℓ))) |

U1, . . . , Uℓ is a partition of E(G) ∪ E(G′) ∪ E(G′′),

∀i ∈ [1, ℓ] , Ei = Ui ∩ E(G),

∀i ∈ [1, ℓ] , E′
i = Ui ∩ E(G′),

∀i ∈ [1, ℓ] , E′′
i = Ui ∩E(G′′), and

∀i ∈ [1, ℓ] , (mi,m
′
i,m

′′
i) ∈ ProcessCi,2(G[Ei], G

′[E′
i], G

′′[E′′
i]) }.

The proof that C solves H = EdgePart(H1, . . . ,Hℓ) is omitted as it is, again, similar to the one provided

for Theorem 10 at the difference that this time we partition over the edges instead of the vertices and there

are no transversal edges to consider.

Composing dynamic programming tree-decomposition-based algorithms 13

5 Applications

In this section we show how our results lead to significant simplification when looking for algorithms pa-

rameterized by treewidth. We first confront our approach against well-known problems, namely VERTEX

COVER and GRAPH q-COLORING, showing that we obtain comparable running time. We then show how

this leads to quickly obtain algorithms for exotic problems, VertPart(T , T) in our example, for which

describing an algorithm in the usual way would have been long and tedious.

VERTEX COVER, corresponding to VertPart(Gk, I) for some integer k, is well known to be solvable in

time 2w ·nO(1) when a tree decomposition of width w of the input graph is given, see for instance (Cygan

et al., 2015, Theorem 7.9), while, as shown by Impagliazzo et al. (2001), no algorithm running in time

2o(tw) · nO(1) can solve it unless ETH fails. Combining Observation 5, Observation 6, and Theorem 11,

we obtain a dynamic core that solves VERTEX COVER. Moreover, combined with Theorem 4, we obtain

an algorithm solving VERTEX COVER in time 2w · nO(1) when a tree decomposition of width w of the

input graph is given.

More generally, deletion problems are problems that attract a lot of attention and that can be considered

as coloring problems. Indeed, given a graph class H, the H-DELETION corresponds to the problem

VertPart(Gk,H), for some integer k. Moreover, we show, in Observation 6 that Gp-RECOGNITION, for

some integer p, has a polynomial dynamic core. Combining Observation 6 with Theorem 11, we obtain

that if there exists a dynamic core such that recognizing H can be done in time 2f(tw) · nO(1) for some

function f , then H-DELETION can be solved in time 2O(tw+f(tw)) · nO(1).

The most basic and well-known coloring problem is GRAPH q-COLORING. Again we obtain an asymp-

totically optimal algorithm, see for instance (Cygan et al., 2015, Theorem 14.6 and Theorem 14.41), by

combining Observation 5 and Theorem 11.

Corollary 13. GRAPH q-COLORING can be solved in time qw ·nO(1) when a tree decomposition of width

w of the input graph is given.

Proof: Given a fixed integer q, the GRAPH q-COLORING problem corresponds to VertPart(H1, . . . ,Hq)
where for each i ∈ [1, q], Hi = I. The result follows from the combination of Observation 5 and

Theorem 11.

As discussed in the introduction, finding an algorithm forVertPart(T , T) parameterized by the treewidth

of the input graph is a question of interest in bioinformatics. By combining Observation 7, Theorem 11,

and Theorem 4, we obtain an efficient algorithm solving VertPart(T , T).

Corollary 14. There exists an algorithm that solves VertPart(T , T) in time 2O(tw) · nO(1).

To the best of our knowledge, the only other algorithm parameterized by treewidth for VertPart(T , T)

was known using Courcelle’s theorem and run in time 22
O(tw)

· nO(1).

6 Conclusion

In this paper, we provide a generic tool for solving graph partition problems, coloring problems, and edge

partition problems parameterized by the treewidth of the input graph. In particular, the developed approach

provides a way, different than Courcelle’s theorem, to determine whether a problem is FPT parameterized

14 Julien Baste

by treewidth and also provides a first estimation of the expected running time of an algorithm solving

the given problem. We would like to highlight the quality of these estimations as, for some well-known

problems, they are asymptotically optimal.

In this conclusion we want to stress that when solving graph partition problems, we count the number

of transversal edges. The illustrated technique allows, for instance, with some small modifications, to

count separately transversal edges between different vertex sets of the partition. One can ask for instance

for a partition of the vertex set of the input graph into three sets V1, V2, V3 such that there are k1,2 edges

between V1 and V2, at most k2,3 edges edges between V2 and V3, and no edge between V1 and V3 for

some integers k1,2 and k2,3.

This approach also allows us to work with balanced partition. In this case, we first need to obtain the

size of the input graph before constructing the dynamic core. Indeed we will need to intersect each graph

class we consider with the class of graph of size q (or q + 1 if needed) for some correctly calculated q.

For normalized cuts, this trick will not work as the target graph classes are not fixed before the algorithm

starts to run.

More generally, we believe that using the dynamic programming core model, one can easily compose

dynamic programming tree-decomposition-based algorithms with several added constraints. Moreover

we also believe that it is adapted to quickly study exotic problems parameterized by treewidth.

References

K. Andreev and H. Racke. Balanced Graph Partitioning. Theory of Computing Systems, 39:929–939,

2006.

J. Baste, C. Paul, I. Sau, and C. Scornavacca. Efficient FPT algorithms for (strict) compatibility of un-

rooted phylogenetic trees. Bulletin of Mathematical Biology, 79(4):920–938, 2017.

J. Baste, M. Fellows, L. Jaffke, T. Masarik, M. de Oliveira Oliveira, G. Philip, and F. Rosamond. Di-

versity of solutions: An exploration through the lens of fixed-parameter tractability theory. Artificial

Intelligence, page 103644, 2022.

H. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential time algorithms

for connectivity problems parameterized by treewidth. Information and Computation, 243(C):86–111,

2015.

D. Bryant and J. Lagergren. Compatibility of unrooted phylogenetic trees is FPT. Theoretical Computer

Science, 351:296–302, 2006.

G. Chang, C. Chen, and Y. Chen. Vertex and Tree Arboricities of Graphs. Journal of Combinatorial

Optimization, 8(3):295–306, 2004.

B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information

and Computation, 85(1):12–75, 1990.

M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.

Parameterized Algorithms. Springer, 2015.

Composing dynamic programming tree-decomposition-based algorithms 15

O. Goldschmidt and D. Hochbaum. A Polynomial Algorithm for the k-cut Problem for Fixed k. Mathe-

matics of Operations Research, 19(1):24–37, 1994. doi: 10.1287/moor.19.1.24.

L. Grady and E. Schwartz. Isoperimetric graph partitioning for image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 28(3):469–475, 2006.

R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Exponential Complexity? Journal

of Computer and System Sciences, 63(4):512–530, 2001.

R. Janssen, M. Jones, S. Kelk, G. Stamoulis, and T. Wu. Treewidth of display graphs: bounds, brambles

and applications. Journal of Graph Algorithms and Applications, 23(4):715–743, 2019. doi: 10.7155/

jgaa.00508.

R. Karp. Reducibility Among Combinatorial Problems. Complexity of Computer Computations, pages

85–103, 1972.

T. Kloks. Treewidth, Computations and Approximations. Springer, 1994.

E. Mezuman and Y. Weiss. Globally Optimizing Graph Partitioning Problems Using Message Passing.

In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AIS-

TATS), volume 22 of Proceedings of Machine Learning Research, pages 770–778, 2012.

T. Qian, Y. Yang, and S. Wang. Refining Graph Partitioning for Social Network Clustering. In Proceedings

of the 11th International Conference on Web Information System Engineering (WISE), volume 6488 of

LNCS, pages 77–90, 2010.

I. Rajasingh and A. Shanthi. Induced Matching Partition of Petersen and Circulant Graphs. Procedia

Engineering, 64:395–400, 2013.

M. Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-width. Theoretical

Computer Science, 377(1):260–267, 2007.

S. Schaeffer. Graph clustering. Computer Science Review, 1:27–64, 2007.

C. Scornavacca, L. van Iersel, S. Kelk, and D. Bryant. The agreement problem for unrooted phylogenetic

trees is FPT. Journal of Graph Algorithms and Applications, 18:385–392, 2014.

R. Sharan, A. Maron-Katz, and R. Shamir. CLICK and EXPANDER: a system for clustering and visual-

izing gene expression data. Bioinformatics, 19:1787–1799, 2003.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22:888–905, 2000.

A. Torres and F. Monteiro. Image Segmentation by Graph Partitioning. AIP Conference Proceedings,

1479(1):802–805, 2012.

Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and its application to

image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:1101–1113,

1993.

16 Julien Baste

A. Yang and J. Yuan. Partition a graph with small diameter into two induced matchings. Applied

Mathematics-A Journal of Chinese Universities, 19(3):245–251, 2004.

A. Yang and J. Yuan. On the vertex arboricity of planar graphs of diameter two. Discrete Mathematics,

307(19):2438–2447, 2007.

J. Yuan and Q. Wang. Partition the vertices of a graph into induced matchings. Discrete Mathematics,

263(1):323–329, 2003.

