arXiv:2312.03092v4 [math.COJ] 4 Jul 2024

Coloring Groups

Ben Adenbaum’ Alexander Wilson?

1 Department of Mathematics, Dartmouth College, Hanover, NH, USA
2 Department of Mathematics, Oberlin College, Oberlin, OH, USA

revisions 28" Dec. 2023; accepted 7" May 2024.

We introduce coloring groups, which are permutation groups obtained from a proper edge coloring of a graph. These
groups generalize the generalized toggle groups of Striker (which themselves generalize the toggle groups introduced
by Cameron and Fon-der-Flaass). We present some general results connecting the structure of a coloring group to
the structure of its graph coloring, providing graph-theoretic characterizations of the centralizer and primitivity of a
coloring group. We apply these results particularly to generalized toggle groups arising from trees as well as coloring
groups arising from the independence posets introduced by Thomas and Williams.
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1 Introduction

Cameron and Fon-der-Flaass in [-'_2] first introduced toggle groups on order ideals in order to study the
map now known as rowmotion (the name “toggle group” was introduced later in [Q:]). Given a poset P,
each element p € P has a corresponding permutation 7, (called a toggle) of the order ideals 7 (P) of P
which acts in the following way, toggling the element p as long as the result is still an order ideal.

Tu{p} ifp¢landIU{p}e J(P)
() = I\{p} ifpelandl\ {p}c J(P)
I otherwise

To understand properties of rowmotion and associated operations—in particular their order—Striker
introduced generalized toggle groups [g] where the order ideals of a poset are replaced with an arbitrary
set of allowable subsets and the poset is replaced by just a finite set.

Definition 1.1 (Toggle Group ['§:]). Let E be a finite set, and let L be any subset of the power set 2. For
each e € I, the toggle 7. is defined as follows:
XU{e} ife¢ Xand X U{e} el
Te(X)=q¢ X \{e} ifeeXandX\{e}elL
X otherwise

The set {7.|e € E} are the set of toggles. Let T'(L) be the subgroup of Sy, generated by the toggles.
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2 Ben Adenbaum and Alexander Wilson
Example 1.2. Let £ = [4] and L = {0, {1}, {1,2}, {1,2,3},{1,2.3,4}, {4}, {34}, {2,3,4}}
e 7= (0,{1})({2.3,4},{1,2,3,4}
« 2= ({1} {1,2H)({3,4},{2,3,4}
« 3= ({1,2},{1,2,3})({4},{3,4}
e« 7= (0,{4})({1,2,3},{1,2,3,4}

In this case T, = Sy x (C3)3

The idea of order ideal toggling has been generalized from the purely combinatorial perspective to the
piece-wise linear and birational realms in [3] and ['6, 5] respectively. These groups were studied in-depth
by Striker in [;_g] when arising from some families of combinatorial and geometric objects. More recently,
by Bloom and Saracino in [:1,'], they have been considered with respect to their group theoretic properties
such as primitivity.

To all generalized toggle groups, there is a natural partial order called the roggle poset which we denote
by Pr,.. The cover relations in this poset are given by X < Y if X C Y and there exists some e € I such
that 7.(X) =Y, and |Y| — | X| = 1. Importantly, each edge of the Hasse diagram is naturally labeled by
the element toggled in for the cover.

)
)
)
)

Example 1.3. The toggle poset of the generalized toggle group of Example :_1-_2
{1,2,3,4}

47 N

{1,2,3} {2,3,4}

3| |2
{1,2} {3,4}
2| 13
{1} {4}
Ny

In this paper, we take inspiration from this edge labeling of the Hasse diagram to introduce coloring
groups, which arise from proper edge colorings of finite graphs. Coloring groups encompass all finite
groups generated by involutions (in particular the generalized toggle groups). Because our interest lies in
understanding combinatorial objects with natural involution structure (e.g. toggle groups, or quivers up
to mutation), we want to understand how the structure of the graphs and their edge colorings control the
structure of the corresponding coloring group.

The paper is organized as follows:

* In Section gwe define coloring groups and characterize which permutation groups arise as coloring
groups.

* In Section 3 we prove general tools for working with coloring groups as well as more specialized
tools in the case that the underlying graph G is a tree.
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e In Section:f.' we study generalized toggle groups arising from trees as well as coloring groups arising
in the study of independence posets.

* In Appendix }_&: we provide some constructions of the groups S, A,, D,,, and the type-B coxeter
group B,, as coloring groups.

* Finally, in Appendix :E‘I we provide data on the coloring groups arising from trees of order at most
12.

2 Preliminaries and Definitions

In this paper, a graph of order n will be a simple undirected graph on n vertices unless otherwise specified.
Given a graph G, a proper edge coloring of G on k colors is a surjective map « : F(G) — [k] such that
for any two incident edges e; and ey, we have that x(e;) # k(e2). We define the coloring group &,
corresponding to « as the subgroup of Sy () = S, generated by the involutions

= JI G.3) (1)
{i,j}€E(G)
w({i,j})=a

for a € [k]. Note that because the edge coloring is proper, the product can be taken in any order, and 7,
simply swaps the vertices on either end of each edge colored a.

Example 2.1. The following graph is shown with a proper edge coloring « : F(G) — [3] where the

colors 1, 2, and 3 of the edges are represented by blue, ,and respectively.
4 5
1 2 3
67

6. =((2,3)(4,5), , ) = GL(3,2).

As a subgroup of S,,, the group &, is an example of a permutation group of degree n. Cayley’s theorem
tells us that every finite group is isomorphic to a permutation group, but coloring groups are in a smaller
class of groups which are generated by involutions. Theorem 2:2 shows that the class of coloring groups
is in fact precisely the class of finite groups generated by involutions.

Theorem 2.2. Let & be a finite group generated by involutions. Then there is a connected graph G with
proper edge coloring K such that &,, is isomorphic to &.

Proof: Suppose that & = (g1, ..., gr) with each g; an involution. Let G be the Cayley graph of &. If
{a,b} € E(G) then b = ag; for a unique generator g;, so define x({a,b}) = i. As the generators are
involutions, this edge coloring is proper. Let &, be the corresponding coloring group. We claim that
&, = &. To see why, consider & as as a subgroup of Sy (). Note that each g; corresponds to the product
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of the disjoint transpositions (a, b) such that b = ag;, so & is the group generated by these involutions.
For each ¢ under this identification, g; is exactly 7;, so the groups are equal as permutation groups. O

This is a very large class of groups, and the graphs obtained in the proof of Theorem 2-_2 have as many
vertices as the group ® has elements. We thus restrict ourselves to situations where the graph G and its
proper edge coloring x have nice structure. Of particular interest will be the symmetry of this coloring,
captured in the following definition.

Definition 2.3. For a proper edge coloring (G, k), the group Aut, (G) consists of all permutations o €
Sv () so that {4, j} is an edge of G colored a under & if and only if {o(i), o(j)} is an edge of G colored
a under &.

Lemma 2.4. For a proper edge coloring (G, k), if o € Aut,(G) fixes a vertex v, it fixes every neighbor
of v.

Proof: Suppose o € Aut,(G) fixes v and w is a neighbor of v connected by an edge colored a. Then
{v,o(w)} must be an edge colored a. Because « is a proper edge coloring, the only edge incident to v
colored a is the edge {v, w}. Hence o(w) = w. O

A permutuation group & of degree n acts naturally on the set partitions of [n]. If & fixes any nontrivial
set partition 7 (i.e. one not consisting of a single block or all singletons), then we say that & is imprimitive
with 7 being a system of imprimitivity. Otherwise, we say that & is primitive.

3 Tools for Analyzing Coloring Groups

We begin with some results that can be applied to any coloring group. The following theorem characterizes
the centralizer of a coloring group.

Theorem 3.1. For proper edge coloring (G, k), the centralizer Cs,, ., (&) of the corresponding coloring
group in the symmetric group is isomorphic to Aut,(QG).

Proof: Let o € Cs,, ., (®) and suppose that {4, j} is an edge colored a. Then (7, j) is a transposition in
T,. Because o commutes with 7,
0T0 =7,
Then (o(i),0(4)) is also a transposition in 7, and hence {c (i), o(j)} is an edge of G colored a under k.
Hence, 0 € Aut,(G).
Suppose conversely that o € Aut,;(G). Then for each color, o induces a permutation o’ of the edges
of that color. Fixing a color a, let {i1,j1}, ..., {im, jm | be the edges of that color. Then
0120t = (0(i1),0(j1)) - - (0 (im), o (jm))
= (io/(1)s Jo' (1)) - - - (lo? (m)s Jo' (m))

= Tq

where the final equality follows from the fact that s is a proper edge coloring, so these transpositions
commute pairwise. Because o commutes with each generator of &,;, we have that o € CSV(G) (6,) O
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Corollary 3.2. For a proper edge coloring (G, k),
B, C Csy (¢, (Aut,(G)).

In particular, a necessary condition for &, = Sy (¢ is that Aut . (G) is trivial.

The following definition and lemma provide a graph-theoretic characterization of when a coloring group
is primitive via vertex colorings.

Definition 3.3. For a proper edge coloring (G, ), consider a vertex coloring of v : V(G) — [¢]. The
coloring v is called imprimitive if the following two statements hold:

(i) If an edge colored b connects a vertex colored a to a vertex colored ¢ with a # c¢, then every vertex
colored a is connected to a vertex colored c by an edge colored b.

(ii) At least one color appears strictly more than one time and strictly less than |G| times.

Example 3.4. The following edge coloring of the path graph P;5 has an imprimitive vertex coloring.

o /
N

Example 3.5. The following proper edge coloring has an imprimitive vertex coloring where the vertices
are partitioned into the three sets of four vertices which are on the same line.

/ N\

Lemma 3.6. For a proper edge coloring (G, k), the group &, is imprimitive if and only if there exists an
imprimitive vertex coloring of G with respect to the edge coloring k.

Proof: Given an imprimitive vertex coloring, the set partition obtained by putting two vertex labels in
the same set if and only if the vertices are colored with the same color is a system of imprimitivity.
Conversely, a system of imprimitivity prescribes the distribution of vertex colors for an imprimitive vertex
coloring. o

When considering toggle groups, one of the motivating questions has been whether elements that mimic
coxeter elements, i.e. products of the generating involutions in some prescribed order, have a predictable
order. When we restrict to the case of forests, we get the following.



6 Ben Adenbaum and Alexander Wilson

Lemma 3.7. Suppose G is a disjoint union of { trees with orders given by \y > Ay > -+ > Ap. Then for
any proper edge coloring k : E(G) — [k|, the product of all the corresponding generators

T1...TE € B,
in any order has cycle type \.

Proof: It suffices to show that in the case that GG is a tree of order n, the product of all the transpositions
corresponding to edges in G in any order is an n-cycle. The following proof is based on an argument by
Darij Grinberg communicated in a comment on Math Stack Exchange.(_ﬁl.

We proceed by induction on the order of G. Let 1y, ...,7,_1 be the transpositions corresponding to
the n — 1 edges of GG in any order. By conjugating by a transposition on one end of this sequence, we
can cyclically permute the sequence without changing the cycle structure of the product. Without loss of
generality, assume we have cyclically permuted the transpositions so that the transposition 7, appearing
first corresponds to an edge incident to a leaf labeled z. By the inductive hypothesis, 7573 - - - 7,1 is an
n— l-cycleon {1,...,n}\ {z}. Hence, 1172 ... 7,1 is an n-cycleon {1,...,n}. O

In particular when G is a tree of order n any such element is an n-cycle, which will be essential for
Theorem S_Ql and its consequences.

Lemma 3.8. If (G, k) is a proper edge-coloring of a tree with n vertices that uses at least 3 colors,

2
6] > ———
n —p(n)

where @(n) is the Euler totient function.

Proof: Note that if o7 and o9 are distinct long cycles in S;, which generate the same subgroup, then
01 = 09" for some 1 < r < n. Then because o2° has a fixed point if and only if n|s,

o1(a) = 03" (a) = 02"~ (02(a)) # 02(a).

Without loss of generality, suppose that GG has a leaf labeled 1 incident to an edge colored 1. Then any
long cycle of the form

g = 7'17'1‘1 ...Tik71

has the property that o(1) = 71(1). Because there are at least three colors there must be at least two
colors that don’t commute with each other. Hence, there are at least two long-cycles o1 and o9 of this
form. Because 01(1) = 02(1), they must generate distinct subgroups. Then &, has a subset (o1)(o2)

with order (o] - {o9)]
01)| - |{02
[(o1)(o2)| = =7
[{o1) N {2)|
Note that because 01 and g9 generate distinct subgroups, their intersection can only contain elements of
the form o, where m is not relatively prime to n. Hence |{c1) N {(o2)| < n — ¢(n). O

The following theorem provides a condition for narrowing down the possible primitive coloring groups
that can arise from a graph G.

® https://math.stackex

[ e e i e e

ckexchange.com/questions/2577311/product-of-transpositions-from-edges
—-of-a-tree-is—-a-cycle

e R gl e )

of-length-n
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Theorem 3.9. Let k : E(G) — [k]| be a proper edge coloring of a graph of order n and suppose that
B, is primitive. Suppose that restricting to the edges colored by a subset of { colors (and their incident
vertices) forms a tree T of order m. If n —m > 3, then A,, < &,,. Furthermore, if we assume that { > 2,
then A,, < &, unless one of the following hold (where in each case q is a prime power):

(i) n—m=2n=q+1, PGLy(q) < &, < PT'Ly(q), or
(ii) n —m = 1 and either

(a) n=q% d>1, AGLy(q) < &, < ATLy(q), or
(c) n =24, &, = May, or

(iii) n — m = 0 and either

d
(a) n= qq__ll, (q) £ &, < PI'La(q), or

(b) n =23, &, = Mo

Proof: Much of the heavy-lifting in this proof is done by noting that the existence of such a tree 7'
guarantees a cycle in &,, that fixes n — m points using Lemma 3.’ 7, and then applying f’/! Theorem 1.2].
We need only rule out the following cases:

en—m=1, p>5isprime,n =p+1, &, = PGLy(p) or &, = PSLs(p).

The graph contains a subtree of order p. Because the coloring group corresponding to this tree has
prime degree, it is primitive and so must fall under case (iii) of the theorem. If the coloring group
corresponding to this tree were to contain the alternating group or be Mas, it’s clear that PG La(p)
and PSLs(p) would be too small to contain it. It must then be the case that PGLy(q) < &, <

PGLy(p) where p = qqd:ll for some d > 2. This containment implies that the order of PG Lg4(q)
divides the order of PG Ly(p). That is:

(¢ =1 =1)---(¢" — ¢
qg—1

| p* = p.

We proceed by showing this is impossible.

By applying Cauchy’s bound to the polynomial q(dgz) (¢ —q) — (¢* —1)? and noting its positive
leading coefficient, we obtain the inequality

2 d_12
q(z)_1>(qdi) (2)
9 —q

as long as ¢ > 3,d > 3. From this inequality it is straightforward to derive that |PGL4(q)| >
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|PGLa(p)l:
d 2 o
(qqd_lq) <3
d—2 d-1
< g @ -0
d—1 o
=]l -4
o d—1 ]
<(¢-1*[[@" -
=2

-1 T d_ i
e (O
d—1 .
P <p[[@ -d)
=1
= [PGLa(q)|

Hence, as long as ¢ > 3 and d > 3, we have that |[PGL4(q)| > p® > p® — p = |PGL2(p)| and the
above containment is impossible.

For the case d = 2, the containment implies that

(¢ —1)(¢* —q)
q—1

2

=p(@® —q) | p* —p=pqg—2)q.

This implies that ¢ — 1 | ¢ — 2, which is impossible for ¢ > 1.

The final case is when ¢ = 2 and d > 3. If Inequality :2: does not hold, it is straightforward to show
that d < 8. The only values between 3 and 8 for which 2¢ — 1 is prime are d = 3,5, or 7. When
d = 3, we have that p = 7, so &,, must contain S7 (See Appendix B). For d = 5,7 we have that
|PGLa(q)| > [PGLa(p)-

n—m:l,@,{:Mu

In this case, the graph contains a subtree of order 10. The orders of coloring groups generated on a
tree of order 10 with at least three colors are 200, 240, 25 - 5!, 1202, and 10! (see Appendix B).
An enumeration of the subgroups of M;; shows that it has no subgroups of these orders.

n—m:l, ®,€:M12

The orders of coloring groups on a tree with 11 vertices with at least three colors are 171' or 11! (See
Appendix B). Both of these orders are too large to be contained in M.

n—m= O, 6/{ = PSLQ(ll) or 6,1 = M11~

See the orders given above for coloring groups on a tree with 11 vertices.
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*n—m=0, n=p,aprime, C, < &, < AGL1(p)

Note that |AGL1 (p)| = p(p — 1), but Lemma 3 § tells us that a tree on a prime number of vertices
with at least three colors produces a coloring group of order at least p?.

O

Although we have not ruled out case (iii)b in Theorem 8.9, we have no example of a tree G which
realizes M3 as a coloring group, and we conjecture that no such graph exists. Note that the nonexistence
of such a tree would also rule out case (ii)c.

Lemma 3.10. For (G, k) a proper edge coloring of a tree, Aut,;(G) is either trivial or has order two.

Proof:

If G has a unique center, then every automorphism of G must fix this center. By Lemma 2-_74:, Aut,(G)
is trivial.

Alternatively, if G has two vertices v; and ve of maximum eccentricity, a nontrivial automorphism
 must swap v; and ve. If ¢ were another such automorphism, then ¢ would fix v; and vy, and by
Lemma 2-_4-1:, 1 is the trivial automorphism and ¢ = go’l. Hence, if Aut,(G) is nontrivial, it consists of
a single automorphism of order 2. o

The following theorem characterizes coloring groups on trees by their centralizer using Theorem 3._1:.

I
Theorem 3.11. For (G, k) a proper edge coloring of a tree, either Cs,, ., (8) is trivial, or |G| = 2m is
even and &, is isomorphic to a subgroup of the type B coxeter group B,.

Proof: If Aut,,(G) is nontrivial and e is the edge between the two vertices of G of maximum eccentricity.
The graph G \ {e} is the disjoint union of two trees 77 and T5. The nontrivial element ¢ € Aut,(G)
restricts to an isomorphism between T} and T». Let x1 be the edge coloring of 77 and let s’ be the edge
coloring of G modified so that the edge e has a unique color c. It’s clear that &, is a subgroup of &,..
Let

N={gr.g ' 1 g€ B} U{1} C&,.

Then N is a normal subgroup of &, isomorphic to Co™ where m is the order of 77 and &, = NG, .
Hence, 6, = N x Gy, where G, acts on [N by permutation, meaning &, can be recognized as the
wreath product

6,{/ = OQW@KI
S ngSm
=~ B,,.

Finally, we have that the original coloring group &, C &,.. O
Example 3.12. The following tree has a color-preserving automorphism that reflects the graph horizon-

tally. The labels are taken from {—6,...,—1,1,...,6} to show how the corresponding coloring group
embeds in the group By of signed permutations.
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-6 55— 1 | ——5 6
3 4 4 3
-2/ \2

Finally, we provide a sufficient condition for a coloring group on a tree of order n to be isomorphic to
the symmetric group .S,.

Definition 3.13. Let G be a graph with proper edge coloring k : F(G) — [k]. Let e be an edge such
that all edges incident to e are of distinct colors. We call e a symmetric edge if there exists a subset .S of
[k] containing the colors of all edges incident to e but not containing the color of e such that removing all
edges colored by a color in S leaves a graph with exactly one even component.

Example 3.14. The following edge coloring has a symmetric edge labeled e. Notice that removing the
edges colored blue and orange leave only a single connected component with even order.

e

An edge coloring can also have symmetric edge incident to a leaf. Notice that removing the edges
colored orange as well as those colored blue in the following graph coloring produces a graph with only a
single connected component with even order.

Theorem 3.15. Ler (G, k) be a proper edge coloring of a tree. If G contains a symmetric edge, then
&, = Sy(q)-

Proof: Let e = {i,j} be a symmetric edge in G with corresponding subset of colors S. Let H be the
graph obtained by deleting all edges colored by a color in .S and m the least common multiple of the
orders of odd-sized connected components in H. Let

™ = H Tas
a€k]\S

with the product taken in any order. Then because the edge e is the only even-sized component in o,
Lemma 8.7 says that

" = (i,])-
Let K; and K; be the sets of colors of edges incident to z and j respectively. Let

o1 = H Ta

acKi\{r(e)}

09 = H Ta

aclk]\K;
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with products taken in any order. It’s clear that o4(7) = i, but because K; N K; = {x(e)}, we also
have that o1(j) = j. By Lemma [_3’-._7:, 0 = 01Tx(e)02 is an n-cycle, and by the above observation,
0(i) = 017x(e) (i) = 01(j) = j. The transposition (i, j) and the n-cycle o with o(i) = o(j) generate the
full symmetric group Sy (- O

The symmetric edge condition has allowed us to more efficiently search colorings of trees by weeding
out colorings which we know will give the symmetric group. See Appendix B: for some data on coloring
groups on small trees.

4 Applications
4.1 Generalized Toggle Groups

The following condition for a coloring group on a tree to be isomorphic to a generalized toggle group is
due to Jonathan Bloom.

Definition 4.1. A word w € [k]¢ is called a toggle word if every contiguous subword of w has at least
two distinct letters that occur with odd parity.

Theorem 4.2. Let (G, k) be a proper edge coloring of a tree. A necessary condition for &, to be a
generalized toggle group is that for every path of length greater than one, reading the edge colors along
that path must be a toggle word.

Proof: This follows from the following observation on toggle graphs. Let G = Pp, for some toggle
group T'(L) and suppose that wyws . . . wy is the sequence of elements of the base set corresponding to the
coloring for a walk in G with no consecutive letters. Without loss of generality we can assume no vertices
of G are repeated.

If each distinct label appears an even number of times, then each element element is toggled in and out
an equal number of times so this is a nontrivial closed walk in the graph without consecutive repeated
edges, so the walk must be a cycle.

If exactly one label appears an odd number of times, call it e, then the result of this walk is that e is
either toggled in or out of the initial set .S, as all other labels are toggled in and out an even number of
times. That is, this path ends at 7.(S). Because G arose from a toggle group, there must be an edge
labeled e between S and 7.(S). This single edge constitutes a path distinct from wyws . .. w; between S
and 7.(5), so G must contain a cycle.

As such if G is acyclic and & corresponds to a coloring which arises from a toggle group, then no
nontrivial path of distinct vertices in GG can have fewer than two colors which appear an odd number of
times. (]

Example 4.3. The following edge coloring gives rise to a coloring group isomorphic to a generalized
toggle group. The subsets are the vertex labels.
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{3,4} {3,4,5} {3,5}

(2,3 {1,2,3} {12} {1} 0 {4}

{2,4} {2,4,5}
The path from the vertex labeled {2, 3} to the vertex labeled {3, 5} corresponds to the toggle word
w = 13214354.

Note that in Example :_3-._21:, any path starting in the left-most block of vertices (colored blue) and ending
at the next vertex it encounters in that left-most block must encounter every edge color in-between an
even number of times. The colors on this path will not be a toggle word, so the coloring group in this
example cannot be a generalized toggle group. A similar insight applies generally to trees as stated in the
next theorem.

Theorem 4.4. Let (G, k) be a proper edge coloring of a tree G with order n. > 3. If &, is a generalized
toggle group, then &, is primitive.

Proof: Suppose &,, were not primitive. Then there would be at least two blocks in a system of imprimi-
tivity. Because G is connected, there must be some edge colored a connecting two vertices ¢ and j in the
same block. Furthermore, there must be an edge colored b connecting ¢ to a vertex 4’ in another block. By
the definition of an imprimitive coloring, there must then be an edge also colored b connecting j to some
4’ in the same block as i’. Then the path ¢/, 7, j, 5’ has word aba, which is not a toggle word, contradicting
the assumption that &,, is a generalized toggle group. o

This result also follows from a more general result of Bloom and Saracino [-'_1:, Theorem 4.2], specifically
that an imprimitive toggle group 7'(L) containing a cycle on every element of L will have that L has the
structure of a product of sets, which must contain a cycle. Additionally Theorem @:4 allows us to apply
Theorem :_)’-._Q:(iii) to the particular case of a generalized toggle group presented by an edge coloring of a
path.

Theorem 4.5. Let (G, k) be a proper edge coloring of a path. If ®,; is a generalized toggle group, then
one of the following statements holds:

(i) n= %forg a prime power, d > 2, and PGL(d,q) C &, C PI'L(d, q).
(ii) &,, = Mas, the Mathieu group.
(iii) &, =8,

4.2 Independence Posets

When Cameron and Fon-der-Flaass originally described the toggle group, they were essentially consid-
ering it as a group structure on a distributive lattice. While the generalized toggle group is an extension
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of these order ideal toggles from a group-theoretic perspective to subsets of a finite set, there has his-
torically been considerably more focus on trying to understand generalizations of this family of lattices
from a combinatorial as well as order-theoretic point of view. One particular family that serves as a gen-
eralization is that of trim lattices, first introduced by Thomas in [:l-l_:]. Before we define these lattices,
recall that an element x of a lattice L is left modular if for any y < z € L the following equality holds
yV(eAz)=(yVa)Az.

Definition 4.6 ([:_l-l:]). A lattice is frim if it has a maximal chain of (n 4 1) left modular elements as well
as n join-irreducible elements and n meet irreducible elements.

These lattices were further generalized by Thomas with Williams to a family of posets known as inde-
pendence posets, which contains many posets of combinatorial and geometric interest. Importantly the set
of independence posets which are lattices is precisely the set of trim lattices. As such all of the following
are examples of independence posets, as explained in [:l-%'].

* Distributive lattices

e Tamari Lattices

e Cambrian Lattices

* Fuss-Cambrian Lattices

as well as many more. To be self-contained, we follow the treatment of [:1-2_;] to define these objects, up to
the omission of proofs.

For the remainder of the background on independence posets, let G be a directed acyclic graph. The
associated G-order is the partial order on V(G) where g1 > g2 when there is a directed path from g,
to g2. Recall that an independent set of G is a subset where no two elements are adjacent. To define an
independence poset we first need the following definitions.

Definition 4.7 ([:_fg, Definition 1.2]). A pair (D, U) of independent sets of G is called orthogonal if there
is no edge in G from an element of D to an element of U. An orthogonal pair of independent sets (D, U)
is called right if whenever any element of D is increased (removed and replaced by a larger element with
respect to the G-order), any element of U is decreased, or a new element is added to either D or U, then
the result is no longer an orthogonal pair of independent sets. We abbreviate tight orthogonal pair by top,
and we write top(G) for the set of all tops of G.

It turns out that when G is directed and acyclic then specifying either of U or D gives a bijection to the
independent sets of GG. This result is more formally stated as follows.

Theorem 4.8 (ﬂ_l-gl Theorem 1.2]). Let I be an independent set of a directed acyclic graph G. Then there
exists a unique (I,U) € top(G) and a unique (D, I) € top(G).

To state the last required definition, let £ be a fixed linear extension of the G-order and let £’ be a fixed
dual linear extension of the G-order.

Definition 4.9 ([12, Definition 1.3]). The flip of (D,U) € top(G) at an element g € G is the tight
orthogonal pair flip,(D,U) defined as follows: if g ¢ D and g ¢ U, the flip does nothing. Otherwise,
preserve all elements of D that are not less than g and all elements of U that are not greater than g (and
delete all other elements); after switching the set to which g belongs, then greedily complete D and U to
a tight orthogonal pair in the orders ¢’ and ¢, respectively.
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These flips are gll well defined, and in fact involutions, as shown in [:_1-2:, Lemma 3.2]. One additional
consequence of [:12_;, Lemma 3.2] that we mention now is that if g, h are incomparable elements of a
G-order, then the associated flips commute. All together an independence poset is defined as follows.

Definition 4.10 ([:_1-2:, Definition 1.4]). The independence poset on top(G) is the reflexive and transitive
closure of the relations (D, U) < (D', U’) if there is some g € U such that flip,(D,U) = (D', U").

For full details that this is in fact well defined as a poset, see []_1-2_1, Lemma 3.3]. The flips then naturally
label the edges in the Hasse diagram of top((G) by elements of G. Importantly for us, this is clearly a
proper edge labeling of the Hasse diagram, so one can then ask about the coloring group generated by
these labels. We can fully describe these groups with the following result.

Example 4.11. The independence poset on the increasing orientation of P

| (13,0)
/ X
(2,1)
1 2 3 ) (1,3)
3.2 ~__ /
370,13

Theorem 4.12. Let P = top(G) be an independence poset with |P| = n.

* If G is connected, then the coloring group generated by the labeling of the Hasse diagram of P
contains A,,.

* If G is not connected, then the coloring group is isomorphic to the direct product of the coloring
groups restricted to the connected components.

The first statement requires nontrivial machinery which we now explain.

To prove this, we first recall the following definitions due to Striker [g]. The first is that a toggle group is
said to be toggle-alternating if it contains the alternating group. The second and more involved sequence
of definitions are those needed for a collection to be inductively toggle-alternating.

Definition 4.13 ([:_8, Definition 2.20]). Givene € F and L C 2%, define L. := {X € L|e € X} to
consist of all the subsets in L that contain e and Lz := {X € L | e ¢ X} to be all the subsets in L that do
not contain e. For any subset S C L, let 7.(S) = {7.(X) | X € S}.

Definition 4.14 ([8, Definition 2.5]). Given L C 2%, let an essentialization of (L, E) be (L', E') where
E' and L’ are as follows. Every e € E’ must be an element e € FE such that there exist X, Y € L with
e € X ande ¢ Y. Thatis, no element of E’ may be contained in all or none of the subsets in L. Also,
consider subsets Z C E with |Z| > 1 suchthatife € Z ande € W € L, then Z C W. For any maximal
such Z, we exclude all elements of Z except one from E'. Let L' = {X NE' | X € L}.

Definition 4.15 (['g, Definition 2.21]). Define the collection of inductively toggle-alternating sets L to be
the smallest collection of . C 2F, with essentializations (L', E"), such that:

1. If |[E’| < 4, then T'(L) is toggle-alternating.
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2. If |E’| > 5, then there exists e € E’ such that at least one of the following holds:

(a) L. is inductively toggle-alternating, L, U 7(L.) = L, and L. N 7¢(L.) # 0, or
(b) Lz is inductively toggle-alternating, Lz U 7. (Lg) = L, and Lz N 7. (Lz) # 0.

This definition allows for the statement of the following result, which we will generalize.
Theorem 4.16 ([5_5:, Theorem 2.22]). If L is inductively toggle-alternating, then it is toggle-alternating.

Roughly, we will generalize the above definitions and the hypothesis of Theorem @: l:d from the setting
of toggle groups to that of coloring groups. In the style of [B:], we now refer to a coloring group &,,, or
equivalently the pair (G, k), as being color-alternating if ®,; contains the alternating group on the vertex
set of G. This then allows us to describe a straightforward generalization of inductively toggle-alternating.

Definition 4.17. Let F' be a collection of connected graphs with proper surjective edge colorings such
that the following hold.

1. If (G, k) € F with |s(E(G))| < 4 the group &, is color-alternating.

2. If (G, k) € Fwith |s(E(G))| > 5 there is some color i such that the vertices of G can be partitioned
into two disjoint subsets G1, G2 (thought of as induced subgraphs) such that

(@) 7:(G1) NGy # 0,
(b) Ti(Gl) U G1 = G, (G1,1€|G1) S F,

(c) the only edges that connect G; and G5 are colored :.

We call the elements of F' inductively color-alternating.

Theorem 4.18. If (G, k) is inductively color-alternating, then &, is color-alternating.

Proof: The proof is almost exactly the proof of :-4:1:6 due to Striker in [5_3.'], which is essentially the proof
in the case of order ideals of Cameron and Fon-der-Flaass [:?:]

For the remainder of the proof, C' will denote the codomain of « (with C’ the associated codomain of
k'). After relabeling we will identify C with {1,...,|C|}.

Note for |C| < 4, we have required in the definition of inductively color-alternating that &,; be color-
alternating (this is because in the proof below we need Ay ()| to be simple, and the alternating group
A,, is simple for n > 5 but not for n = 4), so the case that |C| < 4 serves as one of our base cases. The
other, which we call the exceptional base case, is when |V (G)| = 4 and |C| > 4. In this exceptional base
case, G is either K4 or K4 with an edge removed. If G = K4 minus an edge, and |C| = 5 then &, is the
symmetric group as every edge has a distinct color. If G = K4 and |C| = 6, then &, is the symmetric
group for the same reason. If G = K, and |C| = 5, then without loss of generality we can assume the
edges (1,2) and (3,4) have the same color, as exactly one color is repeated. If we just ignore these two
edges, the remaining edges form a connected graph on four vertices with all distinct edge colors, so the
corresponding group is the symmetric group. We have shown that our base cases are all color-alternating.

Now suppose |C| > 5. Also, suppose for all (G',x’) € F with |C'| < |C| we have (G', ') is
color-alternating. Let i € C' be the color required by condition (2) of Definition %.17, since (G, &) is
inductively color-alternating. Following from the definition of inductively color-alternating, G = G1UGa,
|G1] > |G| > 0 as G1 U T;(G1) = G and Gy N 7;(G1) # (0 so Gy is a proper subset of 7(G1), the
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coloring pair obtained by considering G; as an induced subgraph of GG with the inherited proper edge
coloring (G1, k|g,) = (G1, k') is inductively color-alternating, and ¢ ¢ x'(E(G1)). Importantly 7; acts
trivially on G; when the vertex set is restricted. Additionally we are here using the hypothesis that the
only edges that connect G; and G5 are colored i, so that the restricted action of the coloring of «’ is the
same as that of x. By induction, &, contains the alternating group on |G| elements. We first assume
that |G1| > 5, so A, | is simple. Since Ag, is simple and |G1| > | G2/, the subgroup K of &, fixing G2
pointwise induces at least A, on Gy. If instead |G1| < 4 then |C’| < 4, and we satisfy condition (1) of
Definition 4.17 or we are in an exceptional base case as no simple graph G’ on with |G’| = 4 can have
more than 6 edges and the cases where |G'| = 4 and |C| > 4 are the exceptional base cases. In either
event the subgroup K of &,; fixing G2 pointwise induces at least Az, on G;.

Then in either case, G; U 7;(G1) = G and 7;(G1) N G1 # 0, so K and the conjugate subgroup
K™ := {rk7; | k € K} generate an alternating or symmetric group on G. O

Before proving Theorem @: 1:2:, we mention a few more necessary results on the structure of indepen-
dence posets from [:_1-2]. The first is the tight orthogonal pair recursion. For any g € G, {g} is an
independent set, and there are unique D, U such that (D, {g}) = mg, and ({g}, U) = j, are tight orthog-
onal pairs. Let top,(G) = [0,7m,] and top? (G) = [j,, 1]. In the case where g is an extremal (minimal or
maximal) element of the G-order, these two intervals in fact partition the independence poset. Formally
this is stated as follows.

Lemma 4.19 ([2-2_:, Lemma 3.7]). Let G be an acyclic directed graph. If g is an extremal element of G
then top(G) = top ,(G) Utop?(G). Furthermore,

* If g is minimal, (D,U) € top ,(G) if and only if g € U.
* If g is maximal, (D,U) € top? (G) if and only if g € D.
In particular, if © € top?(G) and y € top ,(G) then © £ y.

While we do not repeat the proof of Lemma .19 we do note that one essential feature of the argu-
ment shows that when g is an extremal element, for any g' # g, both flip, (top,(G)) = top,(G) and
flipg (top? (G)) = top?(G). In particular this provides potential candidates for ¢, G1, and G to apply
Theorem %.18. What then remains is to understand the action of flip, when g is extremal. To that end we
use the following results of [{i2].

Lemma 4.20 ([:1-2_:, Lemma 3.9]). Let G be a directed acyclic graph.
* If g is minimal and (D,U) € top ,(GQ), then flip,(D,U) = (D U {g},U’) for some U’
* If g is maximal and (D, U) € top?(G), then flipy(D,U) = (D’,U U{g}) for some D'.
Before stating the last result, we mention the following notation. If G is a directed acyclic graph and

g€G. Gyis G\ {g}and G7is G\ ({9} U{g'l(g,9') or (¢', 9) € E(G)}).
Theorem 4.21 ([:1-2_:, Theorem 3.10]). Let g be an extremal element of an acyclic directed graph G. Then

G
G

t ~ fi o ) inimal
(D,U) — (D,U\ {g}} is a bijection opy(G) = top(Gig) z.fg mszna
top ,(G) ~top(G,) if g maximal

) L op? (G) ~top(G,) if g minimal
(D,U) — (D\ {g},U}) is a bijection { 9(G) ~ tp(GE) if g maximal
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This recursive structure description is the final tool we need.

Proof of Theorem @:I:Z We note that the element 7; induced by the proper edge coloring of the Hasse
diagram of top(G) coming from the flips is exactly flip; so we will continue to use flip;. To show the
first statement, notice that if G is connected, so is the Hasse diagram of the G-order. Particularly, the
Hasse diagram of the G-order is the subgraph of G obtained by deleting all edges u, v if there is a longer
path from u to v.

Recall that for a finite connected poset P, there is always some extremal element g for which the poset
obtained by removing g is connected. Importantly if P is a G-order then the poset P’ obtained by the
deletion of this extremal element g is a G4-order, so G| is still connected as a graph.

Now to show that the coloring groups of independence posets with connected directed acyclic graphs
are inductively color-alternating, we show the inductive step, so we assume |G| > 4. The base cases where
|G| < 4 were checked by computer and the code is included in the repository linked in Appendix :f?l

First choose an extremal element g such that the Hasse diagram of the G-order is connected. We can
assume g is maximal, as otherwise we can swap the role of top,(G) and top?(G), so we have G =
top,(G) and G2 = top?(G). Note that |G'1| > [G2] as G is in bijection with independent sets of G that
do not contain g, whereas G2 is in bijection with independent sets of G that do not contain g or a neighbor
of g.

By Lemma 21 19' we know that G; and G partition the Hasse diagram of top(G). Additionally by
Lemma %20/ and Lemma %_19 we have that [lipg(Ga) € Gy, 50 Gy N flipy(Gr) # 0 as |G1] > [Gal.
Furthermore by the discussion preceding Lemma 4.20, we know that the only edges connecting G and G2
are colored by g. Finally note that by the choice of g and Theorem 421, G; = top, (G) ~ top(Gy) which
is an independence poset of a connected directed acyclic graph with |G4| < |G|. As such the family of
independence posets from connected directed acyclic graphs with coloring given by the labels of the flips
is inductively color-alternating, and thus color alternating.

To prove the second part, note that no two elements of a connected component of G are comparable
in the G-order, so their associated flips commute. As such the coloring group is immediately seen to be
isomorphic to the direct product of the groups of the connected components. o

A Constructions of Coloring Groups on Trees

In this appendix, we present some particular constructions of Sy, A,,, Dy, and (when n is even,) B, /5 as
coloring groups on trees of size n.

Example A.1. For a connected graph of order n, let (G, k) be the edge coloring that gives each edge a
distinct color. Then it’s clear that &,, = .S,,.

On the other extreme, it’s possible to construct S,, with very few colors.

Example A.2. Given any proper edge coloring (7, k) of a tree T of order n, let ' be the coloring obtained
by changing the color of an edge incident to a leaf to a new unique color. The symmetric edge condition
in Theorem B 15 guarantees that &, = S,,. In this way we can realize the symmetric group S,, on any
tree of order n with just A(T) + 1 colors, where A(T) is the maximum degree of T'. In particular, we can
realize any symmetric group on a path with three colors. For example, the coloring

has corresponding coloring group S1p.
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In order to realize A,, as a coloring group, all colors must appear on an even number of edges. In
particular, this means that the order n of our tree must be odd. It turns out that we can realize A,, as a
coloring group on a tree whenever n > 5 and n is odd.

Example A.3. Color the path graph Pj1 by 1,2,...,k,1,2,... k. Then (717%)? is a three-cycle.
Label the vertices so that (717)% = (1,2,3). Then any product o of all the generators which ends in
77172 sends 1 — 2 — 3. Label the remaining vertices so that (i) = i + 1. The long cycle o and the
three-cycle (717%)? generate all of A,,. For example,

has corresponding coloring group Ag.
Note that this construction fails for n = 5 because, as we’ll see in the following example, the coloring
we obtain must be Ds.

We can construct D,, on the path graph with the minimal proper edge coloring.

Example A.4. The proper edge coloring of P,, with two colors yields the dihedral group D,,. A nice way
to see this is to consider the vertices of a regular n-gon and connect them into a path in a zig-zag fashion
like so:

From this illustration, we can clearly see that the two generators correspond to two reflections that
generate D,,.

By the proof of theorem 5: 1:1:, we can construct the group B,,, of signed permutations on a tree of order
n = 2m by joining two identical trees whose corresponding coloring group is the symmetric group Sy,
with an edge of a unique color.

Example A.5. Let (7, k) be the proper edge coloring of the star graph on n vertices. Connect two copies
of T' at their centers by a new edge colored n + 1. The resulting color group is B,,. For example, the

coloring group of
o—0

is B4.
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The following table lists the coloring groups presented by proper edge colorings of trees up to 12 vertices
computed using Sageﬁ [:IQ']. Groups isomorphic to Sy, A,, D, or By, are omitted as their constructions
are detailed above. The description in each row comes from GAP’s ['é_l.'] structure_description
method. A sample coloring realizing the group is given in the table either as a sequence of edge colors on

a path or as a reference to another example if it is not possible to realize that group on a path.

Degree Description Order | Primitive? Coloring
7 GL(3,2) 168 Yes Example 2.1,
9 (C5 x C3 x C3) x S4 648 No Example B.1!
10 (Cs x C5) x Dy 200 No 1,2,1,3,1,2,1,3,1
Cy x Sy 240 No 1,2,1,3,1,3,1,2,1
(A5 X A5) X (CQ X CQ) 14400 No 1,2,1,2,1,3,1,3,1
12 (C3 x C3) % ((C2)* x Cy) 288 No 1,2,1,3,1,2,1,3,1,2,1
(Cq x Cq) % ((C2)* x Dg) 768 No 1,2,3,2,1,2,1,2,3,2,1
(Cg X Cg X Cg) X (CQ X 54) 1296 No 1,2,3,2,3,2,1,2,1,2,3
(Cy x Oy x Cy) % Sy 1536 No Example 312,
(02)2 X ((02)4 X ((53)2 X CQ)) 4608 No 1,2,1,3,1,3,1,3,1,2,1
(C3)* % ((Cy x Cq) x Dy) 5184 No Example B.2
(C)8 % (((C3)? % C3) x (C2)?) | 6912 No Example 35
(C3)* % ((C2)3 % Sy) 15552 No 12,3432,14,123
((C2)5 x Ag) x Cy 23040 No Example B.3
(C3)* x ((C2)* % Sy) 31104 No Example 8.4
(C2)% % ((C3)3 x (Co x Sy)) | 82944 No Example B3
(Ag X Ag) X Dy 1036800 No 1,2,1,2,1,3,1,3,1,3,1

Finally, we collect example colorings for groups in the above table which have not yet appeared.

Example B.1. Coloring realizing the group of degree 9 and order 648:

Example B.2. Coloring realizing the group of degree 12 and order 5184:

Example B.3. Coloring realizing the group of degree 12 and order 23040:
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Example B.4. Coloring realizing the group of degree 12 and order 31104:

Example B.5. Coloring realizing the group of degree 12 and order 82944
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