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We introduce coloring groups, which are permutation groups obtained from a proper edge coloring of a graph. These

groups generalize the generalized toggle groups of Striker (which themselves generalize the toggle groups introduced

by Cameron and Fon-der-Flaass). We present some general results connecting the structure of a coloring group to

the structure of its graph coloring, providing graph-theoretic characterizations of the centralizer and primitivity of a

coloring group. We apply these results particularly to generalized toggle groups arising from trees as well as coloring

groups arising from the independence posets introduced by Thomas and Williams.
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1 Introduction

Cameron and Fon-der-Flaass in [2] first introduced toggle groups on order ideals in order to study the

map now known as rowmotion (the name “toggle group” was introduced later in [9]). Given a poset P ,

each element p ∈ P has a corresponding permutation τp (called a toggle) of the order ideals J (P ) of P
which acts in the following way, toggling the element p as long as the result is still an order ideal.

τp(I) =











I ∪ {p} if p /∈ I and I ∪ {p} ∈ J (P )

I \ {p} if p ∈ I and I \ {p} ∈ J (P )

I otherwise

To understand properties of rowmotion and associated operations—in particular their order—Striker

introduced generalized toggle groups [8] where the order ideals of a poset are replaced with an arbitrary

set of allowable subsets and the poset is replaced by just a finite set.

Definition 1.1 (Toggle Group [8]). Let E be a finite set, and let L be any subset of the power set 2E . For

each e ∈ E, the toggle τe is defined as follows:

τe(X) =











X ∪ {e} if e /∈ X and X ∪ {e} ∈ L

X \ {e} if e ∈ X and X \ {e} ∈ L

X otherwise

The set {τe|e ∈ E} are the set of toggles. Let T (L) be the subgroup of SL generated by the toggles.
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Example 1.2. Let E = [4] and L = {∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {4}, {3, 4}, {2, 3, 4}}

• τ1 = (∅, {1})({2, 3, 4}, {1, 2, 3, 4})

• τ2 = ({1}, {1, 2})({3, 4}, {2, 3, 4})

• τ3 = ({1, 2}, {1, 2, 3})({4}, {3, 4})

• τ4 = (∅, {4})({1, 2, 3}, {1, 2, 3, 4})

In this case TL ∼= S4 ⋊ (C2)
3

The idea of order ideal toggling has been generalized from the purely combinatorial perspective to the

piece-wise linear and birational realms in [3] and [6, 5] respectively. These groups were studied in-depth

by Striker in [8] when arising from some families of combinatorial and geometric objects. More recently,

by Bloom and Saracino in [1], they have been considered with respect to their group theoretic properties

such as primitivity.

To all generalized toggle groups, there is a natural partial order called the toggle poset which we denote

by PL. The cover relations in this poset are given by X ⋖ Y if X ⊆ Y and there exists some e ∈ E such

that τe(X) = Y , and |Y | − |X | = 1. Importantly, each edge of the Hasse diagram is naturally labeled by

the element toggled in for the cover.

Example 1.3. The toggle poset of the generalized toggle group of Example 1.2

∅

{4}{1}

{1, 2} {3, 4}

{2, 3, 4}{1, 2, 3}

{1, 2, 3, 4}

41

32

23

4 1

In this paper, we take inspiration from this edge labeling of the Hasse diagram to introduce coloring

groups, which arise from proper edge colorings of finite graphs. Coloring groups encompass all finite

groups generated by involutions (in particular the generalized toggle groups). Because our interest lies in

understanding combinatorial objects with natural involution structure (e.g. toggle groups, or quivers up

to mutation), we want to understand how the structure of the graphs and their edge colorings control the

structure of the corresponding coloring group.

The paper is organized as follows:

• In Section 2 we define coloring groups and characterize which permutation groups arise as coloring

groups.

• In Section 3 we prove general tools for working with coloring groups as well as more specialized

tools in the case that the underlying graph G is a tree.
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• In Section 4 we study generalized toggle groups arising from trees as well as coloring groups arising

in the study of independence posets.

• In Appendix A we provide some constructions of the groups Sn, An, Dn, and the type-B coxeter

groupBm as coloring groups.

• Finally, in Appendix B we provide data on the coloring groups arising from trees of order at most

12.

2 Preliminaries and Definitions

In this paper, a graph of order nwill be a simple undirected graph on n vertices unless otherwise specified.

Given a graph G, a proper edge coloring of G on k colors is a surjective map κ : E(G) → [k] such that

for any two incident edges e1 and e2, we have that κ(e1) 6= κ(e2). We define the coloring group Gκ

corresponding to κ as the subgroup of SV (G)
∼= Sn generated by the involutions

τa =
∏

{i,j}∈E(G)
κ({i,j})=a

(i, j) (1)

for a ∈ [k]. Note that because the edge coloring is proper, the product can be taken in any order, and τa
simply swaps the vertices on either end of each edge colored a.

Example 2.1. The following graph is shown with a proper edge coloring κ : E(G) → [3] where the

colors 1, 2, and 3 of the edges are represented by blue, orange, and green respectively.

1 2 3

4 5

6 7

The corresponding coloring group is isomorphic to the general linear group GL(3, 2).

Gκ = 〈(2, 3)(4, 5), (3, 4)(6, 7), (1, 2)(3, 6)〉 ∼= GL(3, 2).

As a subgroup of Sn, the group Gκ is an example of a permutation group of degree n. Cayley’s theorem

tells us that every finite group is isomorphic to a permutation group, but coloring groups are in a smaller

class of groups which are generated by involutions. Theorem 2.2 shows that the class of coloring groups

is in fact precisely the class of finite groups generated by involutions.

Theorem 2.2. Let G be a finite group generated by involutions. Then there is a connected graph G with

proper edge coloring κ such that Gκ is isomorphic to G.

Proof: Suppose that G = 〈g1, . . . , gk〉 with each gi an involution. Let G be the Cayley graph of G. If

{a, b} ∈ E(G) then b = agi for a unique generator gi, so define κ({a, b}) = i. As the generators are

involutions, this edge coloring is proper. Let Gκ be the corresponding coloring group. We claim that

Gκ
∼= G. To see why, consider G as as a subgroup of SV (G). Note that each gi corresponds to the product
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of the disjoint transpositions (a, b) such that b = agi, so G is the group generated by these involutions.

For each i under this identification, gi is exactly τi, so the groups are equal as permutation groups.

This is a very large class of groups, and the graphs obtained in the proof of Theorem 2.2 have as many

vertices as the group G has elements. We thus restrict ourselves to situations where the graph G and its

proper edge coloring κ have nice structure. Of particular interest will be the symmetry of this coloring,

captured in the following definition.

Definition 2.3. For a proper edge coloring (G, κ), the group Autκ(G) consists of all permutations σ ∈
SV (G) so that {i, j} is an edge of G colored a under κ if and only if {σ(i), σ(j)} is an edge of G colored

a under κ.

Lemma 2.4. For a proper edge coloring (G, κ), if σ ∈ Autκ(G) fixes a vertex v, it fixes every neighbor

of v.

Proof: Suppose σ ∈ Autκ(G) fixes v and w is a neighbor of v connected by an edge colored a. Then

{v, σ(w)} must be an edge colored a. Because κ is a proper edge coloring, the only edge incident to v
colored a is the edge {v, w}. Hence σ(w) = w.

A permutuation group G of degree n acts naturally on the set partitions of [n]. If G fixes any nontrivial

set partition π (i.e. one not consisting of a single block or all singletons), then we say that G is imprimitive

with π being a system of imprimitivity. Otherwise, we say that G is primitive.

3 Tools for Analyzing Coloring Groups

We begin with some results that can be applied to any coloring group. The following theorem characterizes

the centralizer of a coloring group.

Theorem 3.1. For proper edge coloring (G, κ), the centralizerCSV (G)
(Gκ) of the corresponding coloring

group in the symmetric group is isomorphic to Autκ(G).

Proof: Let σ ∈ CSV (G)
(Gκ) and suppose that {i, j} is an edge colored a. Then (i, j) is a transposition in

τa. Because σ commutes with τa,

στaσ
−1 = τa.

Then (σ(i), σ(j)) is also a transposition in τa and hence {σ(i), σ(j)} is an edge of G colored a under κ.

Hence, σ ∈ Autκ(G).
Suppose conversely that σ ∈ Autκ(G). Then for each color, σ induces a permutation σ′ of the edges

of that color. Fixing a color a, let {i1, j1}, . . . , {im, jm} be the edges of that color. Then

στaσ
−1 = (σ(i1), σ(j1)) . . . (σ(im), σ(jm))

= (iσ′(1), jσ′(1)) . . . (iσ′(m), jσ′(m))

= τa

where the final equality follows from the fact that κ is a proper edge coloring, so these transpositions

commute pairwise. Because σ commutes with each generator of Gκ, we have that σ ∈ CSV (G)
(Gκ)
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Corollary 3.2. For a proper edge coloring (G, κ),

Gκ ⊆ CSV (G)
(Autκ(G)).

In particular, a necessary condition for Gκ
∼= SV (G) is that Autκ(G) is trivial.

The following definition and lemma provide a graph-theoretic characterization of when a coloring group

is primitive via vertex colorings.

Definition 3.3. For a proper edge coloring (G, κ), consider a vertex coloring of ν : V (G) → [ℓ]. The

coloring ν is called imprimitive if the following two statements hold:

(i) If an edge colored b connects a vertex colored a to a vertex colored c with a 6= c, then every vertex

colored a is connected to a vertex colored c by an edge colored b.

(ii) At least one color appears strictly more than one time and strictly less than |G| times.

Example 3.4. The following edge coloring of the path graph P15 has an imprimitive vertex coloring.

Example 3.5. The following proper edge coloring has an imprimitive vertex coloring where the vertices

are partitioned into the three sets of four vertices which are on the same line.

Lemma 3.6. For a proper edge coloring (G, κ), the group Gκ is imprimitive if and only if there exists an

imprimitive vertex coloring of G with respect to the edge coloring κ.

Proof: Given an imprimitive vertex coloring, the set partition obtained by putting two vertex labels in

the same set if and only if the vertices are colored with the same color is a system of imprimitivity.

Conversely, a system of imprimitivity prescribes the distribution of vertex colors for an imprimitive vertex

coloring.

When considering toggle groups, one of the motivating questions has been whether elements that mimic

coxeter elements, i.e. products of the generating involutions in some prescribed order, have a predictable

order. When we restrict to the case of forests, we get the following.
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Lemma 3.7. SupposeG is a disjoint union of ℓ trees with orders given by λ1 ≥ λ2 ≥ · · · ≥ λℓ. Then for

any proper edge coloring κ : E(G) → [k], the product of all the corresponding generators

τ1 . . . τk ∈ Gκ

in any order has cycle type λ.

Proof: It suffices to show that in the case that G is a tree of order n, the product of all the transpositions

corresponding to edges in G in any order is an n-cycle. The following proof is based on an argument by

Darij Grinberg communicated in a comment on Math Stack Exchange(i).

We proceed by induction on the order of G. Let τ1, . . . , τn−1 be the transpositions corresponding to

the n − 1 edges of G in any order. By conjugating by a transposition on one end of this sequence, we

can cyclically permute the sequence without changing the cycle structure of the product. Without loss of

generality, assume we have cyclically permuted the transpositions so that the transposition τ1 appearing

first corresponds to an edge incident to a leaf labeled x. By the inductive hypothesis, τ2τ3 · · · τn−1 is an

n− 1-cycle on {1, . . . , n} \ {x}. Hence, τ1τ2 . . . τn−1 is an n-cycle on {1, . . . , n}.

In particular when G is a tree of order n any such element is an n-cycle, which will be essential for

Theorem 3.9 and its consequences.

Lemma 3.8. If (G, κ) is a proper edge-coloring of a tree with n vertices that uses at least 3 colors,

|Gκ| ≥
n2

n− ϕ(n)

where ϕ(n) is the Euler totient function.

Proof: Note that if σ1 and σ2 are distinct long cycles in Sn which generate the same subgroup, then

σ1 = σ2
r for some 1 < r < n. Then because σ2

s has a fixed point if and only if n|s,

σ1(a) = σ2
r(a) = σ2

r−1(σ2(a)) 6= σ2(a).

Without loss of generality, suppose that G has a leaf labeled 1 incident to an edge colored 1. Then any

long cycle of the form

σ = τ1τi1 . . . τik−1

has the property that σ(1) = τ1(1). Because there are at least three colors there must be at least two

colors that don’t commute with each other. Hence, there are at least two long-cycles σ1 and σ2 of this

form. Because σ1(1) = σ2(1), they must generate distinct subgroups. Then Gκ has a subset 〈σ1〉〈σ2〉
with order

|〈σ1〉〈σ2〉| =
|〈σ1〉| · |〈σ2〉|

|〈σ1〉 ∩ 〈σ2〉|
.

Note that because σ1 and σ2 generate distinct subgroups, their intersection can only contain elements of

the form σ1
m where m is not relatively prime to n. Hence |〈σ1〉 ∩ 〈σ2〉| ≤ n− ϕ(n).

The following theorem provides a condition for narrowing down the possible primitive coloring groups

that can arise from a graphG.

(i) https://math.stackexchange.com/questions/2577311/product-of-transpositions-from-edges

-of-a-tree-is-a-cycle-of-length-n

https://math.stackexchange.com/questions/2577311/product-of-transpositions-from-edges-of-a-tree-is-a-cycle-of-length-n
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Theorem 3.9. Let κ : E(G) → [k] be a proper edge coloring of a graph of order n and suppose that

Gκ is primitive. Suppose that restricting to the edges colored by a subset of ℓ colors (and their incident

vertices) forms a tree T of order m. If n−m ≥ 3, then An ≤ Gκ. Furthermore, if we assume that ℓ > 2,

then An ≤ Gκ unless one of the following hold (where in each case q is a prime power):

(i) n−m = 2, n = q + 1, PGL2(q) ≤ Gκ ≤ PΓL2(q), or

(ii) n−m = 1 and either

(a) n = qd, d ≥ 1, AGLd(q) ≤ Gκ ≤ AΓLd(q), or

(c) n = 24, Gκ =M24, or

(iii) n−m = 0 and either

(a) n = qd−1
q−1 , d ≥ 2, PGLd(q) ≤ Gκ ≤ PΓLd(q), or

(b) n = 23, Gκ =M23.

Proof: Much of the heavy-lifting in this proof is done by noting that the existence of such a tree T
guarantees a cycle in Gκ that fixes n −m points using Lemma 3.7, and then applying [7, Theorem 1.2].

We need only rule out the following cases:

• n−m = 1, p ≥ 5 is prime, n = p+ 1, Gκ = PGL2(p) or Gκ = PSL2(p).

The graph contains a subtree of order p. Because the coloring group corresponding to this tree has

prime degree, it is primitive and so must fall under case (iii) of the theorem. If the coloring group

corresponding to this tree were to contain the alternating group or be M23, it’s clear that PGL2(p)
and PSL2(p) would be too small to contain it. It must then be the case that PGLd(q) ≤ Gκ ≤

PGL2(p) where p = qd−1
q−1 for some d ≥ 2. This containment implies that the order of PGLd(q)

divides the order of PGL2(p). That is:

(qd − 1)(qd − 1) · · · (qd − qd−1)

q − 1
| p3 − p.

We proceed by showing this is impossible.

By applying Cauchy’s bound to the polynomial q(
d−2
2 )−1(qd−q)− (qd−1)2 and noting its positive

leading coefficient, we obtain the inequality

q(
d−2
2 )−1 >

(qd − 1)2

qd − q
(2)

as long as q ≥ 3, d ≥ 3. From this inequality it is straightforward to derive that |PGLd(q)| >
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|PGL2(p)|:

(qd − 1)2

qd − q
< q(

d−2
2 )−1

< q(
d−2
2 )−1

d−1
∏

i=2

(qd−1 − i)

=
d−1
∏

i=2

(qd − qi)

< (q − 1)2
d−1
∏

i=2

(qd − qi)

(qd − 1)2

(qd − q)2
<

d−1
∏

i=1

(qd − qi)

p3 < p

d−1
∏

i=1

(qd − qi)

= |PGLd(q)|

Hence, as long as q ≥ 3 and d ≥ 3, we have that |PGLd(q)| > p3 > p3 − p = |PGL2(p)| and the

above containment is impossible.

For the case d = 2, the containment implies that

(q2 − 1)(q2 − q)

q − 1
= p(q2 − q) | p3 − p = p(q − 2)q.

This implies that q − 1 | q − 2, which is impossible for q > 1.

The final case is when q = 2 and d ≥ 3. If Inequality 2 does not hold, it is straightforward to show

that d ≤ 8. The only values between 3 and 8 for which 2d − 1 is prime are d = 3, 5, or 7. When

d = 3, we have that p = 7, so Gκ must contain S7 (See Appendix B). For d = 5, 7 we have that

|PGLd(q)| > |PGL2(p)|.

• n−m = 1, Gκ =M11

In this case, the graph contains a subtree of order 10. The orders of coloring groups generated on a

tree of order 10 with at least three colors are 200, 240, 25 · 5!, 1202, and 10! (see Appendix B).

An enumeration of the subgroups of M11 shows that it has no subgroups of these orders.

• n−m = 1, Gκ =M12

The orders of coloring groups on a tree with 11 vertices with at least three colors are 11!
2 or 11! (See

Appendix B). Both of these orders are too large to be contained in M12.

• n−m = 0, Gκ = PSL2(11) or Gκ =M11.

See the orders given above for coloring groups on a tree with 11 vertices.
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• n−m = 0, n = p, a prime, Cp ≤ Gκ ≤ AGL1(p)

Note that |AGL1(p)| = p(p− 1), but Lemma 3.8 tells us that a tree on a prime number of vertices

with at least three colors produces a coloring group of order at least p2.

Although we have not ruled out case (iii)b in Theorem 3.9, we have no example of a tree G which

realizes M23 as a coloring group, and we conjecture that no such graph exists. Note that the nonexistence

of such a tree would also rule out case (ii)c.

Lemma 3.10. For (G, κ) a proper edge coloring of a tree, Autκ(G) is either trivial or has order two.

Proof:

If G has a unique center, then every automorphism of G must fix this center. By Lemma 2.4, Autκ(G)
is trivial.

Alternatively, if G has two vertices v1 and v2 of maximum eccentricity, a nontrivial automorphism

ϕ must swap v1 and v2. If ψ were another such automorphism, then ψϕ would fix v1 and v2, and by

Lemma 2.4, ψϕ is the trivial automorphism and ψ = ϕ−1. Hence, if Autκ(G) is nontrivial, it consists of

a single automorphism of order 2.

The following theorem characterizes coloring groups on trees by their centralizer using Theorem 3.1.

Theorem 3.11. For (G, κ) a proper edge coloring of a tree, either CSV (G)
(Gκ) is trivial, or |G| = 2m is

even and Gκ is isomorphic to a subgroup of the type B coxeter group Bm.

Proof: If Autκ(G) is nontrivial and e is the edge between the two vertices ofG of maximum eccentricity.

The graph G \ {e} is the disjoint union of two trees T1 and T2. The nontrivial element ϕ ∈ Autκ(G)
restricts to an isomorphism between T1 and T2. Let κ1 be the edge coloring of T1 and let κ′ be the edge

coloring of G modified so that the edge e has a unique color c. It’s clear that Gκ1 is a subgroup of Gκ′ .

Let

N = {gτcg
−1 : g ∈ Gκ′} ∪ {1} ⊆ Gκ′ .

Then N is a normal subgroup of Gκ′ isomorphic to C2
m where m is the order of T1 and Gκ′ = NGκ1 .

Hence, Gκ′ = N ⋊ Gκ1 where Gκ1 acts on N by permutation, meaning Gκ′ can be recognized as the

wreath product

Gκ′
∼= C2ωGκ1

≤ C2ωSm

∼= Bm.

Finally, we have that the original coloring group Gκ ⊆ Gκ′ .

Example 3.12. The following tree has a color-preserving automorphism that reflects the graph horizon-

tally. The labels are taken from {−6, . . . ,−1, 1, . . . , 6} to show how the corresponding coloring group

embeds in the groupB6 of signed permutations.
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-6 -5

-4-3

-2

-1 1

2

34

5 6

Finally, we provide a sufficient condition for a coloring group on a tree of order n to be isomorphic to

the symmetric group Sn.

Definition 3.13. Let G be a graph with proper edge coloring κ : E(G) → [k]. Let e be an edge such

that all edges incident to e are of distinct colors. We call e a symmetric edge if there exists a subset S of

[k] containing the colors of all edges incident to e but not containing the color of e such that removing all

edges colored by a color in S leaves a graph with exactly one even component.

Example 3.14. The following edge coloring has a symmetric edge labeled e. Notice that removing the

edges colored blue and orange leave only a single connected component with even order.

e

e

An edge coloring can also have symmetric edge incident to a leaf. Notice that removing the edges

colored orange as well as those colored blue in the following graph coloring produces a graph with only a

single connected component with even order.

e

e

Theorem 3.15. Let (G, κ) be a proper edge coloring of a tree. If G contains a symmetric edge, then

Gκ
∼= SV (G).

Proof: Let e = {i, j} be a symmetric edge in G with corresponding subset of colors S. Let H be the

graph obtained by deleting all edges colored by a color in S and m the least common multiple of the

orders of odd-sized connected components in H . Let

π =
∏

a∈[k]\S

τa,

with the product taken in any order. Then because the edge e is the only even-sized component in σ,

Lemma 3.7 says that

πm = (i, j).

Let Ki and Kj be the sets of colors of edges incident to i and j respectively. Let

σ1 =
∏

a∈Ki\{κ(e)}

τa

σ2 =
∏

a∈[k]\Ki

τa
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with products taken in any order. It’s clear that σ2(i) = i, but because Ki ∩ Kj = {κ(e)}, we also

have that σ1(j) = j. By Lemma 3.7, σ = σ1τκ(e)σ2 is an n-cycle, and by the above observation,

σ(i) = σ1τκ(e)(i) = σ1(j) = j. The transposition (i, j) and the n-cycle σ with σ(i) = σ(j) generate the

full symmetric group SV (G).

The symmetric edge condition has allowed us to more efficiently search colorings of trees by weeding

out colorings which we know will give the symmetric group. See Appendix B for some data on coloring

groups on small trees.

4 Applications

4.1 Generalized Toggle Groups

The following condition for a coloring group on a tree to be isomorphic to a generalized toggle group is

due to Jonathan Bloom.

Definition 4.1. A word w ∈ [k]ℓ is called a toggle word if every contiguous subword of w has at least

two distinct letters that occur with odd parity.

Theorem 4.2. Let (G, κ) be a proper edge coloring of a tree. A necessary condition for Gκ to be a

generalized toggle group is that for every path of length greater than one, reading the edge colors along

that path must be a toggle word.

Proof: This follows from the following observation on toggle graphs. Let G = PL for some toggle

group T (L) and suppose that w1w2 . . . wℓ is the sequence of elements of the base set corresponding to the

coloring for a walk inG with no consecutive letters. Without loss of generality we can assume no vertices

of G are repeated.

If each distinct label appears an even number of times, then each element element is toggled in and out

an equal number of times so this is a nontrivial closed walk in the graph without consecutive repeated

edges, so the walk must be a cycle.

If exactly one label appears an odd number of times, call it e, then the result of this walk is that e is

either toggled in or out of the initial set S, as all other labels are toggled in and out an even number of

times. That is, this path ends at τe(S). Because G arose from a toggle group, there must be an edge

labeled e between S and τe(S). This single edge constitutes a path distinct from w1w2 . . . wℓ between S
and τe(S), so G must contain a cycle.

As such if G is acyclic and κ corresponds to a coloring which arises from a toggle group, then no

nontrivial path of distinct vertices in G can have fewer than two colors which appear an odd number of

times.

Example 4.3. The following edge coloring gives rise to a coloring group isomorphic to a generalized

toggle group. The subsets are the vertex labels.
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{2, 3} {1, 2, 3} {1, 2} {1} ∅ {4}

{3, 4} {3, 4, 5} {3, 5}

{2, 4} {2, 4, 5}

The path from the vertex labeled {2, 3} to the vertex labeled {3, 5} corresponds to the toggle word

w = 13214354.

Note that in Example 3.4, any path starting in the left-most block of vertices (colored blue) and ending

at the next vertex it encounters in that left-most block must encounter every edge color in-between an

even number of times. The colors on this path will not be a toggle word, so the coloring group in this

example cannot be a generalized toggle group. A similar insight applies generally to trees as stated in the

next theorem.

Theorem 4.4. Let (G, κ) be a proper edge coloring of a tree G with order n ≥ 3. If Gκ is a generalized

toggle group, then Gκ is primitive.

Proof: Suppose Gκ were not primitive. Then there would be at least two blocks in a system of imprimi-

tivity. Because G is connected, there must be some edge colored a connecting two vertices i and j in the

same block. Furthermore, there must be an edge colored b connecting i to a vertex i′ in another block. By

the definition of an imprimitive coloring, there must then be an edge also colored b connecting j to some

j′ in the same block as i′. Then the path i′, i, j, j′ has word aba, which is not a toggle word, contradicting

the assumption that Gκ is a generalized toggle group.

This result also follows from a more general result of Bloom and Saracino [1, Theorem 4.2], specifically

that an imprimitive toggle group T (L) containing a cycle on every element of L will have that L has the

structure of a product of sets, which must contain a cycle. Additionally Theorem 4.4 allows us to apply

Theorem 3.9(iii) to the particular case of a generalized toggle group presented by an edge coloring of a

path.

Theorem 4.5. Let (G, κ) be a proper edge coloring of a path. If Gκ is a generalized toggle group, then

one of the following statements holds:

(i) n = qd−1
q−1 for q a prime power, d ≥ 2, and PGL(d, q) ⊆ Gκ ⊆ PΓL(d, q).

(ii) Gκ
∼=M23, the Mathieu group.

(iii) Gκ
∼= Sn.

4.2 Independence Posets

When Cameron and Fon-der-Flaass originally described the toggle group, they were essentially consid-

ering it as a group structure on a distributive lattice. While the generalized toggle group is an extension
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of these order ideal toggles from a group-theoretic perspective to subsets of a finite set, there has his-

torically been considerably more focus on trying to understand generalizations of this family of lattices

from a combinatorial as well as order-theoretic point of view. One particular family that serves as a gen-

eralization is that of trim lattices, first introduced by Thomas in [11]. Before we define these lattices,

recall that an element x of a lattice L is left modular if for any y < z ∈ L the following equality holds

y ∨ (x ∧ z) = (y ∨ x) ∧ z.

Definition 4.6 ([11]). A lattice is trim if it has a maximal chain of (n+ 1) left modular elements as well

as n join-irreducible elements and n meet irreducible elements.

These lattices were further generalized by Thomas with Williams to a family of posets known as inde-

pendence posets, which contains many posets of combinatorial and geometric interest. Importantly the set

of independence posets which are lattices is precisely the set of trim lattices. As such all of the following

are examples of independence posets, as explained in [12].

• Distributive lattices

• Tamari Lattices

• Cambrian Lattices

• Fuss-Cambrian Lattices

as well as many more. To be self-contained, we follow the treatment of [12] to define these objects, up to

the omission of proofs.

For the remainder of the background on independence posets, let G be a directed acyclic graph. The

associated G-order is the partial order on V (G) where g1 ≥ g2 when there is a directed path from g1
to g2. Recall that an independent set of G is a subset where no two elements are adjacent. To define an

independence poset we first need the following definitions.

Definition 4.7 ([12, Definition 1.2]). A pair (D, U ) of independent sets of G is called orthogonal if there

is no edge in G from an element of D to an element of U . An orthogonal pair of independent sets (D, U )

is called tight if whenever any element of D is increased (removed and replaced by a larger element with

respect to the G-order), any element of U is decreased, or a new element is added to either D or U , then

the result is no longer an orthogonal pair of independent sets. We abbreviate tight orthogonal pair by top,

and we write top(G) for the set of all tops of G.

It turns out that whenG is directed and acyclic then specifying either of U or D gives a bijection to the

independent sets of G. This result is more formally stated as follows.

Theorem 4.8 ([12, Theorem 1.2]). Let I be an independent set of a directed acyclic graphG. Then there

exists a unique (I, U) ∈ top(G) and a unique (D, I) ∈ top(G).

To state the last required definition, let ℓ be a fixed linear extension of the G-order and let ℓ′ be a fixed

dual linear extension of the G-order.

Definition 4.9 ([12, Definition 1.3]). The flip of (D,U) ∈ top(G) at an element g ∈ G is the tight

orthogonal pair flipg(D,U) defined as follows: if g /∈ D and g /∈ U , the flip does nothing. Otherwise,

preserve all elements of D that are not less than g and all elements of U that are not greater than g (and

delete all other elements); after switching the set to which g belongs, then greedily complete D and U to

a tight orthogonal pair in the orders ℓ′ and ℓ, respectively.
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These flips are all well defined, and in fact involutions, as shown in [12, Lemma 3.2]. One additional

consequence of [12, Lemma 3.2] that we mention now is that if g, h are incomparable elements of a

G-order, then the associated flips commute. All together an independence poset is defined as follows.

Definition 4.10 ([12, Definition 1.4]). The independence poset on top(G) is the reflexive and transitive

closure of the relations (D,U)⋖ (D′, U ′) if there is some g ∈ U such that flipg(D,U) = (D′, U ′).

For full details that this is in fact well defined as a poset, see [12, Lemma 3.3]. The flips then naturally

label the edges in the Hasse diagram of top(G) by elements of G. Importantly for us, this is clearly a

proper edge labeling of the Hasse diagram, so one can then ask about the coloring group generated by

these labels. We can fully describe these groups with the following result.

Example 4.11. The independence poset on the increasing orientation of P3

1 2 3

(∅, 13)

(3, 2)

(2, 1)

(1, 3)

(13, ∅)

1
3

3

2

1

Theorem 4.12. Let P = top(G) be an independence poset with |P | = n.

• If G is connected, then the coloring group generated by the labeling of the Hasse diagram of P
contains An.

• If G is not connected, then the coloring group is isomorphic to the direct product of the coloring

groups restricted to the connected components.

The first statement requires nontrivial machinery which we now explain.

To prove this, we first recall the following definitions due to Striker [8]. The first is that a toggle group is

said to be toggle-alternating if it contains the alternating group. The second and more involved sequence

of definitions are those needed for a collection to be inductively toggle-alternating.

Definition 4.13 ([8, Definition 2.20]). Given e ∈ E and L ⊆ 2E , define Le := {X ∈ L | e ∈ X} to

consist of all the subsets in L that contain e and Le := {X ∈ L | e /∈ X} to be all the subsets in L that do

not contain e. For any subset S ⊆ L, let τe(S) = {τe(X) | X ∈ S}.

Definition 4.14 ([8, Definition 2.5]). Given L ⊆ 2E , let an essentialization of (L,E) be (L′, E′) where

E′ and L′ are as follows. Every e ∈ E′ must be an element e ∈ E such that there exist X,Y ∈ L with

e ∈ X and e 6∈ Y . That is, no element of E′ may be contained in all or none of the subsets in L. Also,

consider subsets Z ⊆ E with |Z| > 1 such that if e ∈ Z and e ∈W ∈ L, then Z ⊆W . For any maximal

such Z , we exclude all elements of Z except one from E′. Let L′ = {X ∩ E′ | X ∈ L}.

Definition 4.15 ([8, Definition 2.21]). Define the collection of inductively toggle-alternating sets L to be

the smallest collection of L ⊆ 2E , with essentializations (L′, E′), such that:

1. If |E′| ≤ 4, then T (L) is toggle-alternating.
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2. If |E′| ≥ 5, then there exists e ∈ E′ such that at least one of the following holds:

(a) Le is inductively toggle-alternating, Le ∪ τe(Le) = L, and Le ∩ τe(Le) 6= ∅, or

(b) Le is inductively toggle-alternating, Le ∪ τe(Le) = L, and Le ∩ τe(Le) 6= ∅.

This definition allows for the statement of the following result, which we will generalize.

Theorem 4.16 ([8, Theorem 2.22]). If L is inductively toggle-alternating, then it is toggle-alternating.

Roughly, we will generalize the above definitions and the hypothesis of Theorem 4.16 from the setting

of toggle groups to that of coloring groups. In the style of [8], we now refer to a coloring group Gκ, or

equivalently the pair (G, κ), as being color-alternating if Gκ contains the alternating group on the vertex

set ofG. This then allows us to describe a straightforward generalization of inductively toggle-alternating.

Definition 4.17. Let F be a collection of connected graphs with proper surjective edge colorings such

that the following hold.

1. If (G, κ) ∈ F with |κ(E(G))| ≤ 4 the group Gκ is color-alternating.

2. If (G, κ) ∈ F with |κ(E(G))| ≥ 5 there is some color i such that the vertices ofG can be partitioned

into two disjoint subsets G1, G2 (thought of as induced subgraphs) such that

(a) τi(G1) ∩G1 6= ∅,

(b) τi(G1) ∪G1 = G, (G1, κ|G1) ∈ F ,

(c) the only edges that connect G1 and G2 are colored i.

We call the elements of F inductively color-alternating.

Theorem 4.18. If (G, κ) is inductively color-alternating, then Gκ is color-alternating.

Proof: The proof is almost exactly the proof of 4.16 due to Striker in [8], which is essentially the proof

in the case of order ideals of Cameron and Fon-der-Flaass [2].

For the remainder of the proof, C will denote the codomain of κ (with C′ the associated codomain of

κ′). After relabeling we will identify C with {1, . . . , |C|}.

Note for |C| ≤ 4, we have required in the definition of inductively color-alternating that Gκ be color-

alternating (this is because in the proof below we need A|V (G)| to be simple, and the alternating group

An is simple for n ≥ 5 but not for n = 4), so the case that |C| ≤ 4 serves as one of our base cases. The

other, which we call the exceptional base case, is when |V (G)| = 4 and |C| > 4. In this exceptional base

case, G is either K4 or K4 with an edge removed. If G = K4 minus an edge, and |C| = 5 then Gκ is the

symmetric group as every edge has a distinct color. If G = K4 and |C| = 6, then Gκ is the symmetric

group for the same reason. If G = K4 and |C| = 5, then without loss of generality we can assume the

edges (1, 2) and (3, 4) have the same color, as exactly one color is repeated. If we just ignore these two

edges, the remaining edges form a connected graph on four vertices with all distinct edge colors, so the

corresponding group is the symmetric group. We have shown that our base cases are all color-alternating.

Now suppose |C| ≥ 5. Also, suppose for all (G′, κ′) ∈ F with |C′| < |C| we have (G′, κ′) is

color-alternating. Let i ∈ C be the color required by condition (2) of Definition 4.17, since (G, κ) is

inductively color-alternating. Following from the definition of inductively color-alternating,G = G1∪G2,

|G1| > |G2| > 0 as G1 ∪ τi(G1) = G and G1 ∩ τi(G1) 6= ∅ so G2 is a proper subset of τ(G1), the
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coloring pair obtained by considering G1 as an induced subgraph of G with the inherited proper edge

coloring (G1, κ|G1) = (G1, κ
′) is inductively color-alternating, and i /∈ κ′(E(G1)). Importantly τi acts

trivially on G1 when the vertex set is restricted. Additionally we are here using the hypothesis that the

only edges that connect G1 and G2 are colored i, so that the restricted action of the coloring of κ′ is the

same as that of κ. By induction, Gκ′ contains the alternating group on |G1| elements. We first assume

that |G1| ≥ 5, so A|G1| is simple. Since AG1 is simple and |G1| > |G2|, the subgroupK of Gκ fixingG2

pointwise induces at least AG1 on G1. If instead |G1| ≤ 4 then |C′| ≤ 4, and we satisfy condition (1) of

Definition 4.17 or we are in an exceptional base case as no simple graph G′ on with |G′| = 4 can have

more than 6 edges and the cases where |G′| = 4 and |C| > 4 are the exceptional base cases. In either

event the subgroupK of Gκ fixing G2 pointwise induces at least AG1 on G1.

Then in either case, G1 ∪ τi(G1) = G and τi(G1) ∩ G1 6= ∅, so K and the conjugate subgroup

Kτi := {τikτi | k ∈ K} generate an alternating or symmetric group on G.

Before proving Theorem 4.12, we mention a few more necessary results on the structure of indepen-

dence posets from [12]. The first is the tight orthogonal pair recursion. For any g ∈ G, {g} is an

independent set, and there are uniqueD,U such that (D, {g}) = mg and ({g}, U) = jg are tight orthog-

onal pairs. Let topg(G) = [0̂,mg] and topg(G) = [jg, 1̂]. In the case where g is an extremal (minimal or

maximal) element of the G-order, these two intervals in fact partition the independence poset. Formally

this is stated as follows.

Lemma 4.19 ([12, Lemma 3.7]). Let G be an acyclic directed graph. If g is an extremal element of G
then top(G) = topg(G) ∪ topg(G). Furthermore,

• If g is minimal, (D,U) ∈ topg(G) if and only if g ∈ U .

• If g is maximal, (D,U) ∈ topg(G) if and only if g ∈ D.

In particular, if x ∈ topg(G) and y ∈ topg(G) then x 6≤ y.

While we do not repeat the proof of Lemma 4.19 we do note that one essential feature of the argu-

ment shows that when g is an extremal element, for any g′ 6= g, both flipg′(topg(G)) = topg(G) and

flipg′(topg(G)) = topg(G). In particular this provides potential candidates for i, G1, and G2 to apply

Theorem 4.18. What then remains is to understand the action of flipg when g is extremal. To that end we

use the following results of [12].

Lemma 4.20 ([12, Lemma 3.9]). Let G be a directed acyclic graph.

• If g is minimal and (D,U) ∈ topg(G), then flipg(D,U) = (D ∪ {g}, U ′) for some U ′.

• If g is maximal and (D,U) ∈ topg(G), then flipg(D,U) = (D′, U ∪ {g}) for some D′.

Before stating the last result, we mention the following notation. If G is a directed acyclic graph and

g ∈ G, Gg is G \ {g} and G◦
g is G \ ({g} ∪ {g′|(g, g′) or (g′, g) ∈ E(G)}).

Theorem 4.21 ([12, Theorem 3.10]). Let g be an extremal element of an acyclic directed graphG. Then

(D,U) 7→ (D,U \ {g}} is a bijection

{

topg(G) ≃ top(G◦
g) if g minimal

topg(G) ≃ top(Gg) if g maximal

(D,U) 7→ (D \ {g}, U}) is a bijection

{

topg(G) ≃ top(Gg) if g minimal

topg(G) ≃ top(G◦
g) if g maximal
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This recursive structure description is the final tool we need.

Proof of Theorem 4.12: We note that the element τi induced by the proper edge coloring of the Hasse

diagram of top(G) coming from the flips is exactly flipi so we will continue to use flipi. To show the

first statement, notice that if G is connected, so is the Hasse diagram of the G-order. Particularly, the

Hasse diagram of the G-order is the subgraph of G obtained by deleting all edges u, v if there is a longer

path from u to v.

Recall that for a finite connected poset P , there is always some extremal element g for which the poset

obtained by removing g is connected. Importantly if P is a G-order then the poset P ′ obtained by the

deletion of this extremal element g is a Gg-order, so Gg is still connected as a graph.

Now to show that the coloring groups of independence posets with connected directed acyclic graphs

are inductively color-alternating, we show the inductive step, so we assume |G| > 4. The base cases where

|G| ≤ 4 were checked by computer and the code is included in the repository linked in Appendix B.

First choose an extremal element g such that the Hasse diagram of the G-order is connected. We can

assume g is maximal, as otherwise we can swap the role of topg(G) and topg(G), so we have G1 =
topg(G) and G2 = topg(G). Note that |G1| > |G2| as G1 is in bijection with independent sets of G that

do not contain g, whereasG2 is in bijection with independent sets ofG that do not contain g or a neighbor

of g.

By Lemma 4.19 we know that G1 and G2 partition the Hasse diagram of top(G). Additionally by

Lemma 4.20 and Lemma 4.19 we have that flipg(G2) ⊆ G1, so G1 ∩ flipg(G1) 6= ∅ as |G1| > |G2|.
Furthermore by the discussion preceding Lemma 4.20 we know that the only edges connectingG1 andG2

are colored by g. Finally note that by the choice of g and Theorem 4.21,G1 = topg(G) ≃ top(Gg) which

is an independence poset of a connected directed acyclic graph with |Gg| < |G|. As such the family of

independence posets from connected directed acyclic graphs with coloring given by the labels of the flips

is inductively color-alternating, and thus color alternating.

To prove the second part, note that no two elements of a connected component of G are comparable

in the G-order, so their associated flips commute. As such the coloring group is immediately seen to be

isomorphic to the direct product of the groups of the connected components.

A Constructions of Coloring Groups on Trees

In this appendix, we present some particular constructions of Sn, An, Dn, and (when n is even,) Bn/2 as

coloring groups on trees of size n.

Example A.1. For a connected graph of order n, let (G, κ) be the edge coloring that gives each edge a

distinct color. Then it’s clear that Gκ = Sn.

On the other extreme, it’s possible to construct Sn with very few colors.

Example A.2. Given any proper edge coloring (T, κ) of a tree T of order n, let κ′ be the coloring obtained

by changing the color of an edge incident to a leaf to a new unique color. The symmetric edge condition

in Theorem 3.15 guarantees that Gκ′ = Sn. In this way we can realize the symmetric group Sn on any

tree of order n with just ∆(T )+ 1 colors, where ∆(T ) is the maximum degree of T . In particular, we can

realize any symmetric group on a path with three colors. For example, the coloring

has corresponding coloring group S10.
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In order to realize An as a coloring group, all colors must appear on an even number of edges. In

particular, this means that the order n of our tree must be odd. It turns out that we can realize An as a

coloring group on a tree whenever n > 5 and n is odd.

Example A.3. Color the path graph P2k+1 by 1, 2, . . . , k, 1, 2, . . . , k. Then (τ1τk)
2 is a three-cycle.

Label the vertices so that (τ1τk)
2 = (1, 2, 3). Then any product σ of all the generators which ends in

τkτ1τ2 sends 1 → 2 → 3. Label the remaining vertices so that σ(i) = i + 1. The long cycle σ and the

three-cycle (τ1τk)
2 generate all of An. For example,

has corresponding coloring groupA9.

Note that this construction fails for n = 5 because, as we’ll see in the following example, the coloring

we obtain must be D5.

We can construct Dn on the path graph with the minimal proper edge coloring.

Example A.4. The proper edge coloring of Pn with two colors yields the dihedral groupDn. A nice way

to see this is to consider the vertices of a regular n-gon and connect them into a path in a zig-zag fashion

like so:

From this illustration, we can clearly see that the two generators correspond to two reflections that

generate Dn.

By the proof of theorem 3.11, we can construct the groupBm of signed permutations on a tree of order

n = 2m by joining two identical trees whose corresponding coloring group is the symmetric group Sm

with an edge of a unique color.

Example A.5. Let (T, κ) be the proper edge coloring of the star graph on n vertices. Connect two copies

of T at their centers by a new edge colored n + 1. The resulting color group is Bn. For example, the

coloring group of

is B4.
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B Coloring Groups on Small Trees

The following table lists the coloring groups presented by proper edge colorings of trees up to 12 vertices

computed using Sage(ii) [10]. Groups isomorphic to Sn, An, Dn or Bm are omitted as their constructions

are detailed above. The description in each row comes from GAP’s [4] structure description

method. A sample coloring realizing the group is given in the table either as a sequence of edge colors on

a path or as a reference to another example if it is not possible to realize that group on a path.

Degree Description Order Primitive? Coloring

7 GL(3, 2) 168 Yes Example 2.1

9 (C3 × C3 × C3)⋊ S4 648 No Example B.1

10 (C5 × C5)⋊D4 200 No 1,2,1,3,1,2,1,3,1

C2 × S5 240 No 1,2,1,3,1,3,1,2,1

(A5 ×A5)⋊ (C2 × C2) 14400 No 1,2,1,2,1,3,1,3,1

12 (C3 × C3)⋊ ((C2)
4
⋊ C2) 288 No 1,2,1,3,1,2,1,3,1,2,1

(C2 × C2)⋊ ((C2)
4
⋊D6) 768 No 1,2,3,2,1,2,1,2,3,2,1

(C3 × C3 × C3)⋊ (C2 × S4) 1296 No 1,2,3,2,3,2,1,2,1,2,3

(C4 × C4 × C4)⋊ S4 1536 No Example 3.12

(C2)
2
⋊ ((C2)

4
⋊ ((S3)

2
⋊ C2)) 4608 No 1,2,1,3,1,3,1,3,1,2,1

(C3)
4
⋊ ((C4 × C2)⋊D4) 5184 No Example B.2

(C2)
6
⋊ (((C3)

2
⋊ C3)⋊ (C2)

2) 6912 No Example 3.5

(C3)
4
⋊ ((C2)

3
⋊ S4) 15552 No 1,2,3,4,3,2,1,4,1,2,3

((C2)
5
⋊A6)⋊ C2 23040 No Example B.3

(C3)
4
⋊ ((C2)

4
⋊ S4) 31104 No Example B.4

(C2)
6
⋊ ((C3)

3
⋊ (C2 × S4)) 82944 No Example B.5

(A6 ×A6)⋊D4 1036800 No 1,2,1,2,1,3,1,3,1,3,1

Finally, we collect example colorings for groups in the above table which have not yet appeared.

Example B.1. Coloring realizing the group of degree 9 and order 648:

Example B.2. Coloring realizing the group of degree 12 and order 5184:

Example B.3. Coloring realizing the group of degree 12 and order 23040:

(ii) Code available at https://github.com/wilsoa/Coloring-Groups

https://github.com/wilsoa/Coloring-Groups


20 Ben Adenbaum and Alexander Wilson

Example B.4. Coloring realizing the group of degree 12 and order 31104:

Example B.5. Coloring realizing the group of degree 12 and order 82944:
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