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We study the following model of disease spread in a social network. At first, all individuals are either infected or

healthy. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a

healthy individual gets infected if and only if a sufficient number of its direct neighbors are already infected.

We represent the social network as a graph. Inspired by the real-world restrictions in the recent epidemic, especially

by social and physical distancing requirements, we restrict ourselves to networks that can be represented as geometric

intersection graphs.

We show that finding a minimal vertex set of initially infected individuals to spread the disease in the whole network

is computationally hard, already on unit disk graphs. Hence, to provide some algorithmic results, we focus ourselves

on simpler geometric graph classes, such as interval graphs and grid graphs.
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1 Introduction

In this work, we study the following deterministic model of disease spread. We are given a social network

represented as a simple, undirected graph G = (V,E), a threshold function t : V → N that associates

each agent with her immunity (or threshold), and a budget k ∈ N. Our goal is to select a group S ⊆ V ,

|S| ≤ k, of initially infected agents (a target set) such that all agents get infected by the following

activation process:

S0 = S,

Si = Si−1 ∪ {v ∈ V | t(v) ≤ |N(v) ∩ Si−1|}.

In other words, the disease spreads in discrete rounds. A healthy agent v becomes infected if the

number of neighbors already infected reaches the agent’s immunity value t(v). We note that once an

This is an extended and revised version of a preliminary conference report that was presented at the 18th International Workshop

on Algorithms and Models for the Web Graph, WAW ’23 (Dvořák et al., 2023).
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agent is infected, she remains in this state for the rest of the process. We shall also refer to infected agent

as activated or active agent.

Dreyer and Roberts (2009) studied a similar model under the name IRREVERSIBLE k-THRESHOLD

PROCESS. Unlike our setting, in their work, the immunity value is the same for all agents. Therefore, the

presented model is more general and corresponds, in fact, to the TARGET SET SELECTION problem (TSS

for short) where thresholds can be agent-specific.

The TARGET SET SELECTION problem was introduced by Richardson and Domingos (2002) in the

context of viral marketing on social networks. Kempe et al. (2015) later refined the problem in terms of

thresholds, which is the model we follow in this work, and showed that the problem is NP-hard.

The NP-hardness of TSS comes from the observation that for t(v) = deg(v) the problem is equiva-

lent to the VERTEX COVER problem. This setting of the threshold function is referred to as unanimous

thresholds.

The first way to tackle the complexity of the problem was aimed at the threshold function. However,

Chen (2009) showed that TSS remains NP-hard even if all thresholds are at most two, which extends

the previous result of Dreyer and Roberts (2009) who showed that the problem is NP-hard even if all

thresholds are bounded by a constant c ≥ 3. NP-hardness for majority thresholds (for every v ∈ V we

have t(v) = ⌈deg(v)/2⌉) is due to Peleg (1996).

It is easy to see that the TSS problem is solvable in polynomial time if the underlying graph has

diameter one, that is, it is a complete graph (Nichterlein et al., 2013; Thirumala Reddy and Pandu Rangan,

2011). Chen (2009) showed that the problem remains polynomial-time solvable when the underlying

graph is a tree. Later, Chiang et al. (2013) proposed linear-time algorithms for block-cactus graphs,

chordal graphs with all thresholds at most two, and Hamming graphs with all thresholds equal to two.

Bessy et al. (2019) showed that the TSS problem is solvable in polynomial time on interval graphs if all

thresholds are bounded by a constant. On the other hand, the problem becomes NP-hard on graphs of

diameter two (Nichterlein et al., 2013).

The problem becomes solvable in polynomial time when the input graph is 3-regular and all thresholds

are equal to 2. This setting is in fact equivalent to the FEEDBACK VERTEX SET problem (Takaoka

and Ueno, 2015), which is solvable in polynomial time on 3-regular graphs (Ueno et al., 1988). More

generally, setting where t(v) = deg(v) − 1 for all vertices v is equivalent to the FEEDBACK VERTEX

SET problem. Even more generally, TSS with threshold function t(v) = deg(v) − d for all vertices v
and some d ≥ 0 is equivalent to the d-DEGENERATE VERTEX DELETION problem, where the task is to

delete a set of vertices of size at most k such that the remaining graph is d-degenerate. The setting with

thresholds equal to 2 was further examined by Kynčl et al. (2017). They extended the tractability result

for TSS with thresholds equal to 2 when the input graph has degree at most 3 and showed NP-hardness

when the input graph has maximum degree at most 4. The study of fast exponential algorithms for TSS

with constant thresholds is due to Bliznets and Sagunov (2023).

Restriction of the underlying graph structure was further investigated by Ben-Zwi et al. (2011). They

gave an algorithm running in nO(ω) time for networks with n vertices and tree-width bounded by ω, and

showed that, under reasonable theoretical assumptions, there is no algorithm for TSS running in no(
√
w)

time. The parameterized complexity perspective, initiated by Ben-Zwi et al. (2011), was later used in

multiple subsequent works (Mathieson, 2010; Nichterlein et al., 2013; Chopin et al., 2014; Hartmann,

2018; Dvořák et al., 2022; Knop et al., 2022; Banerjee et al., 2022; Chu and Lin, 2023).

Very recently, Schierreich (2023) initiated the study of TSS in dynamic environments such as temporal

graphs. As social networks naturally change over time, the model with temporal graphs captures more
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realistically their dynamics. This variant was further investigated by Deligkas et al. (2024).

Finally, Cicalese et al. (2014) proposed a study of the TSS problem where the process must stabilize

within a prescribed number of rounds. They gave a polynomial-time algorithm for graphs of bounded

clique-width and a linear-time algorithm for trees. Somewhat opposite is the goal in the variant recently

introduced by Keiler et al. (2023), who studies the complexity of finding processes that lasts at least k
rounds.

Inspired by the actual restrictions in the recent epidemic, especially by social and physical distancing

requirements, we study the TARGET SET SELECTION problem restricted to instances where the underly-

ing graph is a (unit) disk graph.

Unit disk graphs were initially used as a natural model for the topology of ad-hoc wireless communica-

tion networks (Huson and Sen, 1995). For a given graph, it is NP-hard to recognize whether the graph is a

unit disk graph (Breu and Kirkpatrick, 1998; Hliněný and Kratochvı́l, 2001; Kang and Müller, 2012). On

the other hand, many computationally hard problems, such as INDEPENDENT SET or COLOURING, can

be efficiently approximated for this graph class (Matsui, 2000). CLIQUE can be solved even in polynomial

time if the disk representation is given as part of the input (Clark et al., 1990).

In our case, the disk representation models two different situations. In the first situation, the disk

represents the distances that individuals must keep. In the second case, the disk represents the area in

which the disease is spread by an infected individual.

As the TARGET SET SELECTION problem is notoriously hard from both exact computation and ap-

proximation point of view, it is natural to ask whether any positive result can be given if we restrict TSS

to instances where the underlying graph is a unit disk graph or if we need to restrict ourselves to even

simpler graph classes.

Our Contribution

In this paper, we further extend the complexity picture of TARGET SET SELECTION problem and show

that it is computationally hard even on very simple geometric graph classes. In particular, we show that

TARGET SET SELECTION is NP-complete in the class of unit disk graphs even if the threshold function is

bounded by a constant c ≥ 2, is equal to majority, or is unanimous. Hence, we focus on the study of grid

graphs, which is a subclass of unit disk graphs. For grid graphs, we show that TARGET SET SELECTION

is NP-complete for thresholds at most 2 even when the maximum degree is at most 3. As a corollary,

we show an NP-hardness result for TSS with majority thresholds for the class of grid graphs. Lastly, we

give NP-hardness results for the case when thresholds are set to a constant. We show that TARGET SET

SELECTION is NP-complete in the class of unit disk graphs when t(v) = 2 and ∆G ≤ 4. Note that our

results for constant thresholds establish a clear dichotomy between tractable and intractable subclasses

of geometric intersection graph classes, as TSS is known to be solvable in polynomial time on interval

graphs with constant thresholds (Bessy et al., 2019) and unanimous thresholds (Farber, 1982) (i.e. the

VERTEX COVER problem). As a byproduct of our theorems we also obtain the full complexity picture

of TARGET SET SELECTION in the class of planar graphs. We emphasize that most of our reductions

yield a graph with very small maximum degree and unless P = NP the maxium degree cannot be further

reduced. For a graphical overview of our results we refer the reader to Tab. 1 and Fig. 1.

Paper Organization

The remainder of this paper is organized as follows. In Section 2, we introduce all the definitions and no-

tation used throughout the paper. In Section 3, we show the hardness and algorithmic results for TARGET
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SET SELECTION restricted to unanimous thresholds. Section 4 is dedicated to the variant where the maxi-

mum threshold is bounded by a constant. In Section 5, we study a variant of the TARGET SET SELECTION

problem with majority thresholds. In Section 6, we explore the difference between constant thresholds

and exact thresholds and we conclude the paper with open problems and future research directions in

Section 7.

constant majority unanimous unrestricted

interval graphs P (Bessy et al.,

2019)

? P (Farber, 1982) ?

grid graphs NP-c (Thm. 25) NP-c (Cor. 29) P (Clark et al.,

1990)

NP-c (Thm. 25)

unit disk graphs NP-c (Cor. 27) NP-c (Cor. 30) NP-c (Clark et al.,

1990)

NP-c (Clark et al.,

1990)

planar graphs NP-c (Thm. 16) NP-c (Cor. 28) NP-c (Fleischner

et al., 2010)

NP-c (Fleischner

et al., 2010)

Tab. 1: Overview of our results. The first row contains individual restrictions of the threshold function, and the first

column contains assumed graph classes. In the table, “NP-c” stands for “NP-complete”, “P” stands for polynomial-

time solvable cases, and “?” indicates an open question. The new results from this paper are marked with a reference

to the appropriate statement.

DISK

PLANAR UDISK INT

GRID UINT

Fig. 1: Overview of our main results regarding TARGET SET SELECTION for unanimous, constant, majority, and

unrestricted threshold function. Red squares correspond to NP-hardness, green correspond to polynomial-time solv-

ability and yellow indicate an open question. Squares with borders correspond to results established in this work.

Black squares indicate a main result while the gray indicate a direct or trivial corollary to a previously known result.

An arrow from a class A to class B corresponds to the fact that A is a subclass of B. The six classes in the picture are

(by row) disk graphs, planar graphs, unit disk graphs, interval graphs, grid graphs, unit interval graphs.
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2 Preliminaries

For n ∈ N we denote [n] = {1, . . . , n}, in particular, [0] = ∅. For a set X and a constant c ∈ N,

the symbol X≥c denotes the set of all d-tuples from X where d ≥ c. A simple undirected graph is a

pair G = (V,E), where V is a set of vertices, and E ⊆
(

V
2

)

is a set of edges. Let u and v be two

distinct vertices. If {u, v} ∈ E, then we call u a neighbor of v and vice versa. We denote the open

neighborhood of a vertex v by N(v) and |N(v)| = deg(v) is the degree of the vertex v. For A ⊆ V the

open neighborhood of A is N(A) =
⋃

v∈A N(v). A vertex of degree 1 is called a leaf. The maximum

degree of a graph G is denoted by ∆G. Let r ∈ N be a constant. We say that a graph G is r-regular if

every vertex v ∈ V has degree exactly r. A graph is regular, if it is r-regular for some constant r ∈ N.

Definition 1 (Unit disk graph). A graph G = (V,E) with V = {v1, . . . , vn} is a disk graph if there exists

a collection D = (D1, . . . , Dn) of n closed disks in the Euclidean plane such that {vi, vj} ∈ E if and

only if Di ∩Dj 6= ∅. If all disks Di ∈ D have same diameter, we call the graph a unit disk graph.

Let G and H be two graphs. The Cartesian product of the graphs G and H is a graph G�H such

that V (G�H) = V (G) × V (H) and {(u, u′), (v, v′)} is an edge if and only if either u = v and u′ is a

neighbor of v′ in H , or u′ = v′ and u is a neighbor of v in G.

Definition 2 (Grid graph). An n × m grid is the Cartesian product of the path graphs Pn and Pm. A

graph G is a grid graph if and only if it is an induced subgraph of a grid.

Lemma 3. Every grid graph is a unit disk graph.

Proof: Let G be a grid graph. By definition, it is an induced subgraph of the cartesian product Pn�Pm.

Embed G into the integer grid [n] × [m] ⊆ Z × Z in the obvious way. Unit disk representation of G is

as follows. For each vertex v ∈ V (G) place a disk with diameter 1 centered at the corresponding grid

point. Notice that since G is an induced subgraph of a grid, all adjacencies are preserved and on the

other hand every adjacency in the unit disk representation corresponds to an adjacency in the original grid

graph G.

Let G = (V,E) be a graph. We call a set C ⊆ V a vertex cover of G, if at least one end of each edge is

a member of C. In the VERTEX COVER (VC for short) problem, we are given a graph G and an integer

k ∈ N, and our goal is to decide whether there is a vertex cover C of size at most k. A set I ⊆ V is called

an independent set, if for every pair of distinct vertices u, v ∈ I there is no edge connecting u and v. In

the INDEPENDENT SET problem (IS for short), we are given a graph G and an integer k ∈ N, and our

goal is to decide whether there is an independent set I of size at least k.

Some of our NP-hardness reductions come from a variant of the SAT problem. In the SAT problem,

we are given a propositional formula ϕ in conjunctive normal form (CNF) over the set Var(ϕ) of vari-

ables. The set of clauses is denoted by C(ϕ). Our goal is to decide whether there is a truth assignment

π : Var(ϕ) → {0, 1} that satisfies ϕ. In 3-SAT, all clauses are restricted to be of size at most 3. An

incidence graph for formula ϕ is a bipartite graph Gϕ with vertices vC for each clause C ∈ C(ϕ) and vx
for each variable x ∈ Var(ϕ) and there is an edge between x ∈ Var(ϕ) and C ∈ C(ϕ) if and only if the

variable x occurs in the clause C. A variant of SAT where Gϕ is planar is called PLANAR SAT. PLANAR

3-SAT is combination of the two settings mentioned above. In RESTRICTED PLANAR 3-SAT it is further

assumed that each variable xi occurs exactly 3 times – twice as a positive literal, and once as a negative

literal. This variant of SAT is NP-hard (Dahlhaus et al., 1994, pf. Theorem 2a)
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3 Unanimous Thresholds

In this section, we study the special case of the TARGET SET SELECTION problem where the thresholds

are unanimous. Recall that this means that for every vertex v we have t(v) = deg(v). All our results

strongly rely on the following easy-to-see and well-known equivalence between the TARGET SET SE-

LECTION problem with unanimous thresholds and the VERTEX COVER problem. Proof of this can be

found, for example, in the work of Chen (2009).

Lemma 4. The TARGET SET SELECTION problem with unanimous thresholds is equivalent to the VER-

TEX COVER problem.

It is not hard to see that TSS is indeed in NP. A valid target set is a valid NP certificate. In fact,

all NP-hard problems we deal with in this work are trivially in NP. We always state NP-completeness,

however, we omit the part with NP containment because it is trivial.

It is known that the VERTEX COVER problem is NP-complete on unit disk graphs (Clark et al., 1990),

3-regular planar graphs (Fleischner et al., 2010), and polynomial-time solvable on interval graphs (Farber,

1982) and bipartite graphs by using maximum matching (König, 1931; Chuzhoy and Khanna, 2024).

Note that grid graphs are bipartite. By Lemma 4, the same tractability results hold for TARGET SET

SELECTION with unanimous thresholds.

4 Constant Thresholds

The TARGET SET SELECTION problem seems to be intractable on unit disk graphs when the threshold

function is unrestricted or unanimous. It is now natural to ask whether the problem remains NP-hard even

under some natural restrictions of the threshold function.

In this section, we show that TSS is NP-complete when the underlying graph is a unit disk graph and

all thresholds are bounded by a constant c ≥ 2. Note that the case where all thresholds are at most 1, is

trivial. It is sufficient (and necessary) to choose one vertex per connected component without a vertex of

threshold 0 of the input graph. This can be accomplished in linear time.

Before delving into the proofs, we give a historical remark. If the input graph is unrestricted, the

NP-hardness of TSS for constant thresholds is implied by the hardness of VERTEX COVER and INDE-

PENDENT SET in the class of k-regular graphs for k ≥ 3 as noted by Dreyer and Roberts (2009). Indeed,

this can be also regarded as the unanimous threshold setting. However, this is only applicable for thresh-

olds bounded by c ≥ 3. For thresholds bounded by 2 in general graphs the hardness is either implied

by the inapproximability result of Chen (2009) or is achieved via involved reduction from the SAT prob-

lem (Centeno et al., 2011; Kynčl et al., 2017). Although we eventually show hardness even for thresholds

bounded by 2 (by reduction from a special variant of SAT), this section shows that the very same approach

could be used even in the class of unit disk graphs.

In what follows we will employ reductions from problems involving planar graphs. To effectively apply

such reductions, it will be essential to have some kind of ’nice’ representation of the planar graph. One

such representation useful for our purposes is the so-called rectilinear embedding. This planar embedding

ultimately helps us with further reductions to the class of grid graphs.

Definition 5. Given a planar graph G = (V,E), a rectilinear embedding (of G) is a planar drawing of G
such that vertices occupy integer coordinates, and all edges are made of (possibly more) line segments of

the form x = i or y = j for some integers i, j (i.e., the line segments are parallel to the coordinate axes).
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Formally, a rectilinear embedding of a planar graph G = (V,E) is a pair of mappings (EV , EE) where

EV : V → Z× Z and EE : E → (Z× Z)≥2 and the following conditions must hold:

i) The mapping EV is injective.

ii) For any edge e, the tuple EE(e) = (p1, p2, . . . , pg) induces a simple polygonal chain and for all

i ∈ [g − 1] the points pi, pi+1 are adjacent grid points. More precisely, if pi = (xi, yi) and

pi+1 = (xi+1, yi+1), then either xi = xi+1 ∧ |yi − yi+1| = 1 or yi = yi+1 ∧ |xi − xi+1| = 1.

iii) For any edge e = {u, v}, the points EV (u) and EV (v) are endpoints of the polygonal chain induced

by EE(e).

iv) For any two distinct edges e, f , the simple polygonal chains induced by EE(e) and EE(f) are

disjoint except possibly at the endpoints.

To simplify notation, we will use only one mapping E = EV ∪ EE to represent a rectilinear embedding

(EV , EE). We slightly abuse notation and identify 1-tuples of (Z × Z)1 with the elements of Z × Z. In

other words, E : V ∪E → (Z× Z)≥1 and E|V = EV , E|E = EE . Since EV is by definition injective, for

a grid point p ∈ E(V ) ⊆ Z× Z, we let E−1(p) denote the vertex v ∈ V such that E(v) = p. The area of

a rectilinear embedding E , denoted Area(E), is the minimal area of an axes-parallel closed rectangle R
such that the embedding is contained in R. We utilize the following theorem of Valiant which establishes

a sufficient condition for existence of rectilinear embedding for a planar graph G.

Theorem 6 (Valiant (1981)). Given a planar graph G = (V,E) with maximum degree ∆G ≤ 4, there

exists a rectilinear embedding E of G satisfying Area(E) ≤ O(|V |2). Moreover, E can be computed in

polynomial time with respect to the size of G.

4.1 Thresholds bounded by 3 in unit disk graphs

We begin with an auxiliary result showing NP-hardness of the INDEPENDENT SET problem in 3-regular

and 4-regular unit disk graphs.

Theorem 7. INDEPENDENT SET is NP-complete even if the underlying graph is an r-regular unit disk

graph, where r ∈ {3, 4}.

We divide the proof of Theorem 7 into two parts. First we explain the construction of the reduction. In

the second part we explain how to represent the resulting graph as a unit disk graph.

Construction

The reduction is from the INDEPENDENT SET problem on r-regular planar graphs. Let (G, k) be an

instance of the INDEPENDENT SET problem where G = (V,E) is a planar r-regular graph. We construct

instance (G′, k′) as follows. Start with G and subdivide each edge e = {u, v} ∈ E exactly 6qe times,

creating a path uxe
1x

e
2 . . . x

e
6qev. The number qe, which depends on the edge e, will be explained later.

For the construction, it is only important that the number of subdivisions is a multiple of 6. Next, for all

i ∈ [2qe], replace each vertex xe
3i−1 with a clique Kr−1 and connect all its neighbors to the clique. In

other words, create r − 2 additional copies of the vertex xe
3i−1 and connect these copies into a complete

graph (independently for each i). Let Xe denote the set of vertices created by subdividing the edge e
(including the copies of all vertices xe

3i−1) (see Fig. 2). Let G′ denote the resulting graph. Note that G′ is

r-regular. To finish the construction, we set k′ = k +
∑

e∈E 3qe.
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u xe
1 xe

2

xe
2
′

xe
2
′′

xe
3 xe

4 xe
5

xe
5
′

xe
5
′′

xe
6 v

Fig. 2: An example subdivision of the edge e = {u, v} in the case of 4-regular graphs. In this case, qe = 1 and

Xe = {xe
1, x

e
2, x

e
3, x

e
4, x

e
5, x

e
6, x

e
2

′, xe
2

′′, xe
5

′, xe
5

′′}. The half-edges going from u and v symbolize the rest of the

graph. The filled vertices showcase the situation from Case 1 in proof of Claim 8, as u /∈ Iℓ−1, we add xe
1, xe

3 and xe
5

to Iℓ and the set Iℓ remains independent.

We now establish the equivalence of the instances (G, k) and (G′, k′). This is the content of Claims 8

and 9.

Claim 8. If (G, k) is a yes-instance of INDEPENDENT SET, then (G′, k′) is a yes-instance of INDEPEN-

DENT SET.

Proof: Assume that (G, k) is a yes-instance and let I be an independent set in G of size at least k. We

build an independent set I ′ in G′ of size at least k′. Let E(G) = {e1, e2, . . . , em} be enumeration of all

edges of G in an arbitrary order. We inductively build a chain I0 ⊆ I1 ⊆ · · · ⊆ Im of independent sets

in G′ and set I ′ = Im. Towards this, we start with I0 = I and add vertices created by subdivisions, i.e.

vertices from Xe1 , Xe2 , . . . , Xem . For all ℓ ∈ [m] it will hold that Iℓ ∩ V (G) = I . Notice that for ℓ = 0,

since I ⊆ V (G), the property I0 ∩ V (G) = I holds. For the inductive step, let ℓ ≥ 1 and let eℓ = {u, v}.

Since I is independent and Iℓ−1 ∩V (G) = I it cannot happen that {u, v} ⊆ Iℓ−1. In other words, at least

one of u, v is not in Iℓ−1. We now distinguish two not necessarily exclusive cases (if both of them apply,

choose one arbitrarily):

Case 1 If u /∈ Iℓ−1, we set Iℓ = Iℓ−1 ∪ {xeℓ
2i−1 | i ∈ [3qe]}.

Case 2 If v /∈ Iℓ−1, we set Iℓ = Iℓ−1 ∪ {xeℓ
2i | i ∈ [3qe]}.

It is straightforward to verify that for all ℓ ∈ [m] the property Iℓ ∩V (G) = I holds and Iℓ is independent.

Since |I0| = |I| ≥ k and |Iℓ| = |Iℓ−1| + 3qeℓ for all ℓ ∈ [m], it indeed holds that |I ′| = |Im| =
|I0|+

∑

e∈E(G) 3qe ≥ k +
∑

e∈E(G) 3qe = k′. It follows that (G′, k′) is a yes-instance.

Claim 9. If (G′, k′) is a yes-instance of INDEPENDENT SET, then (G, k) is a yes-instance of INDEPEN-

DENT SET.

Proof: Assume that (G′, k′) is a yes-instance and let I ′ be an independent set in G′ of size at least k′.
We build an independent set I in G of size at least k. Let E(G) = {e1, . . . , em} be an enumeration of

all edges of G in an arbitrary order. We inductively build a chain I0 ⊇ I1 ⊇ · · · ⊇ Im of independent
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sets in G′ with Im ⊆ V (G) and we set I = Im. Start with I0 = I ′. Now let ℓ ≥ 1 and assume that the

set Iℓ−1 is already built and is independent. We describe how to build Iℓ. Let eℓ = {u, v}. There are two

cases to consider:

Case 1 At least one of u and v is not in Iℓ−1. In this case, since Iℓ is independent, we have |Iℓ−1∩Xeℓ | ≤
3qeℓ by the pigeonhole principle. We set Iℓ = Iℓ−1 \Xeℓ .

Case 2 Both u and v are in Iℓ−1. In this case, |Iℓ−1 ∩Xeℓ | ≤ 3qeℓ − 1 by the same argument as above.

We set Iℓ = Iℓ−1 \ (Xeℓ ∪ {u}).

The resulting set I = Im is indeed independent. To see this let e = {u, v} ∈ E(G) be an arbitrary edge.

Notice that at the time of processing the edge eℓ = e one of u, v was already missing in Iℓ−1 (Case 1) or

we explicitly removed u from Iℓ−1 (Case 2). It remains to show that |I| ≥ k. Note that |Iℓ−1|−|Iℓ| ≤ 3qeℓ
for all ℓ ∈ [m]. It follows that |I| = |Im| ≥ |I0| −

∑

e∈E(G) 3qe = k′ −
∑

e∈E(G) 3qe = k. Thus, (G, k)
is a yes-instance.

We now turn our attention to how to represent the graph G′ as a unit disk graph. We also explain how

to compute the constants qe for each edge e, and we show that they can be bounded by a polynomial in

the size of G.

Unit disk representation

We let d = 1
7 be the diameter of the disks in the representation. Since G is planar and in both cases

(i.e., G is 3- or 4-regular) we have ∆G ≤ 4, by Theorem 6 there is a rectilinear embedding E of G of

polynomial area and computable in polynomial time. We now describe how to represent the vertices of G′

with disks.

First, the vertices v ∈ V (G′) corresponding to vertices of G will have their disk centered at the grid

point E(v).
We now show how to construct the subdivisions of the edges. We proceed independently for each

edge e ∈ E(G)(i). Let E(e) = (p1, . . . , pg). We place disks D2, . . . , Dg−1 centered at the points

p2, . . . , pg−1. Let D1 and Dg denote the disks corresponding to vertices E−1(p1) and E−1(pg), respec-

tively. Our task is now to insert a certain number of disks between Di, Di+1 for all i ∈ [g − 1] such that

the total number of disks between D1 and Dg is a multiple of 6, that is, the total number of disks between

D1 and Dg (excluding D1 and Dg) should be equal to 6qe. Let wi denote the number of disks inserted

between Di, Di+1. We specify the numbers wi later. The total number of disks between D1, . . . , Dg is

therefore given by ye = g − 2+
∑g−1

i=1 wi. Our aim is now to choose the numbers wi such that ye = 6qe.

To achieve this, we do the following. First, we learn how to insert ℓ ∈ {6, 7, 8, 9} disks between a single

pair of adjacent disks Di and Di+1. We prove this in the following lemma. Note that Di and Di+1 are

centered at neighboring grid points since, by definition, pi, pi+1 are neighboring grid points. We simplify

the scenario and assume that Di and Di+1 are centered at pi = (0, 0) and pi+1 = (1, 0), respectively. It

is not hard to generalize this idea to general points pi, pi+1.

Lemma 10. Let L be the line segment with endpoints (0, 0), (1, 0) and let ℓ ∈ {6, 7, 8, 9}. There exist ℓ
disks E1, . . . , Eℓ with diameter d = 1

7 and centers s1, . . . , sℓ all lying on L such that:

(i) All variables introduced from this point should have additional superscript e to signify their dependence on the edge e. Nonethe-

less, for the sake of readability, we omit it.
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i) s1 = (d, 0),

ii) sℓ = (1− d, 0),

iii) any disk Ej intersects exactly its neighbors Ej−1 and Ej+1 (if they exist).

Proof: We prove this by construction and specify the centers of the ℓ disks. As all centers shall lie on the

line L they are of the form sj = (aj , 0). For fixed ℓ and j ∈ [ℓ], the numbers aj are given by the formula:

aj =
5j + ℓ− 6

7(ℓ− 1)
.

It can be verified by a straightforward calculation that the properties i), ii) and iii) hold. To verify iii), it is

enough to check that aj+1 − aj ≤ d and aj+2 − aj > d for appropriate j.

Now we know how to insert ℓ ∈ {6, 7, 8, 9} disks. We show how many disks we have to insert such

that ye = g − 2 +
∑g−1

i=1 wi is a multiple of 6, given g ≥ 2. In other words, we are now in the situation to

choose the wi’s, given g ≥ 2. We prove this in the following lemma.

Lemma 11. For any g ≥ 2 there exist g − 1 numbers w1, . . . , wg−1 ∈ {6, 7, 8, 9} such that

g − 2 +

g−1
∑

i=1

wi = 0 mod 6.

Proof: We divide the proof into six cases according to the residue class of g modulo 6.

Case 1 If g = 0 mod 6, set w1 = 8 and wi = 6 for i ∈ {2, . . . , g − 1}.

Case 2 If g = 1 mod 6, set w1 = 7 and wi = 6 for i ∈ {2, . . . , g − 1}.

Case 3 If g = 2 mod 6, set wi = 6 for all i ∈ [g − 1].

Case 4 If g = 3 mod 6, set w1 = 9, w2 = 8 and wi = 6 for all i ∈ {3, . . . , g − 1}.

Case 5 If g = 4 mod 6, set w1 = w2 = 8 and wi = 6 for all i ∈ {3, . . . , g − 1}.

Case 6 If g = 5 mod 6, set w1 = 9 and wi = 6 for all i ∈ {2, . . . , g − 1}.

It is a straightforward computation to verify that the chosen numbers wi work in every case. Note that

g ≥ 3 in Case 4 and 5.

The formula for qe is thus given by

qe =
1

6
ye =

1

6

(

g − 2 +

g−1
∑

i=1

wi

)

.

The number g is given by the polygonal chain induced by E(e) and Lemma 11 tells us how to choose the

numbers wi.
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Fig. 3: Example of a construction of the unit disk representation of the graph G′ from the proof of Theorem 7 for

r = 3. On the left, the original 3-regular graph G is embedded into a grid (the half-edges represent the rest of the

graph). On the right, the subdivision was made. The red disks correspond to the original vertices of the graph and

blue disks correspond to the internal grid points contained in the polygonal chains representing the edges. These are

the disks D2, . . . , Dg−1 for the corresponding edges. Consider the edge e = {a1, a4}. The red disks at a1 and a4 are

the disks D1 and D4, respectively, and the blue disks at b1 and b2 are the disks D2 and D3, respectively. The empty

disks correspond to the disks Ej from Lemma 10. The numbers next to the edges correspond to the values wi from

Lemma 11 (and are equal to the number of empty disks Ej between (filled) red and blue disks). For the edge e, we

have g = 4 grid points contained in the polygonal chain E(e), thus we are in the case g = 4 mod 6 from Lemma 11

thus w1 = w2 = 8 and w3 = 6 for this particular edge. The total number of disks on the subdivided edge e is thus

2 + 8 + 8 + 6 = 24 = 0 mod 6 and thus qe = 4.

It remains to show how to represent the cliques that are replaced for the vertices xe
3i−1 for i ∈ [2qe].

Simply create r − 2 additional copies of the corresponding disk in the representation.

This completes the description of the unit disk representation for G′. An example of the construction

is given in Fig. 3. Note that Lemma 10 ensures that the disks are placed in between the disks Di, Di+1

starting from s1 = (d, 0) and ending at sℓ = (1 − d, 0). This implies that for any edge e = {u, v} the

disks adjacent to D1 and Dg will not intersect any other disks representing other subdivided edges (in

particular those with endpoints u or v).

We are now ready to finally prove Theorem 7.

Proof of Theorem 7: Reduce from INDEPENDENT SET on r-regular planar graphs. This setting is NP-

hard (Fleischner et al., 2010). Let (G, k) be an instance of INDEPENDENT SET where G is r-regular

planar graph. Construct an instance (G′, k′) of INDEPENDENT SET where G′ is r-regular unit disk graph

as described above. Combining Claims 8 and 9 the instances (G, k) and (G′, k′) are equivalent. It remains

to argue that the reduction is polynomial. Computation of the rectilinear embedding E for G can be done in

polynomial time by Theorem 6. Computation of the numbers wi, g and qe can also be done in polynomial

time. What is left to show is that the numbers qe are also polynomially bounded by the size of G. By

Theorem 6 the area of E satisfies Area(E) ≤ O(|V (G)|2). For any edge e, the number of grid points

contained in the polygonal chain induced by E(e) is at most Area(E). It follows that g ≤ O(|V (G)|2) for

any edge e. By construction we have wi ≤ 9 for any g ≥ 2 and i ∈ [g − 1]. Thus, we have

qe ≤
1

6
(g − 2 + 9(g − 1)) ≤

1

6
(10g − 11) ≤

10

6
g ≤ O(|V (G)|2).

The number of newly added vertices is at most
∑

e∈E 10qe and since qe is polynomial in |V (G)|, the
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reduction is indeed polynomial.

Using Theorem 7, we can easily show that TARGET SET SELECTION remains NP-complete even if the

threshold function is bounded by a constant. We show a construction for the case where all thresholds are

exactly 3. It is not hard to see that our result holds for every constant c ≥ 3. Whenever thresholds are

bounded by a constant c′, then they are certainly bounded by any constant c ≥ c′.

Corollary 12. TARGET SET SELECTION is NP-complete even if the underlying graph is a unit disk graph

and all thresholds are bounded by a constant c ≥ 3.

Proof: By Theorem 7, INDEPENDENT SET is NP-complete when restricted to the class of 3-regular unit

disk graphs. The same NP-hardness holds for VERTEX COVER. We reduce from VC restricted to such

instances. Let (G, k) be an instance of VERTEX COVER and G be a 3-regular graph. Set G′ = G, k′ = k
and t(v) = 3 for each v ∈ V (G). Since G′ is 3-regular this is the case of unanimous thresholds. As

noted in Lemma 4, instances of TARGET SET SELECTION with unanimous thresholds are equivalent to

the VERTEX COVER problem, so the theorem follows.

The above result can be generalized for infinitely many constants r. Given an instance (G, k) of INDE-

PENDENT SET where the underlying graph is r-regular, replacing each vertex by a clique Kq makes the

graph (q(r + 1) − 1)-regular. If we denote the new graph by Gq it is not hard to see that thes instances

(Gq, k) and (G, k) of INDEPENDENT SET are equivalent. Replacing vertices by cliques can be easily

achieved in intersection graph classes, in particular, unit disk graphs.

Corollary 13. If INDEPENDENT SET is NP-hard on the class of r-regular graphs, then INDEPENDENT

SET is NP-hard in the class of (q(r + 1)− 1)-regular graphs for any positive integer q.

Combining Corollary 13 with Theorem 7 we obtain the following.

Corollary 14. INDEPENDENT SET is NP-hard even if the underlying graph is an r-regular unit disk

graph where r is positive integer and r = −1 mod 4 or r = −1 mod 5.

Remark 15. We remark that this approach does not prove NP-hardness of INDEPENDENT SET for all

constants r ≥ 3 (note that for r ≤ 2 the problem is in P). The first value of r unknown to us is r = 5.

Note that INDEPENDENT SET is NP-hard on planar 5-regular graphs (Akhoondian Amiri, 2021), however

Theorem 6 is not applicable since ∆G = 5 in this case.

By using Corollary 13 and explicit proof for r = 3, 4 we obtained NP-hardness for infinitely many con-

stants r ≥ 3. Unfortunately, this approach can never be used to show NP-hardness for all constants r ≥ 3.

To see this, note that even if we explicitly show NP-hardness for any number of constants r1, . . . , rk, we

can pick a large enough prime number p satisfying p > ri + 1 for all i ∈ [k]. Observe that explic-

itly proving NP-hardness for ri-regular graphs implies NP-hardness for r-regular graphs with r = −1
mod ri + 1. Now, the NP-hardness for r = p− 1 is not implied by NP-hardness for r1, . . . , rk together

with Corollary 13 since otherwise p − 1 = −1 mod rj + 1 for some j ∈ [k] which implies that rj + 1
divides p, contradicting the choice of p.

4.2 Thresholds bounded by 2 in planar graphs

Following historical development in the study of TSS, it remains to show the complexity of the problem

if all thresholds are bounded by 2 and the underlying graph is a unit disk graph.

We first establish the NP-hardness for planar graphs with ∆G ≤ 3 and then utilize this reduction to

show NP-hardness for the class of grid graphs. The NP-hardness for unit disk graphs follows.
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Note that the restriction on maximum degree or the threshold function cannot be further strengthened.

For t(v) ≤ 1 or ∆G ≤ 2 the problem is trivial, for t(v) = 2 and ∆G ≤ 3 the problem is polynomial-time

solvable in general graphs (Kynčl et al., 2017).

Theorem 16. TARGET SET SELECTION is NP-complete even when the underlying graph is planar with

maximum degree ∆G ≤ 3 and all thresholds are at most 2.

Construction

The reduction is from the RESTRICTED PLANAR 3-SAT. Let ϕ be an instance of RESTRICTED PLANAR

3-SAT and let Var(ϕ) denote the set of variables of ϕ and C(ϕ) the set of clauses of ϕ. Recall that each

clause consists of at most 3 literals and each variable occurs exactly three times in ϕ – twice as positive

literal and once as negative literal. The reduction consists of two types of gadgets:

Variable gadget Given a variable x ∈ Var(ϕ), the variable gadget for x is the planar graph depicted

in Fig. 4. We refer to this graph as VG(x). For simplicity of notation we write V (x) instead of

V (VG(x)) for the set of vertices of VG(x). The notable vertices of the gadget are Tx, Fx, t1x, t2x,

and fx. The idea is that the vertices Tx and Fx stand for the truth assignment of variable x while

the vertices t1x, t2x and fx represent the two positive and one negative occurrence of the variable x.

These vertices serve to connect the variable gadget with the respective clause gadgets.

Clause gadget Given a clause C ∈ C(ϕ), the clause gadget for C consists of single vertex wC which is

connected to the corresponding literal vertices that are contained in C. We refer to this gadget as

CG(C).

t2x
t′x

t1x

Tx

fx

Fx

ax

bx cx

dx

Fig. 4: Schematic representation of the variable gadget VG(x) for variable x. The filled vertices have threshold 2,

while the white vertices have threshold 1. Note also that the half-edges illustrate the fact that the gadget is connected

with the rest of the graph only via t1x, t
2

x and fx.

We are now ready to construct an instance (G, t, k) of TARGET SET SELECTION. Start with the in-

cidence graph Gϕ. For every variable x we replace the vertex vx by the variable gadget VG(x) and we

identify each clause vertex vC with the vertex wC , i.e., with the gadget CG(C). Next, for all variables x,

we connect all literal vertices of VG(x) with the corresponding clause gadgets. More precisely, if C1, C2

are the clauses where x occurs as positive literal and C3 is the clause where x occurs as negative literal,

we add edges {t1x, wC1
}, {t2x, wC2

} and {fx, wC3
}.

It remains to set the thresholds and k. In the variable gadgets the filled vertices have threshold equal

to 2, while the white vertices have threshold equal to 1. In the clause gadgets we set t(wC) = 1 for all

clauses C. Finally, we set k = n.
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Observe that G is a planar graph. To see this, start with a planar drawing of Gϕ and replace the vertices

of Gϕ with the corresponding gadgets. The only problem could be with the edges coming from the

vertices t1x, t2x and fx. However, for a variable x that occurs in clauses C1, C2 and C3, no matter what the

radial order(ii) of the vertices wC1
, wC2

, wC3
is (with respect to the planar drawing of Gϕ), it is always

possible to draw the edges from t1x, t2x and fx to the corresponding clause gadgets in such a way that we

do not create any crossings. We can always, without loss of generality, swap wC1
with wC2

, i.e. instead of

having the edges {t1x, wC1
}, {t2x, wC2

} we can have the pair of edges {t1x, wC2
}, {t2x, wC1

} and if needed

the edge coming from t1x can encircle the entire gadget in the drawing and leave the gadget to the right of

the edge coming from fx.

Moreover, we have ∆G ≤ 3, and the thresholds are at most 2, as promised.

Before showing the equivalence of the instances (G, t, k) and ϕ, we establish some basic properties of

the variable gadget. Properties of the clause gadget are clear, since it is a single vertex with threshold 1.

Lemma 17. Let x ∈ Var(ϕ) be a variable. The gadget VG(x) has the following properties:

i) If the vertex Tx is active, then after 5 rounds, the vertices ax, bx, cx, dx, t
′
x, t

1
x, t

2
x are necessarily

active.

ii) If the vertex Fx is active, then after 5 rounds, all vertices on the fx-Fx-path are necessarily active.

iii) The vertices Tx and Fx never become active unless some vertex v ∈ V (x) is active.

iv) If the vertex Fx is active and the neighbors of t1x and t2x outside VG(x) become active, then all

vertices in VG(x) are eventually active.

v) If the vertex Tx is active and the neighbor of fx outside VG(x) becomes active, then all vertices in

VG(x) are eventually active.

Proof: The properties i) and ii) clear from the construction of the gadget. To prove iii), suppose that no

vertices inside VG(x) are active and consider the extreme case that all the vertices in N(V (x)) \ V (x)
are active. The vertices t1x, t

′
x, t

2
x become active. However, both ax and Tx have threshold 2 and both

of them have only one active neighbor since dx, bx, cx are not active by assumption. Hence, Tx never

becomes active. Similarly, if the neighbor of fx outside V is active, it only activates the neighbor of Fx

with threshold one but Fx has threshold 2 so he doesn’t get active as Tx is not active either. Thus Fx will

not become active.

We now turn our attention to property iv). Suppose that Fx is active and the neighbors of t1x and t2x
outside V become active in round r. Then, in round r+1 the vertex t1x becomes active and in round r+2
the vertex t′x becomes active. In round r+3 the vertex t2x becomes active and since Tx now has two active

neighbors it becomes active. Finally, the vertices dx, bx, cx and ax become active. Note that the vertices

on Fx-fx-path are also active since Fx is active. Thus, all vertices of V (x) are active.

It remains to prove property v). Suppose that Tx is active and fx becomes active in round r. At latest

in round r + 5 the vertex Fx becomes active. By property i) the remaining vertices of the gadget become

active.

We now establish the equivalence between the formula ϕ and the constructed instance (G, t, k).

(ii) More precisely, the order of the points corresponding to the vertices vC1
, vC2

, vC3
∈ V (Gϕ) given by radially sorting them

around the point corresponding to the vertex vx ∈ V (Gϕ) in the original drawing.
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Claim 18. If ϕ is satisfiable, then (G, t, k) is a yes-instance of TSS.

Proof: Let ϕ be satisfiable and let π be a satisfying assignment for ϕ. We create a target set S as follows.

For each variable x we add either Tx if π(x) = 1 or Fx if π(x) = 0. Observe that |S| = n = k. It remains

to show that S is a target set.

To see this, observe that for any variable x by the properties i) and ii) from Lemma 17 Tx activates t1x
and t2x and Fx activates fx in 5 rounds. In the sixth round, all clauses become active. Indeed, because π
is a satisfying assignment, all of them become active. Finally, by applying the properties iv) and v) from

Lemma 17, since all neighbors of t1x, t2x and fx outside V (x) are active for all i, all remaining vertices in

all variable gadgets are eventually active. Thus, S is a target set and (G, t, k) is a yes-instance.

Claim 19. If (G, t, k) is a yes-instance of TSS, then ϕ is satisfiable.

Before proving Claim 19 we first make several observations about the structure of the solution to the

instance (G, t, k). In what follows, we denote by S an arbitrary target set in G of size at most k. Recall

that k = n.

Observation 20. For every variable x we have S ∩ V (x) 6= ∅.

Proof: Suppose otherwise, and let x be a variable such that S∩V (x) = ∅. Note that by property iii) from

Lemma 17, the vertices Tx and Fx never become active even if all the vertices outside V (x) are active.

This contradicts the assumption that S is a target set.

Observation 21. For all variables x we have |S ∩ V (x)| = 1.

Proof: By Observation 20, S must contain at least one vertex from each variable gadget. On the other

hand, if there is a variable gadget containing at least 2 vertices from S then, by the pigeonhole princi-

ple, there is a variable gadget containing no vertices from S, contradicting Observation 20 as there are

exactly n variable gadgets.

Observation 22. There exists a target set S′ such that for all variables x we have S′ ∩{Tx, Fx} 6= ∅ and

|S′| = |S|.

Proof: Process the variable gadgets independently one by one. Let Var(ϕ) = {x1, . . . , xn}. Formally(iii),

we build target sets Si for i = 0, 1, . . . , n and set S′ = Sn. Start with S0 = S. Let i ≥ 1 and

consider the variable gadget VG(xi). If Si−1 ∩ {Txi
, Fxi

} 6= ∅, there is nothing to do, i.e., we set

Si = Si−1. Otherwise, observe that S ∩ V (xi) = Si−1 ∩ V (xi). By Observation 21 we a unique vertex

uxi
∈ S ∩ V (xi). We distinguish two cases:

Case 1 The vertex uxi
lies on the fxi

-Fxi
-path in VG(xi). Note that we can replace uxi

by Fxi
and this

does not change the fact that uxi
eventually becomes active by property ii) from Lemma 17. In this

case we set Si = Si−1 \ {uxi
} ∪ {Fxi

}.

Case 2 The vertex ui is one of axi
, bxi

, cxi
, dxi

, t′xi
, t1xi

, t2xi
. Note that we can replace uxi

by Txi
and

this does not change the fact that uxi
eventually becomes active by property i) from Lemma 17. In

this case we set Si = Si−1 \ {uxi
} ∪ {Txi

}.

(iii) We use superscripts to avoid confusion with the activation process.
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This finishes the proof of Observation 22.

We are now ready to give proof of Claim 19.

Proof of Claim 19: Let (G, t, k) be a yes-instance and let S be a target set in G of size at most k. By

Observation 22 we can assume, without loss of generality, that for all variables x the unique vertex ux in

S ∩ V (x) is either Tx or Fx. We now construct a satisfying assignment π for ϕ in the obvious way. We

set π(x) = 0 if ux = Fx and π(x) = 1 if ux = Tx. The only thing left is to show that π is indeed a

satisfying assignment for ϕ.

For the sake of contradiction, suppose that π is not a satisfying assignment. Thus, there is a clause C not

satisfied by π. Note that wC /∈ S because otherwise there is a variable gadget VG(x) with S ∩ V (x) = ∅
which contradicts Observation 20. Since S is a target set and wC /∈ S and t(wC) = 1 there must be a

round r in which one of the neighbors of wC becomes active. We show that this is impossible.

We handle the positive and negative literals inside C separately.

Let x be a variable occurring as positive literal in C and let y be a variable occurring as a negative literal

in C. By assumption we have π(x) = 0 and π(y) = 1.

Consider the connection of wC to the variable gadget VG(x). Since x occurs as positive literal in C,

the vertex wC is connected to t1x or t2x. By construction of π we have S ∩ V (x) = {Fx}. The only way

that t1x or t2x could be activated is via Tx. However Tx has only one active neighbor and since no other

vertices from VG(x) are in S, t1x nor t2x get activated. Note that even if wC is connected to t2x and the

vertex t1x gets activated via the other clause connected to t1x, this doesn’t activate the vertex t2x. On the

other hand if wC was connected with VG(x) via t1x, activation of the clause connected via t2x won’t even

activate the vertex t2x, thus t1x is neither active.

Finally, consider the connection of wC to the variable gadget VG(y). The vertex wC is connected to fx
and S ∩ V (y) = {Ty}. The only way that fx is activated is via Fx. However Fx has only one active

neighbor and by the same argument as above, fx doesn’t get activated.

To conclude, wC does not get activated and this contradicts the fact that S is a target set, thus π is

satisfying assignment for ϕ.

We can finally give proof of Theorem 16.

Proof of Theorem 16: Reduce from RESTRICTED PLANAR 3-SAT which is NP-hard (Dahlhaus et al.,

1994). Let ϕ be an instance of RESTRICTED PLANAR 3-SAT consisting of n variables and m clauses.

Construct an instance (G, t, k) from ϕ as described above. Combining Claims 18 and 19, the instances ϕ
and (G, t, k) are equivalent. To conclude, it remains to say that the resulting graph G has exactly m+14n
vertices, thus the reduction is indeed polynomial.

4.3 Thresholds bounded by 2 in Grid Graphs and Unit Disk Graphs

In the previous section we showed NP-hardness of TARGET SET SELECTION when the underlying graph

is planar and has maximum degree at most 3 and the thresholds are at most 2. We now utilize this result to

show NP-hardness in the same setting for the class of grid graphs. Note that hardness for unit disk graphs

follows since by Lemma 3 every grid graph is a unit disk graph. Let us begin with a few observations

about how edge subdivisions affect target sets.

Observation 23. Let G = (V,E) be a graph and t : V → N a threshold function, S ⊆ V a target set,

and let v ∈ S be a vertex with t(v) ≤ 1 and deg(v) ≥ 1. Then for any u ∈ N(v), the set S \ {v} ∪ {u}
is also a target set.
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Observation 24. Let G = (V,E) be a graph and t : V → N a threshold function, and let e ∈ E.

Let G′ be a graph that results from G by subdividing the edge e once, creating a new vertex v′ /∈ V .

Let t′ : V (G′) → N be defined by t′(v′) = 1 and t′(v) = t(v) for v 6= v′. Then the following holds:

i) If S is a target set for G with respect to t, then S is also a target set for G′ with respect to t′.

ii) If S′ is a target set for G′ with respect to t′, then there exists a target set S for G with respect to t
and |S| = |S′|.

Theorem 25. TARGET SET SELECTION is NP-complete even if the underlying graph is a grid graph

with maximum degree at most 3 and all thresholds are at most 2.

Proof: We reduce from TARGET SET SELECTION on planar graphs with maximum degree 3 and thresh-

olds at most 2. This setting is NP-hard by Theorem 16. Let (G, t, k) be an instance of TSS where G is

planar and ∆G ≤ 3. By Theorem 6 there is a rectilinear embedding of G of polynomial area and com-

putable in polynomial time. Fix one such embedding and denote it by E . We now modifiy the graph G as

follows. For an edge e ∈ E(G), let E(e) = (p1, . . . , pg). We subdivide the edge e exactly g − 2 times

(see Fig. 5). Note that the case g = 2 vacuously corresponds to no subdivision. After this step, the graph

is (not necessarily induced) subgraph of a grid. To make it induced, we further simultaneously subdivide

all edges exactly once (see Fig. 6). After this step, the resulting graph is indeed an induced subgraph of

a grid (i.e., a grid graph). We set the thresholds of all newly created vertices to 1. Let G′ denote the

resulting graph, t′ : V (G′) → N the new threshold function and set k′ = k.

Claim 26. (G, t, k) is a yes-instance of TARGET SET SELECTION if and only if (G′, t′, k′) is a yes-

instance of TARGET SET SELECTION.

Proof: Let (G, t, k) be a yes-instance and let S ⊆ V (G) be a target set of size at most k. Inductively, for

each subdivision, apply i) from Observation 24. It follows that S is also a target set with respect to t′ and

is of size at most k = k′, thus (G′, t′, k′) is a yes-instance.

On the other hand, let (G′, t′, k′) be a yes-instance and let S′ ⊆ V (G′) be a target set of size at most k′.
Inductively for each subdivision, apply ii) from Observation 24. Observe that in each step we get a target

set S with the same size. It follows that there is a target set S with respect to t of size k′ = k, thus (G, t, k)
is a yes-instance.

To finish the proof, we notice that the rectilinear embedding can be computed in polynomial time by

Theorem 6 and its area is at most O(|V |2). It follows that in both steps of the construction, we only added

at most O(|V |2) many new vertices, and thus the size of G′ is at most polynomial in the size of G. This

implies that the reduction is polynomial. The theorem follows.

As the class of grid graphs is a subclass of the unit disk graphs, we obtain NP-hardness for unit disk

graphs as a corollary of Theorem 25.

Corollary 27. TARGET SET SELECTION is NP-complete even when the underlying graph is a unit disk

graph, all thresholds are at most 2 and the maximum degree is at most 3.
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Fig. 5: Transformation of a planar graph with maximum degree 3 into a subgraph of a grid by subdividing edges at

the internal points of the polygonal chains. Filled vertices correspond to the vertices of the original graph and the

white ones are the newly created vertices.

Fig. 6: Transformation of a graph, that is (not necessarily induced) subgraph of a grid into a graph that is induced

subgraph of a grid (i.e., a grid graph) by subdividing all edges exactly once. Filled vertices correspond to the vertices

of the original graph and the white ones are the newly created vertices.

5 Majority Thresholds

The last natural restriction of the threshold function, which is widely studied in the literature, is the case

of majority thresholds, that is, for every v ∈ V we have t(v) = ⌈deg(v)/2⌉.

Before delving into the specific graph classes discussed in this work, we first examine how the general

case (i.e., when the underlying graph is unrestricted) is proven to be hard. The first proof of NP-hardness

in this setting is due to Peleg (1996). We give a sketch of a different proof that could be used to prove

hardness in the general case as well, but it is important for us because it an also be used in the case of

our graph classes. The idea is inspired by the proof of a related result concerning the inapproximability

of TARGET SET SELECTION given by Chen (2009). The idea is as follows. Start with an arbitrary

instance of TSS and inspect the vertices that do not have their threshold set to majority. Let v be a vertex

satisfying t(v) 6= ⌈deg(v)
2 ⌉. If the threshold is larger than majority it suffices to increase its degree by

attaching dummy leaf vertices with threshold 1 to v. Correctness of this step comes from the fact that

there is always an optimal solution of TSS that does not include leafs with threshold 1. On the other hand,

when v has threshold smaller than majority, we need to increase it because we cannot safely decrease
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the degree of v. We make use of a gadget that will supply v with sufficiently many active neighbors for

free. This is achieved by the cherry gadget. A cherry gadget is a path on three vertices gℓ, gm, gr and is

attached to a vertex via the middle vertex gm (see Fig. 7). To be more precise, there are two cases:

Case 1 If t(v) >
⌈

degG(v)
2

⌉

, attach 2t(v)− degG(v) new vertices with threshold 1 incident to v.

Case 2 If t(v) <
⌈

deg
G
(v)

2

⌉

, attach degG(v)− 2t(v) cherry gadgets to v as depicted in Fig. 7.

Note that the vertices gm in the cherry gadgets have degree 3 and threshold 2 and they have only one

neighbor in the original graph. This implies that any solution S is forced to contain a vertex from each

cherry and there is always a optimal solution containing only the vertex gm. It follows that the cherry

gadgets attached to a vertex v will indeed supply v with sufficiently many active neighbors for free.

gm

gl gr

v

gmi

gli gri

gmj

glj

grj

Fig. 7: The cherry gadget (on the left). Connection of two cherry gadgets to a vertex v ∈ V (G) with original degree

degG(v) = 4 and original threshold t(v) = 1. The new threshold of v is t′(v) = t(v) + degG(v)− 2t(v) = 3 and

degG′(v) = 6, thus it is at majority. The half edges going from v represent connection of v to the rest of G.

We now utilize these observations to show NP-hardness of TARGET SET SELECTION under the major-

ity threshold setting for our desired graph classes. We start with the planar graphs.

Corollary 28. TARGET SET SELECTION is NP-complete under the majority threshold setting even when

the underlying graph is planar with maximum degree ∆G ≤ 4.

Proof: The reduction is the same as in proof Theorem 16. We use similar gadgets but we adjust vertices

whose threshold is not at majority by use of additional leaf vertices or cherry gadgets as described above.

More specifically, the problematic vertices are the vertices wC in the clause gadgets. Recall that t(wC) =
1. If degwC ≤ 2, threshold is at majority. If degwC = 3, we attach one cherry gadget to wC .

In the variable gadgets VG(x) vertices without majority thresholds are the vertices Fx – here attaching

a leaf suffices and vertices t′x and dx – here we attach one cherry to each. The rest of the proof is similar to

the proof of Theorem 16. Note that the cherry gadgets inevitably increased the maximum degree to 4.

It is now straightforward to prove the NP-hardness for the majority setting in the remaining graph

classes. That is, grid graphs and unit disk graphs. We employ the same idea as in the proof of Theorem 25.

Corollary 29. TARGET SET SELECTION is NP-complete under the majority threshold setting even if the

underlying graph is a grid graph.
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Proof: Apply the same reduction as in the proof of Theorem 25, but start from a planar instance with

majority thresholds and ∆G ≤ 4 which is NP-hard by Corollary 28. Observe that a vertex created by

subdividing an edge has degree 2 and all other degrees are unchanged. Notice that since the thresholds of

the vertices created by the subdivision is 1, the new threshold function is indeed majority.

As the class of grid graphs is a subclass of unit disk graphs (Lemma 3), we also obtain NP-hardness

under the majority setting in unit disk graphs.

Corollary 30. TARGET SET SELECTION is NP-complete under the majority threshold setting even if the

underlying graph is a unit disk graph and ∆G ≤ 4.

Remark 31. Note that unless P = NP the maximum degree ∆G ≤ 4 cannot be reduced to 3 in the

NP-hardness of TSS in the majority threshold setting even in general graphs. Observe that for ∆G ≤ 3

and t(v) = ⌈deg(v)
2 ⌉ we can always remove vertices with deg(v) ≤ 1 (there is always an optimal solution

not containing these) and obtain an instance with t(v) = deg(v)−1 which is equivalent to the FEEDBACK

VERTEX SET problem. However, this problem is solvable in polynomial time in subcubic graphs (Takaoka

et al., 2012).

6 Exact thresholds

In previous sections, we established NP-hardness of TARGET SET SELECTION in all commonly studied

restrictions of the threshold function – constant, unanimous, and majority in the classes of unit disk and

planar graphs. Our proofs provided NP-hardness not only for concrete graph classes but also for general

graphs with very small degree. To sum up, we have hardness result for TARGET SET SELECTION when

the maximum degree is 3 and thresholds are at most 2 and the graph is a grid graph. Were the thresholds

exactly 2 and the maximum degree 3, the problem is polynomial-time solvable as shown by Kynčl et al.

(2017). In their work, they also produce a reduction showing NP-hardness in the case when thresholds are

exactly 2 and maximum degree 4. In this section, we show that this result can indeed by achieved even in

the class of unit disk graphs. For all other values of c > 2 the hardness of setting with t(v) = c is in fact

equivalent to the hardness of c-regular INDEPENDENT SET or VERTEX COVER, thus NP-hard in general

graphs.

We have a slightly weaker result for the class of unit disk graphs when the thresholds are exactly c.
We rely on the result about NP-hardness of INDEPENDENT SET on regular unit disk graphs (Theorem 7

and Corollary 13).

Let us start with a simple lemma.

Lemma 32. Let (G, t, k) be an instance of TARGET SET SELECTION. Then there is an equivalent

instance (G′, t′, k′) with t′(v) ≤ degG′(v) for all v ∈ V (G′).

Proof: If v is a vertex with threshold t(v) > deg(v), then it must be included in any target set. We

thus set G′ = G − v, decrease the threshold value of all neighbors of v by 1 (if not already at zero) and

k′ = k−1. Certainly the new instance is equivalent to (G, t, k). Repeat this step until there are no vertices

with threshold t(v) > deg(v).

Theorem 33. For infinitely many constants c TARGET SET SELECTION is NP-complete when restricted

to the class of unit disk graphs and the thresholds are exactly c. In particular, the claim holds for

c = 2, 3, 4. Moreover, for c = 2 the hardness holds even if maximum degree of the graph is at most 4.
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Proof: For c ≥ 3 we reduce from INDEPENDENT SET restricted to instances where the underlying graph

is c-regular unit disk graph where c > 0 and c ≡ −1 mod 4 or c ≡ −1 mod 5. NP-hardness of this

setting is implied by Corollary 13. The same hardness holds for the VERTEX COVER problem. By using

Lemma 4 the hardness for TARGET SET SELECTION follows.

For c = 2 we reduce from TARGET SET SELECTION with majority thresholds on grid graphs. NP-

hardness of this setting is implied by Corollary 29. Let (G, t, k) be such instance and let V (G) =
{v1, . . . , vn}. We create a new instance (G′, t′, k′) as follows. We are aiming at t′(v) = 2 for all

v ∈ V (G′).
First, we obtain a disk representation D = {D1, . . . , Dn} for G as in proof of Lemma 3. Recall that

grid graphs are induced subgraphs of a grid. Recall that the disks have diameter 1 and the center of

the disk Di corresponds to the grid point of the vertex vi. Now, we fix vertices vi with threshold 1 by

attaching a leaf vertex v′i with threshold 2 to vi and we increase the threshold of vi by 1. In this way

we have t′(vi) = t′(v′i) = 2. Let z denote the number of vertices vi ∈ V (G) with t(vi) = 1. We set

k′ = k + z. Let G′ be the newly created graph.

Claim. The instances (G, t, k) and (G′, t′, k′) are equivalent.

Proof: Observe that by applying Lemma 32 to the instance (G′, t′, k′) we obtain precisely the instance

(G, t, k). In the other direction, it is sufficient to add all the leafs v′i with threshold 2. The claim follows.

It remains to say how to realize the attachment of a leaf vertex in the unit disk representation. Let si ∈
R

2 be the center of Di and let ε = 1
5 . Observe that the representation satisfies: Every two disks have

at most 1 point in common. Let vi satisfy t(vi) = 1. Thus, degG vi ∈ {1, 2} because t is ma-

jority. As all disks are embedded in an integer grid and deg(vi) ≤ 2, there exists a direction di ∈
{(0, 1), (1, 0), (−1, 0), (0,−1)} such that si + di is not a center of any other disk Dj . We add a new

disk D′
i with diameter 1 centered at si + εdi (see Fig. 8).

It is not hard to see that D′
i∩Di 6= ∅ and that D′

i does not intersect any other disks. In other words, this

exactly corresponds to attaching a leaf vertex v′i to vi. We repeat this step for all other vertices v ∈ V (G)
satisfying t(v) = 1. Observe that the selection(iv) ε = 1

5 ensures that no matter which direction dj we

choose for any other disk Dj , the newly created disk D′
i intersects only the disk Di. This can be checked

directly by computing the distances of the centers of the corresponding disks.

To conclude the proof, note that we added at most 1 new vertex per each original vertex, thus the

reduction is indeed polynomial.

Notice that very same proof works even for planar graphs.

Corollary 34. TARGET SET SELECTION is NP-hard even when the underlying graph is planar or unit

disk graph with ∆G ≤ 4 and the thresholds are exactly 2.

Remark. We remark that the first nontrivial constant for which we do not have an NP-hardness result for

TARGET SET SELECTION in the class of unit disk graphs and thresholds set exactly to c, is c = 5. It is

implied by the fact that the proof is based heavily on the NP-hardness of INDEPENDENT SET, for which

the situation is pretty much the same. Refer back to Remark 15 for more details.

(iv) The only problem might arise in the scenario shown in Fig. 8. In this case si+di = sj +dj and the two red disks might overlap

if ε was chosen too large. In fact, one can compute that any ε ∈

(

0, 1−
1√
2

)

would suffice.
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D′
i

D′
j

Di

Dj

Fig. 8: Attaching leafs to vertices vi, vj corresponding to disks Di, Dj . The black disks correspond to the original

graph while the two red disks are the newly created leafs. The corresponding directions are di = (1, 0) and dj =
(0,−1).

7 Conclusions

In this paper, we showed that TARGET SET SELECTION is computationally hard even on very simple

geometric graph classes such as unit disk graphs and grid graphs. We completed the complexity picture in

all commonly studied settings of the threshold function – unanimous, constant and majority. We showed

that TARGET SET SELECTION is NP-hard in the class of planar graphs or unit disk graphs when thresholds

are at most 2 and maximum degree is at most 3 or thresholds are exactly 2 and maximum degree is at

most 4. These hardness results are tight in the sense that further restrictions of the maximum degree or

the threshold function yields polynomial-time solvable instances.

As a corollary to hardness in planar graphs with small degree, we showed that TARGET SET SELEC-

TION is NP-hard even in the class of grid graphs when thresholds are at most 2 and maximum degree at

most 3. We then utilized these results to show NP-hardness of TARGET SET SELECTION in the majority

threshold setting in grid graphs and unit disk graphs with ∆G ≤ 4. As noted in Remark 31, further

reducing the maximum degree to 3 is not possible unless P = NP.

Throughout the reductions we utilized the so-called rectilinear embedding which might be useful in

reductions of other problems on grid graphs.

Future directions and open questions

The first obvious question is, whether the setting t(v) = 2 is also NP-hard in the class of grid graphs. The

approach used in Theorem 33 is not applicable in grid graphs. It might work if the subgraph of the grid

need not be induced, however one would need to be careful where to place the leafs.

Question. What is the complexity of TARGET SET SELECTION in the class of grid graphs with t(v) = 2?

If even this setting turns out to be hard, we would still like to know whether there is some reasonable

restriction of the structure of the grid graph or the threshold function that makes TSS tractable in grid

graphs.

Another question that remains open even after this paper is related to the computational complexity

of the TARGET SET SELECTION problem on interval graphs. It was known that TSS is polynomial-

time solvable on interval graphs when the threshold function is bounded by a constant. As a corollary

to tractability of VERTEX COVER in interval graphs, the unanimous threshold setting is also polynomial-

time solvable in this class. We conjecture that the problem should be tractable with majority thresholds;

however, we are more skeptical in the case of general thresholds.
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Question. What is the complexity of TARGET SET SELECTION on the class of interval graphs in the

majority and unrestricted threshold setting?

Finally, an interesting open problem, which is slightly unrelated to TARGET SET SELECTION is about

the NP-hardness of the INDEPENDENT SET problem in r-regular unit disk graphs for all constants r ≥ 5.

In this work, we established NP-hardness for r = 3, 4 and infinitely many (but not all) constants (refer to

Remark 15 for details).

Question. Is INDEPENDENT SET NP-hard when restricted to the class of r-regular unit disk graphs for

all constants r ≥ 5?

Similar question follows with the NP-hardness of exact threshold setting in the class of unit disk graphs

as our proof relies on the result about INDEPENDENT SET.

Question. Given any c ≥ 2, is TARGET SET SELECTION NP-hard even when restricted to the class of

unit disk graphs and all thresholds are exactly c?
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