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A graph on at least k + 1 vertices is uniformly k-connected if each pair of its vertices is connected by k and not
more than k independent paths. We reinvestigate a recent constructive characterization of uniformly 3-connected
graphs and obtain a more detailed result that relates the number of vertices to the operations involved in constructing
a respective uniformly 3-connected graph. Furthermore, we investigate how crossing numbers and treewidths behave
under the mentioned constructions. We demonstrate how these results can be utilized to study the structure and
properties of uniformly 3-connected graphs with minimum number of vertices of minimum degree.
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1 Introduction
Among the many connectivity concepts in graph theory, requiring the same connectivity between each
pair of a graph’s vertices may seem to be quite restrictive. Yet it might be a valuable feature of cer-
tain communication or supply networks and, from a theoretical point of view, uniform connectivity nicely
complements the notions of ordinary, minimal, or average connectivity. When studying the latter, Beineke,
Oellermann, and Pippert (3) introduced uniformly connected graphs as they became interested in deter-
mining for which graphs the connectivity equals the average connectivity. Let us begin by recalling the
following definition, whereas we refer to Diestel (9) for basic graph theoretical terminology.

Definition 1 For a number k ∈ N a graph on at least k + 1 vertices is called uniformly k-connected if
each pair of its vertices is connected by k and not more than k independent paths.

It is not hard to see that uniformly 1-connected graphs are exactly all trees and uniformly 2-connected
graphs are exactly all cycles. Further examples are wheel graphs for k = 3 or k-regular, k-connected
graphs for k ∈ N. In more detail, such relations as well as uniformly edge-connected graphs, in which
each pair of vertices is connected by k and not more than k edge-disjoint paths, are discussed by Göring,
Hofmann, and Streicher (10). This article also contains the following characterization.
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Figure 1: Constructing uniformly 3-connected graphs

Theorem 2 A graph is uniformly 3-connected if and only if it is contained in the following recursively
defined class C.

(i) If a graph G is 3-regular and 3-connected, then G shall be contained in C.

(ii) For two graphs G1, G2 ∈ C with vertices v1 ∈ V (G1) and v2 ∈ V (G2) whose neighborhoods are
N(v1) = {x1, y1, z1} and N(v2) = {x2, y2, z2}, we include in C the graph

(G1 − v1) ∪ (G2 − v2) + x1x2 + y1y2 + z1z2.

(iii) For a graph G ∈ C with distinct vertices v, w, x ∈ V (G), containing vw ∈ E(G), and satisfying
deg(z) = 3 for all z ∈ V (G) \ {x}, we include in C the graph

G+ y − vw + vy + wy + xy,

where y /∈ V (G) is a new vertex to be added to G.

The operations (ii) and (iii) are illustrated in Figure 1. We refer to (ii) as a bridge operation and to (iii)
as a spoke operation. More precisely, if deg(x) = 3 in (iii), we call it a primary spoke operation and
if deg(x) > 3, we call it a secondary spoke operation. Note that the class of 3-regular 3-connected graphs
is contained in the class of uniformly 3-connected graphs. In turn, the class of uniformly 3-connected
graphs is contained in the class of 3-connected graphs. So Theorem 2 is in a sense complementary to
the classical constructions by Tutte (15; 16) for 3-regular 3-connected and 3-connected graphs. A natural
question to ask when learning about a class of graphs is what degrees one might see. In extremal graph
theory, this led to extensive research on the minimum number of vertices of minimum degree. Formally,
for a graph G one asks for the parameter

ν(G) :=
∣∣{v ∈ V (G) : deg(v) = min

v∈V (G)
deg(v)

}∣∣.
A cornerstone on which many related investigations build on is the result by Halin (11), who proved that
a minimally k-connected graph contains a vertex of degree k. A series of results on that topic is con-
cluded by Mader (13), who gave the tight bound ν(G) ≥ ⌈((k − 1)n+ 2k)/(2k − 1)⌉ for a minimally
k-connected graph G on n vertices. This result does also hold for uniformly 3-connected graphs, as those
are minimally k-connected. See Beineke, Oellermann, and Pippert (3) for a proof of that result. But as
minimally k-connected graphs do not have to be uniformly k-connected, there can be stronger bounds
on ν(G) and indeed there is the following result.
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Figure 2: Joining two edges of a 3-regular graph

Theorem 3 A uniformly 3-connected graph G on n vertices satisfies

ν(G) ≥ ⌈(2n+ 2)/3⌉.

This result is proven in (10). We call a uniformly 3-connected graph extremal if it attains the bound from
Theorem 3. The results of Section 2 shall help us to learn more about that class. There we show in
detail how the number of vertices of a uniformly 3-connected graph depends on the operations involved
in constructing it. Furthermore, we show that the bridge operation preserves in a sense crossing numbers
and under certain conditions treewidths larger than two. We denote the crossing number of a graph G
by cro(G) and its treewidth by tw(G). Section 3 is intended to demonstrate how our results can be used,
for example, to find out when extremal uniformly 3-connected graphs are planar.

2 Main results
In what follows, we build on one of the characterizations by Tutte (16, Chapter 12), which says that all 3-
regular 3-connected graphs can be obtained from a complete graph on four vertices by a sequence of edge
joins. Formally, for a graph G and two edges st, vw ∈ E(G) joining them means to build the graph

G+ x+ y − st− vw + sx+ xt+ vy + yw + xy

where x, y /∈ V (G) are new vertices to be added to G. This construction is illustrated in Figure 2. Note
also that st and vw are two distinct edges, but they may share one endvertex.

Theorem 4 A uniformly 3-connected graph G on n vertices satisfies

n = 4 + 2j + 2t+ p+ s

if G is constructed from complete graphs on four vertices by a sequence of j bridge operations, t edge
joins, p primary spoke operations and s secondary spoke operations.

Proof: The smallest uniformly 3-connected graph is the complete graph on four vertices, for which
j = t = p = s = 0 and our claim holds. Now suppose we are given a graph G on n vertices and our
statement is true for all graphs on less than n vertices.
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First, take the case where an edge join is the final operation in the sequence of operations to build G.
Then G arises from a graph G′ with n = |V (G)| = |V (G′)|+ 2, as an edge join adds two vertices. De-
noting the number of edge joins to build G′ by t′, we have t = t′ + 1. By induction, we obtain

n = |V (G)| = |V (G′)|+ 2

= 4 + 2j + 2t′ + 2 + p+ s

= 4 + 2j + 2t+ p+ s.

Primary or secondary spoke operations add one vertex, as is illustrated in Figure 1. If such an operation
is the final operation to build G, we can argue as in the previous case. It remains the case where a bridge
operation is the final operation to build G. Then G arises from two graphs G1 and G2. In view of Figure 1,
we have n = |V (G)| = |V (G1)|+ |V (G2)| − 2, as well as j = j1 + j2 + 1, t = t1 + t2, p = p1 + p2,
and s = s1 + s2, where ji, ti, pi, si are the respective numbers of bridge operations, edge joins, primary
and secondary spoke operations used when constructing Gi, where i ∈ {1, 2}. By induction, we obtain

n = |V (G)| = |V (G1)|+ |V (G2)| − 2

= 4 + 2j1 + 2t1 + p1 + s1 + 4 + 2j2 + 2t2 + p2 + s2 − 2

= 4 + 2(t1 + t2) + 2(j1 + j2 + 1) + (p1 + p2) + (s1 + s2)

= 4 + 2t+ 2j + p+ s. □

This allows us to reprove Theorem 3 as well as to obtain some additional conditions on the numbers of
operations involved.

Proof of Theorem 3: For a uniformly 3-connected graph G on n vertices, Theorem 4 tells us that

n = 4 + 2j + 2t+ p+ s. (1)

Let us recall that a primary spoke operation, by definition, can only be applied to 3-regular graphs, and it
raises one of the respective degrees to four. A graph whose construction involves j bridge operations is
formed by recursively combining j + 1 input graphs. For each input graph, one is allowed to use at most
one primary spoke operation. In other words,

j + 1 ≥ p ⇒ 2j ≥ 2p− 2. (2)

Combining Equations (1) and (2), we obtain

n ≥ 2 + 2t+ 3p+ s ≥ 2 + 3p ⇒ p ≤ ⌊(n− 2)/3⌋. (3)

The primary spoke operation is the only operation that reduces the number of vertices of minimum degree.
It does so by exactly one. Consequently,

ν(G) ≥ n− p ≥ ⌈(2n+ 2)/3⌉, (4)

which was to be shown. 2

Another property we shall verify in this section is that the bridge operation preserves the crossing
numbers of the input graphs. In our proof, we build on the following basic fact about graph embeddings,
presented by West (17, Chapter 6).
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Figure 3: The bridge operation acting on graphs embedded in the plane

Lemma 5 If E is the edge set of a face of some planar embedding of a graph G, then there is an embed-
ding of G such that E is the edge set of the outer face.

Theorem 6 If G is the result of applying the bridge operation on graphs G1 and G2, then

cro(G) ≤ cro(G1) + cro(G2).

Proof: We are given two graphs G1, G2 with vertices v1 ∈ V (G1) and v2 ∈ V (G2) whose neighborhoods
are N(v1) = {x1, y1, z1} and N(v2) = {x2, y2, z2} and a graph

G := (G1 − v1) ∪ (G2 − v2) + x1x2 + y1y2 + z1z2.

At first, let us consider some drawing of G1 in the plane, possibly with crossings. We obtain a planariza-
tion P of this drawing by replacing each occurring crossing by a new vertex. In this process, we may
have to subdivide some of the edges in {x1v1, y1v1, z1v1, x2v2, y2v2, z2v2}. The vertex on the former
edge x1v1 excluding v1 but including x1 that is closest to v1 shall be denoted by x′

1. Analogously, we
define y′1, z

′
1, x

′
2, y

′
2, z

′
2. Since deg(v1) = 3, we know that two of the three edges x′

1v1, y
′
1v1, z

′
1v1, say

x′
1v1 and y′1v1, are both contained in the edge set of some face of P . Lemma 5 tells us that there is an

embedding of P such that {x′
1v1, y

′
1v1} is contained in the edge set of the outer face. Replacing the ver-

tices we introduced when planarizing G back to crossings, we obtain a drawing of G1 where parts of both
edges x1v1 and y1v1 are incident to the outer face. Even more, since we can reflect the embedding of G1

across a line through v1, it is possible to choose the orientation of {x1v1, y1v1}. Likewise, we can take a
drawing of G2 where parts of x2v2 and y2v2 are incident to the outer face. In other words, our situation
is essentially as in Figure 3.

Since we embedded finite graphs in the plane, we can find radii ε, δ > 0 such that the discs Uε(v1)
and Uδ(v2) do not contain x′

1, y
′
1, z

′
1, x

′
2, y

′
2, or z′2. We denote the intersection of the edge x1v1 with the

disc Uε(v1) by x′′
1 and the intersection of the edge x2v1 with the disc Uδ(v2) by x′′

2 . This provides us with
a polygonal arc, leading from x1 to x′′

1 to x′′
2 to x2. There are analogous polygonal arcs linking y1 with y2

and z1 with z2. Those polygonal arcs can be drawn without intersections when choosing the orientation
of the embeddings of G1 or G2 as in Figure 3. This tells us that we can build G out of G1 and G2 by the
bridge operation without adding any additional crossings. So cro(G) ≤ cro(G1) + cro(G2). 2
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Finally, we will ask how the bridge operation affects the treewidths of the input graphs. So let us recall
the following terms.

Definition 7 A tree decomposition of a graph G is a pair ({Xi : i ∈ I}, T = (I, F )) where T is a tree
and each node i ∈ I has a bag Xi ⊆ V (G) such that the following properties hold.

1. Each vertex of V belongs to some bag, or ∪i∈IXi = V .

2. For all vw ∈ E(G) there exists an i ∈ I such that v, w ∈ Xi.

3. For all v ∈ V the set of nodes {i ∈ I : v ∈ Xi} induces a subtree of T .

The width of a tree decomposition ({Xi : i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1 and the treewidth of a
graph G is the minimum width of all tree decompositions of G. We shall denote the latter by tw(G).

Before we focus on how the treewidth behaves under the bridge operation, let us recall the following facts,
whose proofs can be found in Bodlaender (5).

Lemma 8 If H is a minor of G, then tw(H) ≤ tw(G).

Lemma 9 If ({Xi : i ∈ I}, T = (I, F )) is a tree decomposition of a graph G and W ⊆ V (G) a clique
in G, then there is a node i ∈ I such that W ⊆ Xi.

Furthermore, given a graph G, we call a vertex v ∈ V (G) with deg(v) = 3 safe if G admits a minimum
width tree decomposition having a bag that contains v and two of its neighbors. In view of Lemma 9, a
vertex of degree three is safe if and only if it has two neighbors that are adjacent or that can be joined by
an edge without increasing the treewidth of G. Furthermore, we call a vertex of degree three unsafe if it is
not safe. By definition, an unsafe vertex has an independent neighborhood, as is the case for the vertex v
in Figure 4. Suppose v is an unsafe vertex of the indicated graph G, with neighborhood N(v) = {x, y, z}.
Then adding a clique on four vertices by the bridge operation results in a graph that has G+ xy as minor,
which can be seen by contracting the vertices shaded in gray. So, in general, the bridge operation can
increase the treewidth, but only if we combine graphs at unsafe vertices, as we will show next.

Theorem 10 Consider two graphs G1 and G2 with vertices v1 ∈ V (G1) and v2 ∈ V (G2) whose neigh-
borhoods are N(v1) = {x1, y1, z1} and N(v2) = {x2, y2, z2} and a graph

G := (G1 − v1) ∪ (G2 − v2) + x1x2 + y1y2 + z1z2.

If v1 and v2 are safe and max{tw(G1), tw(G2)} ≥ 3, then

tw(G) = max{tw(G1), tw(G2)}.
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Figure 5: Combining two tree decompositions at bags of safe vertices when |F | = 1

Proof: Let ({Xi : i ∈ I1}, T1 = (I1, F1)) =: (X , T1) and ({Yj : j ∈ I2}, T2 = (I2, F2)) =: (Y, T2) be
minimum width tree decompositions of G1 and G2, respectively, having a bag Xs ∈ X containing v1 and
two of its neighbors, say x1 and y1, and a bag Yt ∈ Y containing v2 and two of its neighbors. We can as-
sume the existence of such bags because v1 and v2 are safe. To verify tw(G) ≤ max{tw(G1), tw(G2)},
our goal is to define a tree decomposition of width at most max{tw(G1), tw(G2)} for G. Whereas
we have denoted the neighbors of v1 in bag Xs by x1 and y1 without loss of generality, there are
two cases to consider with respect to how the vertices of Xs and Yt are joined by edges in G. Set-
ting F := {x1x2, y1y2, z1z2} ∩ E(G[Xs ∪ Yt]), either |F | = 1 or |F | ≥ 2.

Let us begin with the case |F | = 1, denoting the neighbors of v2 in G2 that are contained in Yt

by x2 and z2. Since in G the vertices v1 and v2 do not exist, we may safely replace them. For-
mally, for each i ∈ I1 where v1 ∈ Xi set X ′

i := Xi \ {v1} ∪ {z2} and for each i ∈ I1 where v1 /∈ Xi

set X ′
i := Xi. Furthermore, for each j ∈ I2 where v2 ∈ Yj set Y ′

j := Yj \ {v2} ∪ {y1} and for each j ∈ I2
where v2 /∈ Yj set Y ′

j := Yj . Note that we have not increased the cardinalities of the bags. Now take a new
node v /∈ I1 ∪ I2 to define the tree T := T1 ∪ T2 + v + sv + vt as well as the bag Xv := {x1, x2, y1, z2}.
Because |Xv| = 4 and our assumption that max{tw(G1), tw(G2)} ≥ 3, we observe

max
{
max
i∈I1

|Xi|,max
j∈I2

|Yj |
}
= max

{
max
i∈I1

|X ′
i|,max

j∈I2
|Y ′

j |, |Xv|
}
.

It remains to be checked that D := ({X ′
i : i ∈ I1} ∪ {Y ′

j : j ∈ I2} ∪ {Xv}, T ) is a tree decomposition
of G. When building the bags of D, the only vertices we removed were v1 and v2, which are not present
in G. So D satisfies Condition 1 of Definition 7. By the same reason, for each edge in E(G1) ∪ E(G2)
we find a bag in D containing its endvertices. Furthermore, by Condition 2 of Definition 7, there must
be some k ∈ I1 such that v1, z1 ∈ Xk, which implies that z1, z2 ∈ X ′

k. Likewise, there is an ℓ ∈ I2 such
that y1, y2 ∈ Y ′

ℓ . Since the edge x1x2 is covered by the bag Xv , this verifies Condition 2 of Definition 7.
We have to check Condition 3 of Definition 7 essentially for the vertices in Xv . This is because T
by construction is a tree having T1 and T2 as subtrees, the only vertices we removed when building D
were v1 and v2, and the only vertices we included in some bag were those of Xv . Figure 5 illustrates the
construction of the tree decomposition. Herein, we placed z2 in every bag that contained v1, indicated
by z2 in a gray box with subscript v1. Therefore, we observe that {i ∈ I1 : z2 ∈ X ′

i} induces a subtree
of T1. Since {j ∈ I2 : z2 ∈ Y ′

j } = {j ∈ I2 : z2 ∈ Yj} induces a subtree of T2 and z2 ∈ Xv , we find that
the nodes whose bags contain z2 induce a subtree of T . By investigating Figure 5, we can argue similarly
for the remaining vertices of Xv .

For the case |F | = 2, denote the neighbors of v2 in G2 that are contained in Yt by x2 and y2. For
each i ∈ I1 where v1 ∈ Xi set X ′

i := Xi \ {v1} ∪ {z1} and for each i ∈ I1 where v1 /∈ Xi set X ′
i := Xi.
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Likewise, for each j ∈ I2 where v2 ∈ Yj set Y ′
j := Yj \ {v2} ∪ {z1} and for each j ∈ I2 where v2 /∈ Yj

set Y ′
j := Yj . For two new nodes v, w /∈ I1 ∪ I2 define the tree T := T1 ∪ T2 + v + w + sv + vw + wt

as well as the bags Xv := {x1, y1, y2, z1} and Xw := {x1, x2, y2, z1}. This defines a tree decomposition
of width at most max{tw(G1), tw(G2)}, which can be checked by investigating Figure 6, analogous to
the previous case.

For the other inequality, note that both G1 and G2 are minors of G. For example, contracting all vertices
in G that stem from G2 to a single vertex yields G1. This implies tw(G) ≥ max{tw(G1), tw(G2)} by
Lemma 8, which concludes our proof. 2

Quite a few difficult combinatorial problems on graphs can be solved in polynomial, or even linear, time
by dynamic programming approaches if the input graph has bounded treewidth, about which Bodlaender
and Koster (6) give an overview. This makes statements such as that of Theorem 10 useful. In what
follows, however, we will encounter situations where we cannot assume the vertices involved in our
bridge construction to be safe. Nevertheless, there are some tools that will help us to show that extremal
uniformly 3-connected graphs have bounded treewidth. To this end, let us recall the notion of a line
graph L(G) of a graph G. This is the graph on vertex set E(G) whose vertices are adjacent exactly when
they are incident in G.

Lemma 11 For every graph G, we have

tw(G) ≤ 2 tw(L(G)) + 1.

This bound and related results are presented by Harvey and Wood (12). Furthermore, Bodlaender, Van
Leeuwen, Tan, and Thilikos (7) give the following relation.

Lemma 12 Let G1 and G2 be two graphs containing cliques S ⊆ V (G1) and T ⊆ V (G2) with |S| = |T |
and let G be a clique-sum of G1 and G2, meaning a graph obtained by taking the disjoint union of G1

and G2 and identifying S and T . Then

tw(G) = max{tw(G1), tw(G2)}.

Lemma 13 Consider two graphs G1 and G2 with vertices v1 ∈ V (G1) and v2 ∈ V (G2) whose neigh-
borhoods are N(v1) = {x1, y1, z1} and N(v2) = {x2, y2, z2} and a graph

G := (G1 − v1) ∪ (G2 − v2) + x1x2 + y1y2 + z1z2.

Furthermore, let H be a clique-sum of L(G1) and L(G2) formed by identifying E({v1}, V (G1) \ {v1})
and E({v2}, V (G2) \ {v2}). Then L(G) is a (proper) subgraph of H .
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Proof: When forming G by the bridge operation, adding the edges x1x2, y1y2, and z1z2 corresponds
to identifying v1x1 with v2x2, v1y1 with v2y2, and v1z1 with v2z2 in the respective line graphs, as is
indicated by dashed green lines in Figure 7. Deleting v1 and v2 when forming G by the bridge operation
removes the cliques, indicated by dotted gray lines in Figure 7, at which the clique-sum of L(G1) and
L(G2) is formed. This is why L(G) is a proper subgraph of H . 2

Theorem 14 Let C be a class of graphs which arises by successively taking the bridge operation to join
graphs from a base class whose line graphs have treewidth bounded by w. Then for every graph G ∈ C,
we have

tw(G) ≤ 2w + 1.

Proof: This follows directly from Lemmas 11, 12, and 13. 2

3 Applications
Let us proceed with an example that illustrates how to use Equations (1) to (4), which we obtained in the
course of our proof of Theorem 3, to get a precise picture of extremal uniformly 3-connected graphs.

Example 15 Let us ask for the graphs on n = 10 vertices with minimum number of vertices of mini-
mum degree. Condition (4) tells us that the extremal graphs are those where p is maximal. In view of
Condition (3), we choose p = 2. Condition (1) then reads 4 = 2t+ 2j + s and by Condition (2), we
obtain j ≥ 1. This leaves us exactly with the settings where p = 2 and

t = 1, j = 1, s = 0 or t = 0, j = 2, s = 0 or t = 0, j = 1, s = 2.

A graph for the setting t = 1, j = 1, p = 2, s = 0 is illustrated in Figure 8.

In what follows, we shall generalize the findings from this example, and so identify the conditions under
which extremal uniformly 3-connected graphs are planar.

Theorem 16 Given an extremal uniformly 3-connected graph on n = 3k + ℓ ≥ 5 vertices, for some
k ∈ N \ {1} and ℓ ∈ {−1, 0, 1}, let j, t, p, and s be the respective numbers of bridge operations, edge
joins, primary and secondary spoke operations involved in constructing G.
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1. Then p = k − 1.

2. If ℓ = −1, then j = k − 2, t = s = 0.

3. If ℓ = −0, then j = k − 2, t = 0, s = 1.

4. If ℓ = −1, then j = k − 1, t = s = 0 or j = k − 2, t = 1, s = 0
or j = k − 2, t = 0, s = 2.

Proof: In view of Conditions (3) and (4), building an extremal graph involves

p = ⌊(n− 2)/3⌋ = ⌊(3k + ℓ− 2)/3⌋ = k + ⌊(ℓ− 2)/3⌋ = k − 1

primary spoke operations. Thus Statement 1 holds. Condition (2) requires that j ≥ p− 1 = k − 2 and so
Condition (1) tells us that

n = 4 + 2t+ 2j + p+ s

⇒ 3k + ℓ ≥ 4 + 2t+ 2(k − 2) + k − 1 + s

⇒ 1 + ℓ ≥ 2t+ s.

For ℓ = −1, we obtain j = k − 2, t = s = 0, which is Statement 2. For ℓ = 0, we obtain j = k − 2, t = 0,
s = 1, which is Statement 3. For ℓ = 1 and j = k − 2, we obtain t = 0 and s = 2 or t = 1 and s = 0,
which are the last two alternatives in Statement 4. If ℓ = 1 and j = k − 1, then Condition (1) im-
plies t = s = 0, which is the remaining alternative in Statement 4. Finally, note that j cannot be larger
than k − 1, since otherwise the right hand side of Equation (1) exceeds the left hand side. 2

Let us see what we now know about small extremal uniformly 3-connected graphs.

Observation 17 The wheel graph on n ≥ 4 vertices is the graph resulting from a cycle on n− 1 vertices
by adding a new vertex which is adjacent to all other vertices. We denote such a graph by Wn. The
graph W4 is complete and all its vertices have degree three. Performing a primary spoke operation on W4

results in W5. Similarly, performing a secondary spoke operation on Wn results in Wn+1 for all n ∈ N.
Let us consider an extremal uniformly 3-connected graph G in whose construction an edge join is

involved. Recall that edge joins in Tutte’s characterization (16), and so in Theorem 2, are only allowed
to be applied on 3-regular 3-connected graphs. It is not hard to see that extremal uniformly 3-connected
graphs are nonregular for all n ≥ 5. So when an edge join is involved in building G, it can only take

Figure 8: An extremal uniformly 3-connected graph on ten vertices



Properties of uniformly 3-connected graphs 11

⇝t

⇝t

⇝p

⇝p e

f

Figure 9: Small extremal uniformly 3-connected graphs built out of a wheel graph by edge joins (⇝t) and primary
spoke operations (⇝p)

the graph W4 as input. This can only produce the complete bipartite graph K3,3 or the envelope graph,
depicted in the middle of Figure 9. Out of those graphs, we can obtain the graphs on the right in Figure 9 by
a primary spoke operation. The dashed green edges drawn in the bottom right graph are to be understood
as alternatives. They indicate the three nonisomorphic graphs that can be built out of the envelope graph
by a primary spoke operation. In fact, one can check that the alternative where edge f is added to the
envelope graph is isomorphic to the top right graph in Figure 9. The alternative where edge e is added to
the envelope graph is isomorphic to the graph which results from combining the wheel graphs W4 and W5

by the bridge operation. Similarly, the envelope graph can be combined out of two wheel graphs W4 by
the bridge operation. So nonplanar graphs might arise even if we forbid edge joins.

With Theorem 6, we have the key to combine our present findings as follows.

Theorem 18 Let G be an extremal uniformly 3-connected graph on n = 3k + ℓ ≥ 4 vertices, for suit-
able k ∈ N and ℓ ∈ {−1, 0, 1}. Then cro(G) ≤ 1, and if n = 4 or ℓ ∈ {−1, 0}, then G is planar.

Proof: The only uniformly 3-connected graph for n = 4 is the complete graph on four vertices. It is an ex-
tremal one and it is planar. Consider now an extremal uniformly 3-connected graph G on n = 3k + ℓ ≥ 5
vertices, where k ∈ N \ {1}. If ℓ ∈ {−1, 0}, then Items 1 to 3 of Theorem 16 tell us that G is built
by k − 1 primary spoke operations, one secondary spoke operation if ℓ = 0, and k − 2 bridge operations.
In other words, G results from using the bridge operation recursively to combine wheels W5, and one
wheel W6 if ℓ = 0. So G is planar by Theorem 6.

If ℓ = 1, then Items 1 and 4 of Theorem 16 tell us that G is built by k − 1 primary spoke operations.
If j = k − 1, then t = s = 0. So G results from recursively using the bridge operation to combine one
wheel W4 and k − 1 wheels W5 or, in view of Observation 17, to combine one of the graphs in the bottom
right corner of Figure 9 with k − 2 wheels W5. So cro(G) ≤ 1 by Theorem 6.

It remains the case where ℓ = 1 and j = k − 2. If t = 1, then s = 0 and G results from using the
bridge operation recursively to combine wheels W5 with one of the graphs on the right of Figure 9.
So cro(G) ≤ 1 by Theorem 6. If t = 0, then s = 2 and G results from using the bridge operation recur-
sively to combine wheels W5 with two W6 or one W7. So cro(G) ≤ 1 by Theorem 6. 2
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Figure 10: Extremal uniformly 3-connected graphs

Questions concerning the colorability of uniformly 3-connected graphs are addressed by Aboulker,
Brettell, Havet, Marx, and Trotignon (1). There, it is shown that uniformly 3-connected graphs, except
the wheels on an even number of vertices, are 3-colorable. Moreover, the authors demonstrate that such a
coloring can be determined in polynomial time.

Another aspect one may notice is a certain similarity between extremal uniformly 3-connected graphs
and Halin graphs, surveyed by Brandstadt, Le, and Spinrad (8). Those are graphs that can be obtained
by embedding a tree without vertices of degree two in the plane and connecting its leaves by a cycle
without crossing any of the tree edges. By the previous proof, we can obtain those Halin graphs where
the inner vertices are of degree four, with few exceptions. If ℓ = 0, we may have one vertex of degree
five. If ℓ = 1, we may have two vertices of degree five or one of degree six. An example is illustrated on
the left in Figure 10. In general, Halin graphs can be seen to be uniformly 3-connected, but not the other
way around. Counterexamples are certainly nonplanar (extremal) uniformly 3-connected graphs and even
for ℓ = −1, we find for example the graph depicted on the right in Figure 10. The overlap with the class of
Halin graphs motivates the question of whether extremal uniformly 3-connected graphs have a similar tree-
like structure. Whereas, as Bodlaender (4) shows, Halin graphs have treewidth three, general uniformly
3-connected graphs have unbounded treewidth. Meeks (14) demonstrates this by an example illustrating
that for any k ∈ N there are 3-regular, 3-connected graphs having a k × k grid as minor. In contrast, the
small extremal uniformly 3-connected graphs in Figure 9 as well as wheel graphs have treewidth three.
In view of Observation 17 and the proof of Theorem 6, those are the elemental building blocks for the

v v v

Figure 11: An extremal uniformly 3-connected graph containing an unsafe vertex v
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L(G1) L(G2)
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Figure 12: Small extremal uniformly 3-connected graphs and their corresponding line graphs

bridge operation when constructing extremal uniformly 3-connected graphs. Theorem 10 guarantees that
the bridge operation preserves the treewidth of the input graphs if no unsafe vertices arise in the course
of the construction. But Figure 11 shows an extremal uniformly 3-connected graph that has an unsafe
vertex. The depicted graph is that from the bottom right corner of Figure 9 where edge f is added. In
Figure 11, the neighborhood of v is independent and connecting any of its neighbors, indicated by the
dashed green lines, produces a K5 minor, which can be seen by contracting the respective vertices shaded
gray. As illustrated in Figure 4, adding a wheel by the bridge operation at v, produces a graph of treewidth
four. Although this is the only unsafe situation we identified so far, we are not sure whether others exist,
precluding us to show that the treewidth is bounded by four, using Theorem 10 only. However, with
Theorem 14, we can at least verify bounded treewidth.

Corollary 19 (of Theorem 14) The treewidth of any extremal uniformly 3-connected graph G is bounded
by tw(G) ≤ 13.

Proof: In Observation 17 and the proof of Theorem 18, we argue that any extremal uniformly 3-connected
graph can be built by successively taking the bridge operation to join graphs from Figure 9 and wheel
graphs on up to six vertices. The treewidth of the line graphs of those graphs is bounded by w = 6. This
can be seen by investigating Figure 12. The graphs shown there satisfy tw(L(G1)) ≤ 5, tw(L(G2)) ≤ 5,
and tw(L(G3)) ≤ 6. To certify this, let us determine respective tree decompositions. In all three graphs,
removing the vertices highlighted by gray circles, and incident edges, leaves us with a tree, for which we
easily find a tree decomposition of width one. Putting the vertices highlighted by gray circles in every
bag, provides us with suitable tree decompositions. Also recall that the graph from the bottom right corner
of Figure 9 where edge e is added can be obtained by joining a wheel on five vertices with one on four
vertices by the bridge operation. Clearly, all remaining line graphs of graphs from Figure 9 as well as
line graphs of wheels on four and five vertices are minors of one of the graphs depicted in Figure 12. So
Theorem 14 provides us with the asserted bound. 2
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Open Question. In view of Corollary 19 and Figures 11 and 4, we know that there is a general upper
bound 4 ≤ C ≤ 13 such that tw(G) ≤ C holds for any extremal uniformly 3-connected graph G. It is
open what the smallest such bound C is. We tend to believe that C = 4.
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