Extending partial edge colorings of iterated cartesian products of cycles and paths

Carl Johan Casselgren 1 \| \quad Jonas B. Granholm ${ }^{1} \quad$ Fikre B. Petros ${ }^{2}$
${ }^{1}$ Linköpings Universitet, Sweden
${ }^{2}$ Addis Ababa University, Ethiopia

revisions $25^{\text {th }}$ May 2023, $8^{\text {th }}$ Mar. 2024; accepted 19th Apr. 2024.

Abstract

We consider the problem of extending partial edge colorings of iterated cartesian products of even cycles and paths, focusing on the case when the precolored edges satisfy either an Evans-type condition or is a matching. In particular, we prove that if $G=C_{2 k}^{d}$ is the d th power of the cartesian product of the even cycle $C_{2 k}$ with itself, and at most $2 d-1$ edges of G are precolored, then there is a proper $2 d$-edge coloring of G that agrees with the partial coloring. We show that the same conclusion holds, without restrictions on the number of precolored edges, if any two precolored edges are at distance at least 4 from each other. For odd cycles of length at least 5 , we prove that if $G=C_{2 k+1}^{d}$ is the d th power of the cartesian product of the odd cycle $C_{2 k+1}$ with itself ($k \geq 2$), and at most $2 d$ edges of G are precolored, then there is a proper $(2 d+1)$-edge coloring of G that agrees with the partial coloring. Our results generalize previous ones on precoloring extension of hypercubes [Journal of Graph Theory 95 (2020) 410-444].

Keywords: Precoloring extension, Edge coloring, Cartesian product, List coloring

1 Introduction

An (edge) precoloring (or partial edge coloring) of a graph G is a proper edge coloring of some subset $E^{\prime} \subseteq E(G) ;$ a t-edge precoloring is such a coloring with t colors. A t-precoloring φ of G is extendable if there is a proper t-edge coloring f of G such that $f(e)=\varphi(e)$ for any edge e that is colored under $\varphi ; f$ is called an extension of φ. In general, the problem of extending a given edge precoloring is an $\mathcal{N} \mathcal{P}$-complete problem, already for 3 -regular bipartite graphs [8, 11].

Edge precoloring extension problems seem to have been first considered in connection with the problem of completing partial Latin squares and the well-known Evans' conjecture that every $n \times n$ partial Latin square with at most $n-1$ non-empty cells is completable to a Latin square [10]. By a well-known correspondence, the problem of completing a partial Latin square is equivalent to asking if a partial edge coloring with $\Delta(G)$ colors of a balanced complete bipartite graph G is extendable to a $\Delta(G)$-edge coloring, where $\Delta(G)$ as usual denotes the maximum degree. Evans' conjecture was proved for large n by Häggkvist [13], and in full generality by Andersen and Hilton [1], and, independently, by Smetaniuk [16].

[^0]Another early reference on edge precoloring extension is [14], where the authors study the problem from the viewpoint of polyhedral combinatorics. More recently, the problem of extending a precoloring of a matching has been considered in [9]. In particular, it is conjectured that for every graph G, if φ is an edge precoloring of a matching M in G using $\Delta(G)+1$ colors, and any two edges in M are at distance at least 2 from each other, then φ can be extended to a proper $(\Delta(G)+1)$-edge coloring of G; here, by the distance between two edges e and e^{\prime} we mean the number of edges in a shortest path between an endpoint of e and an endpoint of e^{\prime}; a distance-t matching is a matching where any two edges are at distance at least t from each other. In [9], it is proved that this conjecture holds for e.g. bipartite multigraphs and subcubic multigraphs, and in [12] it is proved that a version of the conjecture with the distance increased to 9 holds for general graphs.

Quite recently, with motivation from results on completing partial Latin squares, questions on extending partial edge colorings of d-dimensional hypercubes Q_{d} were studied in [7]. Among other things, a characterization of partial edge colorings with at most d precolored edges that are extendable to d-edge colorings of Q_{d} is obtained, thereby establishing an analogue for hypercubes of the characterization by Andersen and Hilton [1] of $n \times n$ partial Latin squares with at most n non-empty cells that are completable to Latin squares. In particular, every partial d-edge coloring with at most $d-1$ colored edges is extendable to a d-edge coloring of Q_{d}. This line of investigation was continued in [5, 6] where similar questions are investigated for trees.

In [4], similar questions are investigated for cartesian products of graphs. The cartesian product $G \square H$ of two graphs G and H is the graph with vertex set $V(G \square H)=\{(u, v): u \in V(G), v \in V(H)\}$, and where (u, v) is adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or $u u^{\prime} \in E(G)$ and $v=v^{\prime}$.

In [4], Evans-type edge precoloring extension results are obtained for the cartesian products of complete and complete bipartite graphs with K_{2}, respectively, as well as for the product of K_{2} with graphs of small maximum degree and trees. Moreover, similar results for the cartesian product of K_{2} with a general regular (triangle-free) graph, where the precolored edges are required to be independent, were obtained.

In this paper, we continue the study of questions on precoloring extension of cartesian products of graphs with a focus on iterated cartesian products of graphs. Denote by G^{d} the d th power of the cartesian product of G with itself. We pose the following question.

Problem 1.1 Let G be a graph where every precoloring of at most $\chi^{\prime}(G)-k$ edges, where $k \geq 1$, can be extended to a proper $\chi^{\prime}(G)$-edge coloring. Is it true that every precoloring of at most $\chi^{\prime}\left(G^{d}\right)-k$ edges of G^{d} can be extended to a $\chi^{\prime}\left(G^{d}\right)$-edge coloring of G^{d} ?

The result of [7] for hypercubes deals with the case when $G=K_{2}$ (as well as $G=C_{4}$), so a positive answer to Problem 1.1 would be a far-reaching generalization of this result.

In this paper, we study Problem 1.1 for graphs with maximum degree two. We verify that it has a positive answer for even as well as for odd cycles of length at least 5 , and therefore also for paths. The case of odd cycles of length 3 appears to be more difficult, and it remains an open problem whether Problem 1.1 has a positive answer in this case.

Even though any partial edge coloring of an odd cycle is extendable, we shall restrict ourselves to the case when at most $\chi^{\prime}(G)-1$ edges in a graph G are precolored, since for all connected graphs except odd cycles and stars, there are examples of partial edge colorings with $\chi^{\prime}(G)$ precolored edges that are not extendable. In fact, in [4] it was proved that every partial $\chi^{\prime}(G)$-edge coloring of G is extendable if and only G is isomorphic to a star $K_{1, n}$ or an odd cycle.

For even cycles, we additionally prove that any precoloring of a distance- 4 matching in $C_{2 k}^{d}$ is extendable to a proper $2 k$-edge coloring. Here the argument relies heavily on the fact that $C_{2 k}^{d}$ is Class 1 , and we do not know whether a similar result hold for odd cycles.

2 Preliminaries

Before we prove our results, let us introduce some terminology and auxiliary results.
If φ is an edge precoloring of G and an edge e is colored under φ, then we say that e is φ-colored. A color c appears at a vertex v under φ if there is an edge incident with v that is colored c; otherwise, c is missing at v.

If the edge coloring φ uses t colors and $1 \leq a, b \leq t$, then a path or cycle in G is called (a, b)-colored under φ if its edges are colored by colors a and b alternately. We also say that such a path or cycle is bicolored under φ. By switching colors a and b on a maximal (a, b)-colored path or an (a, b)-colored cycle, we obtain another proper t-edge coloring of G; this operation is called an interchange or a swap.

In the above definitions, we often leave out the reference to an explicit coloring φ, if the coloring is clear from the context.

If G_{1} and G_{2} are subgraphs of G, and f_{i} is a proper edge coloring of G_{i}, then we say that f_{1} has no conflicts with f_{2} if no vertex is incident with two edges e_{1} and e_{2} such that $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$.

By construction, $G=C_{r}^{d}$ decomposes into d subgraphs in terms of its edges, each consisting of r^{d-1} disjoint copies of C_{r}; these subgraphs are called dimensions. Each subgraph of a dimension which is isomorphic to C_{r} is called a layer, and each component of $G-E(D)$, where D is a dimension, is called a plane of G. If $d=2$, then layers and planes are identical objects.

Fig. 1: An illustration of dimensions, layers and planes. Each cycle forms a layer, all the cycles together form a dimension, and the components obtained by removing all the edges from the cycles are the planes.

In Figure 1 , the edge-induced subgraph consisting of all vertices and drawn edges form a dimension, each cycle is a layer, and each connected component in the subgraph obtained by removing all drawn edges is a plane.

Two planes are adjacent if there is an edge with endpoints in both planes. Similarly an edge e not contained in a plane is incident to the plane if one endpoint of e is contained in the plane, and we say that
a layer edge is between two planes if it is incident with both planes.
Two vertices of two distinct planes are corresponding if they are joined by an edge; similarly for edges. Given edge colorings of two distinct planes, we say that the planes are colored correspondingly if corresponding edges have the same color.

We shall also need some standard definitions on list edge coloring. Given a graph G, assign to each edge e of G a set $\mathcal{L}(e)$ of colors. Such an assignment \mathcal{L} is called a list assignment for G and the sets $\mathcal{L}(e)$ are referred to as lists or color lists. If all lists have equal size k, then \mathcal{L} is called a k-list assignment. Usually, we seek a proper edge coloring φ of G, such that $\varphi(e) \in \mathcal{L}(e)$ for all $e \in E(G)$. If such a coloring φ exists then G is \mathcal{L}-colorable and φ is called an \mathcal{L}-coloring. Denote by $\chi_{L}^{\prime}(G)$ the minimum integer t such that G is \mathcal{L}-colorable whenever \mathcal{L} is a t-list assignment. If $\chi_{L}^{\prime}(G) \leq t$, then G is t-edge-choosable. The following lemmas are well-known and easy to prove.
Lemma 2.1 Every even cycle is 2-edge-choosable.
Lemma 2.2 If L is a 2-list assignment for the edges of an odd cycle C, then C is L-colorable, unless all lists are identical.

We shall also use the well-known proposition that paths are edge-list colorable from a list assignment where every edge except the first one gets a list of size at least two.

3 Extension of $2 d-1$ precolored edges of $C_{2 k}^{d}$

In this section, we prove the following theorem.
Theorem 3.1 If $G=C_{2 k}^{d}$ is the dth power of the cartesian product of the even cycle $C_{2 k}$ with itself, and φ is a proper partial edge coloring of G with at most $2 d-1$ precolored edges, then φ can be extended to a proper $2 d$-edge coloring of G.

As mentioned in the introduction, every connected graph except odd cycles and stars have a partial edge coloring with $\chi^{\prime}(G)$ precolored edges that is not extendable. Thus, since $\chi^{\prime}(G)=2 d$, the bound on the number of precolored edges here is best possible.
Proof Proof of Theorem 3.1: The proof proceeds by induction on d, the case $d=1$ being trivial. We shall prove a series of lemmas that together will imply the theorem. In the proofs of these lemmas we shall consider a specified dimension D_{1}, and the subgraph $G-E\left(D_{1}\right)$ consisting of $2 k$ planes $Q_{1}, \ldots, Q_{2 k}$, where Q_{i} is adjacent to Q_{i+1} (here, and in the following, indices are taken modulo $2 k$).

We shall assume that every precoloring of a plane of $G-E\left(D_{1}\right)$ with at most $2 d-3$ precolored edges is extendable to a proper edge coloring using $2 d-2$ colors, and prove that a given precoloring φ of G with at most $2 d-1$ precolored edges is extendable to a proper $2 d$-edge coloring of G.

We shall distinguish between the following cases, each of which is dealt with in a lemma below.

- There is a dimension of G that contains no precolored edges.
- Each dimension of G contains precolored edges, and there is a dimension with at most two precolored edges, the colors of which do not appear on edges in any other dimension of G.
- Every dimension of G contains edges with colors that also appear on edges in another dimension, or at least three precolored edges.

Lemma 3.2 If there is a dimension of G that contains no precolored edges, then φ is extendable.
Proof: Suppose that D_{1} is a dimension in G that contains no precolored edges, and consider the subgraph $G-E\left(D_{1}\right)$.

Suppose first that all precolored edges are contained in one plane, say Q_{1}. Let c_{1} and c_{2} be two colors used by φ (if just one color appears under φ, then c_{2} is any color from $\{1, \ldots, 2 d\} \backslash\left\{c_{1}\right\}$). From the restriction of φ to Q_{1}, we define an edge precoloring φ^{\prime} of Q_{1} by removing the colors c_{1} and c_{2} from any edge of $Q_{1} \varphi$-colored by these colors. Then, by the induction hypothesis, φ^{\prime} is extendable to a $(2 d-2)$ coloring of Q_{1} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{2}\right\}$. Next we recolor the edges φ-precolored c_{1} and c_{2} by these colors, and thereafter color all other planes correspondingly. Thus, we can define a list assignment L for the edges of D_{1}, by for each edge $e \in E\left(D_{1}\right)$, letting $L(e)$ be the set of all colors from $\{1, \ldots, 2 d\}$ that do not appear on edges that are adjacent to e. By Lemma 2.1, we can properly color the edges of D_{1} from these lists to obtain a proper coloring that has no conflicts with the coloring of $G-E\left(D_{1}\right)$, and thus φ is extendable.

Next, we consider the case when exactly two planes, say Q_{1} and Q_{i} contain all precolored edges. Since at most $2 d-1$ colors appear under φ, there is a color $c_{1} \in\{1, \ldots, 2 d\}$ that is not used by φ. Furthermore, let c_{2} be a color appearing on some edge in the plane with the largest number of precolored edges, say Q_{1}. Let φ^{\prime} be the coloring obtained from φ by removing color c_{2} from any edge colored c_{2} under φ. Then the restrictions of φ^{\prime} to Q_{1} and Q_{i}, respectively, are extendable to proper ($2 d-2$)-edge colorings using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{2}\right\}$. By recoloring any edge φ-colored c_{2} by the color c_{2}, we obtain proper edge colorings f_{1} and f_{i} of Q_{1} and Q_{i}, respectively.

Now, either $i \neq 2$ or $i \neq 2 k$; suppose the former holds. Then we color Q_{2} correspondingly to how Q_{1} is colored under f_{1}, and we color all other uncolored Q_{j} 's correspondingly to how Q_{i} is colored under f_{i}. Now, since $Q_{2 j-1}$ and $Q_{2 j}$ are colored correspondingly, for every edge e with one endpoint in $Q_{2 j-1}$ and one endpoint in $Q_{2 j}$, there is a color $\{1, \ldots, 2 d\} \backslash\left\{c_{1}\right\}$ that does not appear at an endpoint of e. Thus, by coloring all such edges by such a color and then coloring all other edges of D_{1} by the color c_{1}, we obtain an extension of φ.

Lastly, let us consider the case when at least three planes contain all precolored edges. As before, let c_{1} be a color that is not used by φ. Since at least three planes contain precolored edges, each plane contains at most $2 d-3$ precolored edges, and two adjacent planes contain precolored edges from at most $2 d-2$ colors. This implies that for each $j=1, \ldots, k$ there is a color c_{j}^{\prime} in $\{1, \ldots, 2 d\} \backslash\left\{c_{1}\right\}$ that is not used in the restriction of φ to $Q_{2 j-1}$ and $Q_{2 j}$. Thus for $j=1, \ldots, k$, we can extend the restriction of φ to $Q_{2 j-1}$ and $Q_{2 j}$ using the $2 d-2$ colors in $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{j}^{\prime}\right\}$. For $j=1, \ldots k$, we then color all edges of D_{1} between $Q_{2 j-1}$ and $Q_{2 j}$ by c_{j}^{\prime}, and all other edges of D_{1} by the color c_{1}. This yields an extension of φ.

Lemma 3.3 If each dimension of G contains precolored edges and there is a dimension with at most two precolored edges, the colors of which do not appear on edges in any other dimension of G, then φ is extendable.

Proof: Assume first that there is a dimension D_{1} containing only one precolored edge and that there is a plane Q_{1} in $G-E\left(D_{1}\right)$ containing all other precolored edges. Suppose that the precolored edge of
D_{1} is colored c_{1}. As in the proof of the preceding lemma, there is an extension of the restriction of φ to Q_{1} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}\right\}$. Next, we color all other planes of $G-E\left(D_{1}\right)$ correspondingly, which implies that every edge of D_{1} is adjacent to edges of $2 d-2$ different colors, so by Lemma $2.1, \varphi$ is extendable.

Let us now consider the case when there is no such dimension containing only one precolored edge and a plane containing all other precolored edges. Let D_{1} be a dimension containing at most two edges that are precolored by colors not appearing on any other edges under φ. Our assumption implies that every plane in $G-E\left(D_{1}\right)$ contains at most $2 d-3$ precolored edges, and that there are two colors c_{1}, c_{2} that do not appear on any edge in $G-E\left(D_{1}\right)$, and at most two edges of D_{1} are colored by colors from $\left\{c_{1}, c_{2}\right\}$.

Suppose first that there is an extension of the restriction of φ to D_{1} using colors c_{1} and c_{2}. Since every plane in $G-E\left(D_{1}\right)$ contains at most $2 d-3$ precolored edges, every plane has a proper edge coloring using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{2}\right\}$ that agrees with φ. Hence, φ is extendable.

Suppose now that the restriction of φ to D_{1} is not extendable using colors c_{1} and c_{2}. Then there are at least two precolored edges in D_{1}, and so $G-E\left(D_{1}\right)$ contains at most $2 d-3$ precolored edges and there is a color $c_{3} \in\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{2}\right\}$ that does not appear on any edge under φ.

Since the restriction of φ to D_{1} is not extendable, there are planes $Q_{1}, Q_{2}, \ldots, Q_{i}$ in $G-E\left(D_{1}\right)$ such that Q_{1} and Q_{i} are incident with precolored edges of D_{1} and Q_{2}, \ldots, Q_{i-1} are not. Without loss of generality we assume that Q_{1} is incident with an edge of D_{1} that is precolored c_{1}. We take an extension of Q_{1} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{3}\right\}$, and for $j=2, \ldots, i-1$, we take an extension of the restriction of φ to Q_{j} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{2}, c_{3}\right\}$. Moreover, we color every path in D_{1} with vertices in Q_{1}, \ldots, Q_{i} using colors c_{3} and c_{2} alternately, and starting with c_{3} at Q_{1}.

If Q_{i} is incident with an edge of D_{1} colored c_{2}, then i is even, and we take extensions of the restriction of φ to Q_{i} and Q_{i+1} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{2}, c_{3}\right\}$, and for $j=i+2, \ldots, 2 d$, we take extensions of the restrictions of φ to Q_{j} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{3}\right\}$. Moreover, we color every path in D_{1} with vertices in $Q_{i+1}, \ldots, Q_{2 k}$ using colors c_{3} and c_{1} alternately, and starting with c_{3} at Q_{i+1}. Finally, we color all edges between Q_{1} and $Q_{2 k}$ by the color c_{1}, and all edges between Q_{i} and Q_{i+1} by the color c_{2}. This yields an extension of φ.

If Q_{i} is incident with an edge colored c_{1}, then i is odd, and we proceed similarly, but take extensions of the restrictions of φ to Q_{i} and Q_{i+1} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{2}\right\}$, for $j=i+2, \ldots 2 k-1$, we take extensions of the restrictions of φ to Q_{j} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{2}, c_{3}\right\}$, and an extension of the restriction of φ to $Q_{2 k}$ using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{3}\right\}$. We then color the paths of D_{1} so that the resulting coloring is proper and agrees with φ.

Lemma 3.4 If each dimension of G contains edges with colors that also appear on edges in another dimension, or at least three precolored edges, then φ is extendable.

Proof: Since at most $2 d-1$ edges are precolored, there is a dimension D_{1} with just one precolored edge e. Suppose $\varphi(e)=c_{1}$. Since at least one color appears on at least two edges, there are two colors $c_{2}, c_{3} \in\{1, \ldots, 2 d\} \backslash\left\{c_{1}\right\}$ that do not appear on any edge under φ.

We consider some different cases.
Case 1. All precolored edges except e lie in the same plane:
Let Q_{1} be a plane containing all precolored edges except e. By removing the color from every edge of Q_{1} that is φ-colored c_{1}, we obtain a precoloring that by the induction hypothesis is extendable to a proper
edge coloring of Q_{1} using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{2}\right\}$. Denote this coloring by f. By recoloring the edges of Q_{1} that are φ-colored c_{1}, we obtain, from f, an extension f^{\prime} of the restriction of φ to Q_{1}. We color all other planes of $G-E\left(D_{1}\right)$ correspondingly.

Suppose first that e is incident with Q_{1}. Then, by Lemma 2.1, there is proper edge coloring g of D_{1} that has no conflicts with f^{\prime}. Moreover, since just one edge of D_{1} is precolored, we can choose this coloring so that $g(e)=c_{1}$. Hence, φ is extendable.

Next, we consider the case when e is not incident with Q_{1}. Let C be the cycle in D_{1} containing e. If no vertex of C is incident with an edge colored c_{1} under f^{\prime}, then we may proceed as in the preceding paragraph. Otherwise, the endpoints of e are incident with two edges e_{1} and e_{2} of $G-E\left(D_{1}\right)$ colored c_{1}. Note that e, e_{1}, e_{2} are contained in a 4-cycle in G, the fourth edge of which we denote by e_{3}. As before, we properly color the edges of D_{1} so that the resulting coloring g^{\prime} of G is proper. Moreover, we choose g^{\prime} so that $g^{\prime}(e)=g^{\prime}\left(e_{3}\right)=c_{2}$. By swapping colors on the bicolored 4-cycle with edges e, e_{1}, e_{2}, e_{3} we finally obtain an extension of φ.

Case 2. All precolored edges except e lie in exactly two planes:
Let Q_{1} and Q_{i} be the two planes containing the precolored edges distinct from e.
Suppose first that e is not adjacent to Q_{1} or Q_{i}. Since each of Q_{1} and Q_{i} contains at most $2 d-3$ precolored edges, there are extensions f_{1} and f_{i} of the restrictions of φ to Q_{1} and Q_{i}, respectively, using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{2}, c_{3}\right\}$. Next, we properly color each plane Q of $G-E\left(D_{1}\right)$ that is distinct from Q_{1} and Q_{i}, by colors $\{1, \ldots, 2 d\} \backslash\left\{c_{2}, c_{3}\right\}$, so that all these planes are colored correspondingly. Moreover, color all edges of D_{1} alternately using colors c_{2} and c_{3} and starting with color c_{2} for all edges of D_{1} with endpoints in Q_{1} and Q_{2}. Then e is contained in a bicolored 4-cycle, and by swapping colors on this cycle, we obtain an extension of φ.

Let us now consider the case when e is adjacent to exactly one of Q_{1} and Q_{i}. Suppose e.g. that e is incident with Q_{1} and Q_{2}, so $i \neq 2$. Since each of Q_{1} and Q_{i} contains at most $2 d-3$ precolored edges, there are extensions f_{1} and f_{i} of the restrictions of φ to Q_{1} and Q_{i}, respectively, using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{2}, c_{3}\right\}$. Next, we color all uncolored planes in $G-E\left(D_{1}\right)$ correspondingly to how Q_{1} is colored, color all cycles of D_{1} properly using colors c_{2} and c_{3}, and starting with color c_{2} for all edges with endpoints in Q_{1} and Q_{2}. Since Q_{1} and Q_{2} are colored correspondingly, there is a bicolored 4-cycle with colors c_{1}, c_{2} containing e. By swapping colors on this 4 -cycle, we obtain an extension of φ.

Suppose now that e_{1} is incident with both planes containing precolored edges, say Q_{1} and Q_{2}. By removing the color from any edge that is colored c_{1} under φ, we obtain a precoloring φ^{\prime} of G such that the restrictions of φ^{\prime} to Q_{1} and Q_{2}, respectively, are extendable to proper edge colorings using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{1}, c_{3}\right\}$. By recoloring any edge of Q_{1} and Q_{2} that is φ-colored c_{1}, we obtain proper edge colorings f_{1} and f_{2} of Q_{1} and Q_{2}, respectively, using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{3}\right\}$. We color the edges of D_{1} between Q_{1} and Q_{2} by c_{3}, except for e which is colored c_{1}.

Next, we color $Q_{3}, \ldots, Q_{2 k-1}$ correspondingly to how Q_{2} is colored under f_{2} and $Q_{2 k}$ correspondingly to how Q_{1} is colored. Now, since Q_{2} and Q_{3} are colored correspondingly, for each edge e^{\prime} of D_{1} between Q_{2} and Q_{3}, there is a color $c^{\prime} \in\{1, \ldots, 2 d\}$ that does not appear on an adjacent edge in Q_{2} or on the edge between Q_{1} and Q_{2}. We color every such edge e^{\prime} between Q_{2} and Q_{3} by such a color c^{\prime}, and thereafter color all edges of every path of D_{1} from Q_{1} to $Q_{2 k}$ alternately by the colors used on the edges between Q_{1} and Q_{2}, and Q_{2} and Q_{3} respectively. This yields a proper partial edge coloring where the endpoints of
every edge of D_{1} between Q_{1} and $Q_{2 k}$ are incident to edges with $2 d-1$ colors from $\{1, \ldots, 2 d\}$. Thus we can properly color every such edge so that we get an extension of φ using colors $1, \ldots, 2 d$.

Case 3. At least three planes in $G-E\left(D_{1}\right)$ contain precolored edges:
The assumption implies that every plane in $G-E\left(D_{1}\right)$ contains at most $2 d-4$ precolored edges, and any two adjacent planes contain altogether at most $2 d-3$ precolored edges. Without loss of generality, we assume that e is incident with Q_{1} and Q_{2}. Since every vertex of Q_{1} and Q_{2} has degree $2 d-2$, and $Q_{1} \cup Q_{2}$ contains at most $2 d-3$ precolored edges, there are uncolored corresponding edges $e_{1} \in E\left(Q_{1}\right)$ and $e_{2} \in E\left(Q_{2}\right)$ that are adjacent to e but not to any edge in $Q_{1} \cup Q_{2}$ precolored c_{1}. From the restriction of φ to $G-E\left(D_{1}\right)$, we define a new precoloring φ^{\prime} of $G-E\left(D_{1}\right)$ by in addition coloring e_{1} and e_{2} by the color c_{1}.

Now, since each component of $G-E\left(D_{1}\right)$ contains at most $2 d-3 \varphi^{\prime}$-precolored edges, by the induction hypothesis, there is an extension of φ^{\prime} to $G-E\left(D_{1}\right)$ using colors $\{1, \ldots, 2 d\} \backslash\left\{c_{2}, c_{3}\right\}$. Next, we properly color the edges of D_{1} using colors c_{2} and c_{3}, and starting with color c_{2} for the edges with endpoints in Q_{1} and Q_{2}. Now, since e_{1} and e_{2} are both colored c_{1}, there is a bicolored 4-cycle with edges e_{1}, e_{2} and e with colors c_{1} and c_{2}. By swapping colors on this 4 -cycle, we obtain an extension of φ.

4 Extending a precoloring of $2 d$ edges in $C_{2 k+1}^{d}$

In this section, we prove the following theorem for the iterated cartesian product of odd cycles of length at least 5 .

Theorem 4.1 If $G=C_{2 k+1}^{d}$ is the dth power of the cartesian product of the odd cycle $C_{2 k+1}$ with itself $(k \geq 2)$, and φ is a proper partial edge coloring of G with at most $2 d$ precolored edges, then φ can be extended to a proper $(2 d+1)$-edge coloring of G.

As for the case of even cycles, (for $d \geq 2$) it is easily seen that the number of precolored edges here is best possible, because $\chi^{\prime}(G)=2 d+1$.

Proof Proof of Theorem 4.1; The proof of this theorem is similar to the proof of Theorem 3.1, so we shall omit or just sketch some parts which are similar to techniques in that proof. Particularly in the last parts of the proof, to avoid tedious repetition we omit parts which are very similar to techniques that have been described in more detail earlier in the proof.

We proceed by induction on d, the case $d=1$ being trivial. As in the proof of Theorem 3.1, we shall prove a series of lemmas that together will imply the theorem. Since odd cycles are not 2 -edgecolorable, the proof is longer and more difficult than the proof of that theorem. In the proofs of these lemmas we shall consider a specified dimension D_{1}, and the subgraph $G-E\left(D_{1}\right)$ consisting of $2 k+1$ planes $Q_{1}, \ldots, Q_{2 k+1}$, where Q_{i} is adjacent to Q_{i+1} (here, and in the following, indices are taken modulo $2 k+1)$.

We shall assume that every edge precoloring of a plane of $G-E\left(D_{1}\right)$ with at most $2 d-2$ precolored edges is extendable to a proper edge coloring using $2 d-1$ colors, and prove that a given precoloring φ of G with at most $2 d$ precolored edges is extendable to a proper $(2 d+1)$-edge coloring of G. To that end, we shall distinguish between the following different cases.

- There is a dimension of G that contains no precolored edges.
- Every dimension of G contains precolored edges, and there is a dimension with at most two precolored edges, the colors of which do not appear on edges in any other dimension of G.
- Every dimension of G contains edges with colors that also appear on edges in other dimensions, or at least three precolored edges, and one dimension contains only one precolored edge.
- Every dimension of G contains two precolored edges, at least one of which has a color appearing on edges in another dimension.

Lemma 4.2 If there is a dimension of G that contains no precolored edges, then φ is extendable.
Proof: Suppose that D_{1} is a dimension in G that contains no precolored edges. We consider some different cases.

Case 1. All precolored edges are contained in one plane:
Suppose that all precolored edges are contained in one plane, say Q_{1}. Let c_{1} and c_{2} be two colors used by φ (if just one color appears under φ, then c_{2} is any color from $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}\right\}$). By removing the colors c_{1} and c_{2} from any edge colored by these colors, we obtain an edge precoloring φ^{\prime} of Q_{1} that is extendable to a $(2 d-1)$-coloring of Q_{1} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$. Next we recolor the edge precolored c_{1} and c_{2}, respectively, using these colors, and thereafter color all other planes correspondingly. Since all planes are colored correspondingly, we can apply Lemma 2.2 to properly color the edges of each layer of D_{1} to obtain an extension of φ.

Case 2. All precolored edges are contained in two planes:
Suppose that Q_{1} and Q_{i} contain all precolored edges. We shall consider three different cases.
Suppose first that $2 d-1$ precolored edges are contained in the same plane, say Q_{1}, and that one edge e_{i} in Q_{i} is colored c_{1}. Let c_{2} be a color appearing on some edge in Q_{1}. From the restriction of φ to Q_{1} we define a precoloring φ^{\prime} of Q_{1} by removing color c_{2} from every edge φ-colored c_{2}. Then φ^{\prime} is extendable to a proper $(2 d-1)$-edge coloring using $2 d-1$ colors from $\{1, \ldots 2 d+1\} \backslash\left\{c_{2}\right\}$. By recoloring every edge of Q_{1} that is φ-colored c_{2} by the color c_{2}, we obtain a proper edge coloring f of Q_{1}.

Let e_{1} be the edge of Q_{1} corresponding to e_{i} of Q_{i}. If $f\left(e_{1}\right)=c_{1}$, then we color all planes in $G-E\left(D_{1}\right)$ correpondingly to how Q_{1} is colored. By Lemma 2.2, we may then color the edges of D_{1} to obtain an extension of φ. If, on the other hand, $f\left(e_{1}\right)=c_{3} \neq c_{1}$, then we define a proper edge coloring of Q_{i} by coloring it correspondingly to Q_{1} but permuting the colors in $\{1, \ldots, 2 d+1\}$ so that c_{1} is mapped to c_{3} and vice versa, and all other colors are mapped to themselves. This yields a proper edge coloring of Q_{i} that agrees with the restriction of φ to Q_{i}. We color all other Q_{j} 's correspondingly to how Q_{i} is colored, and applying Lemma 2.2, we obtain an extension of φ, as before.

Let us now assume that both Q_{1} and Q_{i} contain at most $2 d-2$ precolored edges, respectively, and at most $2 d-1$ colors, say $1, \ldots, 2 d-1$, are used by φ. By the induction hypothesis, the restrictions of φ to Q_{1} to Q_{i} are extendable to $(2 d-1)$-edge colorings f_{1} and f_{i}, respectively, using colors $1, \ldots, 2 d-1$. We color all other Q_{j} 's correspondingly to how Q_{i} is colored, and using Lemma 2.2 we obtain an extension of φ.

On the other hand, if both Q_{1} and Q_{i} contain at most $2 d-2$ precolored edges, respectively, but in total $2 d$ colors $1, \ldots, 2 d$ are used by φ, then every color appears on exactly one edge under φ. Hence, we may assume that one edge of Q_{1}, but not Q_{i}, is colored, say, 1 , and similarly, one edge of Q_{i} is colored $2 d$. By the induction hypothesis, there is an extension f_{1} of the restriction of φ to Q_{1} using colors $1, \ldots, 2 d-1$, and an extension f_{i} of the restriction of φ to Q_{i} using colors $2, \ldots, 2 d$.

Now, either $i \neq 2$ or $i \neq 2 k+1$; suppose that the former holds. We define a proper edge coloring f_{2} of Q_{2} using colors $2, \ldots, 2 d$ by coloring Q_{2} correspondingly to Q_{1} but using color $2 d$ instead of 1 , and then coloring all other planes of $G-E\left(D_{1}\right)$ correspondingly to how Q_{i} is colored. By the construction of f_{2}, for each layer edge e of D_{1} between Q_{1} and Q_{2}, there is a color in $\{2, \ldots, 2 d\}$ that does not appear at an endpoint of e. We color every such layer edge by this color, and then color the edges of every cycle in D_{1} by colors 1 and $2 d+1$ alternately, and starting with color 1 at Q_{2}. This yields an extension of φ.

Case 3. All precolored edges are contained in at least three planes:
Let $Q_{j_{1}}, Q_{j_{2}}, \ldots, Q_{j_{s}}$ be the planes of $G-E\left(D_{1}\right)$ that contain precolored edges, where $j_{1} \leq j_{2} \leq$ $\ldots \leq j_{s} \leq 2 k+1$. Note that any two planes contain precolored edges of altogether at most $2 d-1$ colors, and that there are two planes $Q_{j_{i}}$ and $Q_{j_{i+1}}$ that contain precolored edges of altogether at most $2 d-2$ colors. We assume that $Q_{j_{1}}$ and $Q_{j_{s}}$ are two such planes.

Consider an arbitrary cycle C in D_{1}. We partition the edges of C into paths $P_{12}, \ldots, P_{(s-1) s}, P_{s 1}$ where $P_{r(r+1)}$ has its endpoints in $Q_{j_{r}}$ and $Q_{j_{r+1}}$. Now, for each path $P_{r(r+1)}$, there are two colors $c_{r(r+1)}, c_{r(r+1)}^{\prime} \in\{1, \ldots, 2 d+1\}$ so that none of these colors appear in the restriction of φ to $Q_{j_{r}} \cup$ $Q_{j_{r+1}}$. For $r=1, \ldots s-1$, we color each path $P_{r(r+1)}$ alternately by colors $c_{r(r+1)}$ and $c_{r(r+1)}^{\prime}$, so that the resulting edge coloring is proper. Now, by assumption we have that $Q_{j_{1}}$ and $Q_{j_{s}}$ contain edges of altogether at most $2 d-2$ colors. Hence, there are two colors c and c^{\prime} that do not appear on edges in $Q_{j_{1}}$ or $Q_{j_{s}}$, nor on an edge of D_{1} that is incident with $Q_{j_{1}}$. We color the edges in the path of C from $Q_{j_{s}}$ to $Q_{j_{1}}$ by colors c and c^{\prime} so that the resulting coloring is proper.

Next, we color all uncolored edges of D_{1} correspondingly to how C is colored. Now, each Q_{j} is incident with edges of D_{1} of two colors that do not appear on edges of Q_{j} under φ, and, moreover, each Q_{j} contains at most $2 d-2$ precolored edges. Hence, by the induction hypothesis, the restriction of φ to each Q_{j} can be extended to a proper edge coloring using colors that do not appear on edges of D_{1} that are incident with Q_{j}. In conclusion, φ is extendable.

Lemma 4.3 If there is a dimension of G with at most two precolored edges, the colors of which do not appear on edges in any other dimension of G, then φ is extendable.

Proof: Let D_{1} be a dimension containing at most two precolored edges, the colors of which do not appear on any edges in $G-E\left(D_{1}\right)$.

We first consider the case when only one color c_{1} appears on the precolored edges of D_{1}.
Case 1. Only one color c_{1} appears on the precolored edge(s) of D_{1} :
In this case the argument breaks into several subcases.
Case 1.1. All precolored edges of $G-E\left(D_{1}\right)$ are contained in one plane:
Let Q_{1} be a plane in $G-E\left(D_{1}\right)$ containing all precolored edges except the ones of D_{1}. As before, there is an extension of the restriction of φ to Q_{1} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}\right\}$ (by removing the
colors of edges colored by some color $c_{2} \neq c_{1}$, taking an extension of the resulting precoloring of Q_{1} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$ and then recoloring the edges that are φ-colored $\left.c_{2}\right)$. Next, we color all other planes of $G-E\left(D_{1}\right)$ correspondingly. Now, since all planes of $G-E\left(D_{1}\right)$ are colored correspondingly, every edge of D_{1} is adjacent to edges of $2 d-2$ different colors, so by Lemma $2.2, \varphi$ is extendable.

Case 1.2. All precolored edges of $G-E\left(D_{1}\right)$ are contained in two planes:
Since at most two edges of D_{1} are precolored, and only two planes contain precolored edges, there are two planes Q_{j} and Q_{j+1}, at most one of which contains precolored edges, and such that there is no precolored edge between Q_{j} and Q_{j+1}. Suppose e.g. Q_{j+1} contains no precolored edges. Let $c_{2} \in$ $\{1, \ldots, 2 d+1\}$ be a color such that no edge of G is precolored c_{2}. We take an extension of the restriction of φ to Q_{j} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$, color Q_{j+1} correspondingly, and then color all edges between Q_{j} and Q_{j+1} by the unique color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$ missing at its endpoints. Now, unless there are two precolored edges of D_{1} that are contained in the same layer P and at even distance in the path P^{\prime} obtained from P by removing the edge between Q_{j} and Q_{j+1}, we can color all edges of D_{1} alternately by colors c_{1} and c_{2}, and then color all remaining planes of $Q-E\left(D_{1}\right)$ by colors in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$ so that the resulting edge coloring is proper and agrees with φ.

Alternatively, if the distance between the two precolored edges of D_{1} is even (in P^{\prime}), then we select two additional planes Q_{r} and Q_{r+1}, containing no precolored edges between them and such that at most one of Q_{r} and Q_{r+1} contains precolored edges. We may then repeat the above coloring procedure for Q_{r} and Q_{r+1}; we leave the details to the reader.

Case 1.3. All precolored edges of $G-E\left(D_{1}\right)$ are contained in at least three planes:
Suppose first that there is only one precolored e of $G-E\left(D_{1}\right)$, and let $Q_{j_{1}}, Q_{j_{2}}, \ldots, Q_{j_{s}}$ be the planes of $G-E\left(D_{1}\right)$ that contain precolored edges, where $j_{1} \leq j_{2} \leq \ldots \leq j_{s}$. Note that any two planes contain precolored edges of altogether at most $2 d-2$ colors. Now as in Case 3 of the proof of the preceding lemma, we color the edges of the paths between pairs of planes with precolored edges by picking two colors that do not appear in the restrictions of φ to these planes. Naturally, we pick these colors so that in the path containing e, the resulting coloring agrees with φ. Thereafter, we take extensions of the restrictions of φ to the planes $Q_{j_{1}}, Q_{j_{2}}, \ldots, Q_{j_{s}}$, so that the resulting coloring is proper. Hence, φ is extendable.

Suppose now that $G-E\left(D_{1}\right)$ contains two precolored edges e_{1} and e_{2}. Then there are colors c_{2}, c_{3} that do not appear on any edges of G under φ.

Now, if e_{1} and e_{2} are corresponding edges or are not incident with a common plane, then we may proceed as in the preceding paragraph, but possibly pick three colors when coloring the paths between planes with precolored edges to ensure that the obtained coloring of D_{1} is proper and agrees with φ. This is possible since any two planes contain at most $2 d-3$ precolored edges.

It remains to consider the case when e_{1} and e_{2} are incident with exactly one common plane Q_{1}. Suppose that e_{1} in addition is incident with Q_{2}. If there are at most $2 d-4$ precolored edges in $Q_{1} \cup Q_{2}$ and at most $2 d-4$ precolored edges in $Q_{2 k+1} \cup Q_{1}$, then there are independent edges e_{1}^{\prime} and e_{2}^{\prime} in Q_{1}, adjacent to e_{1} and e_{2}, respectively, and such that neither these edges, nor the corresponding edges of Q_{2} and $Q_{2 k+1}$, respectively, are precolored. From the restriction of φ to $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$, we define a precoloring φ^{\prime} by coloring all these four edges of $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$ by the color c_{1}. We may now obtain an extension of φ^{\prime} by proceeding as in Case 3 of the preceding lemma, and thereafter swap colors on two bicolored 4 -cycles containing e_{1} and e_{2}, respectively, to obtain an extension of φ.

Suppose now instead that $Q_{1} \cup Q_{2 k+1}$, say, contain exactly $2 d-3$ precolored edges. If there exist independent edges e_{1}^{\prime} and e_{2}^{\prime} in Q_{1}, as described in the preceding paragraph, then we may proceed as in that case, so suppose that there are no two such edges.

Then, since both $Q_{2 k+1} \cup Q_{1}$ and $Q_{1} \cup Q_{2}$ contain at most $2 d-3$ precolored edges and every Q_{j} is $(2 d-2)$-regular, the endpoints of e_{1} and e_{2} in Q_{1} must be adjacent. Now, it is easy to see that this implies that there is either an edge e_{1}^{\prime} adjacent to e_{1} but not to e_{2}, such that e_{1}^{\prime} and the corresponding edge of Q_{2} are not precolored, or an uncolored edge e_{2}^{\prime} adjacent to e_{2} but not to e_{1}, and such that e_{2}^{\prime} and the corresponding edge of $Q_{2 k+1}$ are not precolored. Suppose, for instance, that such an edge e_{1}^{\prime} exists.

Consider the precoloring φ^{\prime} obtained from the restriction of φ to $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$ by in addition coloring e_{1}^{\prime} and also the corresponding edge of Q_{2} by the color c_{1}. Now, since there is no uncolored edge e_{2}^{\prime} as described above, it follows that all $d-2$ edges a_{1}, \ldots, a_{d-2} adjacent to e_{2} in Q_{1} satisfy that either a_{i}, or the corresponding edge of $Q_{2 k+1}$, is φ^{\prime}-precolored or adjacent to an edge colored c_{1} under φ^{\prime}. Moreover, since $Q_{2 k+1} \cup Q_{1}$ is triangle-free and contains at most $2 d-2 \varphi^{\prime}$-precolored edges, every precolored edge of $Q_{2 k+1} \cup Q_{1}$ satisfies this condition. Thus by properly coloring the uncolored edges adjacent to e_{2}, except the one adjacent to e_{1}, by colors from $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$, we obtain a precoloring $\varphi^{\prime \prime}$ from φ^{\prime}. Then every plane in $G-E\left(D_{1}\right)$ contains at most $2 d-2$ precolored edges under $\varphi^{\prime \prime}$. Furthermore any extension of the restriction of $\varphi^{\prime \prime}$ to $Q_{2 k+1} \cup Q_{1}$ using colors $\{1, \ldots, 2 d+1\} \backslash$ $\left\{c_{2}, c_{3}\right\}$ does not use c_{1} on an edge adjacent to e_{2}. Now, since there is exactly one precolored edge of $G-E\left(D_{1}\right)$ that is not contained in $Q_{2 k+1} \cup Q_{1}$, we may once again proceed as in Case 3 of Lemma 4.2 and color the edges of D_{1} appropriately to obtain an extension of $\varphi^{\prime \prime}$ where no edge adjacent to e_{2} is colored c_{1}. Thereafter we may swap colors on a bicolored 4-cycle and recolor e_{2} to obtain an extension of φ.

Case 2. The precolored edges of D_{1} are colored differently:
Suppose now that D_{1} contains two precolored edges, colored c_{1} and c_{2}, respectively, and that c_{3} is a color that does not appear on any edge under φ. If there is an extension of the restriction of φ to D_{1} using colors $\left\{c_{1}, c_{2}, c_{3}\right\}$, such that all edges of D_{1} are colored correspondingly, then there are extensions of the restrictions of φ to all the planes $G-E\left(D_{1}\right)$ using colors that do not appear on incident edges of D_{1}. Hence, φ is extendable.

On the other hand, if there is no such extension of the restriction of φ, then the two precolored edges e_{1} and e_{2} of D_{1} are incident with the same pair of planes, say Q_{1} and Q_{2}. Now, if $Q_{1} \cup Q_{2}$ contains at most $2 d-4$ precolored edges, then there are uncolored corresponding edges $e_{1}^{\prime} \in E\left(Q_{1}\right)$ and $e_{2}^{\prime} \in E\left(Q_{2}\right)$ that are adjacent to e_{2}, but not to e_{1}. We may now color these edges c_{2} and remove the color from e_{2} to obtain the precoloring φ^{\prime} from φ, and then proceed as in Case 3 when only one edge of D_{1} is precolored to obtain an extension of φ^{\prime}. Thereafter we swap colors on a bicolored 4-cycle to obtain an extension of φ.

If, on the other hand, $Q_{1} \cup Q_{2}$ contains at least $2 d-3$ precolored edges, then there is at most one edge in $G-E\left(D_{1}\right) \cup E\left(Q_{1}\right) \cup E\left(Q_{2}\right)$ that is precolored. Without loss of generality, we assume that Q_{3} contains no precolored edge. By the induction hypothesis, there is an extension of the restriction of φ to $Q_{1} \cup Q_{2}$ using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$. We color Q_{3} correspondingly to how Q_{2} is colored, and every edge between Q_{2} and Q_{3} by the color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$ missing at its endpoints. All other edges in D_{1} are colored c_{1}, c_{2} alternately so that the coloring agrees with φ. Finally, we color all hitherto uncolored planes using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$ so that the resulting coloring agrees with φ. In conclusion, φ is extendable.

Lemma 4.4 If each dimension of G contains precolored edges and there is a dimension with exactly one precolored edge, the color of which does appear on edges in other dimensions of G, then φ is extendable.

Proof: Let D_{1} be a dimension containing only one precolored edge e, colored, say c_{1}, and consider the subgraph $G-E\left(D_{1}\right)$ consisting of $2 k+1$ planes $Q_{1}, \ldots, Q_{2 k+1}$. Since at least one color appears on at least two edges, there are two colors $c_{2}, c_{3} \in\{1, \ldots, 2 d+1\}$ that do not appear on any edge under φ.

Case 1. All precolored edges of $G-E\left(D_{1}\right)$ are contained in one plane:
In this case, we may proceed as in Case 1 of Lemma 3.4, but use Lemma 2.2 instead of Lemma 2.1 . We omit the details.

Case 2. All precolored edges of $G-E\left(D_{1}\right)$ are contained in two planes:
Let Q_{1} and Q_{i} be the two planes containing the precolored edges distinct from e.
Let us first consider the case when e is not incident to Q_{1} or Q_{i}. Since each of Q_{1} and Q_{i} contains at most $2 d-2$ precolored edges, there are extensions f_{1} and f_{i} of the restrictions of φ to Q_{1} and Q_{i}, respectively, using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$. Therafter we color the edges of D_{1} properly and correspondingly using colors $\left\{c_{1}, c_{2}, c_{3}\right\}$ so that the coloring agrees with the restriction of φ to D_{1} and has no conflicts with f_{1} or f_{i}. Finally we color the remaining planes of $G-E\left(D_{1}\right)$, as to obtain an extension of φ.

Suppose now that e is incident with Q_{1} and Q_{2}, and $i \neq 2$. Then either Q_{3} or $Q_{2 k+1}$ contains no precolored edges; suppose Q_{3}. (The case when $Q_{2 k+1}$ has this property is similar.) As in the preceding paragraph, there are extensions f_{1} and f_{i} of the restrictions of φ to Q_{1} and Q_{i}, respectively, using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$. We color Q_{2} and Q_{3} correspondingly to how Q_{1} is colored. Next, we color every edge of D_{1} between Q_{2} and Q_{3} by a color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$ missing at its endpoints, and then color all other edges of D_{1} alternately by colors c_{2} and c_{3} so that all edges between Q_{1} and Q_{2} are colored c_{2}. The remaining uncolored planes of G are properly colored using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$. Now, if e is adjacent to edges colored c_{1}, then we swap colors on a bicolored 4 -cycle containing e and two edges colored c_{1} to obtain an extension of φ; otherwise we simply recolor e to obtain an extension of φ.

Suppose now that e is incident with Q_{1} and Q_{2}, and $i=2$. By removing the color from any edge that is colored c_{1} under φ, we obtain a precoloring φ^{\prime} of G. The restriction of φ^{\prime} to Q_{1} and Q_{2} are extendable to proper edge colorings, respectively, using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$. By recoloring any edge of Q_{1} and Q_{2} that is φ-colored c_{1} by the color c_{1} we obtain edge colorings f_{1} of Q_{1} and f_{2} of Q_{2}, respectively.

Next, we color every edge between Q_{1} and Q_{2} by the color c_{2} except that e is colored c_{1}. Thereafter, we color $Q_{3}, \ldots, Q_{2 k}$ correspondingly to how Q_{2} is colored, and $Q_{2 k+1}$ correspondingly to how Q_{1} is colored. Now, for every vertex x of Q_{2}, there are colors $c_{x}, c_{x}^{\prime} \in\{1, \ldots, 2 d+1\}$ that do not appear at x in Q_{2} or on the incident edge between Q_{1} and Q_{2}. We color every path in D_{1} from Q_{2} to $Q_{2 k}$ by colors c_{x} and c_{x}^{\prime} alternately, and thereafter color every edge between $Q_{2 k}$ and $Q_{2 k+1}$ by the color of the edge in the same layer between Q_{1} and Q_{2}. Finally, we color the edges between Q_{1} and $Q_{2 k+1}$ by a color missing at its endpoints to obtain an extension of φ.

Case 3. All precolored edges of $G-E\left(D_{1}\right)$ are contained in at least three planes:

The assumption implies that every plane in $G-E\left(D_{1}\right)$ contains at most $2 d-3$ precolored edges. Assume that e is incident with Q_{1} and Q_{2}.

Suppose first that $Q_{1} \cup Q_{2}$ contains altogether at most $2 d-3$ precolored edges. Then there are uncolored corresponding edges $e_{1} \in E\left(Q_{1}\right)$ and $e_{2} \in E\left(Q_{2}\right)$ that are adjacent to e but not to any edge in $Q_{1} \cup Q_{2}$ φ-colored c_{1}. From the restriction of φ to $G-E\left(D_{1}\right)$ we define a new precoloring φ^{\prime} by coloring e_{1} and e_{2} by the color c_{1}. Thereafter we may proceed as in Case 3 of the proof of Lemma 4.2 to obtain a proper $(2 d+1)$-edge coloring of G which is an extension of φ^{\prime} and where the edges of D_{1} are colored correspondingly. Thus, by swapping colors on a bicolored 4 -cycle we obtain an extension of φ.

Suppose now that $Q_{1} \cup Q_{2}$ contains altogether $2 d-2$ precolored edges. If there are uncolored corresponding edges $e_{1} \in E\left(Q_{1}\right)$ and $e_{2} \in E\left(Q_{2}\right)$ that are adjacent to e but not to any edge in $Q_{1} \cup Q_{2}$ φ-colored c_{1}, then we proceed as in the preceding paragraph. So assume that there are no such edges e_{1} and e_{2}. Then there are $2 d-2$ edges $e_{1}, \ldots, e_{2 d-2}$ in Q_{1} that are adjacent to e and such that each of these edges satisfies that
(i) e_{j} or the corresponding edge of Q_{2} is precolored by a color distinct from c_{1}, or
(ii) e_{j} or the corresponding edge of Q_{2} is adjacent to an edge precolored c_{1}.

Moreover, since $Q_{1} \cup Q_{2}$ is triangle-free and contains at most $2 d-2$ precolored edges, every precolored edge in $Q_{1} \cup Q_{2}$ satisfies one of these conditions. Now, for $j=1,2$, from the restriction of φ to Q_{j}, we define a new precoloring φ_{j} of Q_{j} by coloring every edge of Q_{1} and Q_{2} that is adjacent to e and does not satisfy (i) or (ii) by a color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ so that the resulting coloring is proper and agrees with φ. Now, by the induction hypothesis, φ_{j} is extendable to a proper edge coloring of Q_{j} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$. Note that no edge of Q_{1} or Q_{2} adjacent to e is colored c_{1} in these colorings. Thus we may color all edges between Q_{1} and Q_{2} by c_{2} except e which is colored c_{1}.

Next, suppose that $Q_{r}, r \notin\{1,2\}$, is the third plane containing a precolored edge. Then Q_{r+1} or Q_{r-1} contains no precolored or hitherto colored edges, suppose Q_{r+1}. We take an extension of the restriction of φ to Q_{r} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$, and color all other uncolored planes correspondingly to how Q_{r} is colored. Thereafter we color the edges between Q_{r} and Q_{r+1} by the unique color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$ missing at it endpoints. Finally, we color all remaining uncolored edges of D_{1} by colors c_{2}, c_{3} alternately so that the resulting coloring is proper. This yields an extension of φ.

Lemma 4.5 If each dimension of G contains exactly two precolored edges, at least one of which is colored by a color appearing on precolored edges in other dimensions, then φ is extendable.

Proof: Let D_{1} be a dimension containing two precolored edges e_{1} and e_{2}. By assumption, at most $2 d-1$ colors appear on edges under φ, so let let c_{3}, c_{4} be two colors from $\{1, \ldots, 2 d+1\}$ that do not appear on any edges under φ.

Case 1. All precolored edges of $G-E\left(D_{1}\right)$ are contained in one plane:
Suppose that all precolored edges except e_{1} and e_{2} lie in one component Q_{1} of $G-E\left(D_{1}\right)$. Without loss of generality, we assume that $\left\{\varphi\left(e_{1}\right), \varphi\left(e_{2}\right)\right\} \subseteq\left\{c_{1}, c_{2}\right\}$. We define a new precoloring φ^{\prime} from the restriction of φ to Q_{1} by removing the colors c_{1} and c_{2} from any edges of Q_{1} colored by these colors. Now, by the induction hypothesis φ^{\prime} is extendable to a proper ($2 d-1$)-edge coloring of Q_{1} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$. By recoloring the edges of Q_{1} that are φ-colored c_{1} and c_{2} by colors c_{1} and
c_{2}, respectively, we obtain a proper edge coloring f^{\prime} of Q_{1}. Next, we color all other planes of $G-E\left(D_{1}\right)$ correspondingly and define a list assignment for the edges of D_{1} by assigning every edge the set of colors from $\{1, \ldots, 2 d+1\}$ not appearing on its adjacent edges. Then each edge of D_{1} receives a list of 3 colors except for the two edges e_{1} and e_{2} that are precolored. Thus, there is an extension of φ.

Case 2. All precolored edges of $G-E\left(D_{1}\right)$ are contained in two planes:
We shall consider several different subcases.
Case 2.1. The precolored edges of D_{1} have the same color under φ :
Suppose that $\varphi\left(e_{1}\right)=\varphi\left(e_{2}\right)=c_{1}$. If e_{1} and e_{2} are both incident with the same two planes, then we may apply arguments which are similar to the ones in Case 2 of the proof of Lemma 4.4. Consequently, assume that e_{1} and e_{2} are incident with at most one common plane.

Subcase 2.1.1. e_{1} and e_{2} are both incident with exactly one common plane:
Suppose that e_{1} and e_{2} are both incident with the common plane Q_{1}, and that e_{1} is also incident with Q_{2}. If Q_{1} and Q_{2} contain all precolored edges of $G-E\left(D_{1}\right)$, then a similar argument as in the subcase of Case 2 of Lemma 4.4 when $Q_{1} \cup Q_{2}$ contains all precolored edges of $G-E\left(D_{1}\right)$ again applies, so we omit the details here as well.

It remains to consider the following subcases:
(a) Q_{1} contains precolored edges, but neither of Q_{2} and $Q_{2 k+1}$.
(b) Either $Q_{2 k+1}$ or Q_{2}, but not Q_{1}, contains precolored edges.
(c) Both Q_{2} and $Q_{2 k+1}$ contain precolored edges.
(a) holds:

Suppose that Q_{1} and Q_{i} contain all precolored edges of $G-E\left(D_{1}\right)$, where $i \notin\{1,2,3,2 k+1\}$. If e_{1} and e_{2} are adjacent via an uncolored edge e in Q_{1}, then since Q_{1} contains at most $2 d-3$ precolored edges, there is a color $c \in\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}, c_{4}\right\}$ that does not appear on any edge adjacent to e. Thus the precoloring φ^{\prime} obtained from φ by in addition coloring e by the color c is proper. On the other hand, if there is no such edge, then we set $\varphi^{\prime}=\varphi$.

Now, since both Q_{1} and Q_{i} contain at most $2 d-2 \varphi^{\prime}$-precolored edges, there are extensions f_{1} and f_{i}, respectively, of the restrictions of φ^{\prime} to Q_{1} and Q_{i}, respectively, using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$. We color $Q_{2}, Q_{3}, Q_{2 k+1}$ correspondingly to how Q_{1} is colored, and thereafter color every edge between Q_{2} and Q_{3} by the color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ missing at its endpoints.

Next, we color all hitherto uncolored edges of D_{1} alternately using colors c_{3}, c_{4} so that all edges between Q_{1} and Q_{2} have color c_{3}, and also color all hitherto uncolored planes properly using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$. The obtained coloring is proper and agrees with φ^{\prime} except for e_{1} and e_{2}. Now, if neither e_{1} of e_{2} are adjacent to an edge colored c_{1}, then we simply recolor them; otherwise, we swap on one or two bicolored cycles to obtain an extension of φ; note that if both e_{1} and e_{2} are adjacent to edges colored c_{1}, then these cycles are disjoint. Hence, φ is extendable.

(b) holds:

If instead either $Q_{2 k+1}$ or Q_{2}, but not Q_{1}, contains precolored edges, then a similar argument as in (a) applies, so we omit the details.
(c) holds:

Assume that Q_{2} and $Q_{2 k+1}$ contain all precolored edges of $G-E\left(D_{1}\right)$, and let $u_{2 k+1}$ and u_{2} be the vertices of $Q_{2 k+1}$ and Q_{2} that are incident with e_{1} and e_{2}, respectively.

If both $Q_{2 k+1}$ and Q_{2} contain at most $2 d-4$ precolored edges, then there are uncolored edges $e_{2 k+1}^{\prime} \in$ $E\left(Q_{2 k+1}\right)$ and $e_{2}^{\prime} \in E\left(Q_{2}\right)$ that are incident with $u_{2 k+1}$ and u_{2}, respectively, not adjacent to any edges of $Q_{2 k+1} \cup Q_{2}$ precolored c_{1}, and such that the corresponding edges of Q_{1} are independent. We color $e_{2 k+1}^{\prime}$, e_{2}^{\prime}, and also the corresponding edges of Q_{1} by the color c_{1}. Together with φ, this defines a precoloring of $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$, which by the induction hypothesis is extendable to a proper edge coloring using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$. We color all edges between Q_{1} and Q_{2} with color c_{4}, and all edges between $Q_{2 k+1}$ and Q_{1} by the color c_{3}. Next, we color $Q_{2 k}$ and Q_{3} correspondingly to how $Q_{2 k+1}$ and Q_{2} are colored, respectively. Thereafter we color all edges between $Q_{2 k+1}$ and $Q_{2 k}$ by the color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ missing at its endpoints, and similarly for Q_{2} and Q_{3}. Finally, we color all uncolored edges of D_{1} alternately by colors c_{3}, c_{4}, color all hitherto uncolored planes using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ and swap on two bicolored cycles containing e_{1} and e_{2}, respectively, to obtain an extension of φ.

Suppose now instead that one of $Q_{2 k+1}$ and Q_{2} contains $2 d-3$ precolored edges, say $Q_{2 k+1}$. Then Q_{2} contains exactly one precolored edge e. By removing the color from any edge of $Q_{2 k+1}$ that is precolored c_{1}, we obtain a precoloring φ^{\prime} from the restriction of φ to $Q_{2 k+1} . \varphi^{\prime}$ is extendable to a proper coloring of $Q_{2 k+1}$ using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}\right\}$ and by recoloring the edges of $Q_{2 k+1} \varphi$-colored c_{1} by the color c_{1} we obtain an extension $f_{2 k+1}$ of the restriction of φ to $Q_{2 k+1}$.

Next, we color Q_{1} correspondingly to $Q_{2 k+1}$ except that we color any edge of Q_{1} corresponding to an edge colored c_{1} by the color c_{3}. We color the edges between $Q_{2 k+1}$ and Q_{1} by an arbitrary color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}\right\}$ not appearing at its endpoints, except that e_{2} is colored c_{1}.

Suppose first that e is precolored c_{1}. Then we color Q_{2} correspondingly to how Q_{1} is colored, but color e by color c_{1}. Next we color all edges between Q_{1} and Q_{2} by an arbitrary color in $\{1, \ldots, 2 d+1\}$ missing at its endpoints except that e_{1} is colored c_{1}. Thereafter, we color Q_{3} correspondingly to how Q_{1} is colored, and all remaining uncolored planes correspondingly to how $Q_{2 k+1}$ is colored. We may then color the hitherto uncolored edges of D_{1} appropriately to obtain an extension of φ.

Suppose now that the precolored edge of Q_{2} is colored $c_{2} \neq c_{1}$. Let e^{\prime} be the edge of Q_{1} corresponding to e, and assume that e^{\prime} is colored c^{\prime} in the hiherto constructed coloring. We color Q_{2} correspondingly to how Q_{1} is colored but permute the colors c_{2} and c^{\prime} in the coloring of Q_{2}. Thereafter, we color Q_{3} correspondingly to Q_{2} except that we permute colors c_{2} and c^{\prime}, and finally we color the remaining uncolored edges of G by proceeding as in the preceding paragraph.

Subcase 2.1.2 e_{1} and e_{2} are not incident with a common plane:
Suppose that e_{1} is incident with Q_{1} and Q_{2} and e_{2} is incident with Q_{j} and Q_{j+1}, and all these four planes are distinct. If all precolored edges are contained in $Q_{1} \cup Q_{2}$, then as before we may then select corresponding uncolored edges e_{j}^{\prime} and e_{j+1}^{\prime} of Q_{j} and Q_{j+1} that are adjacent to e_{2}. Next, we consider the precoloring φ^{\prime} obtained from φ by coloring e_{j}^{\prime} and e_{j+1}^{\prime} by c_{1} and removing the color c_{1} from e_{2}. We may now apply similar arguments as in the subcase of Case 3 of Lemma 4.4 when $Q_{1} \cup Q_{2}$ contains $2 d-2$ precolored edges to obtain an extension of φ^{\prime}. In particular, since there is at least one plane in G that is distinct from $Q_{1}, Q_{2}, Q_{j}, Q_{j+1}$ that contains no φ^{\prime}-colored edges, we can color the edges of D_{1}
so that all edges between Q_{j} and Q_{j+1} have the same color. We may then swap on a bicolored 4-cycle to obtain an extension of φ.

Suppose now that exactly one of the planes Q_{1} and Q_{2}, and exactly one of the planes Q_{j} and Q_{j+1} contain precolored edges. Assume e.g. that Q_{1} and Q_{j} contain no precolored edges (the other cases are analogous). We pick an edge e_{2}^{\prime} in Q_{2} that is uncolored and adjacent to e_{1}, but not adjacent to any other edge precolored c_{1}, and a similar edge e_{j+1}^{\prime} of Q_{j+1}; since each of these planes contains at most $2 d-3$ precolored edges, such edges exist. From the restriction of φ to $Q_{2} \cup Q_{j+1}$ we define a new precoloring φ^{\prime} by in addition coloring e_{2}^{\prime} and $e_{j+1}^{\prime} c_{1}$. Now, by the induction hypothesis, there are extensions f_{2} and f_{j+1} of the restrictions of φ^{\prime} to Q_{2} and Q_{j+1}, respectively, using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$.

Let us now color the other planes of $G-E\left(D_{1}\right)$. Without loss of generality, we assume that $j+1<$ $2 k+1$. We color Q_{1} and $Q_{2 k+1}$ correspondingly to how Q_{2} is colored, Q_{j} correspondingly to how Q_{j+1} is colored, and all other planes arbitrarily using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$. Thereafter we color all edges between Q_{1} and $Q_{2 k+1}$ by a color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ missing at its endpoints, and all other edges of D_{1} alternately using colors c_{3}, c_{4} and starting with color c_{3} at Q_{1}. Finally, we swap colors on two bicolored 4 -cycles containing e_{1} and e_{2}, respectively, to obtain an extension of φ.

Finally, we consider the case when Q_{1} may contain precolored edges, but none of Q_{2}, Q_{j}, Q_{j+1} contain precolored edges. We define a precoloring φ^{\prime} from the restriction of φ to Q_{1} by selecting an edge $e_{1}^{\prime} \in$ $E\left(Q_{1}\right)$ adjacent to e_{1} and coloring it c_{1}, as before. Thereafter, we take an extension of φ^{\prime} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$, and color Q_{2} correspondingly. Next, we color all edges between Q_{j} and Q_{j+1} by the color c_{1}, and all other edges of D_{1} alternately using colors c_{3} and c_{4}, and starting with color c_{3} at Q_{j+1}. We now obtain an extension of φ as before.

Case 2.2 The precolored edges of D_{1} are colored differently under φ :
Suppose that $\varphi\left(e_{1}\right)=c_{1}$ and $\varphi\left(e_{2}\right)=c_{2}$. We shall consider some different cases.
Subcase 2.2.1 e_{1} and e_{2} are both incident with two common planes:
Suppose that e_{1} and e_{2} are both incident with the planes Q_{1} and Q_{2}. Let u_{1} and u_{2} be the vertices in Q_{1} that are incident with e_{1} and e_{2}, respectively.

If none of Q_{1} and Q_{2} contain precolored edges, then we can select independent edges in Q_{1} (and Q_{2}) that are incident with u_{1} and u_{2}, respectively, and color them c_{1} and c_{2}. Then we may proceed as in Case 3 of Lemma 4.2 to obtain an extension of the resulting precoloring φ^{\prime} of $G-E\left(D_{1}\right)$, and thereafter we obtain an extension of φ, as before.

Let us now assume that all precolored edges are contained in $Q_{1} \cup Q_{2}$. We first prove the following claim.

Claim 4.6 Suppose $d \geq 3$. At least one of the following two statements hold.
(i) There is an edge $e_{1}^{\prime} \in E\left(Q_{1}\right)$ incident with u_{1} but not u_{2}, such that e_{1}^{\prime} and the corresponding edge $e_{1}^{\prime \prime}$ of Q_{2} are uncolored and not adjacent to any edge colored c_{1}.
(ii) There is an edge $e_{2}^{\prime} \in E\left(Q_{1}\right)$ incident with u_{2} but not u_{1}, such that e_{2}^{\prime} and the corresponding edge $e_{2}^{\prime \prime}$ of Q_{2} are uncolored and not adjacent to any edge colored c_{2}.

Proof: Suppose that (i) is false. Since $G-E\left(D_{1}\right)$ is triangle-free and $(2 d-2)$-regular, there are $2 d-3$ edges $a_{1}, \ldots, a_{2 d-3} \in E\left(Q_{1}\right)$ incident with u_{1}, all of which are either precolored, adjacent to an edge colored c_{1}, or satisfies that the corresponding edge of Q_{2} satisfies one of these conditions. Since $Q_{1} \cup Q_{2}$
contains $2 d-2$ precolored edges, it is easy to see that then (ii) must hold, so there is an edge e_{2}^{\prime} as desired. \square If $d=2$, we note that the claim might fail if u_{1} and u_{2} are adjacent via an uncolored edge. However, in
this case, it is trivial to verify that φ is extendable, since every precoloring of an odd cycle is extendable using 3 colors.

Suppose now that (ii) of Claim 4.6 holds, and let e_{2}^{\prime} and $e_{2}^{\prime \prime}$ be corresponding edges of Q_{1} and Q_{2} respectively, as described in the claim. From the restriction of φ to $Q_{1} \cup Q_{2}$ we define a new precoloring φ^{\prime} of $Q_{1} \cup Q_{2}$ by in addition coloring e_{2}^{\prime} and $e_{2}^{\prime \prime}$ by the color c_{2}. We may now proceed as in the subcase of Case 2 of the proof of Lemma 4.4 when all the precolored edges are contained in $Q_{1} \cup Q_{2}$, to obtain an extension of φ^{\prime} (with c_{3} in place of c_{2}). Thereafter, we swap colors on a bicolored 4 -cycle containing e_{2} to obtain an extension of φ.

It remains to consider the case when all precolored edges are contained in Q_{1} and Q_{i}, where $i \neq 2$. Then either Q_{3} or $Q_{2 k+1}$ contains no precolored edges, say Q_{3}.

Suppose first that Q_{1} contains at most $2 d-4$ precolored edges. Then since Q_{1} is $(2 r-2)$-regular, there are independent uncolored edges $e_{1}^{\prime} \in E\left(Q_{1}\right)$ and $e_{2}^{\prime} \in E\left(Q_{1}\right)$ incident with u_{1} and u_{2}, respectively, and such that e_{1}^{\prime} is not adjacent to any edge of $Q_{1} \varphi$-colored c_{1}, and e_{2}^{\prime} is not adjacent to any edge of Q_{1} φ-colored c_{2}.

From the restriction of φ to Q_{1} we define a new precoloring φ^{\prime} of Q_{1} by in addition coloring e_{1}^{\prime} by the color c_{1}, and e_{2}^{\prime} by the color c_{2}. Next, we take an extension of φ^{\prime} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$, and color Q_{2} and Q_{3} correspondingly to how Q_{1} is colored. Thereafter, we color the edges of D_{1} as follows: color all edges between Q_{2} and Q_{3} by a color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ missing at its endpoints, and color all other edges of D_{1} alternately using colors c_{3} and c_{4} so that all edges between Q_{1} and Q_{2} are colored c_{3}. Thereafter, we color the planes $Q_{4}, \ldots, Q_{2 k+1}$ with colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ so that the coloring agrees with φ. Now we may obtain an extension of φ by swapping colors on two bicolored 4 -cycles containing e_{1} and e_{2}, respectively.

Suppose now that Q_{1} contains exactly $2 d-3$ precolored edges. Then Q_{i} contains exactly one precolored edge. Moreover, as in the proof of Claim 4.6 it is straightforward that there is

- either an edge e_{1}^{\prime} satisfying (i) of Claim 4.6, or
- an edge e_{2}^{\prime} satisfying (ii) of Claim 4.6

Suppose e.g. that (i) holds. Then from the restriction of φ to Q_{1} we define a new precoloring φ^{\prime} of Q_{1} by in addition coloring e_{1}^{\prime} by the color c_{1} and removing the color from any edge of Q_{1} that is colored c_{2}.

Next, we take an extension of φ^{\prime} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$, recolor the edges φ-colored c_{2} by the color c_{2}, and thereafter color Q_{2} and Q_{3} correspondingly to how Q_{1} is colored. Denote the obtained coloring by f. We color all edges between Q_{1} and Q_{2} by the color c_{3} except e_{2} which is colored c_{2}, and color the edges between Q_{2} and Q_{3} by a color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$ missing at its endpoints.

Now, let $e_{i}^{\prime \prime}$ be the edge of Q_{i} that is precolored, and let $e_{1}^{\prime \prime}$ be the corresponding edge of Q_{1}. If $f\left(e_{1}^{\prime \prime}\right)=$ $\varphi\left(e_{i}^{\prime \prime}\right)$, then we color all hitherto uncolored planes correspondingly to how Q_{1} is colored, therafter color the remaining uncolored edges of D_{1} and finally swap colors on a bicolored 4-cycle containing e_{1} to obtain an extension of φ.

Otherwise, if $f\left(e_{1}^{\prime \prime}\right) \neq \varphi\left(e_{i}^{\prime \prime}\right)$, then we color all other planes correspondingly to how Q_{1} is colored, except that we permute the colors $f\left(e_{1}^{\prime \prime}\right)$ and $\varphi\left(e_{i}^{\prime \prime}\right)$ in the colorings. We may now apply similar arguments as before to obtain an extension of φ; we leave the details to the reader.

Subcase 2.2.2 e_{1} and e_{2} are incident with exactly one common plane:
Suppose that e_{1} is incident with Q_{1} and Q_{2}, and e_{2} with Q_{1} and $Q_{2 k+1}$. Let u_{1} and u_{2} be the vertices of Q_{1} that are incident with e_{1} and e_{2}, respectively. If neither of $Q_{1}, Q_{2}, Q_{2 k+1}$ contain precolored edges, then a similar argument as in the second paragraph of Subcase 2.2.1 applies. Thus it suffices to consider the following subcases:
(a) All precolored edges of $G-E\left(D_{1}\right)$ are contained in $Q_{1} \cup Q_{2}$.
(b) Q_{1} contains precolored edges, but neither of Q_{2} and $Q_{2 k+1}$.
(c) Q_{2}, but not Q_{1} or $Q_{2 k+1}$, contains precolored edges.
(d) All precolored edges of $G-E\left(D_{1}\right)$ are contained in $Q_{2} \cup Q_{2 k+1}$.

By symmetry, it suffices to consider these cases.
(a) holds:

We first consider the case when there is an edge $e_{1}^{\prime} \in E\left(Q_{1}\right)$ adjacent to e_{1}, such that both e_{1}^{\prime} and the corresponding edge $e_{2}^{\prime} \in E\left(Q_{2}\right)$ are uncolored and not adjacent to any edge precolored c_{1}. If this holds, then from the restriction of φ to $Q_{1} \cup Q_{2}$ we define a new precoloring φ^{\prime} by coloring e_{1}^{\prime} and e_{2}^{\prime} by the color c_{1}, and also removing the color from any edge that is φ-colored c_{2}.

By the induction hypothesis, there is an extension of φ^{\prime} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$. From φ^{\prime}, we obtain an edge coloring f of $Q_{1} \cup Q_{2}$ by recoloring the edges of Q_{1} and Q_{2} that are φ-colored c_{2} by the color c_{2}. We color all edges between Q_{1} and Q_{2} by the color c_{3}, all the planes $Q_{3}, \ldots, Q_{2 k}$ correspondingly to how Q_{2} is colored, and $Q_{2 k+1}$ correspondingly to how Q_{1} is colored. Now the edges between $Q_{2 k+1}$ and $Q_{2 k}$ can be colored with the color c_{3}, and every other edge of D_{1} by some appropriate color missing at its endpoints. Thus by swapping colors on a bicolored 4-cycle containing e_{1} we obtain an extension of φ.

Suppose now that there is no edge $e_{1}^{\prime} \in E\left(Q_{1}\right)$ adjacent to e_{1}, such that both e_{1}^{\prime} and the corresponding edge $e_{2}^{\prime} \in E\left(Q_{2}\right)$ are uncolored and not adjacent to any edge precolored c_{1}. Then, since $Q_{1} \cup Q_{2}$ is $(2 d-2)$-regular and contains $2 d-2$ precolored edges, u_{1} is incident with $2 d-2$ edges $a_{1}, \ldots, a_{2 d-2}$ such that each a_{i}, or the corresponding edge of Q_{2}, is φ-colored by a color distinct from c_{1}, or uncolored and adjacent to an edge φ-colored c_{1}. In particular, if there is an edge of $Q_{1} \cup Q_{2}$ colored c_{2}, then at most one edge in each of Q_{1} and Q_{2} is colored c_{2}. Moreover, since G is triangle-free and $Q_{1} \cup Q_{2}$ contains exactly $2 d-2$ precolored edges, an edge in $Q_{1} \cup Q_{2}$ precolored c_{2} is not adjacent to an edge precolored c_{1} in $Q_{1} \cup Q_{2}$.

If Q_{1} contains an edge a precolored c_{2}, then from the restriction of φ to $Q_{1} \cup Q_{2}$, we define a precoloring φ^{\prime} by recoloring a and also the corresponding edge of Q_{2} by the color c_{1}. Otherwise, if both Q_{1} and Q_{2} contain edges precolored c_{2}, then we define φ^{\prime} by recoloring these edges by the color c_{1}. Now, by the induction hypothesis, there is an extension of the coloring φ^{\prime} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$. By recoloring the edges that were recolored c_{1} by the color c_{2} we obtain an extension of the restriction of φ to $Q_{1} \cup Q_{2}$. Next, we color e_{1} by the color c_{1} and all other edges between Q_{1} and Q_{2} by the color c_{3}. We color $Q_{2 k+1}$ correspondingly to Q_{1}, and $Q_{3}, \ldots, Q_{2 k}$ correspondingly to how Q_{2} is colored, and then color the hitherto uncolored edges of D_{1} as before to obtain an extension of φ.

On the other hand, if no edge of Q_{1} is colored c_{2}, then from the restriction of φ to $Q_{1} \cup Q_{2}$, we define a new precoloring φ^{\prime} by coloring all edges adjacent to e_{1} that are not precolored or adjacent to an edge
colored c_{1} in $G-E\left(D_{1}\right)$ by an arbitrary color from $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ so that the resulting precoloring is proper. By the induction hypothesis, the obtained precoloring of Q_{1} is extendable to a proper coloring using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$, and the precoloring of Q_{2} is extendable using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$, where c_{4} is some arbitrary color not appearing on an edge of Q_{2}. Note that no edge adjacent to e_{1} is colored c_{1} in this coloring. Hence, we can color $Q_{2 k+1}$ correspondingly to how Q_{1} is colored, all edges between Q_{1} and $Q_{2 k+1}$ by the color c_{2}, and all edges between Q_{1} and Q_{2} by the color c_{3} except that e_{1} is colored c_{1}. Since not other planes in $G-E\left(D_{1}\right)$ contain precolored edges, it is now straightforward to obtain an extension of φ from this partial coloring.

(b) holds:

Suppose that Q_{1} and Q_{i} contain all precolored edges of $G-E\left(D_{1}\right)$, where $i \notin\{1,2,3,2 k+1\}$. We take an extension of the restriction of φ to $Q_{1} \cup Q_{i}$ using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$, color $Q_{2}, Q_{3}, Q_{2 k+1}$ correspondingly to how Q_{1} is colored, and all remaning planes in $G-E\left(D_{1}\right)$ by the colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ so that the coloring agrees with φ. Next, we color the edges of D_{1} : the edges between Q_{2} and Q_{3} we color with the color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ missing at its endpoints, and all other edges of D_{1} are colored c_{3} and c_{4} alternately, and starting with color c_{3} at Q_{2}. This yields a coloring that agrees with φ except for e_{1} and e_{2}. We recolor these edges by c_{1} and c_{2}, respectively, possibly by swapping on one or two bicolored 4 -cycles if necessary, to obtain an extension of φ.

(c) holds:

The case when Q_{2}, but not $Q_{2 k+1}$ or Q_{1}, contains precolored edges can be dealt with as in the preceding pagragraph, so we omit the details here.

(d) holds:

If $d=2$, then it is straightforward that φ is extendable, because any partial 3-edge coloring of an odd cycle is extendable. If $d>2$, then since $Q_{2} \cup Q_{2 k+1}$ contains exactly $2 d-2$ precolored edges, it is straightforward that there are non-corresponding edges $e_{2 k+1}^{\prime} \in E\left(Q_{2 k+1}\right)$ and $e_{2}^{\prime} \in E\left(Q_{2}\right)$ that are uncolored, adjacent to e_{1} and e_{2}, respectively, and not adjacent to any edges of $Q_{2 k+1} \cup Q_{2}$ precolored c_{2} and c_{1}, respectively.

From the restriction of φ to $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$, we define a new precoloring φ^{\prime} of $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$ by in addition coloring $e_{2 k+1}^{\prime}$ by c_{2}, e_{2}^{\prime} by the color c_{1}, and the corresponding edges of Q_{1} by colors c_{2} and c_{1} respectively. By the induction hypothesis, there is an extension of φ^{\prime} to $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$ using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$. From this coloring we may now obtain an extension of φ by proceeding as before.

Subcase 2.2.3 e_{1} and e_{2} are not incident with any common plane:
Suppose that e_{1} is incident with Q_{1} and Q_{2}, and e_{2} is incident with Q_{j} and Q_{j+1}. As in Subcase 2.1.2, we can distinguish between the following three cases:

- All precolored edges are contained in Q_{1} and Q_{2}.
- One of Q_{1} and Q_{2}, and one of Q_{j} and Q_{j+1}, contain precolored edges.
- At most one of the planes $Q_{1}, Q_{2}, Q_{j}, Q_{j+1}$ contains precolored edges.

Moreover, in all these three subcases we may proceed precisely as in the corresponding subcases of Subcase 2.1.2. We omit the details.

Case 3. All precolored edges of $G-E\left(D_{1}\right)$ are contained in at least three planes:
In the case when no precolored edge of D_{1} is incident with a plane containing precolored edges, then it is straightforward to obtain an extension by selecting uncolored edges in the planes that the precolored edges of D_{1} are incident with, so throughout we assume that this is not the case. Note further that since G contains at least five precolored edges, $d \geq 3$.

Case 3.1. The precolored edges of D_{1} have the same color under φ :
Suppose that $\varphi\left(e_{1}\right)=\varphi\left(e_{2}\right)=c_{1}$. We consider a number of different subcases.
Subcase 3.1.1 e_{1} and e_{2} are incident with the same two planes:
Assume that e_{1} and e_{2} are incident with the same two planes Q_{1} and Q_{2}. If the endpoints of e_{1} and e_{2} are adjacent via uncolored edges in both Q_{1} and Q_{2}, then we define the precoloring φ^{\prime} from the restriction of φ to $Q_{1} \cup Q_{2}$ by coloring these edges of Q_{1} and Q_{2} by the color c_{1}. We may now proceed as in Case 3 of Lemma 4.2 to obtain an extension of φ^{\prime}, and thereafter swap colors on a bicolored 4-cycle to obtain an extension of φ.

Otherwise, if the endpoints of e_{1} and e_{2} are not adjacent via uncolored edges in both Q_{1} and Q_{2}. Then, since $d>2, Q_{1} \cup Q_{2}$ contains at most $2 d-3$ precolored edges and any two vertices in G are contained in at most one 5 -cycle, it is not hard to see that there are independent edges e_{1}^{\prime} and e_{2}^{\prime} in Q_{1}, adjacent to e_{1} and e_{2}, respectively, and such that neither these edges, nor the corresponding edges of Q_{2} are precolored or adjacent to edges precolored c_{1} in $Q_{1} \cup Q_{2}$. Hence, we may color these edges of Q_{1} and Q_{2} by the color c_{1}, and then proceed as in the preceding paragraph to obtain an extension of φ.

Subcase 3.1.2 e_{1} and e_{2} are incident with one common plane:
Suppose that e_{1} and e_{2} are incident with exactly one common plane Q_{1}, and that e_{1} is also incident with Q_{2}. If there are at most $2 d-4$ precolored edges in $Q_{1} \cup Q_{2}$ and at most $2 d-4$ precolored edges in $Q_{2 k+1} \cup Q_{1}$, then there are independent edges e_{1}^{\prime} and e_{2}^{\prime} in Q_{1}, adjacent to e_{1} and e_{2}, respectively, and such that neither these edges, nor the corresponding edges of Q_{2} and $Q_{2 k+1}$, respectively, are precolored or adjacent to edges precolored c_{1} in $Q_{1} \cup Q_{2} \cup Q_{2 k+1}$. Thus we may proceed as above to obtain an extension of φ.

Suppose now instead that $Q_{1} \cup Q_{2 k+1}$, say, contains exactly $2 d-3$ precolored edges. If there exist independent edges e_{1}^{\prime} and e_{2}^{\prime} in Q_{1}, as described in the preceding paragraph, then we may proceed as in that case, so suppose that there are no two such edges.

We first consider the case when we can choose exactly one such edge, that is, there is an edge $e_{1}^{\prime} \in$ $E\left(Q_{1}\right)$ adjacent to e_{1} but not e_{2}, satisfying that e_{1}^{\prime} and the corresponding edge of Q_{2} are not precolored or adjacent to edges of $Q_{1} \cup Q_{2}$ that are precolored c_{1}. Moreover, there is no edge e_{2}^{\prime} adjacent to e_{2} with analogous properties. Consider the precoloring φ^{\prime} obtained from the restriction of φ to $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$ by in addition coloring e_{1}^{\prime} and also the corresponding edge of Q_{2} by the color c_{1}. Now, since there is no uncolored edge e_{2}^{\prime} as described above, it follows that all $d-2$ edges a_{1}, \ldots, a_{d-2} adjacent to e_{2} in Q_{1} satisfies that either a_{i}, or the corresponding edge of $Q_{2 k+1}$, is φ^{\prime}-precolored or adjacent to an edge colored c_{1} under φ^{\prime}. Moreover, since $Q_{2 k+1} \cup Q_{1}$ contains at most $2 d-2 \varphi^{\prime}$-precolored edges, every precolored edge of $Q_{2 k+1} \cup Q_{1}$ satisfies this condition. Thus by properly coloring the uncolored
edges adjacent to e_{2}, except the ones that are adjacent to edges in $G-E\left(D_{1}\right)$ colored c_{1}, by colors from $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}, c_{4}\right\}$, we obtain a precoloring $\varphi^{\prime \prime}$ from φ^{\prime}. Note that any extension of the restriction of $\varphi^{\prime \prime}$ to $Q_{2 k+1} \cup Q_{1}$ using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$ does not use c_{1} on an edge adjacent to e_{2}. Thus, since there is exactly one precolored edge in $G-E\left(D_{1}\right)$ that is not contained in $Q_{2 k+1} \cup Q_{1}$, we may once again proceed as in Case 3 of Lemma 4.2 to obtain a proper $(2 d+1)$-edge coloring of G that agrees with $\varphi^{\prime \prime}$, where no edge adjacent to e_{2} is colored c_{1}, and where we color the edges of D_{1} so that all edges between any two given planes are colored by a fixed color not appearing in these two planes. Thereafter we can swap colors on a bicolored 4-cycle and recolor e_{2} to obtain an extension of φ.

Suppose now that neither an edge e_{1}^{\prime}, nor an edge e_{2}^{\prime} as described above exist in Q_{1}. Then the endpoints u_{1} and u_{2} of e_{1} and e_{2} in Q_{1}, respectively, are adjacent via an uncolored edge e in Q_{1}, and the corresponding edges of $Q_{2 k+1}$ and Q_{2} are uncolored. Moreover, since both $Q_{2 k+1} \cup Q_{1}$ and $Q_{1} \cup Q_{2}$ contains at most $2 d-3$ precolored edges, it follows that there are $2 d-4$ edges precolored c_{1} in Q_{1}, the endpoints of which are adjacent to u_{1} and u_{2}, respectively. Moreover, $Q_{2 k+1}$ contains exactly one precolored edge, and Q_{2} contains exactly one precolored edge, so all precolored edges of $G-E\left(D_{1}\right)$ are contained in $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$.

Now, from the restriction of φ to $Q_{2 k+1}$ we define a new precoloring φ^{\prime} by coloring all edges of $Q_{2 k+1}$ corresponding to edges of Q_{1} colored c_{1}, by the color c_{1}, and thereafter color every edge adjacent to e_{2} in $Q_{2 k+1}$ that is neither precolored nor adjacent to any edge precolored c_{1} by an arbitrary color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}, c_{4}\right\}$ so that the resulting coloring is proper. Next, we take an extension of φ^{\prime} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$. (Note that no edge adjacent to e_{2} is colored c_{1} in this extension.) Thereafter we color Q_{1} correspondingly to how $Q_{2 k+1}$ is colored except that all edges colored c_{1} that are not precolored c_{1} under φ^{\prime} are recolored c_{3}. Denote the obtained partial coloring of G by f.

Now, if the precolored edge b_{2} of Q_{2} is colored c_{1} under φ, then we color Q_{2} correspondingly to how Q_{1} is colored under f, except that the edge φ-precolored c_{1} is colored c_{1}. Therafter, we color $Q_{3}, \ldots, Q_{2 k}$ correspondingly to how Q_{1} is colored. We may now apply Lemma 2.2 to color the edges of D_{1} and thus obtain an extension of φ. (Since e_{1} and e_{2} are contained in different cycles of D_{1}, we can choose the coloring of D_{1} so that it agrees with φ.) Otherwise, if b_{2} is colored $c_{5} \neq c_{1}$, then the corresponding edge of Q_{1} is not colored c_{1}. We color Q_{2} correspondingly to how Q_{1} is colored except that we permute the colors c_{5} and the color of the corresponding edge of Q_{1} under f. Again, we color all the planes $Q_{3}, \ldots, Q_{2 k}$ correspondingly to how Q_{1} is colored, and apply Lemma 2.2 to obtain an extension of φ.

Subcase 3.1.3 e_{1} and e_{2} are not incident with any common plane:
Suppose that e_{1} is incident with Q_{1} and Q_{2} and e_{2} is incident with Q_{j} and $Q_{j+1}, j>2$. Since each Q_{i} is $(2 d-2)$-regular and any pair of adjacent planes contain at most $2 d-3$ precolored edges, it is straightforward that there are corresponding uncolored edges $e_{1}^{\prime} \in E\left(Q_{1}\right), e_{2}^{\prime} \in E\left(Q_{2}\right)$ adjacent to e_{1} but not to any other edge precolored c_{1}, and similarly for e_{2}. Hence, we may proceed as in Case 3 of Lemma 4.2 to obtain an extension of a precoloring φ^{\prime} of $G-E\left(D_{1}\right)$ defined from φ by coloring the selected edges adjacent to e_{1} and e_{2}, respectively, by the color c_{1} and removing the color c_{1} from e_{1} and e_{2}. From the extension of φ^{\prime}, we obtain an extension of φ as before.

Case 3.2. The precolored edges of D_{1} have different colors under φ : Suppose that $\varphi\left(e_{1}\right)=c_{1}$ and $\varphi\left(e_{2}\right)=c_{2}$.

Subcase 3.2.1 e_{1} and e_{2} are both incident with two common planes:

Assume that e_{1} and e_{2} are both incident with the same pair of planes Q_{1} and Q_{2}. Let u_{1} and u_{2} be the vertices of Q_{1} that are incident with e_{1} and e_{2}, respectively.

If $Q_{1} \cup Q_{2}$ contains at most $2 d-4$ precolored edges, then there are independent edges $e_{1}^{\prime} \in E\left(Q_{1}\right)$ and $e_{2}^{\prime} \in E\left(Q_{1}\right)$ that are incident with u_{1} and u_{2}, respectively, such that neither e_{1}^{\prime} nor the corresponding edge $e_{1}^{\prime \prime}$ of Q_{2} is precolored or adjacent to an edge precolored c_{1} in $Q_{1} \cup Q_{2}$, and similarly for e_{2}^{\prime}, the corresponding edge $e_{2}^{\prime \prime}$ of Q_{2} and c_{2}. Thus, from the restriction of φ to $Q_{1} \cup Q_{2}$ we may define a new precoloring φ^{\prime} by coloring these four edges by c_{1} and c_{2}, respectively. We may now proceed as in Case 3 of Lemma 4.2 to obtain an extension of φ^{\prime}, and thereafter we can obtain an extension of φ by swapping colors on two bicolored 4-cycles.

Suppose now that $Q_{1} \cup Q_{2}$ contains $2 d-3$ precolored edges, so exactly one plane $D_{i}, i \neq 1,2$ has exactly one precolored edge a_{i}; we assume $i \neq 3$. Then as in Claim4.6, there is either
(i) an edge $e_{1}^{\prime} \in E\left(Q_{1}\right)$ incident with u_{1} but not u_{2}, such that e_{1}^{\prime} and the corresponding edge $e_{1}^{\prime \prime}$ of Q_{2} are uncolored, and not adjacent to any edge in $Q_{1} \cup Q_{2}$ colored c_{1}, or
(ii) an edge $e_{2}^{\prime} \in E\left(Q_{1}\right)$ incident with u_{2} but not u_{1}, such that e_{2}^{\prime} and the corresponding edge $e_{2}^{\prime \prime}$ of Q_{2} are uncolored, and not adjacent to any edge in $Q_{1} \cup Q_{2}$ colored c_{2}.

Suppose e.g. that (ii) holds. Then we define a new precoloring φ^{\prime} from the restriction of φ to $Q_{1} \cup Q_{2}$ by coloring e_{2}^{\prime} and $e_{2}^{\prime \prime}$ by the color c_{2}. By removing the color c_{1} from any edge that is colored c_{1} under φ^{\prime}, we obtain the precoloring $\varphi^{\prime \prime}$ of $Q_{1} \cup Q_{2}$. Next, we take an extension of $\varphi^{\prime \prime}$ using colors $\{1, \ldots, 2 d+1\} \backslash$ $\left\{c_{1}, c_{3}\right\}$, and then recolor all edges that are φ-colored c_{1} by the color c_{1} to obtain the coloring f which is an extension of φ^{\prime}. We color all edges between Q_{1} and Q_{2} by the color c_{3} except e_{1} which is colored c_{1}, color Q_{3} correspondingly to how Q_{2} is colored, and color the edges between Q_{2} and Q_{3} by a color in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}\right\}$ missing at its endpoints.

Next, consider the precolored edge a_{i} of Q_{i}, and the corresponding edge a_{1} of Q_{1}. If $f\left(a_{1}\right)=\varphi\left(a_{i}\right)$, then we color all the planes $Q_{4}, \ldots, Q_{2 k+1}$ correspondingly to how Q_{1} is colored. Thereafter, we color the edges between Q_{3} and Q_{4} similarly to how the edges between Q_{1} and Q_{2} are colored, and then color the remaining uncolored paths in D_{1} using two colors not appearing at the endpoints of these paths. Finally, we swap colors on a bicolored 4-cycle containing e_{2} to obtain an extension of φ.

Otherwise, if $f\left(a_{1}\right) \neq \varphi\left(a_{i}\right)$, then we color the planes $Q_{4}, \ldots, Q_{2 k+1}$ correspondingly to how Q_{1} is colored, except that we permute the colors $f\left(a_{1}\right)$ and $\varphi\left(a_{i}\right)$. Then we color the edges between Q_{3} and Q_{4} with the color c_{3}, and consider the subgraph H consisting of the edges of D_{1} with endpoints in two consecutive planes in the sequence $Q_{4}, \ldots, Q_{2 k+1}, Q_{1}$. If we define a list assignment for these edges by for every edge including the colors from $\{1, \ldots, 2 d+1\}$ that do not appear on any adjacent edges, then each edge, except the ones with endpoints in Q_{1} and $Q_{2 k+1}$, gets a list of size at least two. Hence, H is list edge colorable from these lists. This yields an edge coloring of G that agrees with φ except for e_{2}. Finally, we swap colors on a bicolored 4-cycle containing e_{2} to obtain an extension of φ.

Subcase 3.2.2 e_{1} and e_{2} are incident with exactly one common plane:
Suppose now instead that e_{1} and e_{2} are incident to exactly one common plane, say Q_{1}, where e_{1} in addition also is incident with Q_{2}. If there are uncolored corresponding edges $e_{1}^{\prime} \in E\left(Q_{1}\right)$ and $e_{2 k+1}^{\prime} \in$ $E\left(Q_{2 k+1}\right)$ that are incident with e_{2} but not to any other edge precolored c_{2}, and similar edges for e_{1} and the color c_{1} in Q_{1} and Q_{2}, respectively, which are disjoint from e_{1}^{\prime}, then we proceed as above: we can
obtain an extension by coloring the edges adjacent to e_{1} and e_{2} by colors c_{1} and c_{2}, respectively, and then proceed as in Case 3 of Lemma 4.2, as before.

Now, any two adjacent planes contain at most $2 d-3$ precolored edges, so if there are no edges as described in the preceding paragraph, then all precolored edges are contained in $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$, and e_{1} and e_{2} are adjacent to a common vertex $u_{1} \in V\left(Q_{1}\right)$. Moreover, u_{1} is incident with $2 d-4$ edges colored by distinct colors from $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}, Q_{2 k+1}$ contains exactly one precolored edge, and Q_{2} contains exactly one precolored edge. Moreover, these precolored edges in $Q_{2 k+1} \cup Q_{2}$ are either adjacent to vertices corresponding to u_{1}, or colored c_{2} and c_{1} respectively, and adjacent to edges that are incident with u_{1}. We consider some different cases, depending on the colors of the precolored edges of Q_{1} and Q_{2}.

Suppose first that the precolored edge of $Q_{2 k+1}$ is colored c_{2}, and that Q_{2} contains an edge precolored c_{1}. We color all edges of $Q_{2 k+1}$ adjacent to e_{2} that are not precolored or adjacent to an edge precolored c_{2} by arbitrary colors from $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ so that the resulting precoloring is proper, and similarly for Q_{2} but with c_{1} in place of c_{2}. Next, we take an extension of the resulting precoloring φ^{\prime} of $Q_{2 k+1} \cup Q_{1} \cup Q_{2}$, where we use colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}\right\}$ for $Q_{2 k+1},\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$ for Q_{1}, and $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$ for Q_{2}. We then color the edges between $Q_{2 k+1}$ and Q_{1} by c_{1} except e_{2} which is colored c_{2}, the edges between Q_{1} and Q_{2} by c_{2} except e_{1} which is colored c_{1}. Next, we color the planes $Q_{3}, \ldots, Q_{2 k}$ correspondingly using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{3}, c_{4}\right\}$, and all remaining uncolored edges by c_{3}, c_{4} alternately. This yields an extension of φ.

Now, if one of the colors c_{1} and c_{2} does not appear in $G-E\left(D_{1}\right)$, say c_{2}, then from the restriction of φ to $Q_{1} \cup Q_{2}$, we define a new precoloring φ^{\prime} by properly coloring all the edges adjacent to e_{1} that are not precolored or adjacent to an edge colored c_{1} by arbitrary colors in $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$ so that the resulting coloring is proper. We take an extension of φ^{\prime} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$, and an extension of the restriction of φ to $Q_{2 k+1}$ using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$. Thereafter, we color all edges between $Q_{2 k+1}$ and Q_{1} by the color c_{2}, the edges between Q_{1} and Q_{2} by the color c_{3} except that e_{1} is colored c_{1}. Since no other planes in $G-E\left(D_{1}\right)$ contain precolored edges, it is now straightforward to construct an extension of φ from the obtained partial edge coloring of G.

Finally, if the precolored edge of $Q_{2 k+1}$ is colored c_{1}, and the edge of Q_{2} is colored c_{2}, then we proceed similarly, but simply take extensions of the restriction of φ to $Q_{2 k+1}$ using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{2}, c_{3}\right\}$, of the restriction of φ to Q_{1} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{2}\right\}$ and of the restriction of φ to Q_{2} using colors $\{1, \ldots, 2 d+1\} \backslash\left\{c_{1}, c_{3}\right\}$.

Subcase 3.2.3 e_{1} and e_{2} are not incident with any common plane:
It remains to consider the case when e_{1} and e_{2} are not incident to a common plane. Here we may proceed precisely as in Subcase 3.1.3, so once again we omit the details. This concludes the proof of this lemma.

5 Extending a precoloring of a distance-4 matching in $C_{2 k}^{d}$

In this last section we consider the problem of extending a precoloring of $C_{2 k}^{d}$ where the precolored edges form a matching.
Theorem 5.1 If φ is a $2 d$-edge coloring of a distance- 4 matching of $G=C_{2 k}^{d}$, then φ can be extended to a proper $2 d$-edge coloring of G.

Proof: Let φ be a $2 d$-edge precoloring of a distance- 4 matching M of G, and let $D_{1}, \ldots D_{k}$ be the dimensions of G. We define the edge coloring f of G by properly coloring all edges of D_{j} by $2 j-1$ and $2 j$, so that all corresponding edges have the same color. The resulting coloring satisfies that every 4 -cycle in G is bicolored since corresponding edges have the same color.

We shall describe a procedure for obtaining a required coloring f^{\prime} that agrees with φ. For all precolored edges we shall use transformations on some bicolored 4-cycles. As we shall see, if $e, e^{\prime} \in M$, then the cycles used for transformations involving e will be edge-disjoint from cycles used for e^{\prime}.

Consider an arbitrary precolored edge $e \in M$. We consider some different cases.
(i) If $f(e)=\varphi(e)$, then we are done;
(ii) If $f(e) \neq \varphi(e)$, and there is a bicolored 4-cycle containing e, and where color $\varphi(e)$ appears, then we interchange colors on this bicolored 4-cycle;
(iii) If none of the two previous conditions hold, then there are two edges e_{1} and e_{2}, both of which are adjacent to e, and contained in the same dimension as e, such that $\varphi(e)=f\left(e_{1}\right)=f\left(e_{2}\right)$. By interchanging colors on two disjoint 4 -cycles, containing e_{1} and e_{2} respectively, we obtain a coloring f_{1}, where e is contained in a bicolored 4 -cycle with the color $\varphi(e)$. Thus by interchanging colors on this 4 -cycle, we obtain a coloring f_{2} satisfying that $f_{2}(e)=\varphi(e)$.

Note that all edges used in the transformations (i) - (iii) are at distance at most 1 from e. Thus if e and e^{\prime} are distinct edges of M, and we perform one of the transformations (i)-(iii) for both edges, then the edges involved in the transformations concerning e will be edge disjoint from the ones used for e^{\prime}, since the precolored edges form a distance- 4 matching.

Hence, we can repeat the above process for any precolored edge of G to obtain the required coloring f^{\prime}.

We believe that Proposition 5.1 might be true if we precolor a distance- 3 instead of a distance- 4 matching, but if e and e^{\prime} are distinct edges of M, then the edges involved in the transformations for e may not necessarily be disjoint from the one used for e^{\prime}, and thus we cannot apply our technique here; we state the following conjecture.

Conjecture 5.2 If φ is an edge precoloring of a distance-3 matching of $C_{2 k}^{d}$, then φ can be extended to a proper 4-edge coloring of $C_{2 k}^{d}$.

Note that Proposition 5.1 becomes false if we precolor a distance- 2 matching; for instance, consider a vertex v of degree $2 d$ such that every edge incident with v is uncolored but there is a fixed color $c \in\{1, \ldots, 2 d\}$ satisfying that every edge incident with v is adjacent to another edge colored c. If f is an extension of φ, then since v has degree $2 d$, exactly one edge incident with v is colored c, but such a coloring cannot be proper.

Acknowledgements

Petros thank the International Science Program in Uppsala, Sweden, for financial support. Casselgren was supported by a grant from the Swedish Research council VR (2017-05077).

References

[1] L.D. Andersen, A.J.W. Hilton, Thank Evans!, Proc. London Math. Soc. 47 (1983), 507-522.
[2] L.D. Andersen, A.J.W Hilton, Symmetric Latin square and complete graph analogues of the Evans conjecture, Journal of Combinatorial Designs 4 (1994), 197-252.
[3] A.S. Asratian, T.M.J. Denley, R. Häggkvist, Bipartite graphs and their applications, Cambridge University Press, Cambridge, 1998.
[4] C.J. Casselgren, F.B. Petros, S.A. Fufa, Extending partial edge colorings of cartesian products of graphs, submitted.
[5] C.J. Casselgren, F.B. Petros, Edge precoloring extension of trees, Australasian Journal of Combinatorics 81 (2021), 233-244.
[6] C.J. Casselgren, F.B. Petros, Edge precoloring extension of trees II, Discussiones Mathematicae Graph Theory (in press).
[7] C.J. Casselgren, K. Markström, L.A. Pham, Precoloring extension of hypercubes, Journal of Graph Theory 95 (2020), 410-444.
[8] T.Easton, R.Gary Parker, On completing latin squares, Discrete Applied Mathematics 15 (2001), 167-181.
[9] K. Edwards, A. Girao, J. van den Heuvel, R.J. Kang, G.J. Puleo, J.-S. Sereni, Extension from Precoloured Sets of Edges, Electronic Journal of Combinatorics 25 (2018), P3.1, 28 pp.
[10] T. Evans, Embedding incomplete latin squares, American Mathematical Monthly 67 (1960), 958961.
[11] J. Fiala, NP-completeness of the edge precoloring extension problem on bipartite graphs, Journal of Graph Theory 43 (2003), pp. 156-160.
[12] A. Girao, R.J. Kang, Precolouring extension of Vizing's theorem, Journal of Graph Theor 92 (2019), 255-260.
[13] R. Häggkvist, A solution of the Evans conjecture for Latin squares of large size Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, Colloq. Math. Soc. János Bolyai, 18, 495-513.
[14] O. Marcotte, P. Seymour, Extending an edge coloring Journal of Graph Theory 14 (1990), 565--573.
[15] H.J. Ryser, A combinatorial theorem with an application to Latin squares, Proceedings of the American Mathematical Society 2 (1951), 550-552.
[16] B. Smetaniuk, A new construction for Latin squares I. Proof of the Evans conjecture, Ars Combinatoria 11 (1981), 155-172.

[^0]: *Research supported by a grant from the Swedish Research council VR (2017-05077)
 ISSN 1365-8050 © 2024 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

