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We study Markov chains for α-orientations of plane graphs, these are orientations where the outdegree of each vertex
is prescribed by the value of a given function α. The set of α-orientations of a plane graph has a natural distributive
lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of
directed facial cycles in the α-orientation. We have a positive and several negative results regarding the mixing time
of such Markov chains.

A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that
there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadran-
gulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with
maximum degree at most 4.

Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied
before by Miracle et al. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we
present the first example of a function α and a class of plane triangulations of constant maximum degree such that the
up-down Markov chain on the α-orientations of these graphs is slowly mixing.

Keywords: Markov chain, rapidly mixing, torpidly mixing, α-orientations, quadrangulations.

1 Introduction
Let G = (V,E) be a graph and let α ∶ V → N be a function, an α-orientation of G is an orientation
with outdeg(v) = α(v) for all vertices v ∈ V . A variety of interesting combinatorial structures on planar
graphs can be modeled as α-orientations. Examples are spanning trees, Eulerian orientations, Schnyder
woods of triangulations, separating decompositions of quadrangulations. These and further examples are
discussed in [Fel04b] and [FZ08]. In this paper we are interested in Markov chains to sample uniformly
from the α-orientations of a given planar graph G for a fixed α.

A uniform sampler may be used to get data for a statistical approach to typical properties of α-
orientations. Under certain conditions such a chain can be used for approximate counting ofα-orientations.
Counting α-orientations is #P-complete in general. Mihail and Winkler [MW96] have shown that count-
ing Eulerian orientations is #P-complete. Creed [Cre09] has shown that this counting problem remains
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#P-complete on planar graphs. Further examples of #P-complete variants of counting α-orientations are
given in [FZ08]. In [FZ08, Section 6.2] it is shown that counting α-orientations can be reduced to count-
ing perfect matchings of a related bipartite graph. The latter problem can be approximately solved using
the celebrated algorithm of Jerrum, Sinclair and Vigoda [JSV04] or its improved version by Bezáková et
al. [BSVV08]. These algorithms build on random sampling.

For sampling α-orientations of plane graphs, however, there is a more natural Markov chain. The
reversal of the orientation of a directed cycle in an α-orientation yields another α-orientation. If G is
a plane graph and G⃗, G⃗′ are α-orientations of G, then we define G⃗ < G⃗′ whenever G⃗′ is obtained by
reverting a clockwise cycle of G⃗. In [Fel04b] it has been shown that this order relation makes the set of
α-orientations of G into a distributive lattice.

A finite distributive lattice is the lattice of down-sets (also known as ideals) of some poset P . Let a
‘step’ consist in adding/removing a random element of P to/from the down-set. These step yield the up-
down Markov chain on the distributive lattice. A nice feature of the up-down Markov chain is that it is
monotone, see [Pro97]. A monotone Markov chain is suited for using coupling from the past, see [PW96].
This method allows to sample exactly from the uniform distribution on the elements of a distributive
lattice.

The challenge in applications of the up-down Markov chain is to analyze its mixing time. In [Pro97]
some examples of distributive lattices are described where this chain is rapidly mixing but there are ex-
amples where the mixing is slow. Miracle, Randall, Streib and Tetali [MRST16] have investigated the
mixing time of the up-down Markov chain for 3-orientations, a class of α-orientations intimately related
to Schnyder woods. They show that there is a class of plane triangulations such that the up-down Markov
chain on the 3-orientations of these triangulations is slowly mixing. For positive they show that the chain
is rapidly mixing on 3-orientations of plane triangulations with maximum degree at most 6.

In this paper we present similar results for the up-down Markov chain on the 2-orientations of plane
quadrangulations. These special 2-orientations are of interest because they are related to separating de-
compositions, a structure with many applications in floor-planning and graph drawing. For literature on
the subject we refer to [dFOdM01, FHKO10, FFNO11] and references given there. Specifically we show
that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of
these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations
of quadrangulations with maximum degree at most 4.

Regarding examples for slow mixing we also revisit the case of 3-orientations, here we have somewhat
simpler examples, compared to those from [MRST16]. Our examples also have a smaller maximum
degree, O(√n) instead of O(n) on graphs with n vertices. We also exhibit a function α and a class of
plane graphs of maximum degree 6 such that the up-down Markov chain on the α-orientations of these
graphs is slowly mixing.

2 Preliminaries

In the first part of this section we give some background on the up-down Markov chain on general α-
orientations. Then we discuss 2-orientations and the associated separating decompositions. Finally we
provide some background on mixing times for Markov chains.
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2.1 The up-down Markov chain of α-orientations
Let G be a plane graph and α ∶ V → N be such that G admits α-orientations. For α-orientations G⃗, G⃗′

of G we define G⃗ < G⃗′ whenever G⃗′ is obtained by reverting a simple clockwise cycle of G⃗. This order
relation makes the set of α-orientations of G into a distributive lattice, see [Fel04b] or [FK09].

The steps of the up-down Markov chain on a distributive lattice L = (X,<) correspond to changes
x ↔ x′ for covering pairs x ≺ x′, i.e., pairs x < x′ such that there is no y ∈ X with x < y < x′. In other
words the up-down Markov chain performs a random walk on the diagram of the lattice. The transition
probabilities are (usually) chosen uniformly with a nonzero probability for staying in a state. Since the
diagram of a lattice is connected the chain is ergodic. It is also symmetric, hence, the unique stationary
distribution is the uniform distribution on the set of α-orientations.

The steps of the up-down Markov chain of α-orientations are given by certain reversals of cycles. For a
clean description we need the notion of a rigid edge. An edge of G = (V,E) is α-rigid if it has the same rigid edge

direction in every α-orientation of G. Let R ⊆ E be the set of α-rigid edges. Since directed cycles of an
α-orientation G⃗ can be reversed, rigid edges never belong to directed cycles. Define r(v) as the number of
rigid edges that have v as a tail and let α′(v) = α(v) − r(v). Now α-orientations of G and α′-orientation
of G′ = (V,E −R) are in bijection. And with the inherited plane embedding of G′ the distributive lattices
are isomorphic.

If G′ is disconnected then we can shift connected components of G′ to get a plane drawing G# with-
out nested components. Since the orientation, clockwise or counterclockwise, of a directed cycle in G′

and G# is identical the distributive lattices of α′-orientations are isomorphic. The steps of the up-down
Markov chain of α′-orientations of G# are easy to describe, they correspond to the reversal of cycles that
form the boundary of bounded faces, the face boundaries of G# are the essential cycles for the up-down essential cycles

Markov chain of α-orientations of G. In slight abuse of notation we also refer to the up-down Markov
chain of α-orientations of G as the face flip Markov chain, after all the essential cycles of G are faces face flip Markov chain

in G#.
A more algebraic description of the lattice for a disconnected G is as follows: Let H be a component

of G, then Lα(G) can be obtained as the product of lattices Lα1(G−H)×Lα2(H), where α1 and α2 are
the restrictions of α to the vertex sets of G −H and H respectively.

From the previous description it follows that the elements of the poset Pα whose down-sets corre-
spond to elements of Lα(G), i.e., to α-orientations of G, are essential cycles. It is important to keep the
following in mind:

Fact A. An essential cycle can correspond to several elements of the poset Pα.

This fact is best illustrated with an example. Figure 1(left) shows the octahedron graph Goct with an
Eulerian orientation, this is an α orientation with α(v) = 2 for all v. The orientation is the minimal one in
the lattice, it has no counterclockwise oriented cycle. Figure 1(middle) depicts the poset Pα the labels of
the elements of Pα refer to the corresponding faces of Goct. The elements 1,1′,1′′ all correspond to the
same face of Goct, this face has to be reversed three times in a sequence of face flips that transforms the
minimal Eulerian orientation into the maximal.

The elements of Pα can be found as follows. Let G⃗min be the minimal α-orientation, i.e., the one
without counterclockwise cycles. Starting from G⃗min perform flips, i.e., reversals of essential cycles from flip

clockwise to counterclockwise, in any order until no further flip is possible. The unique α-orientation
that admits no flip is the maximal one. The flips of a maximal flip-sequence S are the elements of Pα.
Let p̂(f) be the number of times an essential cycle f has been flipped in S. Hence, the elements of Pα
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Fig. 1: Left: A minimal α-orientation. Middle: The poset Pα. Right: The α-orientation corresponding to the down
set {1,2,3,4,1′,6,7,4′} of Pα.

are {(f, i) ∶ f essential cycle, 1 ≤ i ≤ p̂(f)}.
If essential cycles f and f ′ share an edge e then from observing the orientation of ewe find that between

any two appearances of f in a flip-sequence there is a appearance of f ′. From this we obtain

Fact B. If essential cycles f and f ′ share an edge, then ∣p̂(f) − p̂(f ′)∣ ≤ 1.

The above discussion is based on [Fel04b] where α-orientations of G have been analyzed via α-
potentials, an encoding of down-sets of Pα. If G⃗ is an α-orientation, then we say that an essential
cycle f is at potential level i in G⃗ if (f, i) belongs to the down-set DG⃗ of Pα corresponding to G⃗ but potential level

(f, i + 1) /∈DG⃗.

2.2 2-orientations and separating decompositions
A quadrangulation is a plane graphs whose faces are uniformly of degree 4. Equivalently quadrangula- quadrangulation

tions are maximal bipartite plane graphs.
Let Q be a quadrangulation, we call the color classes of the bipartition white and black and name the

two black vertices on the outer face s and t. A 2-orientation of Q is an orientation of the edges such that 2-orientation

outdeg(v) = 2 for all v ≠ s, t. Since a quadrangulation with n vertices has 2n − 4 edges it follows that s
and t are sinks.

A separating decomposition of Q is an orientation and coloring of the edges of Q with colors red and separating decomposition

blue such that two conditions hold:

(1) All edges incident to s are ingoing red and all edges incident to t are ingoing blue.

(2) Every vertex v ≠ s, t is incident to a nonempty interval of red edges and a nonempty interval of blue
edges. If v is white, then, in clockwise order, the first edge in the interval of a color is outgoing and
all the other edges of the interval are incoming. If v is black, the outgoing edge is the last one of its
color in clockwise order (see Figure 2).

Separating decompositions have been studied in [BH12], [dFOdM01], [FFNO11], and [FHKO10]. Rele-
vant to us are the following two facts:

Fact 1. In a separating decomposition every vertex v ≠ s, t has a unique directed red path v → s and a
unique blue path v → t. The two paths only intersect at v.
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Fig. 2: Edge orientations and colors at white and black vertices.

Fact 2. The forget function that associates a 2-orientation with a separating decomposition is a bijection
between the set of 2-orientations and the set of separating decompositions of a quadrangulation.

A proof of these facts can be found in [dFOdM01].

2.3 Markov chains and mixing times

We refer to [LPW09] for basics on Markov chains. In applications of Markov chains to sampling and
approximate counting it is critical to determine how quickly a Markov chainM converges to its stationary
distribution π. Let M t(x, y) be the probability that the chain started in x has moved to y in t steps. The
total variation distance at time t is ∥M t −π∥TV = maxx∈Ω

1
2 ∑y ∣M

t(x, y) −π(y)∣, here The mixing time total variation distance

mixing timeof M is defined as τmix = mint(∥M t − π∥TV ≤ 1/4). The state space Ω of the Markov chains considered
by us consists of sets of graphs on n vertices. Such a chain is rapidly mixing if τmix is upper bounded by rapidly mixing

a polynomial of n.

A key tool for lower bounding the mixing time of an ergodic Markov chain is the conductance defined conductance

as ΦM = minS⊆Ω,π(S)≤1/2
1

π(S) ∑s1∈S,s2∉S π(s1) ⋅M(s1, s2). The connection with τmix is given by

Fact T. τmix ≥ (4ΦM)−1.

This is Theorem 7.3 from [LPW09]. A similar result was already shown in [SJ89]. We will use this
inequality mainly in the context of hour glass shaped state spaces where we have a partition Ω−,Ω0,Ω+

hour glass

of the state space with the property that all paths of the transition graph of the Markov chain that connect
Ω− and Ω+ contain a vertex from Ω0. The following lemma shows that if Ω− and Ω+ are large and Ω0 is
small with respect to π, then the conductance is small.

Lemma 1 If Ω−,Ω0,Ω+ is a partition of Ω such that M(s1, s2) = 0 for all s1 ∈ Ω− and s2 ∈ Ω+, then

ΦM ≤ π(Ω0)
min{π(Ω−), π(Ω+)} .
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Proof. We assume that π(Ω−) ≤ π(Ω+) and hence π(Ω−) ≤ 1
2

. Now

ΦM = min
S⊆Ω,π(S)≤

1
2

1

π(S) ∑
s1∈S,s2∉S

π(s1) ⋅M(s1, s2) ≤ 1

π(Ω−) ∑
s1∈Ω−,s2/∈Ω−

π(s1) ⋅M(s1, s2)

= 1

π(Ω−)

⎛
⎜⎜
⎝

∑
s1∈Ω−,s2∈Ω+

π(s1) ⋅M(s1, s2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+ ∑
s1∈Ω−,s2∈Ω0

π(s1) ⋅M(s1, s2)
⎞
⎟⎟
⎠

≤ 1

π(Ω−)
⎛
⎝ ∑s2∈Ω0

∑
s∈Ω

π(s) ⋅M(s, s2)
⎞
⎠

= 1

π(Ω−) ∑s2∈Ω0

π(s2)

= π(Ω0)
π(Ω−) = π(Ω0)

min{π(Ω−), π(Ω+)}

3 Markov chains for 2-Orientations
In this section we study the Markov chain M2 for 2-orientations of plane quadrangulations. This is a
special instance of the up-down Markov chain for α-orientations. A step of the chain consists in the
reversal of a directed essential cycle.

Lemma 2 The essential cycles for the Markov chain M2 of a plane quadrangulation are the four-cycles
that contain no rigid edge.

Proof. Let C be a four cycle with nonempty interior. We claim that all the edges incident to a vertex of C
and a vertex from the interior of C are rigid. Let U be the set of vertices interior to C and E[U] be the
set of edges incident to a vertex of U . Since the cycle together with U induces a quadrangulation we have
∣E[U] ∪EC ∣ = 2∣U ∪C ∣ − 4, i.e., ∣E[U]∣ = 2∣U ∣. Hence all edges connecting U to C are out-edges of U ,
this is the claim.

It follows that every four cycle that contains no rigid edge is a face boundary of a component of the
non-rigid edges. This shows that such four-cycles are essential.

Now let C be a cycle of length more than 4 which is a directed cycle in some 2-orientation Q⃗. A simple
counting argument as above shows that in Q⃗ there is an edge e⃗ oriented from C into the interior. From
the correspondence between 2-orientations and separating decompositions together with Fact 1 we know
that there is a directed path p starting with e⃗ and again hitting C. The path p together with a section of the
directed cycle C is a directed cycle of Q⃗. Hence, the edges of p are not rigid and C is not a boundary of a
face of a component of the non-rigid edges.

The Markov chain M2 can now be readily described. In each step it chooses a four-cycle C and Markov chain M2

p ∈ [0,1] uniformly at random. If C is directed in the current orientation Q⃗ and p ≤ 1/2, then C is
reversed, otherwise the new state equals the old one. The stationary distribution of M2 is the uniform
distribution. (The role of p and the threshold 1/2 is only to ensure that the Markov chain is aperiodic.)

Fehrenbach and Rüschendorf [FR04] have shown that M2 is rapidly mixing for certain subsets of the
quadrangular grid. In Subsection 3.2 we generalize this result and prove rapid mixing for quadrangulations
of maximum degree ≤ 4.

First, however, we show an exponential lower bound for the mixing time of M2 on a certain family of
quadrangulations.
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3.1 Slow mixing for 2-orientations
Theorem 1 Let Qn be the quadrangulation on 5n+ 1 vertices shown in Figure 3. The Markov chain M2

on 2-orientations of Qn has τmix > 3n−3.
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x0

s

t
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vn

x1

x2

v3

v2

w2

w1

w2

x3 w3

wn

v1

v2

vn

wnxn

vn−1 wn−1

Fig. 3: The graph Qn with the unique 2-orientation containing the edge (x0, x1). Rigid edges are shown gray.

Proof. Let Ω be the set of 2-orientations of Qn. We define a hour glass partition ΩL,Ωc,ΩR of this set.
The edge (x0, s) is rigid, the second out-edge (x0, a) of x0 is called left if a ∈ {v2, . . . , vn}, it is right if
a ∈ {w2, . . . ,wn} and it is central if a = x1. Now ΩL,Ωc,ΩR are the sets 2-orientations where the second
out-edge of x0 is left, central, and right respectively. With the next claim we show that this is a hour glass
partition.
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Claim 1. If Q⃗1 ∈ ΩL and Q⃗2 ∈ ΩR, then M2(Q⃗1, Q⃗2) = 0.

If Q⃗ → Q⃗′ is a step of M2 which changes the second out-edge e⃗ of x0, then the step corresponds to
the reversal of an essential four-cycle containing e⃗. Any four-cycle of Qn that contains x0 either only
contains edges from x0 to vertices from {x1, v2, . . . , vn} or it only contains edges from x0 to vertices
from {x1,w2, . . . ,wn}. Hence, if Q⃗ ∈ ΩL, then Q⃗′ ∈ ΩL ∪Ωc. △
Claim 2. ∣Ωc∣ = 1 and Figure 3 shows the unique 2-orientation in this set.

Consider Q⃗ ∈ Ωc. All the edges between {vn, xn,wn} and {vn,wn} are oriented upward in Q⃗, they are
rigid. Suppose all the edges between {vk, xk,wk} and {vk,wk} are oriented upward in Q⃗. We also know
the directed edges (vk, x0) and (wk, x0) in Q⃗. Together this accounts for all out-edges of vk, xk, and wk.
Hence all the edges between {vk−1,wk−1} and {vk, xk,wk} are oriented upward in Q⃗. These edges cover
all the out-edges of vk−1 and wk−1 whence all edges between {vk−1, xk−1,wk−1} and {vk−1,wk−1} are
oriented upward in Q⃗. With downward induction on k this shows that Q⃗ has to be the 2-orientation shown
in Figure 3. △
Claim 3. ∣ΩL∣ = ∣ΩR∣ ≥ 1

2
(3n−1 − 1).

From the symmetry ofQn we easily get that ∣ΩL∣ = ∣ΩR∣. Now let Pk be the set of directed path from x0 to
vk in Q⃗ from Figure 3. If p ∈ Pk then (vk, x0) together with p forms a directed cycle in Q⃗. Reverting this
cycle yields a 2-orientation that contains the edge (x0, vk). This 2-orientation belongs to ΩL. Different
paths in Pk yield different orientations. Therefore, ∣ΩL∣ ≥ ∑k ∣Pk ∣ (in fact equality holds).

It remains to evaluate ∣Pk ∣. With induction we easily obtain that in Q⃗ there are exactly 3i−1 directed
paths from x0 to either of vi and wi. Hence ∣Pk ∣ = 3k−2 and ∣ΩL∣ ≥ ∑2≤k≤n 3k−2 = 1

2
(3n−1 − 1). △

The three claims together with Lemma 1 yield ΦM2(Qn)
≤ 2

3n−1−1
. Which implies the theorem via

Fact T.

3.2 The tower chain for low degree quadrangulations
Following ideas originating from [LRS95] we define a tower Markov chain M2T that extends M2. A sin-
gle step of M2T can combine several steps of M2. Using a coupling argument we show that M2T is
rapidly mixing on quadrangulations of degree at most 4. With the comparison technique this positive
result will then be extended to M2.

The basic approach for our analysis of M2T on low degree quadrangulations is similar to what Fehren-
bach and Rüschendorf [FR04] did on a class of subgraphs of the quadrangular grid. In the context of
3-orientations of triangulations similar methods were applied by Creed [Cre09] to certain subgraphs of
the triangular grid and later by Miracle et al. [MRST16] to general triangulations. As Creed [Cre09] noted
there is an inaccurate claim in the proof of [FR04]. Later Miracle et al. [MRST12] stepped into the same
trap (it has been corrected in the final version [MRST16]). In 3.2.1 below we discuss these issues and
show how to repair the proofs.

Let Q be a quadrangulation on n vertices and Ω be the set of 2-orientations of Q. From the consider-
ations in Subsection 2.1 we know that there is a redrawing Q# of the subgraph of non-rigid edges of Q
such that the essential cycles of Q are the boundaries of bounded faces of Q#. From Lemma 2 we know
that these faces are four-faces.

Let Q⃗ be a 2-orientation and C be a simple cycle. With e+(C) we denote the number of clockwise
edges of C and with e−(C) the number of counterclockwise edges. If f is a four-cycle and ν(f) =



Markov Chains on Degree Constrained Orientations 9

∣e+(f) − e−(f)∣, then ν(f) can take the values 0, 2, and 4. The face f is oriented if ν(f) = 4, it is
scrambled if ν(f) = 0, and it is blocked is ν(f) = 2. If f is blocked, then three edges have the same scrambled

blockedorientation and one edge does not. We call this the blocking edge of f .
A tower of length k is a sequence (f1, f2, . . . , fk) of four-cycles of Q⃗ such that each fi for i = 1, .., k−1 tower

is blocked and fk is oriented. Moreover, in fi the blocking edge of fi−1 is opposite to the blocking edge
of fi for i = 1, .., k − 1. A tower of length 1 is just an oriented face, Figure 4 shows a tower of length 5.

f1
f2

f3

f4 f5

Fig. 4: A tower of length 5.

Lemma 3 below implies that that removing all blocking edges from a tower T of length k we obtain a
connected region whose boundary ∂T is an oriented cycle with 2k + 2 edges. This is the boundary cycle boundary cycle

of the tower. The boundary cycle need not be simple but each edge of ∂T only belongs to a single face
fi ∈ T . Therefore, we can also obtain the effect of reverting ∂T by reverting fk, fk−1, . . . , f1 in this order.

For the following arguments we assume that Q has no nested four-cycles. This is justified by the
isomorphism between the lattices of 2-orientations of Q and of α′-orientations of Q#.

Lemma 3 If fi and fj are different faces of a tower T and they share an edge, then j ∈ {i − 1, i + 1} and
the shared edge is the blocking edge of one of them.

Proof. The construction sequence f1, . . . , fk of a tower T = (f1, . . . , fk) yields a directed walk in the
dual. The edges of this walk are the duals of the blocking edges. Each f has at most one blocking edge
and fk has no blocking edge. Hence, there is no repetition of faces in a tower. It follows that ∂T is an
oriented cycle. Two faces fi ≠ fj do not share an edge e of ∂T . This is because they would be the faces
of the two sides of e whence e would be clockwise in one of them and counterclockwise in the other,
however, ∂T is uniformly oriented.

Lemma 4 If f is a four-cycle, then there is at most one tower starting with f = f1.

Proof. Again we look at the construction sequence of a tower and the corresponding directed path in the
dual. Each fi has at most one blocking edge, hence, there is a unique candidate for fi+1. If fi+1 is oriented
it completes the tower. If fi+1 is blocked and the blocking edge is opposite to the edge shared with fi the
construction of the potential tower can be extended. Otherwise, there is no tower starting with f .

We are ready to describe the tower Markov chain M2T . If M2T is in state X⃗ then it performs the tower Markov chain M2T

transition to the next step as follows: an essential four-cycle f , and a p ∈ [0,1] are each chosen uniformly
at random. If in X⃗ there is a tower Tf of length k starting with f then revert ∂Tf if

● ∂Tf is clockwise and either k = 1 and p ≤ 1/2 or k > 1 and p ≤ 1/(4k),

● ∂Tf is counterclockwise and either k = 1 and p < 1/2 or k > 1 and p ≥ 1 − 1/(4k).

In all other cases the new state is again X⃗ .
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Since the steps of M2 are also steps of M2T the chain is connected. In the orientation obtained by
reverting the tower T = (f1, . . . , fk) there is the tower T ′ = (fk, . . . , f1) whose reversal leads back to
the original orientation. Since both towers have the same length the chain is symmetric and its stationary
distribution is uniform.

The next lemma is where the degree condition is indispensable.

Lemma 5 LetQ have maximum degree ≤ 4 and let T = (f1, . . . , fk) be a tower and f̂ ≠ fk be an oriented
face in a 2-orientation Q⃗ of Q. If T and f̂ share an edge e but f̂ and f1 share no edge, then e is the edge
of fk opposite to the blocking edge of fk−1.

Proof. Let (ui, vi) be the blocking edge of fi. We extend the labeling of vertices of T such that ∂T is the
directed cycle v0, v1, . . . , vk−1, vk, uk, uk−1, . . . , u1, u0.

If (ui+1, ui) with i ≥ 1 is an edge of f̂ and ui−1 /∈ f̂ , then f̂ contains an out-edge of ui which is not part
of T . However, ui contains the out-edges (ui, vi) and (ui, ui−1). This contradicts outdeg(ui) = 2.

If (vi, vi+1) with i ≥ 1 is an edge of f̂ and vi−1 /∈ f̂ , then f̂ contains an in-edge of vi which is not
part of T . Vertex vi also contains the in-edges (ui, vi) and (vi−1, vi). Now vi has in-degree ≥ 3, since
outdeg(vi) = 2 the degree is at least 5. A contradiction.

We are not interested in edges shared by f̂ and f1, i.e, in edges containing u0 or v0. Therefore, the only
remaining candidate for e is the edge (vk, uk).

Theorem 2 Let Q be a plane quadrangulation with n vertices so that each inner vertex is adjacent to at
most 4 edges. The mixing time of M2T on 2-orientations of Q satisfies τmix ∈ O(n5).

The proof of Theorem 2 is based on the path coupling theorem of Dyer and Greenhill [DG98]. Before
stating a simple version of the Dyer–Greenhill Theorem we need a definition. A coupling for a Markov
chain M on a state space Ω is a pair (Xt, Yt) of processes satisfying two conditions:

● Each of (Xt) and (Yt) represents M , i.e., Pr(Zt+1 = j∣Zt = i) =Mi,j , for Z ∈ {X,Y } and all t.

● If Xt = Yt then Xt+1 = Yt+1.

Theorem 3 (Dyer–Greenhill) Let M be a Markov chain with state space Ω. If there is a graph GM with
vertex set Ω and a coupling (Xt, Yt) of M such that with the graph distance d ∶ Ω ×Ω→ N based on GM
we have:

E[d(Xt+1, Yt+1)] ≤ d(Xt, Yt) and Pr(d(Xt+1, Yt+1) ≠ d(Xt, Yt)) ≥ ρ
then τmix(M) ≤ 2⌈e/ρ⌉diam(GM)2.

The coupling of M2T used for the proof of Theorem 2 is the trivial one, i.e., we run chains Xt and Yt
with the same choices of f and p in each step.

The graph G will be the transition graph ofM2, i.e, the distance between 2-orientations X⃗ and Y⃗ equals
the number of four-cycles that have to be reversed to get from X⃗ to Y⃗ .

Lemma 6 The maximum potential p̂max = maxf p̂(f) of an essential cycle is less than n.

Proof. Let Q be the quadrangulation whose 2-orientations are in question. It is convenient to replace Q
by Q# so that essential cycles are just faces. Recall that p̂ of the outer face is 0 and ∣p̂(f) − p̂(f ′)∣ ≤ 1 for
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any two adjacent faces (Fact B). Since a quadrangulation has n − 2 faces we obtain (n − 3) as an upper
bound for p̂max.

Lemma 7 The diameter of G is at most n2/2.

Proof. The height of the lattice Lα(Q#) is the length of a maximal flip sequence, i.e., ∑f p̂(f). Using
(Fact B) as in the proof of the previous lemma we find that∑f p̂(f) ≤ 0+1+ . . .+(n−3). This is < n2/2.

In the diagram of a distributive lattice the diameter is attained by the distance between the zero and the
one, i.e., between the global minimum and the global maximum. This distance is exactly the height of the
lattice. Since G is the cover graph (undirected diagram) of the distributive lattice Lα(Q) we obtain that
the diameter of G is at most n2/2.

3.2.1 Finding an appropriate ρ

Fig. 5: A quadrangulation Q with
a 2-orientation Q⃗. The 2-orientation
Q⃗′ obtained by reverting the blue cycle
has the same oriented faces. Hence, all
face reversals preserve the distance.

To get a reasonable ρ the following argument is tempting and was
actually used in [FR04] and [MRST12]: For given X⃗ and Y⃗ there
is always at least one essential cycle f whose reversal in X⃗ reduces
the distance to Y⃗ . If (Xt, Yt) = (X,Y ) and this cycle f is chosen
byM2T , then with probability 1/2 the distance is reduced. There are
at most n − 3 essential cycles. Hence we may set ρ = 1/(2n).

Indeed for up-down Markov chains on distributive such a state-
ment holds. If I and J are down-sets of the poset P , then there
is an x ∈ P whose addition to or removal from I decreases the
distance to J . In the context of α-orientations, however, an f
whose reversal in X⃗ reduces the distance to Y⃗ may be oriented
in Y⃗ with the same orientation as in X⃗ . In that case if f is cho-
sen by M2T the reversal of f is applied to both or to none Figure 5
shows that there are cases where a pairs (Xt, Yt) exists such that
Pr(d(Xt+1, Yt+1) ≠ d(Xt, Yt)) = 0.

To overcome this problem we now define the slow tower Markov
chain MS2T . slow tower Markov chain

If MS2T is in state X⃗ then it performs the transition to the next step as follows: an essential four-cycle
f , a value i with 0 ≤ i < n and a p ∈ [0,1] are each chosen uniformly at random. If f is not at potential
level i in X⃗ , then nothing is done and X⃗ is the new state.

Otherwise, if there is a tower Tf of length k starting with f then revert ∂Tf if

● ∂Tf is clockwise and either k = 1 and p ≤ 1/2 or k > 1 and p ≤ 1/(4k),

● ∂Tf is counterclockwise and either k = 1 and p > 1/2 or k > 1 and p ≥ 1 − 1/(4k).

In all other cases the new state is again X⃗ .

Lemma 8 If (Xt, Yt) is a trivial coupling of the slow chain MS2T , then

Pr(d(Xt+1, Yt+1) ≠ d(Xt, Yt)) ≥ 1/(2n2).



12 Stefan Felsner, Daniel Heldt

Proof. For given X⃗ and Y⃗ there is always at least one essential cycle f1 whose reversal in X⃗ reduces
the distance to Y⃗ . If f1 appears in X⃗ and Y⃗ with the same orientation then the potential level of f1 in X⃗
and Y⃗ is different. Hence, if for the step of MS2T the triple (f, i, p) is chosen such that f = f1 and i is
the potential level of f in X⃗ and p is such that f is actually reversed, then the distance decreases.

The probability for choosing f is at least 1/n. For i and p the probabilities are 1/n and 1/2 respectively.
Together this yields the claimed bound.

3.2.2 Completing the proof of Theorem 2
In Lemma 9 we show that if (X⃗, Y⃗ ) is an edge of G and (X⃗+, Y⃗ +) is the pair obtained after a single
coupled step of the tower chain M2T , then E[d(X⃗+, Y⃗ +) − d(X⃗, Y⃗ )] ≤ 0. Note that a step of the coupled
slow chainMS2T moves the pair (X⃗, Y⃗ ) to (X⃗+, Y⃗ +) with probability 1/n and otherwise stays at (X⃗, Y⃗ ).
Hence Lemma 9 also applies to MS2T .

Assuming Lemma 9 we get the following:

Proposition 1 Let Q be a plane quadrangulation with n vertices so that each inner vertex is adjacent to
at most 4 edges. The mixing time of MS2T on 2-orientations of Q satisfies τmix(MS2T ) ∈ O(n6)
Proof. For the condition E[d(Xt+1, Yt+1)] ≤ d(Xt, Yt) needed for the application of Theorem 3 we need
Lemma 9. The inequality from the lemma is also true for MS2T because this behaves like a slowed down
version of M2T . Linearity of expectation allows to transfer the inequality from single edges to paths.

An application of Theorem 3 with parameters ρ = 1
2n2 (Lemma 8) and diam(G) ≤ n2/2 (Lemma 7)

yields τmix(MS2T ) ≤ en6.

The mixing time of the slow chain could thus be proven with a coupling that allows an application of
the theorem of Dyer and Greenhill. Now consider a single state X⃗t evolving according to the slow chain
MS2T . Note that this is exactly as if we would run the tower chain M2T but only allow a transition to be
conducted if an additional uniform random variable q ∈ {0, . . . , n − 1} takes the value q = 0. It follows
that the mixing times of MS2T and of M2T deviate by a factor of n. Therefore, τmix(M2T ) ≤ en5.

To complete the proof of Theorem 2 it remains to prove Lemma 9.

Lemma 9 If (X⃗, Y⃗ ) is an edge of G and (X⃗+, Y⃗ +) is the pair obtained after a single coupled step
of M2T , then E[d(X⃗+, Y⃗ +) − d(X⃗, Y⃗ )] ≤ 0.

Proof. Since (X⃗, Y⃗ ) is an edge of G they differ in the orientation of exactly one face f̂ . We assume
w.l.o.g that f̂ is oriented clockwise in X⃗ and counterclockwise in Y⃗ .

Let f be the face chosen for the step of M2T . Depending on f we analyze d(X⃗+, Y⃗ +) in three cases.
A. If f = f̂ , then depending on the value of p face f is reversed either in X⃗ or in Y⃗ . After the step the
orientations X⃗+, Y⃗ + coincide. The expected change of distance in this case is −1.
B. If f and f̂ share an edge and f ≠ f̂ there are three options depending on the type of f in Y⃗ .

1. Face f is oriented in Y⃗ , necessarily clockwise. It follows that in X⃗ face f starts the clockwise tower
(f, f̂) of length two. In Y⃗ a face f is a clockwise tower of length 1. If p ≤ 1/8 both towers are reversed
so that X⃗+ and Y⃗ + coincide. If 1/8 < p ≤ 1/2, then f is reversed in Y⃗ while X⃗+ = X⃗ , in this case the
distance increases by 1. If p > 1/2 both orientations remain unchanged. The expected change of distance
in this case is 1

8
⋅ (−1) + ( 1

2
− 1

8
) ⋅ (+1) + 1

2
⋅ 0 = 1

4
.
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2. Face f is scrambled in Y⃗ . In this case f is blocked in X⃗ and it may start a tower of length k. If
p ≤ 1/(4k) this tower is reverted which results in a increase of distance by k. In all other cases the distance
remains unchanged. Hence, the expected change of distance in this case is ≤ 1/4.

3. Face f is blocked in Y⃗ . Then it is either oriented or scrambled in X⃗ . After changing the role of X⃗
and Y⃗ we can use the analysis of the other two cases to conclude that the expected change of distance is
again ≤ 1/4.
C. Finally, suppose that f and f̂ have no edge in common.

1. If f starts a tower in X⃗ which has no edge in common with f̂ , then f starts the very same tower in Y⃗
and the coupled chain will either revert both towers or none of them. The distance remains unchanged.

2. Now let f start a tower T = (f1, . . . , fk) in X⃗ which has an edge in common with f̂ . The case
where f̂ and f1 = f share an edge was considered in B. Now Lemma 5 implies that either f̂ = fk or
f̂ ≠ fk and the shared edge is such that (f1, . . . , fk, f̂) is a tower in Y⃗ . Hence, with T there is a tower T ′

in Y⃗ that starts in f and has length k ± 1, moreover T and T ′ have the same orientation. Let ` be the
larger of the lengths of T and T ′. With a probability of 1/(4`) both towers are reversed and the distance
decreases by 1. With a probability of 1/(4(` − 1)) − 1/(4`) only the shorter of the two towers is reversed
and the distance increases by ` − 1. With the remaining probability both orientations remain unchanged.
The expected change of distance in this case is 1

4`
⋅ (−1) + ( 1

4(`−1)
− 1

4`
) ⋅ (` − 1) = 0.

Let m be the number of essential four-cycles, i.e., the number of options for f . Combining the values
for the change of distance in cases A, B, C and the probability of these cases we obtain:

E[d(X⃗+, Y⃗ +) − d(X⃗, Y⃗ )] ≤ 1

m
(−1) + 4

m
(1/4) + m − 5

m
0 = 0.

3.3 Comparison of M2T and M2

The comparison of the mixing times of M2T and M2 is based on a technique developed by Diaconis and
Saloff-Coste [DSC93]. We will use Theorem 4 a variant due to Randall and Tetali [RT97].

Let M and M̃ be two reversible Markov chains on the same state space Ω such that M and M̃ have the
same stationary distribution π. WithE(M) we denote the edges of the directed transition graph ofM , i.e,
(x, y) ∈ E(M) whenever M(x, y) > 0. Define E(M̃) alike. For each (x, y) ∈ E(M̃) define a canonical
path γxy as a sequence x = v0, v1, . . . , vk = y of transitions of M , i.e. (vi, vi+1) ∈ E(M) for all i. Let
∣γxy ∣ be the length of γxy and for (x, y) ∈ E(M) let Γ(x, y) ∶= {(u, v) ∈ E(M̃) ∶ (x, y) ∈ γuv}. Further
let

A ∶= max
(x,y)∈E(M)

⎧⎪⎪⎨⎪⎪⎩

1

π(x)M(x, y) ∑
(u,v)∈Γ(x,y)

∣γuv ∣π(u)M̃(u, v)
⎫⎪⎪⎬⎪⎪⎭

and let π⋆ ∶= minx∈Ω π(x).

Theorem 4 (Randall–Tetali) In the above setting τmix(M) ≤ 4 log(4/π⋆) A τmix(M̃).

We are going to apply this theorem with M = M2 and M̃ = M2T . Both chains are symmetric, hence
reversible, and have the uniform distribution π as stationary distribution.

The definition of the canonical paths comes quite natural. A transition (U⃗ , V⃗ ) of M2T corresponds to
the reversal of ∂T for some tower T of U⃗ . Suppose that T = (f1, . . . , fk) and recall that the effect of
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reverting ∂T can also be obtained by reverting fk, fk−1, . . . , f1 in this order. Reverting them one by one
yields a path in E(M), this path is chosen to be γU⃗V⃗ .

If ∣γU⃗V⃗ ∣ = k, i.e., the transition (U⃗ , V⃗ ) corresponds to a tower of length k, then M2T (U⃗ , V⃗ ) = 1/(4k),
hence, ∣γU⃗V⃗ ∣M2T (U⃗ , V⃗ ) = 1/4. Also π is constant so that π(U⃗)/π(X⃗) = 1. For an upper bound on A
we therefore only have to estimate the number of tower moves that have a canonical path that contains the
face flip at f that moves X⃗ to Y⃗ . If T = (f1, . . . , fk) is such a tower with f = fi, then (f1, . . . , fi−1, f)
is a tower in X⃗ and (fk, . . . , fi+1, f) is a tower in Y⃗ . Since a tower is defined by its initial face each
of X⃗ and Y⃗ has at most n towers, all the more each has at most n towers ending in f . This shows
∣Γ(X⃗, Y⃗ )∣ ≤ n2 and A ≤ n2/4.

It remains to find π⋆ = 1
∣Ω∣

. Since a quadrangulation has 2n−4 edges it has at most 22n orientations this
would suffice for our purposes. However, a better upper bound of 1.9n for the number of 2-orientations
was obtained in [FZ08].

Given the above ingredients for the comparison theorem and the mixing time of τmix(M2T ) ∈ O(n5)
from Theorem 2 we finally have shown rapid mixing for M2 on certain quadrangulations.

Theorem 5 Let Q be a plane quadrangulation with n vertices so that each inner vertex is adjacent to
at most 4 edges. The mixing time of the face reversal Markov chain M2 on 2-orientations of Q satisfies
τmix(M2) ∈ O(n8).

4 Slow mixing for 3-orientations
A triangulation is a plane graphs whose faces are uniformly of degree 3. Equivalently triangulations are triangulation

maximal plane graphs.
A 3-orientation of a triangulation T is an orientation of the internal edges, i.e., of the edges except the 3-orientation

three edges of the outer face, such that outdeg(v) = 3 for all inner vertices v. Since a triangulation with
n vertices has 3n − 9 inner edges it follows that the three outer vertices are sinks.

A Schnyder wood of T is an orientation and coloring of the edges of T with colors red, green, and blue Schnyder wood

such that two conditions hold:

(1) If the vertices of the outer face are colored red, green and blue in clockwise order, then all inner
edges incident to a vertex s of the outer face are oriented towards s and colored in the color of s.

(2) Every inner vertex v has three outgoing edges colored red, green, and blue in clockwise order. In-
coming edges in the sector between two outgoing edges are colored in the third color (see Figure 2).

Fig. 6: The two conditions for Schnyder woods.

Schnyder woods were introduced by Schnyder in [Sch89]. We refer to [dFOdM01, PS06, Fel04a, ABF+13]
and the references given there for properties, applications and generalizations of Schnyder woods. Rele-
vant to us is the following fact, see [dFOdM01]:
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Fact 3. The forget function that associates a 3-orientation with a Schnyder wood is a bijection between
the set of 3-orientations and the set of Schnyder woods of a triangulation.

From the correspondence between Schnyder woods and 3-orientations it follows that the triangle flip
Markov chain can be used to sample from either of these structures. The mixing time of this Markov
chain was studied by Creed [Cre09] for certain subgraphs of the triangular grid and then By Miracle et
al. [MRST16] for general triangulations. Here we want to revisit the following negative result.

Theorem 6 (Miracle–Randall–Streib–Tetali) There is a triangulation T ′n with 4n + 1 vertices with
maximum degree 2n + 3 such that the triangle flip Markov chain M3 on 3-orientations of T ′n has τmix >
1
16

2n/4.

With Theorem 7 we prove a similar result with a larger exponential bound on τmix. Moreover, Tn is
simpler than T ′n. This carries over to the simplicity of the proof. In fact the proof is very similar to the
proof for Theorem 1. Below, in Proposition 2 we modify Tn to show that slow mixing of the triangle flip
chain M3 can also be observed for triangulations with maximum degree in the order of

√
n.

Theorem 7 Let Tn be the triangulation on 3n+4 vertices with maximum degree 2n+3 shown in Figure 7.
The triangle flip Markov chain M3 on 3-orientations of Tn has τmix > (2 +

√
3)n−2 ≈ 3.732n−2.
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Fig. 7: The triangulation Tn with a Schnyder wood.

Proof. Let Ω be the set of Schnyder woods of Tn. We define a hour glass partition ΩL,Ωc,ΩR of this set.
The edges (x0, ag) and (x0, ab) are rigid, the red out-edge (x0, z) of x0 is called left if z ∈ {v1, . . . , vn},
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it is right if z ∈ {w1, . . . ,wn} and it is central if z = x1. Now ΩL,Ωc,ΩR are the sets Schnyder woods
where the red edge of x0 is left, central, and right respectively. With the next claim we show that this is a
hour glass partition.
Claim 1. If S1 ∈ ΩL and S2 ∈ ΩR, the M2(S1, S2) = 0.

If S → S′ is a step ofM3 which changes the red out-edge e⃗ of x0, then the step corresponds to the reversal
of a triangle containing e⃗. There is no triangle in Tn with vertices {x0, vi,wj} for i, j ∈ [n]. Hence, if
S ∈ ΩL, then S′ ∈ ΩL ∪Ωc. △
Claim 2. ∣Ωc∣ = 1 and Figure 7 shows the unique Schnyder wood of this set.

Consider S ∈ Ωc. From (x0, x1) ∈ S we conclude that {v1, x2,w1} are the out-neighbors of x1. From
the degrees it follows that all the edges between {v1, x2,w1} and {v2, x3,w2} are oriented upward in S.
Inductively we find that all the edges between {vi−1, xi,wi−1} and {vi, xi+1,wi} are oriented upward
in S. Since the edges (vi, x0) and (wi, x0) are in S anyway it follows that the orientation of all edges is
fixed when (x0, x1) is fixed. The bijection between 3-orientations and Schnyder woods then yields that
the Schnyder wood shown in Figure 7 is the unique element of Ωc. △
Claim 3. ∣ΩL∣ = ∣ΩR∣ > (2 +

√
3)n−1.

From the symmetry of Tn we easily get that ∣ΩL∣ = ∣ΩR∣. Now let Pk be the set of directed path from x0

to vk in the orientation S from Figure 7. If p ∈ Pk then (vk, x0) together with p forms a directed cycle
in S. Reverting this cycle yields a 3-orientation that contains the edge (x0, vk). This 3-orientation belongs
to ΩL. Different paths in Pk yield different orientations. Therefore, ∣ΩL∣ ≥ ∑k ∣Pk ∣ (in fact equality holds).

It remains to evaluate gk = ∣Pk ∣. To do so let hk be the number of directed paths from x0 to xk. Clearly,
hk+1 = hk + 2gk and gk+1 = hk+1 + gk with initial conditions h1 = g1 = 1. Standard techniques for solving
linear recurrences yield

gk =
1

2
√

3
((2 +

√
3)k − (2 −

√
3)k) > (2 +

√
3)k−1.

The claim now follows from ∣ΩL∣ > ∣Pk ∣ = gn > (2 +
√

3)n−1. △
The three claims together with Lemma 1 yield ΦM3(Tn)

≤ 1/(2 +
√

3)n−1. Which implies the theorem
via Fact T.

4.1 Slow mixing for 3-orientations with sub-linear maximum degree
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Fig. 8: The gadget replacing
{xi, xi+1} in Tn(m).

As announced we now modify Tn to prove slow mixing for Schnyder
woods of triangulations with a sub-linear maximum degree. For a
given m ∈ N the triangulation Tn(m) is constructed by replacing
each edge {xi, xi+1} with i ≥ 1 by a path xi, yi,1, . . . , yi,m, xi+1.
Each vertex yi,j is also made adjacent to to vi and wi, see Figure 8.
The resulting triangulation Tn(m) has 3n + 4 + (n − 1)m vertices
and its maximum degree is max{2n + 3,m + 5}.

The definition of ΩL,Ωc,ΩR for Tn(m) is the same as for Tn.
This is again a hour glass partition, i.e., there is no direct transition
between ΩL and ΩR. Replacing the red edges (xi, xi+1) in Figure 7
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by the colored gadget of Figure 8 yields the unique Schnyder wood S of Ωc. To estimate ∣ΩL∣ we again
look at the set Pn of directed paths from x0 to xn in S. Since there are 2m + 3 directed path from xi to
xi+1 we get ∣Pn∣ > (2m + 3)n−1. From ∣ΩL∣ > (2m)n−1 we obtain:

Proposition 2 Let Tn(2n) be the above triangulation on 2n2 + n + 4 vertices with maximum degree
2n + 5. The triangle flip Markov chain M3 on 3-orientations of the triangulation Tn(n) has τmix >
2(n−1) log(4n)−2.

4.2 Slow mixing for α-orientations with constant degree
In [MRST16] and in this paper there are proofs for rapid mixing of the face flip Markov chain for α-
orientations on graphs with small constant maximum degree and negative results in the sense of slow
mixing of these Markov chains for graphs with large maximum degree. Could it be that the face flip
Markov chain for α-orientations is rapidly mixing for all graphs of small maximum degree? In this
subsection we show that this is not the case.

Our example family Gk is obtained from T3k−2. In T3k−2 remove all edges incident to x0 except
those connecting to ag and ab. Let Hk be a patch taken from the triangular grid whose boundary is a
regular hexagon with side length k, i.e., each side has k + 1 vertices, and in total Hk has 3(k2 + k) + 1
vertices. Now identify two opposite corners of Hk with the vertices x0 and x1 of T3k−2. Label the
vertices on the left boundary of Hk as v′0 = x1, v

′

1, . . . , v
′

3k−4, v
′

3k−3 = x0 and on the right boundary as
w′

0 = x1,w
′

1, . . . ,w
′

3k−4,w
′

3k−3 = x0. Add the missing edges to make vi, v′i, v
′

i+1 andwi,w′

i,w
′

i+1 triangles
for i = 1, . . .3k − 2. Finally add the edges from v′3k−1 to ab and from w′

3k−1 to ag . Figure 9 shows the
result of the construction for k = 3.

The graph Gk has 3(k2 + 4k − 1) vertices, the degrees are between 4 and 6. Let α be the function
shown on the right part of Figure 9, the values taken by α range from 0 to 5. A key property of α is that
except from the rigid edges which connect to ag and ab there is exactly one out-edge of Hk, i.e., one edge
directed from a vertex of Hk to a vertex outside of Hk.

Let Ω denote the set of α-orientation of Gk We define a hour glass partition ΩL,Ωc,ΩR of this set. Let
(y, z) be the unique non-rigid out-edge of Hk. The edge (y, z) is called left if z ∈ {v1, . . . , vn}, it is right
if z ∈ {w1, . . . ,wn} and it is central if z = x1. Now ΩL,Ωc,ΩR are the α-orientations where the edge
(y, z) is left, central, and right respectively.

It is clear that there is no transition between elements of ΩL and ΩR, i.e., the partition has the hour
glass property. The set Ωc has precisely one element, this is the orientation shown in Figure 9. The size
of ΩL is at least as large as the size of the set for T3k−2 which has been shown to be > 3.733k−4. With the
implied bound on the conductance and Fact T we obtain our last theorem.

Theorem 8 The triangulation Gk on 3(k2 + 4k − 1) vertices with maximum degree 6 and the function α
shown in Figure 9 have a slow mixing face flip Markov chain Mα, more precisely τmix(Mα) > 3.733(k−2).
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[Cre09] Páidı́ J. Creed. Sampling Eulerian orientations of triangular lattice graphs. J. of Discr. Alg., 7:168–180,
2009.

[dFOdM01] Hubert de Fraysseix and Patrice Ossona de Mendez. On topological aspects of orientations. Discr.
Math., 229:57–72, 2001.

[DG98] Martin Dyer and Catharine Greenhill. A more rapidly mixing Markov chain for graph colourings. Rand.
Struct. and Alg., 13:285–317, 1998.

[DSC93] Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible Markov chains. An. of
Appl. Prob., 3:696–730, 1993.

[Fel04a] S. Felsner. Geometric Graphs and Arrangements. Vieweg Verlag, 2004.

[Fel04b] Stefan Felsner. Lattice structures from planar graphs. Electr. J. Combin., 11(1):24p., 2004.



Markov Chains on Degree Constrained Orientations 19
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