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We consider the problem of extending partial edge colorings of iterated cartesian products of even cycles and paths,
focusing on the case when the precolored edges satisfy either an Evans-type condition or is a matching. In particular,
we prove that if G = Cd

2k is the dth power of the cartesian product of the even cycle C2k with itself, and at most 2d−1

edges of G are precolored, then there is a proper 2d-edge coloring of G that agrees with the partial coloring. We show
that the same conclusion holds, without restrictions on the number of precolored edges, if any two precolored edges
are at distance at least 4 from each other. For odd cycles of length at least 5, we prove that if G = Cd

2k+1 is the dth
power of the cartesian product of the odd cycle C2k+1 with itself (k ≥ 2), and at most 2d edges of G are precolored,
then there is a proper (2d+1)-edge coloring of G that agrees with the partial coloring. Our results generalize previous
ones on precoloring extension of hypercubes [Journal of Graph Theory 95 (2020) 410–444].
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1 Introduction
An (edge) precoloring (or partial edge coloring) of a graph G is a proper edge coloring of some subset
E′ ⊆ E(G); a t-edge precoloring is such a coloring with t colors. A t-precoloring φ of G is extendable
if there is a proper t-edge coloring f of G such that f(e) = φ(e) for any edge e that is colored under
φ; f is called an extension of φ. In general, the problem of extending a given edge precoloring is an
NP-complete problem, already for 3-regular bipartite graphs [8, 11].

Edge precoloring extension problems seem to have been first considered in connection with the prob-
lem of completing partial Latin squares and the well-known Evans’ conjecture that every n × n partial
Latin square with at most n− 1 non-empty cells is completable to a Latin square [10]. By a well-known
correspondence, the problem of completing a partial Latin square is equivalent to asking if a partial edge
coloring with ∆(G) colors of a balanced complete bipartite graph G is extendable to a ∆(G)-edge col-
oring, where ∆(G) as usual denotes the maximum degree. Evans’ conjecture was proved for large n by
Häggkvist [13], and in full generality by Andersen and Hilton [1], and, independently, by Smetaniuk [16].

∗Research supported by a grant from the Swedish Research council VR (2017-05077)

ISSN 1365–8050 © 2024 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:2

30
3.

05
55

1v
3 

 [
m

at
h.

C
O

] 
 3

 J
un

 2
02

4

http://dmtcs.episciences.org/
https://doi.org/10.46298/dmtcs.11377


2 C.J. Casselgren et. al

Another early reference on edge precoloring extension is [14], where the authors study the problem
from the viewpoint of polyhedral combinatorics. More recently, the problem of extending a precoloring
of a matching has been considered in [9]. In particular, it is conjectured that for every graph G, if φ is an
edge precoloring of a matching M in G using ∆(G)+1 colors, and any two edges in M are at distance at
least 2 from each other, then φ can be extended to a proper (∆(G) + 1)-edge coloring of G; here, by the
distance between two edges e and e′ we mean the number of edges in a shortest path between an endpoint
of e and an endpoint of e′; a distance-t matching is a matching where any two edges are at distance at
least t from each other. In [9], it is proved that this conjecture holds for e.g. bipartite multigraphs and
subcubic multigraphs, and in [12] it is proved that a version of the conjecture with the distance increased
to 9 holds for general graphs.

Quite recently, with motivation from results on completing partial Latin squares, questions on extend-
ing partial edge colorings of d-dimensional hypercubes Qd were studied in [7]. Among other things, a
characterization of partial edge colorings with at most d precolored edges that are extendable to d-edge
colorings of Qd is obtained, thereby establishing an analogue for hypercubes of the characterization by
Andersen and Hilton [1] of n×n partial Latin squares with at most n non-empty cells that are completable
to Latin squares. In particular, every partial d-edge coloring with at most d−1 colored edges is extendable
to a d-edge coloring of Qd. This line of investigation was continued in [5, 6] where similar questions are
investigated for trees.

In [4], similar questions are investigated for cartesian products of graphs. The cartesian product G□H
of two graphs G and H is the graph with vertex set V (G□H) = {(u, v) : u ∈ V (G), v ∈ V (H)}, and
where (u, v) is adjacent to (u′, v′) if and only if u = u′ and vv′ ∈ E(H), or uu′ ∈ E(G) and v = v′.

In [4], Evans-type edge precoloring extension results are obtained for the cartesian products of complete
and complete bipartite graphs with K2, respectively, as well as for the product of K2 with graphs of small
maximum degree and trees. Moreover, similar results for the cartesian product of K2 with a general
regular (triangle-free) graph, where the precolored edges are required to be independent, were obtained.

In this paper, we continue the study of questions on precoloring extension of cartesian products of
graphs with a focus on iterated cartesian products of graphs. Denote by Gd the dth power of the cartesian
product of G with itself. We pose the following question.

Problem 1.1 Let G be a graph where every precoloring of at most χ′(G)− k edges, where k ≥ 1, can be
extended to a proper χ′(G)-edge coloring. Is it true that every precoloring of at most χ′(Gd) − k edges
of Gd can be extended to a χ′(Gd)-edge coloring of Gd?

The result of [7] for hypercubes deals with the case when G = K2 (as well as G = C4), so a positive
answer to Problem 1.1 would be a far-reaching generalization of this result.

In this paper, we study Problem 1.1 for graphs with maximum degree two. We verify that it has a
positive answer for even as well as for odd cycles of length at least 5, and therefore also for paths. The
case of odd cycles of length 3 appears to be more difficult, and it remains an open problem whether
Problem 1.1 has a positive answer in this case.

Even though any partial edge coloring of an odd cycle is extendable, we shall restrict ourselves to the
case when at most χ′(G) − 1 edges in a graph G are precolored, since for all connected graphs except
odd cycles and stars, there are examples of partial edge colorings with χ′(G) precolored edges that are
not extendable. In fact, in [4] it was proved that every partial χ′(G)-edge coloring of G is extendable if
and only G is isomorphic to a star K1,n or an odd cycle.
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For even cycles, we additionally prove that any precoloring of a distance-4 matching in Cd
2k is extend-

able to a proper 2k-edge coloring. Here the argument relies heavily on the fact that Cd
2k is Class 1, and

we do not know whether a similar result hold for odd cycles.

2 Preliminaries
Before we prove our results, let us introduce some terminology and auxiliary results.

If φ is an edge precoloring of G and an edge e is colored under φ, then we say that e is φ-colored. A
color c appears at a vertex v under φ if there is an edge incident with v that is colored c; otherwise, c is
missing at v.

If the edge coloring φ uses t colors and 1 ≤ a, b ≤ t, then a path or cycle in G is called (a, b)-colored
under φ if its edges are colored by colors a and b alternately. We also say that such a path or cycle is
bicolored under φ. By switching colors a and b on a maximal (a, b)-colored path or an (a, b)-colored
cycle, we obtain another proper t-edge coloring of G; this operation is called an interchange or a swap.

In the above definitions, we often leave out the reference to an explicit coloring φ, if the coloring is
clear from the context.

If G1 and G2 are subgraphs of G, and fi is a proper edge coloring of Gi, then we say that f1 has no
conflicts with f2 if no vertex is incident with two edges e1 and e2 such that f1(e1) = f2(e2).

By construction, G = Cd
r decomposes into d subgraphs in terms of its edges, each consisting of rd−1

disjoint copies of Cr; these subgraphs are called dimensions. Each subgraph of a dimension which is
isomorphic to Cr is called a layer, and each component of G− E(D), where D is a dimension, is called
a plane of G. If d = 2, then layers and planes are identical objects.

...
...

...

. . .

. . .

. . .

...

Fig. 1: An illustration of dimensions, layers and planes. Each cycle forms a layer, all the cycles together form a
dimension, and the components obtained by removing all the edges from the cycles are the planes.

In Figure 1, the edge-induced subgraph consisting of all vertices and drawn edges form a dimension,
each cycle is a layer, and each connected component in the subgraph obtained by removing all drawn
edges is a plane.

Two planes are adjacent if there is an edge with endpoints in both planes. Similarly an edge e not
contained in a plane is incident to the plane if one endpoint of e is contained in the plane, and we say that
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a layer edge is between two planes if it is incident with both planes.
Two vertices of two distinct planes are corresponding if they are joined by an edge; similarly for

edges. Given edge colorings of two distinct planes, we say that the planes are colored correspondingly if
corresponding edges have the same color.

We shall also need some standard definitions on list edge coloring. Given a graph G, assign to each edge
e of G a set L(e) of colors. Such an assignment L is called a list assignment for G and the sets L(e) are
referred to as lists or color lists. If all lists have equal size k, then L is called a k-list assignment. Usually,
we seek a proper edge coloring φ of G, such that φ(e) ∈ L(e) for all e ∈ E(G). If such a coloring φ
exists then G is L-colorable and φ is called an L-coloring. Denote by χ′

L(G) the minimum integer t such
that G is L-colorable whenever L is a t-list assignment. If χ′

L(G) ≤ t, then G is t-edge-choosable. The
following lemmas are well-known and easy to prove.

Lemma 2.1 Every even cycle is 2-edge-choosable.

Lemma 2.2 If L is a 2-list assignment for the edges of an odd cycle C, then C is L-colorable, unless all
lists are identical.

We shall also use the well-known proposition that paths are edge-list colorable from a list assignment
where every edge except the first one gets a list of size at least two.

3 Extension of 2d− 1 precolored edges of Cd
2k

In this section, we prove the following theorem.

Theorem 3.1 If G = Cd
2k is the dth power of the cartesian product of the even cycle C2k with itself, and

φ is a proper partial edge coloring of G with at most 2d− 1 precolored edges, then φ can be extended to
a proper 2d-edge coloring of G.

As mentioned in the introduction, every connected graph except odd cycles and stars have a partial edge
coloring with χ′(G) precolored edges that is not extendable. Thus, since χ′(G) = 2d, the bound on the
number of precolored edges here is best possible.

Proof Proof of Theorem 3.1: The proof proceeds by induction on d, the case d = 1 being trivial. We
shall prove a series of lemmas that together will imply the theorem. In the proofs of these lemmas we shall
consider a specified dimension D1, and the subgraph G − E(D1) consisting of 2k planes Q1, . . . , Q2k,
where Qi is adjacent to Qi+1 (here, and in the following, indices are taken modulo 2k).

We shall assume that every precoloring of a plane of G−E(D1) with at most 2d− 3 precolored edges
is extendable to a proper edge coloring using 2d − 2 colors, and prove that a given precoloring φ of G
with at most 2d− 1 precolored edges is extendable to a proper 2d-edge coloring of G.

We shall distinguish between the following cases, each of which is dealt with in a lemma below.

• There is a dimension of G that contains no precolored edges.

• Each dimension of G contains precolored edges, and there is a dimension with at most two precol-
ored edges, the colors of which do not appear on edges in any other dimension of G.

• Every dimension of G contains edges with colors that also appear on edges in another dimension,
or at least three precolored edges.

2
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Lemma 3.2 If there is a dimension of G that contains no precolored edges, then φ is extendable.

Proof: Suppose that D1 is a dimension in G that contains no precolored edges, and consider the subgraph
G− E(D1).

Suppose first that all precolored edges are contained in one plane, say Q1. Let c1 and c2 be two colors
used by φ (if just one color appears under φ, then c2 is any color from {1, . . . , 2d} \ {c1}). From the
restriction of φ to Q1, we define an edge precoloring φ′ of Q1 by removing the colors c1 and c2 from any
edge of Q1 φ-colored by these colors. Then, by the induction hypothesis, φ′ is extendable to a (2d− 2)-
coloring of Q1 using colors {1, . . . , 2d} \ {c1, c2}. Next we recolor the edges φ-precolored c1 and c2 by
these colors, and thereafter color all other planes correspondingly. Thus, we can define a list assignment
L for the edges of D1, by for each edge e ∈ E(D1), letting L(e) be the set of all colors from {1, . . . , 2d}
that do not appear on edges that are adjacent to e. By Lemma 2.1, we can properly color the edges of D1

from these lists to obtain a proper coloring that has no conflicts with the coloring of G−E(D1), and thus
φ is extendable.

Next, we consider the case when exactly two planes, say Q1 and Qi contain all precolored edges. Since
at most 2d−1 colors appear under φ, there is a color c1 ∈ {1, . . . , 2d} that is not used by φ. Furthermore,
let c2 be a color appearing on some edge in the plane with the largest number of precolored edges, say Q1.
Let φ′ be the coloring obtained from φ by removing color c2 from any edge colored c2 under φ. Then
the restrictions of φ′ to Q1 and Qi, respectively, are extendable to proper (2d − 2)-edge colorings using
colors {1, . . . , 2d}\{c1, c2}. By recoloring any edge φ-colored c2 by the color c2, we obtain proper edge
colorings f1 and fi of Q1 and Qi, respectively.

Now, either i ̸= 2 or i ̸= 2k; suppose the former holds. Then we color Q2 correspondingly to how Q1

is colored under f1, and we color all other uncolored Qj’s correspondingly to how Qi is colored under fi.
Now, since Q2j−1 and Q2j are colored correspondingly, for every edge e with one endpoint in Q2j−1 and
one endpoint in Q2j , there is a color {1, . . . , 2d} \ {c1} that does not appear at an endpoint of e. Thus, by
coloring all such edges by such a color and then coloring all other edges of D1 by the color c1, we obtain
an extension of φ.

Lastly, let us consider the case when at least three planes contain all precolored edges. As before, let c1
be a color that is not used by φ. Since at least three planes contain precolored edges, each plane contains
at most 2d − 3 precolored edges, and two adjacent planes contain precolored edges from at most 2d − 2
colors. This implies that for each j = 1, . . . , k there is a color c′j in {1, . . . , 2d} \ {c1} that is not used in
the restriction of φ to Q2j−1 and Q2j . Thus for j = 1, . . . , k, we can extend the restriction of φ to Q2j−1

and Q2j using the 2d− 2 colors in {1, . . . , 2d} \ {c1, c′j}. For j = 1, . . . k, we then color all edges of D1

between Q2j−1 and Q2j by c′j , and all other edges of D1 by the color c1. This yields an extension of φ.
2

Lemma 3.3 If each dimension of G contains precolored edges and there is a dimension with at most two
precolored edges, the colors of which do not appear on edges in any other dimension of G, then φ is
extendable.

Proof: Assume first that there is a dimension D1 containing only one precolored edge and that there is
a plane Q1 in G − E(D1) containing all other precolored edges. Suppose that the precolored edge of
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D1 is colored c1. As in the proof of the preceding lemma, there is an extension of the restriction of φ
to Q1 using colors {1, . . . , 2d} \ {c1}. Next, we color all other planes of G − E(D1) correspondingly,
which implies that every edge of D1 is adjacent to edges of 2d − 2 different colors, so by Lemma 2.1, φ
is extendable.

Let us now consider the case when there is no such dimension containing only one precolored edge and
a plane containing all other precolored edges. Let D1 be a dimension containing at most two edges that
are precolored by colors not appearing on any other edges under φ. Our assumption implies that every
plane in G−E(D1) contains at most 2d− 3 precolored edges, and that there are two colors c1, c2 that do
not appear on any edge in G− E(D1), and at most two edges of D1 are colored by colors from {c1, c2}.

Suppose first that there is an extension of the restriction of φ to D1 using colors c1 and c2. Since every
plane in G − E(D1) contains at most 2d − 3 precolored edges, every plane has a proper edge coloring
using colors {1, . . . , 2d} \ {c1, c2} that agrees with φ. Hence, φ is extendable.

Suppose now that the restriction of φ to D1 is not extendable using colors c1 and c2. Then there are at
least two precolored edges in D1, and so G−E(D1) contains at most 2d− 3 precolored edges and there
is a color c3 ∈ {1, . . . , 2d} \ {c1, c2} that does not appear on any edge under φ.

Since the restriction of φ to D1 is not extendable, there are planes Q1, Q2, . . . , Qi in G−E(D1) such
that Q1 and Qi are incident with precolored edges of D1 and Q2, . . . , Qi−1 are not. Without loss of
generality we assume that Q1 is incident with an edge of D1 that is precolored c1. We take an extension
of Q1 using colors {1, . . . , 2d} \ {c1, c3}, and for j = 2, . . . , i− 1, we take an extension of the restriction
of φ to Qj using colors {1, . . . , 2d} \ {c2, c3}. Moreover, we color every path in D1 with vertices in
Q1, . . . , Qi using colors c3 and c2 alternately, and starting with c3 at Q1.

If Qi is incident with an edge of D1 colored c2, then i is even, and we take extensions of the restriction
of φ to Qi and Qi+1 using colors {1, . . . , 2d} \ {c2, c3}, and for j = i + 2, . . . , 2d, we take extensions
of the restrictions of φ to Qj using colors {1, . . . , 2d} \ {c1, c3}. Moreover, we color every path in D1

with vertices in Qi+1, . . . , Q2k using colors c3 and c1 alternately, and starting with c3 at Qi+1. Finally,
we color all edges between Q1 and Q2k by the color c1, and all edges between Qi and Qi+1 by the color
c2. This yields an extension of φ.

If Qi is incident with an edge colored c1, then i is odd, and we proceed similarly, but take extensions
of the restrictions of φ to Qi and Qi+1 using colors {1, . . . , 2d} \ {c1, c2}, for j = i + 2, . . . 2k − 1,
we take extensions of the restrictions of φ to Qj using colors {1, . . . , 2d} \ {c2, c3}, and an extension of
the restriction of φ to Q2k using colors {1, . . . , 2d} \ {c1, c3}. We then color the paths of D1 so that the
resulting coloring is proper and agrees with φ. 2

Lemma 3.4 If each dimension of G contains edges with colors that also appear on edges in another
dimension, or at least three precolored edges, then φ is extendable.

Proof: Since at most 2d − 1 edges are precolored, there is a dimension D1 with just one precolored
edge e. Suppose φ(e) = c1. Since at least one color appears on at least two edges, there are two colors
c2, c3 ∈ {1, . . . , 2d} \ {c1} that do not appear on any edge under φ.

We consider some different cases.

Case 1. All precolored edges except e lie in the same plane:
Let Q1 be a plane containing all precolored edges except e. By removing the color from every edge of

Q1 that is φ-colored c1, we obtain a precoloring that by the induction hypothesis is extendable to a proper
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edge coloring of Q1 using colors {1, . . . , 2d} \ {c1, c2}. Denote this coloring by f . By recoloring the
edges of Q1 that are φ-colored c1, we obtain, from f , an extension f ′ of the restriction of φ to Q1. We
color all other planes of G− E(D1) correspondingly.

Suppose first that e is incident with Q1. Then, by Lemma 2.1, there is proper edge coloring g of D1 that
has no conflicts with f ′. Moreover, since just one edge of D1 is precolored, we can choose this coloring
so that g(e) = c1. Hence, φ is extendable.

Next, we consider the case when e is not incident with Q1. Let C be the cycle in D1 containing e. If
no vertex of C is incident with an edge colored c1 under f ′, then we may proceed as in the preceding
paragraph. Otherwise, the endpoints of e are incident with two edges e1 and e2 of G−E(D1) colored c1.
Note that e, e1, e2 are contained in a 4-cycle in G, the fourth edge of which we denote by e3. As before,
we properly color the edges of D1 so that the resulting coloring g′ of G is proper. Moreover, we choose
g′ so that g′(e) = g′(e3) = c2. By swapping colors on the bicolored 4-cycle with edges e, e1, e2, e3 we
finally obtain an extension of φ.

Case 2. All precolored edges except e lie in exactly two planes:
Let Q1 and Qi be the two planes containing the precolored edges distinct from e.
Suppose first that e is not adjacent to Q1 or Qi. Since each of Q1 and Qi contains at most 2d − 3

precolored edges, there are extensions f1 and fi of the restrictions of φ to Q1 and Qi, respectively, using
colors {1, . . . , 2d}\{c2, c3}. Next, we properly color each plane Q of G−E(D1) that is distinct from Q1

and Qi, by colors {1, . . . , 2d} \ {c2, c3}, so that all these planes are colored correspondingly. Moreover,
color all edges of D1 alternately using colors c2 and c3 and starting with color c2 for all edges of D1 with
endpoints in Q1 and Q2. Then e is contained in a bicolored 4-cycle, and by swapping colors on this cycle,
we obtain an extension of φ.

Let us now consider the case when e is adjacent to exactly one of Q1 and Qi. Suppose e.g. that e
is incident with Q1 and Q2, so i ̸= 2. Since each of Q1 and Qi contains at most 2d − 3 precolored
edges, there are extensions f1 and fi of the restrictions of φ to Q1 and Qi, respectively, using colors
{1, . . . , 2d} \ {c2, c3}. Next, we color all uncolored planes in G − E(D1) correspondingly to how Q1

is colored, color all cycles of D1 properly using colors c2 and c3, and starting with color c2 for all edges
with endpoints in Q1 and Q2. Since Q1 and Q2 are colored correspondingly, there is a bicolored 4-cycle
with colors c1, c2 containing e. By swapping colors on this 4-cycle, we obtain an extension of φ.

Suppose now that e1 is incident with both planes containing precolored edges, say Q1 and Q2. By
removing the color from any edge that is colored c1 under φ, we obtain a precoloring φ′ of G such that
the restrictions of φ′ to Q1 and Q2, respectively, are extendable to proper edge colorings using colors
{1, . . . , 2d} \ {c1, c3}. By recoloring any edge of Q1 and Q2 that is φ-colored c1, we obtain proper edge
colorings f1 and f2 of Q1 and Q2, respectively, using colors {1, . . . , 2d} \ {c3}. We color the edges of
D1 between Q1 and Q2 by c3, except for e which is colored c1.

Next, we color Q3, . . . , Q2k−1 correspondingly to how Q2 is colored under f2 and Q2k correspondingly
to how Q1 is colored. Now, since Q2 and Q3 are colored correspondingly, for each edge e′ of D1 between
Q2 and Q3, there is a color c′ ∈ {1, . . . , 2d} that does not appear on an adjacent edge in Q2 or on the edge
between Q1 and Q2. We color every such edge e′ between Q2 and Q3 by such a color c′, and thereafter
color all edges of every path of D1 from Q1 to Q2k alternately by the colors used on the edges between
Q1 and Q2, and Q2 and Q3 respectively. This yields a proper partial edge coloring where the endpoints of
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every edge of D1 between Q1 and Q2k are incident to edges with 2d − 1 colors from {1, . . . , 2d}. Thus
we can properly color every such edge so that we get an extension of φ using colors 1, . . . , 2d.

Case 3. At least three planes in G− E(D1) contain precolored edges:
The assumption implies that every plane in G−E(D1) contains at most 2d− 4 precolored edges, and

any two adjacent planes contain altogether at most 2d − 3 precolored edges. Without loss of generality,
we assume that e is incident with Q1 and Q2. Since every vertex of Q1 and Q2 has degree 2d − 2, and
Q1 ∪Q2 contains at most 2d− 3 precolored edges, there are uncolored corresponding edges e1 ∈ E(Q1)
and e2 ∈ E(Q2) that are adjacent to e but not to any edge in Q1 ∪Q2 precolored c1. From the restriction
of φ to G− E(D1), we define a new precoloring φ′ of G− E(D1) by in addition coloring e1 and e2 by
the color c1.

Now, since each component of G−E(D1) contains at most 2d−3 φ′-precolored edges, by the induction
hypothesis, there is an extension of φ′ to G−E(D1) using colors {1, . . . , 2d}\{c2, c3}. Next, we properly
color the edges of D1 using colors c2 and c3, and starting with color c2 for the edges with endpoints in
Q1 and Q2. Now, since e1 and e2 are both colored c1, there is a bicolored 4-cycle with edges e1, e2 and e
with colors c1 and c2. By swapping colors on this 4-cycle, we obtain an extension of φ. 2

4 Extending a precoloring of 2d edges in Cd
2k+1

In this section, we prove the following theorem for the iterated cartesian product of odd cycles of length
at least 5.

Theorem 4.1 If G = Cd
2k+1 is the dth power of the cartesian product of the odd cycle C2k+1 with itself

(k ≥ 2), and φ is a proper partial edge coloring of G with at most 2d precolored edges, then φ can be
extended to a proper (2d+ 1)-edge coloring of G.

As for the case of even cycles, (for d ≥ 2) it is easily seen that the number of precolored edges here is
best possible, because χ′(G) = 2d+ 1 .

Proof Proof of Theorem 4.1: The proof of this theorem is similar to the proof of Theorem 3.1, so we
shall omit or just sketch some parts which are similar to techniques in that proof. Particularly in the last
parts of the proof, to avoid tedious repetition we omit parts which are very similar to techniques that have
been described in more detail earlier in the proof.

We proceed by induction on d, the case d = 1 being trivial. As in the proof of Theorem 3.1, we
shall prove a series of lemmas that together will imply the theorem. Since odd cycles are not 2-edge-
colorable, the proof is longer and more difficult than the proof of that theorem. In the proofs of these
lemmas we shall consider a specified dimension D1, and the subgraph G − E(D1) consisting of 2k + 1
planes Q1, . . . , Q2k+1, where Qi is adjacent to Qi+1 (here, and in the following, indices are taken modulo
2k + 1).

We shall assume that every edge precoloring of a plane of G− E(D1) with at most 2d− 2 precolored
edges is extendable to a proper edge coloring using 2d− 1 colors, and prove that a given precoloring φ of
G with at most 2d precolored edges is extendable to a proper (2d + 1)-edge coloring of G. To that end,
we shall distinguish between the following different cases.

• There is a dimension of G that contains no precolored edges.
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• Every dimension of G contains precolored edges, and there is a dimension with at most two precol-
ored edges, the colors of which do not appear on edges in any other dimension of G.

• Every dimension of G contains edges with colors that also appear on edges in other dimensions, or
at least three precolored edges, and one dimension contains only one precolored edge.

• Every dimension of G contains two precolored edges, at least one of which has a color appearing
on edges in another dimension.

2

Lemma 4.2 If there is a dimension of G that contains no precolored edges, then φ is extendable.

Proof: Suppose that D1 is a dimension in G that contains no precolored edges. We consider some
different cases.

Case 1. All precolored edges are contained in one plane:
Suppose that all precolored edges are contained in one plane, say Q1. Let c1 and c2 be two colors

used by φ (if just one color appears under φ, then c2 is any color from {1, . . . , 2d + 1} \ {c1}). By
removing the colors c1 and c2 from any edge colored by these colors, we obtain an edge precoloring φ′

of Q1 that is extendable to a (2d − 1)-coloring of Q1 using colors {1, . . . , 2d + 1} \ {c1, c2}. Next we
recolor the edge precolored c1 and c2, respectively, using these colors, and thereafter color all other planes
correspondingly. Since all planes are colored correspondingly, we can apply Lemma 2.2 to properly color
the edges of each layer of D1 to obtain an extension of φ.

Case 2. All precolored edges are contained in two planes:
Suppose that Q1 and Qi contain all precolored edges. We shall consider three different cases.
Suppose first that 2d − 1 precolored edges are contained in the same plane, say Q1, and that one edge

ei in Qi is colored c1. Let c2 be a color appearing on some edge in Q1. From the restriction of φ to Q1 we
define a precoloring φ′ of Q1 by removing color c2 from every edge φ-colored c2. Then φ′ is extendable
to a proper (2d− 1)-edge coloring using 2d− 1 colors from {1, . . . 2d+ 1} \ {c2}. By recoloring every
edge of Q1 that is φ-colored c2 by the color c2, we obtain a proper edge coloring f of Q1.

Let e1 be the edge of Q1 corresponding to ei of Qi. If f(e1) = c1, then we color all planes in G−E(D1)
correpondingly to how Q1 is colored. By Lemma 2.2, we may then color the edges of D1 to obtain an
extension of φ. If, on the other hand, f(e1) = c3 ̸= c1, then we define a proper edge coloring of Qi by
coloring it correspondingly to Q1 but permuting the colors in {1, . . . , 2d + 1} so that c1 is mapped to c3
and vice versa, and all other colors are mapped to themselves. This yields a proper edge coloring of Qi

that agrees with the restriction of φ to Qi. We color all other Qj’s correspondingly to how Qi is colored,
and applying Lemma 2.2, we obtain an extension of φ, as before.

Let us now assume that both Q1 and Qi contain at most 2d − 2 precolored edges, respectively, and at
most 2d− 1 colors, say 1, . . . , 2d− 1, are used by φ. By the induction hypothesis, the restrictions of φ to
Q1 to Qi are extendable to (2d−1)-edge colorings f1 and fi, respectively, using colors 1, . . . , 2d−1. We
color all other Qj’s correspondingly to how Qi is colored, and using Lemma 2.2 we obtain an extension
of φ.
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On the other hand, if both Q1 and Qi contain at most 2d− 2 precolored edges, respectively, but in total
2d colors 1, . . . , 2d are used by φ, then every color appears on exactly one edge under φ. Hence, we may
assume that one edge of Q1, but not Qi, is colored, say, 1, and similarly, one edge of Qi is colored 2d. By
the induction hypothesis, there is an extension f1 of the restriction of φ to Q1 using colors 1, . . . , 2d− 1,
and an extension fi of the restriction of φ to Qi using colors 2, . . . , 2d.

Now, either i ̸= 2 or i ̸= 2k+1; suppose that the former holds. We define a proper edge coloring f2 of
Q2 using colors 2, . . . , 2d by coloring Q2 correspondingly to Q1 but using color 2d instead of 1, and then
coloring all other planes of G−E(D1) correspondingly to how Qi is colored. By the construction of f2,
for each layer edge e of D1 between Q1 and Q2, there is a color in {2, . . . , 2d} that does not appear at an
endpoint of e. We color every such layer edge by this color, and then color the edges of every cycle in D1

by colors 1 and 2d+ 1 alternately, and starting with color 1 at Q2. This yields an extension of φ.

Case 3. All precolored edges are contained in at least three planes:
Let Qj1 , Qj2 , . . . , Qjs be the planes of G − E(D1) that contain precolored edges, where j1 ≤ j2 ≤

. . . ≤ js ≤ 2k+1. Note that any two planes contain precolored edges of altogether at most 2d−1 colors,
and that there are two planes Qji and Qji+1 that contain precolored edges of altogether at most 2d − 2
colors. We assume that Qj1 and Qjs are two such planes.

Consider an arbitrary cycle C in D1. We partition the edges of C into paths P12, . . . , P(s−1)s, Ps1

where Pr(r+1) has its endpoints in Qjr and Qjr+1
. Now, for each path Pr(r+1), there are two colors

cr(r+1), c
′
r(r+1) ∈ {1, . . . , 2d + 1} so that none of these colors appear in the restriction of φ to Qjr ∪

Qjr+1 . For r = 1, . . . s− 1, we color each path Pr(r+1) alternately by colors cr(r+1) and c′r(r+1), so that
the resulting edge coloring is proper. Now, by assumption we have that Qj1 and Qjs contain edges of
altogether at most 2d− 2 colors. Hence, there are two colors c and c′ that do not appear on edges in Qj1

or Qjs , nor on an edge of D1 that is incident with Qj1 . We color the edges in the path of C from Qjs to
Qj1 by colors c and c′ so that the resulting coloring is proper.

Next, we color all uncolored edges of D1 correspondingly to how C is colored. Now, each Qj is
incident with edges of D1 of two colors that do not appear on edges of Qj under φ, and, moreover, each
Qj contains at most 2d − 2 precolored edges. Hence, by the induction hypothesis, the restriction of φ to
each Qj can be extended to a proper edge coloring using colors that do not appear on edges of D1 that are
incident with Qj . In conclusion, φ is extendable. 2

Lemma 4.3 If there is a dimension of G with at most two precolored edges, the colors of which do not
appear on edges in any other dimension of G, then φ is extendable.

Proof: Let D1 be a dimension containing at most two precolored edges, the colors of which do not appear
on any edges in G− E(D1).

We first consider the case when only one color c1 appears on the precolored edges of D1.

Case 1. Only one color c1 appears on the precolored edge(s) of D1:
In this case the argument breaks into several subcases.

Case 1.1. All precolored edges of G− E(D1) are contained in one plane:
Let Q1 be a plane in G − E(D1) containing all precolored edges except the ones of D1. As before,

there is an extension of the restriction of φ to Q1 using colors {1, . . . , 2d + 1} \ {c1} (by removing the
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colors of edges colored by some color c2 ̸= c1, taking an extension of the resulting precoloring of Q1

using colors {1, . . . , 2d + 1} \ {c1, c2} and then recoloring the edges that are φ-colored c2). Next, we
color all other planes of G − E(D1) correspondingly. Now, since all planes of G − E(D1) are colored
correspondingly, every edge of D1 is adjacent to edges of 2d− 2 different colors, so by Lemma 2.2, φ is
extendable.

Case 1.2. All precolored edges of G− E(D1) are contained in two planes:
Since at most two edges of D1 are precolored, and only two planes contain precolored edges, there

are two planes Qj and Qj+1, at most one of which contains precolored edges, and such that there is no
precolored edge between Qj and Qj+1. Suppose e.g. Qj+1 contains no precolored edges. Let c2 ∈
{1, . . . , 2d+1} be a color such that no edge of G is precolored c2. We take an extension of the restriction
of φ to Qj using colors {1, . . . , 2d+ 1} \ {c1, c2}, color Qj+1 correspondingly, and then color all edges
between Qj and Qj+1 by the unique color in {1, . . . , 2d + 1} \ {c1, c2} missing at its endpoints. Now,
unless there are two precolored edges of D1 that are contained in the same layer P and at even distance
in the path P ′ obtained from P by removing the edge between Qj and Qj+1, we can color all edges
of D1 alternately by colors c1 and c2, and then color all remaining planes of Q − E(D1) by colors in
{1, . . . , 2d+ 1} \ {c1, c2} so that the resulting edge coloring is proper and agrees with φ.

Alternatively, if the distance between the two precolored edges of D1 is even (in P ′), then we select
two additional planes Qr and Qr+1, containing no precolored edges between them and such that at most
one of Qr and Qr+1 contains precolored edges. We may then repeat the above coloring procedure for Qr

and Qr+1; we leave the details to the reader.

Case 1.3. All precolored edges of G− E(D1) are contained in at least three planes:
Suppose first that there is only one precolored e of G−E(D1), and let Qj1 , Qj2 , . . . , Qjs be the planes

of G−E(D1) that contain precolored edges, where j1 ≤ j2 ≤ . . . ≤ js. Note that any two planes contain
precolored edges of altogether at most 2d−2 colors. Now as in Case 3 of the proof of the preceding lemma,
we color the edges of the paths between pairs of planes with precolored edges by picking two colors that
do not appear in the restrictions of φ to these planes. Naturally, we pick these colors so that in the path
containing e, the resulting coloring agrees with φ. Thereafter, we take extensions of the restrictions of φ
to the planes Qj1 , Qj2 , . . . , Qjs , so that the resulting coloring is proper. Hence, φ is extendable.

Suppose now that G − E(D1) contains two precolored edges e1 and e2. Then there are colors c2, c3
that do not appear on any edges of G under φ.

Now, if e1 and e2 are corresponding edges or are not incident with a common plane, then we may
proceed as in the preceding paragraph, but possibly pick three colors when coloring the paths between
planes with precolored edges to ensure that the obtained coloring of D1 is proper and agrees with φ. This
is possible since any two planes contain at most 2d− 3 precolored edges.

It remains to consider the case when e1 and e2 are incident with exactly one common plane Q1. Suppose
that e1 in addition is incident with Q2. If there are at most 2d−4 precolored edges in Q1∪Q2 and at most
2d − 4 precolored edges in Q2k+1 ∪ Q1, then there are independent edges e′1 and e′2 in Q1, adjacent to
e1 and e2, respectively, and such that neither these edges, nor the corresponding edges of Q2 and Q2k+1,
respectively, are precolored. From the restriction of φ to Q2k+1 ∪Q1 ∪Q2, we define a precoloring φ′ by
coloring all these four edges of Q2k+1 ∪Q1 ∪Q2 by the color c1. We may now obtain an extension of φ′

by proceeding as in Case 3 of the preceding lemma, and thereafter swap colors on two bicolored 4-cycles
containing e1 and e2, respectively, to obtain an extension of φ.
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Suppose now instead that Q1 ∪ Q2k+1, say, contain exactly 2d − 3 precolored edges. If there exist
independent edges e′1 and e′2 in Q1, as described in the preceding paragraph, then we may proceed as in
that case, so suppose that there are no two such edges.

Then, since both Q2k+1 ∪ Q1 and Q1 ∪ Q2 contain at most 2d − 3 precolored edges and every Qj

is (2d − 2)-regular, the endpoints of e1 and e2 in Q1 must be adjacent. Now, it is easy to see that this
implies that there is either an edge e′1 adjacent to e1 but not to e2, such that e′1 and the corresponding edge
of Q2 are not precolored, or an uncolored edge e′2 adjacent to e2 but not to e1, and such that e′2 and the
corresponding edge of Q2k+1 are not precolored. Suppose, for instance, that such an edge e′1 exists.

Consider the precoloring φ′ obtained from the restriction of φ to Q2k+1 ∪ Q1 ∪ Q2 by in addition
coloring e′1 and also the corresponding edge of Q2 by the color c1. Now, since there is no uncolored
edge e′2 as described above, it follows that all d − 2 edges a1, . . . , ad−2 adjacent to e2 in Q1 satisfy that
either ai, or the corresponding edge of Q2k+1, is φ′-precolored or adjacent to an edge colored c1 under
φ′. Moreover, since Q2k+1 ∪Q1 is triangle-free and contains at most 2d− 2 φ′-precolored edges, every
precolored edge of Q2k+1 ∪ Q1 satisfies this condition. Thus by properly coloring the uncolored edges
adjacent to e2, except the one adjacent to e1, by colors from {1, . . . , 2d + 1} \ {c1, c2, c3}, we obtain a
precoloring φ′′ from φ′. Then every plane in G−E(D1) contains at most 2d− 2 precolored edges under
φ′′. Furthermore any extension of the restriction of φ′′ to Q2k+1 ∪ Q1 using colors {1, . . . , 2d + 1} \
{c2, c3} does not use c1 on an edge adjacent to e2. Now, since there is exactly one precolored edge of
G − E(D1) that is not contained in Q2k+1 ∪ Q1, we may once again proceed as in Case 3 of Lemma
4.2 and color the edges of D1 appropriately to obtain an extension of φ′′ where no edge adjacent to e2 is
colored c1. Thereafter we may swap colors on a bicolored 4-cycle and recolor e2 to obtain an extension
of φ.

Case 2. The precolored edges of D1 are colored differently:
Suppose now that D1 contains two precolored edges, colored c1 and c2, respectively, and that c3 is a

color that does not appear on any edge under φ. If there is an extension of the restriction of φ to D1 using
colors {c1, c2, c3}, such that all edges of D1 are colored correspondingly, then there are extensions of the
restrictions of φ to all the planes G − E(D1) using colors that do not appear on incident edges of D1.
Hence, φ is extendable.

On the other hand, if there is no such extension of the restriction of φ, then the two precolored edges e1
and e2 of D1 are incident with the same pair of planes, say Q1 and Q2. Now, if Q1 ∪Q2 contains at most
2d − 4 precolored edges, then there are uncolored corresponding edges e′1 ∈ E(Q1) and e′2 ∈ E(Q2)
that are adjacent to e2, but not to e1. We may now color these edges c2 and remove the color from e2 to
obtain the precoloring φ′ from φ, and then proceed as in Case 3 when only one edge of D1 is precolored
to obtain an extension of φ′. Thereafter we swap colors on a bicolored 4-cycle to obtain an extension of
φ.

If, on the other hand, Q1 ∪ Q2 contains at least 2d − 3 precolored edges, then there is at most one
edge in G−E(D1) ∪E(Q1) ∪E(Q2) that is precolored. Without loss of generality, we assume that Q3

contains no precolored edge. By the induction hypothesis, there is an extension of the restriction of φ to
Q1 ∪ Q2 using colors {1, . . . , 2d + 1} \ {c1, c2}. We color Q3 correspondingly to how Q2 is colored,
and every edge between Q2 and Q3 by the color in {1, . . . , 2d + 1} \ {c1, c2} missing at its endpoints.
All other edges in D1 are colored c1, c2 alternately so that the coloring agrees with φ. Finally, we color
all hitherto uncolored planes using colors {1, . . . , 2d+ 1} \ {c1, c2} so that the resulting coloring agrees
with φ. In conclusion, φ is extendable. 2
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Lemma 4.4 If each dimension of G contains precolored edges and there is a dimension with exactly one
precolored edge, the color of which does appear on edges in other dimensions of G, then φ is extendable.

Proof: Let D1 be a dimension containing only one precolored edge e, colored, say c1, and consider the
subgraph G− E(D1) consisting of 2k + 1 planes Q1, . . . , Q2k+1. Since at least one color appears on at
least two edges, there are two colors c2, c3 ∈ {1, . . . , 2d+ 1} that do not appear on any edge under φ.

Case 1. All precolored edges of G− E(D1) are contained in one plane:
In this case, we may proceed as in Case 1 of Lemma 3.4, but use Lemma 2.2 instead of Lemma 2.1.

We omit the details.

Case 2. All precolored edges of G− E(D1) are contained in two planes:
Let Q1 and Qi be the two planes containing the precolored edges distinct from e.
Let us first consider the case when e is not incident to Q1 or Qi. Since each of Q1 and Qi contains

at most 2d − 2 precolored edges, there are extensions f1 and fi of the restrictions of φ to Q1 and Qi,
respectively, using colors {1, . . . , 2d + 1} \ {c2, c3}. Therafter we color the edges of D1 properly and
correspondingly using colors {c1, c2, c3} so that the coloring agrees with the restriction of φ to D1 and
has no conflicts with f1 or fi. Finally we color the remaining planes of G − E(D1), as to obtain an
extension of φ.

Suppose now that e is incident with Q1 and Q2, and i ̸= 2. Then either Q3 or Q2k+1 contains no
precolored edges; suppose Q3. (The case when Q2k+1 has this property is similar.) As in the preceding
paragraph, there are extensions f1 and fi of the restrictions of φ to Q1 and Qi, respectively, using colors
{1, . . . , 2d + 1} \ {c2, c3}. We color Q2 and Q3 correspondingly to how Q1 is colored. Next, we
color every edge of D1 between Q2 and Q3 by a color in {1, . . . , 2d + 1} \ {c2, c3} missing at its
endpoints, and then color all other edges of D1 alternately by colors c2 and c3 so that all edges between
Q1 and Q2 are colored c2. The remaining uncolored planes of G are properly colored using colors
{1, . . . , 2d+ 1} \ {c2, c3}. Now, if e is adjacent to edges colored c1, then we swap colors on a bicolored
4-cycle containing e and two edges colored c1 to obtain an extension of φ; otherwise we simply recolor e
to obtain an extension of φ.

Suppose now that e is incident with Q1 and Q2, and i = 2. By removing the color from any edge that is
colored c1 under φ, we obtain a precoloring φ′ of G. The restriction of φ′ to Q1 and Q2 are extendable to
proper edge colorings, respectively, using colors {1, . . . , 2d+1}\{c1, c2}. By recoloring any edge of Q1

and Q2 that is φ-colored c1 by the color c1 we obtain edge colorings f1 of Q1 and f2 of Q2, respectively.
Next, we color every edge between Q1 and Q2 by the color c2 except that e is colored c1. Thereafter,

we color Q3, . . . , Q2k correspondingly to how Q2 is colored, and Q2k+1 correspondingly to how Q1 is
colored. Now, for every vertex x of Q2, there are colors cx, c′x ∈ {1, . . . , 2d+ 1} that do not appear at x
in Q2 or on the incident edge between Q1 and Q2. We color every path in D1 from Q2 to Q2k by colors
cx and c′x alternately, and thereafter color every edge between Q2k and Q2k+1 by the color of the edge
in the same layer between Q1 and Q2. Finally, we color the edges between Q1 and Q2k+1 by a color
missing at its endpoints to obtain an extension of φ.

Case 3. All precolored edges of G− E(D1) are contained in at least three planes:
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The assumption implies that every plane in G − E(D1) contains at most 2d − 3 precolored edges.
Assume that e is incident with Q1 and Q2.

Suppose first that Q1∪Q2 contains altogether at most 2d−3 precolored edges. Then there are uncolored
corresponding edges e1 ∈ E(Q1) and e2 ∈ E(Q2) that are adjacent to e but not to any edge in Q1 ∪Q2

φ-colored c1. From the restriction of φ to G − E(D1) we define a new precoloring φ′ by coloring e1
and e2 by the color c1. Thereafter we may proceed as in Case 3 of the proof of Lemma 4.2 to obtain a
proper (2d + 1)-edge coloring of G which is an extension of φ′ and where the edges of D1 are colored
correspondingly. Thus, by swapping colors on a bicolored 4-cycle we obtain an extension of φ.

Suppose now that Q1 ∪ Q2 contains altogether 2d − 2 precolored edges. If there are uncolored cor-
responding edges e1 ∈ E(Q1) and e2 ∈ E(Q2) that are adjacent to e but not to any edge in Q1 ∪ Q2

φ-colored c1, then we proceed as in the preceding paragraph. So assume that there are no such edges e1
and e2. Then there are 2d− 2 edges e1, . . . , e2d−2 in Q1 that are adjacent to e and such that each of these
edges satisfies that

(i) ej or the corresponding edge of Q2 is precolored by a color distinct from c1, or

(ii) ej or the corresponding edge of Q2 is adjacent to an edge precolored c1.

Moreover, since Q1 ∪Q2 is triangle-free and contains at most 2d− 2 precolored edges, every precolored
edge in Q1 ∪Q2 satisfies one of these conditions. Now, for j = 1, 2, from the restriction of φ to Qj , we
define a new precoloring φj of Qj by coloring every edge of Q1 and Q2 that is adjacent to e and does
not satisfy (i) or (ii) by a color in {1, . . . , 2d + 1} \ {c1, c2, c3} so that the resulting coloring is proper
and agrees with φ. Now, by the induction hypothesis, φj is extendable to a proper edge coloring of Qj

using colors {1, . . . , 2d+1} \ {c2, c3}. Note that no edge of Q1 or Q2 adjacent to e is colored c1 in these
colorings. Thus we may color all edges between Q1 and Q2 by c2 except e which is colored c1.

Next, suppose that Qr, r /∈ {1, 2}, is the third plane containing a precolored edge. Then Qr+1 or Qr−1

contains no precolored or hitherto colored edges, suppose Qr+1. We take an extension of the restriction
of φ to Qr using colors {1, . . . , 2d+ 1} \ {c2, c3}, and color all other uncolored planes correspondingly
to how Qr is colored. Thereafter we color the edges between Qr and Qr+1 by the unique color in
{1, . . . , 2d+ 1} \ {c2, c3} missing at it endpoints. Finally, we color all remaining uncolored edges of D1

by colors c2, c3 alternately so that the resulting coloring is proper. This yields an extension of φ. 2

Lemma 4.5 If each dimension of G contains exactly two precolored edges, at least one of which is colored
by a color appearing on precolored edges in other dimensions, then φ is extendable.

Proof: Let D1 be a dimension containing two precolored edges e1 and e2. By assumption, at most 2d− 1
colors appear on edges under φ, so let let c3, c4 be two colors from {1, . . . , 2d+ 1} that do not appear on
any edges under φ.

Case 1. All precolored edges of G− E(D1) are contained in one plane:
Suppose that all precolored edges except e1 and e2 lie in one component Q1 of G − E(D1). Without

loss of generality, we assume that {φ(e1), φ(e2)} ⊆ {c1, c2}. We define a new precoloring φ′ from the
restriction of φ to Q1 by removing the colors c1 and c2 from any edges of Q1 colored by these colors.
Now, by the induction hypothesis φ′ is extendable to a proper (2d− 1)-edge coloring of Q1 using colors
{1, . . . , 2d + 1} \ {c1, c2}. By recoloring the edges of Q1 that are φ-colored c1 and c2 by colors c1 and
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c2, respectively, we obtain a proper edge coloring f ′ of Q1. Next, we color all other planes of G−E(D1)
correspondingly and define a list assignment for the edges of D1 by assigning every edge the set of colors
from {1, . . . , 2d+1} not appearing on its adjacent edges. Then each edge of D1 receives a list of 3 colors
except for the two edges e1 and e2 that are precolored. Thus, there is an extension of φ.

Case 2. All precolored edges of G− E(D1) are contained in two planes:
We shall consider several different subcases.

Case 2.1. The precolored edges of D1 have the same color under φ:
Suppose that φ(e1) = φ(e2) = c1. If e1 and e2 are both incident with the same two planes, then we

may apply arguments which are similar to the ones in Case 2 of the proof of Lemma 4.4. Consequently,
assume that e1 and e2 are incident with at most one common plane.

Subcase 2.1.1. e1 and e2 are both incident with exactly one common plane:
Suppose that e1 and e2 are both incident with the common plane Q1, and that e1 is also incident with

Q2. If Q1 and Q2 contain all precolored edges of G− E(D1), then a similar argument as in the subcase
of Case 2 of Lemma 4.4 when Q1 ∪Q2 contains all precolored edges of G−E(D1) again applies, so we
omit the details here as well.

It remains to consider the following subcases:

(a) Q1 contains precolored edges, but neither of Q2 and Q2k+1.

(b) Either Q2k+1 or Q2, but not Q1, contains precolored edges.

(c) Both Q2 and Q2k+1 contain precolored edges.

(a) holds:
Suppose that Q1 and Qi contain all precolored edges of G − E(D1), where i /∈ {1, 2, 3, 2k + 1}. If

e1 and e2 are adjacent via an uncolored edge e in Q1, then since Q1 contains at most 2d − 3 precolored
edges, there is a color c ∈ {1, . . . , 2d + 1} \ {c1, c3, c4} that does not appear on any edge adjacent to e.
Thus the precoloring φ′ obtained from φ by in addition coloring e by the color c is proper. On the other
hand, if there is no such edge, then we set φ′ = φ.

Now, since both Q1 and Qi contain at most 2d− 2 φ′-precolored edges, there are extensions f1 and fi,
respectively, of the restrictions of φ′ to Q1 and Qi, respectively, using colors {1, . . . , 2d+ 1} \ {c3, c4}.
We color Q2, Q3, Q2k+1 correspondingly to how Q1 is colored, and thereafter color every edge between
Q2 and Q3 by the color in {1, . . . , 2d+ 1} \ {c3, c4} missing at its endpoints.

Next, we color all hitherto uncolored edges of D1 alternately using colors c3, c4 so that all edges
between Q1 and Q2 have color c3, and also color all hitherto uncolored planes properly using colors
{1, . . . , 2d+1} \ {c3, c4}. The obtained coloring is proper and agrees with φ′ except for e1 and e2. Now,
if neither e1 of e2 are adjacent to an edge colored c1, then we simply recolor them; otherwise, we swap on
one or two bicolored cycles to obtain an extension of φ; note that if both e1 and e2 are adjacent to edges
colored c1, then these cycles are disjoint. Hence, φ is extendable.

(b) holds:
If instead either Q2k+1 or Q2, but not Q1, contains precolored edges, then a similar argument as in (a)

applies, so we omit the details.
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(c) holds:
Assume that Q2 and Q2k+1 contain all precolored edges of G − E(D1), and let u2k+1 and u2 be the

vertices of Q2k+1 and Q2 that are incident with e1 and e2, respectively.
If both Q2k+1 and Q2 contain at most 2d−4 precolored edges, then there are uncolored edges e′2k+1 ∈

E(Q2k+1) and e′2 ∈ E(Q2) that are incident with u2k+1 and u2, respectively, not adjacent to any edges of
Q2k+1∪Q2 precolored c1, and such that the corresponding edges of Q1 are independent. We color e′2k+1,
e′2, and also the corresponding edges of Q1 by the color c1. Together with φ, this defines a precoloring
of Q2k+1 ∪ Q1 ∪ Q2, which by the induction hypothesis is extendable to a proper edge coloring using
colors {1, . . . , 2d + 1} \ {c3, c4}. We color all edges between Q1 and Q2 with color c4, and all edges
between Q2k+1 and Q1 by the color c3. Next, we color Q2k and Q3 correspondingly to how Q2k+1

and Q2 are colored, respectively. Thereafter we color all edges between Q2k+1 and Q2k by the color
in {1, . . . , 2d + 1} \ {c3, c4} missing at its endpoints, and similarly for Q2 and Q3. Finally, we color
all uncolored edges of D1 alternately by colors c3, c4, color all hitherto uncolored planes using colors
{1, . . . , 2d+ 1} \ {c3, c4} and swap on two bicolored cycles containing e1 and e2, respectively, to obtain
an extension of φ.

Suppose now instead that one of Q2k+1 and Q2 contains 2d−3 precolored edges, say Q2k+1. Then Q2

contains exactly one precolored edge e. By removing the color from any edge of Q2k+1 that is precolored
c1, we obtain a precoloring φ′ from the restriction of φ to Q2k+1. φ′ is extendable to a proper coloring of
Q2k+1 using colors {1, . . . , 2d+ 1} \ {c1, c3} and by recoloring the edges of Q2k+1 φ-colored c1 by the
color c1 we obtain an extension f2k+1 of the restriction of φ to Q2k+1.

Next, we color Q1 correspondingly to Q2k+1 except that we color any edge of Q1 corresponding to
an edge colored c1 by the color c3. We color the edges between Q2k+1 and Q1 by an arbitrary color in
{1, . . . , 2d+ 1} \ {c1, c3} not appearing at its endpoints, except that e2 is colored c1.

Suppose first that e is precolored c1. Then we color Q2 correspondingly to how Q1 is colored, but
color e by color c1. Next we color all edges between Q1 and Q2 by an arbitrary color in {1, . . . , 2d+ 1}
missing at its endpoints except that e1 is colored c1. Thereafter, we color Q3 correspondingly to how Q1

is colored, and all remaining uncolored planes correspondingly to how Q2k+1 is colored. We may then
color the hitherto uncolored edges of D1 appropriately to obtain an extension of φ.

Suppose now that the precolored edge of Q2 is colored c2 ̸= c1. Let e′ be the edge of Q1 corresponding
to e, and assume that e′ is colored c′ in the hiherto constructed coloring. We color Q2 correspondingly to
how Q1 is colored but permute the colors c2 and c′ in the coloring of Q2. Thereafter, we color Q3 corre-
spondingly to Q2 except that we permute colors c2 and c′, and finally we color the remaining uncolored
edges of G by proceeding as in the preceding paragraph.

Subcase 2.1.2 e1 and e2 are not incident with a common plane:
Suppose that e1 is incident with Q1 and Q2 and e2 is incident with Qj and Qj+1, and all these four

planes are distinct. If all precolored edges are contained in Q1 ∪ Q2, then as before we may then select
corresponding uncolored edges e′j and e′j+1 of Qj and Qj+1 that are adjacent to e2. Next, we consider
the precoloring φ′ obtained from φ by coloring e′j and e′j+1 by c1 and removing the color c1 from e2.
We may now apply similar arguments as in the subcase of Case 3 of Lemma 4.4 when Q1 ∪Q2 contains
2d − 2 precolored edges to obtain an extension of φ′. In particular, since there is at least one plane in G
that is distinct from Q1, Q2, Qj , Qj+1 that contains no φ′-colored edges, we can color the edges of D1
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so that all edges between Qj and Qj+1 have the same color. We may then swap on a bicolored 4-cycle to
obtain an extension of φ.

Suppose now that exactly one of the planes Q1 and Q2, and exactly one of the planes Qj and Qj+1

contain precolored edges. Assume e.g. that Q1 and Qj contain no precolored edges (the other cases are
analogous). We pick an edge e′2 in Q2 that is uncolored and adjacent to e1, but not adjacent to any other
edge precolored c1, and a similar edge e′j+1 of Qj+1; since each of these planes contains at most 2d − 3
precolored edges, such edges exist. From the restriction of φ to Q2 ∪Qj+1 we define a new precoloring
φ′ by in addition coloring e′2 and e′j+1 c1. Now, by the induction hypothesis, there are extensions f2 and
fj+1 of the restrictions of φ′ to Q2 and Qj+1, respectively, using colors {1, . . . , 2d+ 1} \ {c3, c4}.

Let us now color the other planes of G − E(D1). Without loss of generality, we assume that j + 1 <
2k+1. We color Q1 and Q2k+1 correspondingly to how Q2 is colored, Qj correspondingly to how Qj+1

is colored, and all other planes arbitrarily using colors {1, . . . , 2d+ 1} \ {c3, c4}. Thereafter we color all
edges between Q1 and Q2k+1 by a color in {1, . . . , 2d + 1} \ {c3, c4} missing at its endpoints, and all
other edges of D1 alternately using colors c3, c4 and starting with color c3 at Q1. Finally, we swap colors
on two bicolored 4-cycles containing e1 and e2, respectively, to obtain an extension of φ.

Finally, we consider the case when Q1 may contain precolored edges, but none of Q2, Qj , Qj+1 contain
precolored edges. We define a precoloring φ′ from the restriction of φ to Q1 by selecting an edge e′1 ∈
E(Q1) adjacent to e1 and coloring it c1, as before. Thereafter, we take an extension of φ′ using colors
{1, . . . , 2d+1} \ {c3, c4}, and color Q2 correspondingly. Next, we color all edges between Qj and Qj+1

by the color c1, and all other edges of D1 alternately using colors c3 and c4, and starting with color c3 at
Qj+1. We now obtain an extension of φ as before.

Case 2.2 The precolored edges of D1 are colored differently under φ:
Suppose that φ(e1) = c1 and φ(e2) = c2. We shall consider some different cases.

Subcase 2.2.1 e1 and e2 are both incident with two common planes:
Suppose that e1 and e2 are both incident with the planes Q1 and Q2. Let u1 and u2 be the vertices in

Q1 that are incident with e1 and e2, respectively.
If none of Q1 and Q2 contain precolored edges, then we can select independent edges in Q1 (and Q2)

that are incident with u1 and u2, respectively, and color them c1 and c2. Then we may proceed as in Case
3 of Lemma 4.2 to obtain an extension of the resulting precoloring φ′ of G − E(D1), and thereafter we
obtain an extension of φ, as before.

Let us now assume that all precolored edges are contained in Q1 ∪ Q2. We first prove the following
claim.

Claim 4.6 Suppose d ≥ 3. At least one of the following two statements hold.
(i) There is an edge e′1 ∈ E(Q1) incident with u1 but not u2, such that e′1 and the corresponding edge

e′′1 of Q2 are uncolored and not adjacent to any edge colored c1.
(ii) There is an edge e′2 ∈ E(Q1) incident with u2 but not u1, such that e′2 and the corresponding edge

e′′2 of Q2 are uncolored and not adjacent to any edge colored c2.

Proof: Suppose that (i) is false. Since G− E(D1) is triangle-free and (2d− 2)-regular, there are 2d− 3
edges a1, . . . , a2d−3 ∈ E(Q1) incident with u1, all of which are either precolored, adjacent to an edge
colored c1, or satisfies that the corresponding edge of Q2 satisfies one of these conditions. Since Q1 ∪Q2
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contains 2d−2 precolored edges, it is easy to see that then (ii) must hold, so there is an edge e′2 as desired.
2 If d = 2, we note that the claim might fail if u1 and u2 are adjacent via an uncolored edge. However, in

this case, it is trivial to verify that φ is extendable, since every precoloring of an odd cycle is extendable
using 3 colors.

Suppose now that (ii) of Claim 4.6 holds, and let e′2 and e′′2 be corresponding edges of Q1 and Q2

respectively, as described in the claim. From the restriction of φ to Q1 ∪Q2 we define a new precoloring
φ′ of Q1 ∪Q2 by in addition coloring e′2 and e′′2 by the color c2. We may now proceed as in the subcase
of Case 2 of the proof of Lemma 4.4 when all the precolored edges are contained in Q1 ∪ Q2, to obtain
an extension of φ′ (with c3 in place of c2). Thereafter, we swap colors on a bicolored 4-cycle containing
e2 to obtain an extension of φ.

It remains to consider the case when all precolored edges are contained in Q1 and Qi, where i ̸= 2.
Then either Q3 or Q2k+1 contains no precolored edges, say Q3.

Suppose first that Q1 contains at most 2d−4 precolored edges. Then since Q1 is (2r−2)-regular, there
are independent uncolored edges e′1 ∈ E(Q1) and e′2 ∈ E(Q1) incident with u1 and u2, respectively, and
such that e′1 is not adjacent to any edge of Q1 φ-colored c1, and e′2 is not adjacent to any edge of Q1

φ-colored c2.
From the restriction of φ to Q1 we define a new precoloring φ′ of Q1 by in addition coloring e′1 by the

color c1, and e′2 by the color c2. Next, we take an extension of φ′ using colors {1, . . . , 2d+1} \ {c3, c4},
and color Q2 and Q3 correspondingly to how Q1 is colored. Thereafter, we color the edges of D1 as
follows: color all edges between Q2 and Q3 by a color in {1, . . . , 2d+1}\{c3, c4} missing at its endpoints,
and color all other edges of D1 alternately using colors c3 and c4 so that all edges between Q1 and Q2 are
colored c3. Thereafter, we color the planes Q4, . . . , Q2k+1 with colors {1, . . . , 2d+ 1} \ {c3, c4} so that
the coloring agrees with φ. Now we may obtain an extension of φ by swapping colors on two bicolored
4-cycles containing e1 and e2, respectively.

Suppose now that Q1 contains exactly 2d−3 precolored edges. Then Qi contains exactly one precolored
edge. Moreover, as in the proof of Claim 4.6 it is straightforward that there is

• either an edge e′1 satisfying (i) of Claim 4.6, or

• an edge e′2 satisfying (ii) of Claim 4.6.

Suppose e.g. that (i) holds. Then from the restriction of φ to Q1 we define a new precoloring φ′ of Q1 by
in addition coloring e′1 by the color c1 and removing the color from any edge of Q1 that is colored c2.

Next, we take an extension of φ′ using colors {1, . . . , 2d + 1} \ {c2, c3}, recolor the edges φ-colored
c2 by the color c2, and thereafter color Q2 and Q3 correspondingly to how Q1 is colored. Denote the
obtained coloring by f . We color all edges between Q1 and Q2 by the color c3 except e2 which is colored
c2, and color the edges between Q2 and Q3 by a color in {1, . . . , 2d+1}\{c2, c3} missing at its endpoints.

Now, let e′′i be the edge of Qi that is precolored, and let e′′1 be the corresponding edge of Q1. If f(e′′1) =
φ(e′′i ), then we color all hitherto uncolored planes correspondingly to how Q1 is colored, therafter color
the remaining uncolored edges of D1 and finally swap colors on a bicolored 4-cycle containing e1 to
obtain an extension of φ.

Otherwise, if f(e′′1) ̸= φ(e′′i ), then we color all other planes correspondingly to how Q1 is colored,
except that we permute the colors f(e′′1) and φ(e′′i ) in the colorings. We may now apply similar arguments
as before to obtain an extension of φ; we leave the details to the reader.
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Subcase 2.2.2 e1 and e2 are incident with exactly one common plane:
Suppose that e1 is incident with Q1 and Q2, and e2 with Q1 and Q2k+1. Let u1 and u2 be the vertices

of Q1 that are incident with e1 and e2, respectively. If neither of Q1, Q2, Q2k+1 contain precolored edges,
then a similar argument as in the second paragraph of Subcase 2.2.1 applies. Thus it suffices to consider
the following subcases:

(a) All precolored edges of G− E(D1) are contained in Q1 ∪Q2.

(b) Q1 contains precolored edges, but neither of Q2 and Q2k+1.

(c) Q2, but not Q1 or Q2k+1, contains precolored edges.

(d) All precolored edges of G− E(D1) are contained in Q2 ∪Q2k+1.

By symmetry, it suffices to consider these cases.

(a) holds:
We first consider the case when there is an edge e′1 ∈ E(Q1) adjacent to e1, such that both e′1 and the

corresponding edge e′2 ∈ E(Q2) are uncolored and not adjacent to any edge precolored c1. If this holds,
then from the restriction of φ to Q1 ∪ Q2 we define a new precoloring φ′ by coloring e′1 and e′2 by the
color c1, and also removing the color from any edge that is φ-colored c2.

By the induction hypothesis, there is an extension of φ′ using colors {1, . . . , 2d+ 1} \ {c2, c3}. From
φ′, we obtain an edge coloring f of Q1 ∪ Q2 by recoloring the edges of Q1 and Q2 that are φ-colored
c2 by the color c2. We color all edges between Q1 and Q2 by the color c3, all the planes Q3, . . . , Q2k

correspondingly to how Q2 is colored, and Q2k+1 correspondingly to how Q1 is colored. Now the edges
between Q2k+1 and Q2k can be colored with the color c3, and every other edge of D1 by some appropriate
color missing at its endpoints. Thus by swapping colors on a bicolored 4-cycle containing e1 we obtain
an extension of φ.

Suppose now that there is no edge e′1 ∈ E(Q1) adjacent to e1, such that both e′1 and the corresponding
edge e′2 ∈ E(Q2) are uncolored and not adjacent to any edge precolored c1. Then, since Q1 ∪ Q2 is
(2d − 2)-regular and contains 2d − 2 precolored edges, u1 is incident with 2d − 2 edges a1, . . . , a2d−2

such that each ai, or the corresponding edge of Q2, is φ-colored by a color distinct from c1, or uncolored
and adjacent to an edge φ-colored c1. In particular, if there is an edge of Q1 ∪Q2 colored c2, then at most
one edge in each of Q1 and Q2 is colored c2. Moreover, since G is triangle-free and Q1 ∪ Q2 contains
exactly 2d− 2 precolored edges, an edge in Q1 ∪Q2 precolored c2 is not adjacent to an edge precolored
c1 in Q1 ∪Q2.

If Q1 contains an edge a precolored c2, then from the restriction of φ to Q1∪Q2, we define a precoloring
φ′ by recoloring a and also the corresponding edge of Q2 by the color c1. Otherwise, if both Q1 and Q2

contain edges precolored c2, then we define φ′ by recoloring these edges by the color c1. Now, by the
induction hypothesis, there is an extension of the coloring φ′ using colors {1, . . . , 2d+ 1} \ {c2, c3}. By
recoloring the edges that were recolored c1 by the color c2 we obtain an extension of the restriction of φ
to Q1 ∪Q2. Next, we color e1 by the color c1 and all other edges between Q1 and Q2 by the color c3. We
color Q2k+1 correspondingly to Q1, and Q3, . . . , Q2k correspondingly to how Q2 is colored, and then
color the hitherto uncolored edges of D1 as before to obtain an extension of φ.

On the other hand, if no edge of Q1 is colored c2, then from the restriction of φ to Q1 ∪Q2, we define
a new precoloring φ′ by coloring all edges adjacent to e1 that are not precolored or adjacent to an edge
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colored c1 in G − E(D1) by an arbitrary color from {1, . . . , 2d + 1} \ {c1, c2, c3} so that the resulting
precoloring is proper. By the induction hypothesis, the obtained precoloring of Q1 is extendable to a
proper coloring using colors {1, . . . , 2d + 1} \ {c2, c3}, and the precoloring of Q2 is extendable using
colors {1, . . . , 2d+ 1} \ {c3, c4}, where c4 is some arbitrary color not appearing on an edge of Q2. Note
that no edge adjacent to e1 is colored c1 in this coloring. Hence, we can color Q2k+1 correspondingly to
how Q1 is colored, all edges between Q1 and Q2k+1 by the color c2, and all edges between Q1 and Q2 by
the color c3 except that e1 is colored c1. Since not other planes in G− E(D1) contain precolored edges,
it is now straightforward to obtain an extension of φ from this partial coloring.

(b) holds:
Suppose that Q1 and Qi contain all precolored edges of G − E(D1), where i /∈ {1, 2, 3, 2k + 1}.

We take an extension of the restriction of φ to Q1 ∪ Qi using colors {1, . . . , 2d + 1} \ {c3, c4}, color
Q2, Q3, Q2k+1 correspondingly to how Q1 is colored, and all remaning planes in G − E(D1) by the
colors {1, . . . , 2d+ 1} \ {c3, c4} so that the coloring agrees with φ. Next, we color the edges of D1: the
edges between Q2 and Q3 we color with the color in {1, . . . , 2d+ 1} \ {c3, c4} missing at its endpoints,
and all other edges of D1 are colored c3 and c4 alternately, and starting with color c3 at Q2. This yields
a coloring that agrees with φ except for e1 and e2. We recolor these edges by c1 and c2, respectively,
possibly by swapping on one or two bicolored 4-cycles if necessary, to obtain an extension of φ.

(c) holds:
The case when Q2, but not Q2k+1 or Q1, contains precolored edges can be dealt with as in the preceding

pagragraph, so we omit the details here.

(d) holds:
If d = 2, then it is straightforward that φ is extendable, because any partial 3-edge coloring of an odd

cycle is extendable. If d > 2, then since Q2 ∪ Q2k+1 contains exactly 2d − 2 precolored edges, it is
straightforward that there are non-corresponding edges e′2k+1 ∈ E(Q2k+1) and e′2 ∈ E(Q2) that are
uncolored, adjacent to e1 and e2, respectively, and not adjacent to any edges of Q2k+1 ∪ Q2 precolored
c2 and c1, respectively.

From the restriction of φ to Q2k+1 ∪ Q1 ∪ Q2, we define a new precoloring φ′ of Q2k+1 ∪ Q1 ∪ Q2

by in addition coloring e′2k+1 by c2, e′2 by the color c1, and the corresponding edges of Q1 by colors c2
and c1 respectively. By the induction hypothesis, there is an extension of φ′ to Q2k+1 ∪ Q1 ∪ Q2 using
colors {1, . . . , 2d+1}\{c3, c4}. From this coloring we may now obtain an extension of φ by proceeding
as before.

Subcase 2.2.3 e1 and e2 are not incident with any common plane:
Suppose that e1 is incident with Q1 and Q2, and e2 is incident with Qj and Qj+1. As in Subcase 2.1.2,

we can distinguish between the following three cases:

• All precolored edges are contained in Q1 and Q2.

• One of Q1 and Q2, and one of Qj and Qj+1, contain precolored edges.

• At most one of the planes Q1, Q2, Qj , Qj+1 contains precolored edges.
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Moreover, in all these three subcases we may proceed precisely as in the corresponding subcases of
Subcase 2.1.2. We omit the details.

Case 3. All precolored edges of G− E(D1) are contained in at least three planes:
In the case when no precolored edge of D1 is incident with a plane containing precolored edges, then

it is straightforward to obtain an extension by selecting uncolored edges in the planes that the precolored
edges of D1 are incident with, so throughout we assume that this is not the case. Note further that since
G contains at least five precolored edges, d ≥ 3.

Case 3.1. The precolored edges of D1 have the same color under φ:
Suppose that φ(e1) = φ(e2) = c1. We consider a number of different subcases.

Subcase 3.1.1 e1 and e2 are incident with the same two planes:
Assume that e1 and e2 are incident with the same two planes Q1 and Q2. If the endpoints of e1 and e2

are adjacent via uncolored edges in both Q1 and Q2, then we define the precoloring φ′ from the restriction
of φ to Q1 ∪Q2 by coloring these edges of Q1 and Q2 by the color c1. We may now proceed as in Case
3 of Lemma 4.2 to obtain an extension of φ′, and thereafter swap colors on a bicolored 4-cycle to obtain
an extension of φ.

Otherwise, if the endpoints of e1 and e2 are not adjacent via uncolored edges in both Q1 and Q2. Then,
since d > 2, Q1∪Q2 contains at most 2d−3 precolored edges and any two vertices in G are contained in
at most one 5-cycle, it is not hard to see that there are independent edges e′1 and e′2 in Q1, adjacent to e1
and e2, respectively, and such that neither these edges, nor the corresponding edges of Q2 are precolored
or adjacent to edges precolored c1 in Q1 ∪ Q2. Hence, we may color these edges of Q1 and Q2 by the
color c1, and then proceed as in the preceding paragraph to obtain an extension of φ.

Subcase 3.1.2 e1 and e2 are incident with one common plane:
Suppose that e1 and e2 are incident with exactly one common plane Q1, and that e1 is also incident

with Q2. If there are at most 2d − 4 precolored edges in Q1 ∪ Q2 and at most 2d − 4 precolored edges
in Q2k+1 ∪Q1, then there are independent edges e′1 and e′2 in Q1, adjacent to e1 and e2, respectively, and
such that neither these edges, nor the corresponding edges of Q2 and Q2k+1, respectively, are precolored
or adjacent to edges precolored c1 in Q1 ∪ Q2 ∪ Q2k+1. Thus we may proceed as above to obtain an
extension of φ.

Suppose now instead that Q1 ∪ Q2k+1, say, contains exactly 2d − 3 precolored edges. If there exist
independent edges e′1 and e′2 in Q1, as described in the preceding paragraph, then we may proceed as in
that case, so suppose that there are no two such edges.

We first consider the case when we can choose exactly one such edge, that is, there is an edge e′1 ∈
E(Q1) adjacent to e1 but not e2, satisfying that e′1 and the corresponding edge of Q2 are not precolored
or adjacent to edges of Q1 ∪Q2 that are precolored c1. Moreover, there is no edge e′2 adjacent to e2 with
analogous properties. Consider the precoloring φ′ obtained from the restriction of φ to Q2k+1 ∪Q1 ∪Q2

by in addition coloring e′1 and also the corresponding edge of Q2 by the color c1. Now, since there is
no uncolored edge e′2 as described above, it follows that all d − 2 edges a1, . . . , ad−2 adjacent to e2
in Q1 satisfies that either ai, or the corresponding edge of Q2k+1, is φ′-precolored or adjacent to an
edge colored c1 under φ′. Moreover, since Q2k+1 ∪ Q1 contains at most 2d − 2 φ′-precolored edges,
every precolored edge of Q2k+1 ∪ Q1 satisfies this condition. Thus by properly coloring the uncolored
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edges adjacent to e2, except the ones that are adjacent to edges in G − E(D1) colored c1, by colors
from {1, . . . , 2d + 1} \ {c1, c3, c4}, we obtain a precoloring φ′′ from φ′. Note that any extension of the
restriction of φ′′ to Q2k+1∪Q1 using colors {1, . . . , 2d+1}\{c3, c4} does not use c1 on an edge adjacent
to e2. Thus, since there is exactly one precolored edge in G−E(D1) that is not contained in Q2k+1∪Q1,
we may once again proceed as in Case 3 of Lemma 4.2 to obtain a proper (2d + 1)-edge coloring of G
that agrees with φ′′, where no edge adjacent to e2 is colored c1, and where we color the edges of D1 so
that all edges between any two given planes are colored by a fixed color not appearing in these two planes.
Thereafter we can swap colors on a bicolored 4-cycle and recolor e2 to obtain an extension of φ.

Suppose now that neither an edge e′1, nor an edge e′2 as described above exist in Q1. Then the endpoints
u1 and u2 of e1 and e2 in Q1, respectively, are adjacent via an uncolored edge e in Q1, and the corre-
sponding edges of Q2k+1 and Q2 are uncolored. Moreover, since both Q2k+1∪Q1 and Q1∪Q2 contains
at most 2d− 3 precolored edges, it follows that there are 2d− 4 edges precolored c1 in Q1, the endpoints
of which are adjacent to u1 and u2, respectively. Moreover, Q2k+1 contains exactly one precolored edge,
and Q2 contains exactly one precolored edge, so all precolored edges of G − E(D1) are contained in
Q2k+1 ∪Q1 ∪Q2.

Now, from the restriction of φ to Q2k+1 we define a new precoloring φ′ by coloring all edges of Q2k+1

corresponding to edges of Q1 colored c1, by the color c1, and thereafter color every edge adjacent to
e2 in Q2k+1 that is neither precolored nor adjacent to any edge precolored c1 by an arbitrary color in
{1, . . . , 2d + 1} \ {c1, c3, c4} so that the resulting coloring is proper. Next, we take an extension of φ′

using colors {1, . . . , 2d+ 1} \ {c3, c4}. (Note that no edge adjacent to e2 is colored c1 in this extension.)
Thereafter we color Q1 correspondingly to how Q2k+1 is colored except that all edges colored c1 that are
not precolored c1 under φ′ are recolored c3. Denote the obtained partial coloring of G by f .

Now, if the precolored edge b2 of Q2 is colored c1 under φ, then we color Q2 correspondingly to how
Q1 is colored under f , except that the edge φ-precolored c1 is colored c1. Therafter, we color Q3, . . . , Q2k

correspondingly to how Q1 is colored. We may now apply Lemma 2.2 to color the edges of D1 and thus
obtain an extension of φ. (Since e1 and e2 are contained in different cycles of D1, we can choose the
coloring of D1 so that it agrees with φ.) Otherwise, if b2 is colored c5 ̸= c1, then the corresponding
edge of Q1 is not colored c1. We color Q2 correspondingly to how Q1 is colored except that we permute
the colors c5 and the color of the corresponding edge of Q1 under f . Again, we color all the planes
Q3, . . . , Q2k correspondingly to how Q1 is colored, and apply Lemma 2.2 to obtain an extension of φ.

Subcase 3.1.3 e1 and e2 are not incident with any common plane:
Suppose that e1 is incident with Q1 and Q2 and e2 is incident with Qj and Qj+1, j > 2. Since each

Qi is (2d − 2)-regular and any pair of adjacent planes contain at most 2d − 3 precolored edges, it is
straightforward that there are corresponding uncolored edges e′1 ∈ E(Q1), e′2 ∈ E(Q2) adjacent to e1 but
not to any other edge precolored c1, and similarly for e2. Hence, we may proceed as in Case 3 of Lemma
4.2 to obtain an extension of a precoloring φ′ of G − E(D1) defined from φ by coloring the selected
edges adjacent to e1 and e2, respectively, by the color c1 and removing the color c1 from e1 and e2. From
the extension of φ′, we obtain an extension of φ as before.

Case 3.2. The precolored edges of D1 have different colors under φ:
Suppose that φ(e1) = c1 and φ(e2) = c2.

Subcase 3.2.1 e1 and e2 are both incident with two common planes:
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Assume that e1 and e2 are both incident with the same pair of planes Q1 and Q2. Let u1 and u2 be the
vertices of Q1 that are incident with e1 and e2, respectively.

If Q1 ∪ Q2 contains at most 2d − 4 precolored edges, then there are independent edges e′1 ∈ E(Q1)
and e′2 ∈ E(Q1) that are incident with u1 and u2, respectively, such that neither e′1 nor the corresponding
edge e′′1 of Q2 is precolored or adjacent to an edge precolored c1 in Q1 ∪ Q2, and similarly for e′2, the
corresponding edge e′′2 of Q2 and c2. Thus, from the restriction of φ to Q1 ∪ Q2 we may define a new
precoloring φ′ by coloring these four edges by c1 and c2, respectively. We may now proceed as in Case 3
of Lemma 4.2 to obtain an extension of φ′, and thereafter we can obtain an extension of φ by swapping
colors on two bicolored 4-cycles.

Suppose now that Q1 ∪ Q2 contains 2d − 3 precolored edges, so exactly one plane Di, i ̸= 1, 2 has
exactly one precolored edge ai; we assume i ̸= 3. Then as in Claim 4.6, there is either

(i) an edge e′1 ∈ E(Q1) incident with u1 but not u2, such that e′1 and the corresponding edge e′′1 of Q2

are uncolored, and not adjacent to any edge in Q1 ∪Q2 colored c1, or

(ii) an edge e′2 ∈ E(Q1) incident with u2 but not u1, such that e′2 and the corresponding edge e′′2 of Q2

are uncolored, and not adjacent to any edge in Q1 ∪Q2 colored c2.

Suppose e.g. that (ii) holds. Then we define a new precoloring φ′ from the restriction of φ to Q1 ∪Q2

by coloring e′2 and e′′2 by the color c2. By removing the color c1 from any edge that is colored c1 under φ′,
we obtain the precoloring φ′′ of Q1∪Q2. Next, we take an extension of φ′′ using colors {1, . . . , 2d+1}\
{c1, c3}, and then recolor all edges that are φ-colored c1 by the color c1 to obtain the coloring f which
is an extension of φ′. We color all edges between Q1 and Q2 by the color c3 except e1 which is colored
c1, color Q3 correspondingly to how Q2 is colored, and color the edges between Q2 and Q3 by a color in
{1, . . . , 2d+ 1} \ {c1, c3} missing at its endpoints.

Next, consider the precolored edge ai of Qi, and the corresponding edge a1 of Q1. If f(a1) = φ(ai),
then we color all the planes Q4, . . . , Q2k+1 correspondingly to how Q1 is colored. Thereafter, we color
the edges between Q3 and Q4 similarly to how the edges between Q1 and Q2 are colored, and then
color the remaining uncolored paths in D1 using two colors not appearing at the endpoints of these paths.
Finally, we swap colors on a bicolored 4-cycle containing e2 to obtain an extension of φ.

Otherwise, if f(a1) ̸= φ(ai), then we color the planes Q4, . . . , Q2k+1 correspondingly to how Q1 is
colored, except that we permute the colors f(a1) and φ(ai). Then we color the edges between Q3 and
Q4 with the color c3, and consider the subgraph H consisting of the edges of D1 with endpoints in two
consecutive planes in the sequence Q4, . . . , Q2k+1, Q1. If we define a list assignment for these edges by
for every edge including the colors from {1, . . . , 2d + 1} that do not appear on any adjacent edges, then
each edge, except the ones with endpoints in Q1 and Q2k+1, gets a list of size at least two. Hence, H is
list edge colorable from these lists. This yields an edge coloring of G that agrees with φ except for e2.
Finally, we swap colors on a bicolored 4-cycle containing e2 to obtain an extension of φ.

Subcase 3.2.2 e1 and e2 are incident with exactly one common plane:
Suppose now instead that e1 and e2 are incident to exactly one common plane, say Q1, where e1 in

addition also is incident with Q2. If there are uncolored corresponding edges e′1 ∈ E(Q1) and e′2k+1 ∈
E(Q2k+1) that are incident with e2 but not to any other edge precolored c2, and similar edges for e1 and
the color c1 in Q1 and Q2, respectively, which are disjoint from e′1, then we proceed as above: we can
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obtain an extension by coloring the edges adjacent to e1 and e2 by colors c1 and c2, respectively, and then
proceed as in Case 3 of Lemma 4.2, as before.

Now, any two adjacent planes contain at most 2d − 3 precolored edges, so if there are no edges as
described in the preceding paragraph, then all precolored edges are contained in Q2k+1∪Q1∪Q2, and e1
and e2 are adjacent to a common vertex u1 ∈ V (Q1). Moreover, u1 is incident with 2d− 4 edges colored
by distinct colors from {1, . . . , 2d + 1} \ {c1, c2, c3, c4}, Q2k+1 contains exactly one precolored edge,
and Q2 contains exactly one precolored edge. Moreover, these precolored edges in Q2k+1 ∪Q2 are either
adjacent to vertices corresponding to u1, or colored c2 and c1 respectively, and adjacent to edges that are
incident with u1. We consider some different cases, depending on the colors of the precolored edges of
Q1 and Q2.

Suppose first that the precolored edge of Q2k+1 is colored c2, and that Q2 contains an edge precolored
c1. We color all edges of Q2k+1 adjacent to e2 that are not precolored or adjacent to an edge precolored
c2 by arbitrary colors from {1, . . . , 2d + 1} \ {c1, c2, c3} so that the resulting precoloring is proper, and
similarly for Q2 but with c1 in place of c2. Next, we take an extension of the resulting precoloring φ′ of
Q2k+1∪Q1∪Q2, where we use colors {1, . . . , 2d+1}\{c1, c3} for Q2k+1, {1, . . . , 2d+1}\{c1, c2} for
Q1, and {1, . . . , 2d+ 1} \ {c2, c3} for Q2. We then color the edges between Q2k+1 and Q1 by c1 except
e2 which is colored c2, the edges between Q1 and Q2 by c2 except e1 which is colored c1. Next, we
color the planes Q3, . . . , Q2k correspondingly using colors {1, . . . , 2d+ 1} \ {c3, c4}, and all remaining
uncolored edges by c3, c4 alternately. This yields an extension of φ.

Now, if one of the colors c1 and c2 does not appear in G−E(D1), say c2, then from the restriction of φ
to Q1 ∪Q2, we define a new precoloring φ′ by properly coloring all the edges adjacent to e1 that are not
precolored or adjacent to an edge colored c1 by arbitrary colors in {1, . . . , 2d + 1} \ {c1, c2, c3} so that
the resulting coloring is proper. We take an extension of φ′ using colors {1, . . . , 2d+1}\{c2, c3}, and an
extension of the restriction of φ to Q2k+1 using colors {1, . . . , 2d+1} \ {c2, c3}. Thereafter, we color all
edges between Q2k+1 and Q1 by the color c2, the edges between Q1 and Q2 by the color c3 except that
e1 is colored c1. Since no other planes in G−E(D1) contain precolored edges, it is now straightforward
to construct an extension of φ from the obtained partial edge coloring of G.

Finally, if the precolored edge of Q2k+1 is colored c1, and the edge of Q2 is colored c2, then we proceed
similarly, but simply take extensions of the restriction of φ to Q2k+1 using colors {1, . . . , 2d+1}\{c2, c3},
of the restriction of φ to Q1 using colors {1, . . . , 2d+1} \ {c1, c2} and of the restriction of φ to Q2 using
colors {1, . . . , 2d+ 1} \ {c1, c3}.

Subcase 3.2.3 e1 and e2 are not incident with any common plane:
It remains to consider the case when e1 and e2 are not incident to a common plane. Here we may

proceed precisely as in Subcase 3.1.3, so once again we omit the details. This concludes the proof of this
lemma. 2

5 Extending a precoloring of a distance-4 matching in Cd
2k

In this last section we consider the problem of extending a precoloring of Cd
2k where the precolored edges

form a matching.

Theorem 5.1 If φ is a 2d-edge coloring of a distance-4 matching of G = Cd
2k, then φ can be extended to

a proper 2d-edge coloring of G.
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Proof: Let φ be a 2d-edge precoloring of a distance-4 matching M of G, and let D1, . . . Dk be the
dimensions of G. We define the edge coloring f of G by properly coloring all edges of Dj by 2j − 1 and
2j, so that all corresponding edges have the same color. The resulting coloring satisfies that every 4-cycle
in G is bicolored since corresponding edges have the same color.

We shall describe a procedure for obtaining a required coloring f ′ that agrees with φ. For all precolored
edges we shall use transformations on some bicolored 4-cycles. As we shall see, if e, e′ ∈ M , then the
cycles used for transformations involving e will be edge-disjoint from cycles used for e′.

Consider an arbitrary precolored edge e ∈ M . We consider some different cases.

(i) If f(e) = φ(e), then we are done;

(ii) If f(e) ̸= φ(e), and there is a bicolored 4-cycle containing e, and where color φ(e) appears, then
we interchange colors on this bicolored 4-cycle;

(iii) If none of the two previous conditions hold, then there are two edges e1 and e2, both of which
are adjacent to e, and contained in the same dimension as e, such that φ(e) = f(e1) = f(e2).
By interchanging colors on two disjoint 4-cycles, containing e1 and e2 respectively, we obtain a
coloring f1, where e is contained in a bicolored 4-cycle with the color φ(e). Thus by interchanging
colors on this 4-cycle, we obtain a coloring f2 satisfying that f2(e) = φ(e).

Note that all edges used in the transformations (i) - (iii) are at distance at most 1 from e. Thus if e and
e′ are distinct edges of M , and we perform one of the transformations (i)-(iii) for both edges, then the
edges involved in the transformations concerning e will be edge disjoint from the ones used for e′, since
the precolored edges form a distance-4 matching.

Hence, we can repeat the above process for any precolored edge of G to obtain the required coloring
f ′. 2

We believe that Proposition 5.1 might be true if we precolor a distance-3 instead of a distance-4 match-
ing, but if e and e′ are distinct edges of M , then the edges involved in the transformations for e may not
necessarily be disjoint from the one used for e′, and thus we cannot apply our technique here; we state the
following conjecture.

Conjecture 5.2 If φ is an edge precoloring of a distance-3 matching of Cd
2k, then φ can be extended to a

proper 4-edge coloring of Cd
2k.

Note that Proposition 5.1 becomes false if we precolor a distance-2 matching; for instance, consider
a vertex v of degree 2d such that every edge incident with v is uncolored but there is a fixed color
c ∈ {1, . . . , 2d} satisfying that every edge incident with v is adjacent to another edge colored c. If f
is an extension of φ, then since v has degree 2d, exactly one edge incident with v is colored c, but such a
coloring cannot be proper.
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