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We use a recent result of Alin Bostan to prove that the generating functions of two infinite sequences of permutation

classes are not algebraic.
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1 Introduction

We say that a permutation p contains the pattern (or subsequence) q = q1q2 · · · qk if there is a k-element

set of indices i1 < i2 < · · · < ik such that pir < pis if and only if qr < qs. If p does not contain q, then

we say that p avoids q. For example, p = 3752416 contains q = 2413, as the first, second, fourth, and

seventh entries of p form the subsequence 3726, which is order-isomorphic to q = 2413. A recent survey

on permutation patterns by Vatter can be found in Vatter (2015). Let Avn(q) be the set of permutations of

length n that avoid the pattern q, where the length of a permutation is the number of entries in it. If S is a

set of patterns, and the permutation p avoids all patterns in S, then we will say that p avoids S, and we will

write |Avn(S)| for the number of such permutations of length n, Av(S) for the set of such permutations

of all lengths (such a set is called a permutation class) and Avn(S) for those such permutations of length

n.

In general, it is very difficult to compute the numbers |Avn(S)|, or to describe their sequence as n
goes to infinity. Recently, there has been some progress in proving negative results about the ordinary

generating function AS(z) of the sequence |Avn(S)|. In Bóna (2020), the present author proved that for

most patterns q, the generating function Aq(z) =
∑

n≥0 |Avn(q)|zn is not rational. Non-algebraicity of

these generating functions is also very hard to prove, because there are very few general tools to prove

that a combinatorial power series is not algebraic. As we explain in the next section, most results on

non-algebraicity of generating functions AS(z) =
∑

n≥0 |Avn(S)|zn were based on exact asymptotics

of the coefficients, and those exact asymptotics are very hard to establish. (There has been one example

Garrabrant and Pak (2015) when non-algebraicity of the generating function of a permutation class was

shown as a consequence of the stronger result that the generating function was not differentiably finite.)

In this paper, we will use a recent result of Alin Bostan to prove the non-algebraicity of AS(z) for two

infinite sequences of sets S from a weaker condition on the growth rate of the numbers |Avn(S)|.
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2 Tools to Prove Non-algebraicity

A power series A(z) is called algebraic if there are polynomials P0(z), P1(z), · · · , Pd(z) that are not all

identically zero so that the equality

P0(z) + P1(z)A(z) + P2(z)A
2(z) + · · ·+ Pd(z)A

d(z) = 0

holds. See Section 6 of Stanley (2023) for a high-level introduction to the theory of algebraic power series.

Until recently, the only general, direct method to prove non-algebraicity of a generating function Aq(S)
was the following theorem of Jungen (1931).

Theorem 2.1. Let m be a positive integer, let c and γ be positive constants, and let A(z) =
∑

n≥0 anz
n

be a power series with complex coefficients. If

an ≃ c
γn

nm
,

then A(z) is not an algebraic power series.

The following theorem of Amitaj Regev makes Theorem 2.1 immediately applicable for our purposes.

Theorem 2.2 (Regev (1981)). For all k ≥ 2, there exists a constant rk so that the asymptotic equality

| Avn(12 · · · k) |≃ rk
(k − 1)2n

n(k2−2k)/2

holds.

Corollary 2.3. Let k > 2 be an even integer, and let q = 12 · · ·k. Then Aq(z) is not algebraic.

Proof: If k > 2 is even, then (k2 − 2k)/2 is a positive integer, and so Theorem 2.1 implies that Aq(z) is

not algebraic.

It is usually difficult to find exact asymptotics for the numbers |Avn(S)|, and therefore direct applica-

tions of Theorem 2.1 to prove non-algebraicity of Aq(S) for other pattern classes are rare.

The following result is due to Alin Bostan Bostan (2021). See Lemma 6.3 in Bóna and Burstein (2022)

for its proof. Compared to Theorem 2.1, it relaxes the asymptotics criterion on the coefficients of A(z)
somewhat, while yielding the same conclusion.

Lemma 2.4. Let A(z) =
∑

n≥0 anz
n be a power series with nonnegative real coefficients that is analytic

at the origin. Let us assume that constants c, C, K and m exist so that m > 1 is an integer, and for all

positive integers n, the chain of inequalities

c
Kn

nm
≤ an ≤ C

Kn

nm
(1)

holds. Then A(z) is not an algebraic power series.

In other words, in order to prove non-algebraicity of A(z), we do not have to prove that the numbers an
are asymptotically equal to γ ·Kn/nm; it suffices to show that they are between two constant multiples

of Kn/nm. This is what we will do in the next section.
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3 Patterns with long increasing subseqences

3.1 The case of length five

In Bóna and Pantone (2023), Jay Pantone and the present author studied classes of permutations avoiding

patterns with long increasing subsequences. In particular, they considered the set of patterns Ak,k con-

sisting of the k − 1 patterns of length k that start with an increasing subsequence of length k − 1 and end

in an entry less than k. For instance, A5,5 = {12354, 12453, 13452, 23451}. They proved that for k ≥ 3,

the exponential order of the sequence |Avn(Ak,k)| is (k − 2)2 + 1, that is, limn→∞
n
√

|Avn(Ak,k)| =
(k − 2)2 + 1. Based on numerical evidence, they made the following conjecture.

Conjecture 3.1. There exists a constant R so that

| Avn(A5,5) |≃ R · 10
n

n4
.

Theorem 2.1 shows that Conjecture 3.1 directly implies the following conjecture.

Conjecture 3.2. The generating function AA5,5
(z) is not algebraic.

In this paper, we are going to prove Conjecture 3.2 without first proving Conjecture 3.1. We will then

prove an analogous result for a second infinite sequence of patterns.

Let p = p1p2 · · · pn be a permutation. For any entry ph of p, let the rank of ph be the length of

the longest increasing subsequence of p that ends in ph. Now let us assume that p avoids A5,5. Let

pj be the leftmost entry of p that is of rank 4. Then pj+1 > pj , or a forbidden pattern is formed.

Similarly, pj+2 > pj+1 or a forbidden pattern is formed, and so on. So the subsequence pjpj+1 · · · pn is

an increasing subsequence. In other words, each permutation p ∈ Avn(A5,5) naturally decomposes into

two parts; the 1234-avoiding permutation p1p2 · · · pj−1, which one might call the front and the increasing

subsequence pjpj+1 · · · pn that one might call the tail. Note that j ≥ 4, and if p avoids 1234, then the tail

is empty. (In this case, we can set j = n+ 1.)

This leads to the following lemma. Let fn = |Avn(1234)| for shortness.

Lemma 3.3. The chain of inequalities

1

4

n
∑

i=3

fi

(

n

n− i

)

≤| Avn(A5,5) |≤
n
∑

i=3

fi

(

n

n− i

)

holds.

Proof: Let i be a integer so that 3 ≤ i ≤ n. Choosing an n − i-element subset T of the set [n] =
{1, 2, · · · , n}, constructing a 1234-avoiding permutation on [n]\T (the “front part”) and postpending it by

the elements of T written in increasing order (the“back part”), we get a permutation in Avn(A5,5). We get

every permutation in Avn(A5,5) at most four times in this way, because for a permutation p ∈ Avn(A5,5),
the front part of p cannot contain an increasing subsequence of length four or more. In other words, if the

last a entries of p form an increasing subsequence, but the last a+ 1 entries do not, then there are at most

four choices for the numbern−i above, namely a, a−1, a−2, and a−3. of legth m On the other hand, we

get every permutation p ∈ Avn(A5,5) at least once in this way. Indeed, if p = p1p2 · · · pn ∈ Avn(A5,5),
and pj is the leftmost entry of rank 4, then p is obtained by setting T to be the underlying set of the entries

pjpj+1 · · · pn, and selecting the 1234-avoiding permutation p1p2 · · · pj−1 on the set [n] \ T . If p avoids
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1234, then j is undefined; in this case we choose T to be the empty set, and we choose p itself on the set

[n] \ T .

Lemma 3.3 squeezes the number |Avn(A5,5)| between two constant multiples of the sum sn =
∑n

i=3

(

n
n−i

)

fi =
∑n

i=3

(

n
i

)

fi. All we need in order to be able to use Lemma 2.4 is to prove that sn

is between two constant multiples of 10n

n4 . We will prove this in an elementary way, in two simple propo-

sitions, but after those propositions, we point the interested reader to the direction of a more high-brow

approach. Note that Theorem 2.2 directly implies that there are absolute constants α and β so that

α · 9
i

i4
≤ fi ≤ β · 9

i

i4
(2)

for all i.
Recall that fn = |Avn(1234)| and that sn = fi

∑n
i=3

(

n
n−i

)

=
∑n

i=3 fi
(

n
i

)

.

Proposition 3.4. There exists an absolute constant C1 > 0 so that sn ≤ C1 · 10n

n4 .

Proof: Recall that β was defined in the previous paragraph, and in (2). Let us split up sn to two parts,

based on whether i ≤ n/2. If i ≤ n/2, then we have

n/2
∑

i=3

(

n

i

)

fi ≤ β ·
n/2
∑

i=3

9i

i4

(

n

i

)

≤ β · n
2
9n/2

(

n

n/2

)

≤ β · n
2
· 3n · 2n

≤ C2 ·
10n

n4
.

For the part of the sum sn where i ≥ n/2, we have

n
∑

n/2

(

n

i

)

fi ≤ β ·
n
∑

n/2

9i

i4

(

n

i

)

≤ β

n
∑

i=n/2

9i

(n/2)4

(

n

i

)

≤ C3

n4

n
∑

i=n/2

9i
(

n

n− i

)

≤ C3
10n

n4
.

Setting C1 = C2 + C3 completes the proof.

Proposition 3.5. There exists an absolute constant c1 > 0 so that sn ≥ c1 · 10n

n4 .
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Proof: Recall that α was defined in (2). Note that

sn ≥ α

n
∑

i=3

9i

i4
·
(

n

n− i

)

≥ α

n4

n
∑

i=3

9i
(

n

n− i

)

≥ c1
n4

n
∑

i=0

9i
(

n

n− i

)

=
c1
n4

· 10n,

where we used the binomial theorem in the last step.

Remark. If sequences {an}n and {bn}n of positive real numbers are related by the equality bn =
∑n

k=0

(

n
k

)

ak, then the sequence {bn}n is sometimes called the binomial transform of the sequence {an}n.

This is a well-studied transform that is the subject of the book Boyadzhiev (2018). In particular, if A(z)
and B(z) are the respective generating functions of the two sequences, then

B(z) =
1

1− z
A

(

z

1− z

)

.

This equality could be used to analyze the singularities of B(z) and therefore, to obtain the asymptotics

of its coefficients.

Returning to the task at hand, the proof of the main theorem of this section is now immediate.

Theorem 3.6. The generating function AA5,5
(z) is not algebraic.

Proof: Lemma 3.3 shows that |Avn(A5,5)| is between two constant multiples of sn, while Propositions

3.4 and 3.5 prove that sn is between two constant multiples of 10n/n4. Therefore, there exist absolute

constants c > 0 and C > 0 so that

c · 10
n

n4
≤ |Avn(A5,5)| ≤ C · 10

n

n4
(3)

for all n.

Therefore, by Lemma 2.4, AA5,5
(z) is not algebraic.

3.2 The case of length k

For general k ≥ 3, the methods that we used in the last section yield the following.

Theorem 3.7. Let k ≥ 3. Then there are absolute constants ck and Ck so that the chain of inequalities

ck ·
((k − 2)2 + 1)n

n(k2−4k+3)/2
≤| Avn(Ak,k) |≤ Ck ·

((k − 2)2 + 1)n

n(k2−4k+3)/2

holds.
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Proof: Analogous to the proof of (3) in the proof of Theorem 3.6. In that theorem, we had k = 5, which

yielded (k − 2)2 + 1 = 10. Note that Lemma 3.3 and Propositions 3.4 and 3.5 allgeneralize for larger

k.

When k = 3, then A3,3 = {132, 231}, and it is well-known (see, for instance, Exercise 14.2 in

Bóna (2023)) that |Avn(A3,3)| = 2n−1, in accordance with Theorem 3.7. When k = 4, then A4,4 =
{1243, 1342, 2341}. It follows from Theorem 3.1. in Miner (2016) that

AA4,4
(z) =

1 + z −
√
1− 6z + 5z2

2(2z − z2)
.

It follows from this formula that

|Avn(A4,4)| ≃ C · 5n

n3/2
,

for some absolute constant C, again in accordance with Theorem 3.7. See Sequence A033321 in Sloane

(2024) for the many occurrences of the sequence |Avn(A4,4)|.
For larger k, we have the following generalization of Theorem 3.6.

Theorem 3.8. Let k be an odd integer so that k > 3 holds. Then the generating function AAk,k
(z) is not

algebraic.

Proof: If k is an odd integer, then (k2−4k+3)/2 is an integer. If, in addition, the inequality k > 3 holds,

then (k2 − 4k+3)/2 is a positive integer. This implies that we can apply Lemma 2.4 using the upper and

lower bounds that we obtain from Theorem 3.7, completingthe proof ofthe present theorem.

4 Classes Wilf-equivalent to Av(Ak,k).
Let S and T be two sets of patterns. We say that the permutation classes Av(S) and Av(T ) are Wilf-

equivalent if for all n, the equality |Avn(S)| = |Avn(T )| holds. Let B5,5 = {21354, 21453, 31452, 32451},

and define Bk,k in an analogous way. That is, Bk,k is the set of k − 1 patterns of length k whose first

k − 1 entries form a 213 · · · (k − 1) pattern, and whose last entry is less than k.

Theorem 4.1. For all k ≥ 4, the classes Av(Ak,k) and Av(Bk,k) are Wilf-equivalent. In particular, for

all odd k ≥ 5, the generating function

ABk,k
(z) =

∑

n≥0

|Avn(Bk,k)|zn

is not algebraic.

For k = 4, the claim of Theorem 4.1 is proved in Brignall and Sliačan (2017). Our argument can

be viewed as a generalization of that proof, but it is self-contained so that the reader does not have to

understand the more general terminology and structural analysis presented in that paper. The key element

in our proof is the following lemma. It was stated and proved in a different form by Julian West in West

(1990). The precise form in which we state and prove it is implicit in West (1990), but for our purposes,

the explicit form below is necessary.

Note that if p = p1p2 · · · pn is a permutation, then we say that pi is a right-to-left maximum of p if there

is no j > i so that pj > pi. In general, if the longest increasing subsequence of p that starts at pi is of
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length m, then we say that pi is of co-rank m. So right-to-left maxima are precisely the entries of co-rank

1.

Lemma 4.2. Let ℓ ≥ 3. Then there exists a bijection gn,ℓ := Avn(123 · · · ℓ) → Avn(213 · · · ℓ) so that

for all p ∈ Avn(123 · · · ℓ), and for all m ≤ ℓ − 2, the permutations p and gn,ℓ(p) have the same set of

entries of co-rank m, and those entries are in the same positions. In other words, gn,ℓ leaves the entries

of p that are of co-rank m fixed.

Note that Lemma 4.2 proves in particular that the two permutation classes above are Wilf-equivalent,

but we will need the much stronger claim of the Lemma. Also note that for k = 3, Lemma 4.2 and its

proof reduce to those of the classic Simion-Schmidt bijection Simion and Schmidt (1985).

Proof: (of Lemma 4.2). Let p ∈ Avn(123 · · · ℓ). Leave the entries of p that are of co-rank ℓ − 2 or less

unchanged. Fill the remaining slots with the remaining entries, going from right to left, so that in every

step, we place the largest entry that can be placed at the given position without getting co-rank ℓ−2 or less.

This results in a permutation gn,ℓ(p) ∈ Avn(213 · · · ℓ). The map gn,ℓ(p) is a bijection, because it has an

inverse. Indeed, if w ∈ Avn(213 · · · ℓ), we get the unique preimage of w by leaving its entries of co-rank

ℓ− 2 or less fixed and writing the remaining entries into theremaining slots indecreasing order.

Proof: (of Theorem 4.1). We construct a bijection hn : Avn(Ak,k) → Avn(Bk,k). Let p = p1p2 · · · pn,

and let i be the location of the rightmost descent of p, that is, the largest index so that pi > pi+1.

Note that this means that the string p1p2 · · · pi avoids the increasing pattern 12 · · · (k − 1). We define

hn(p) as the concatenation of gi,k−1(p1p2 · · · pi) and the increasing sequence pi+1 · · · pn. It is clear that

hn(p) ∈ Avn(Bk,k), since if hn(p) contains a copy of a 21 · · · (k−1)-pattern, that copy must end strictly

on the right of position i, and hn(p) increases in all those positions.

In order to prove that hn : Avn(Ak,k) → Avn(Bk,k) is indeed a bijection, first note that the rightmost

descent of hn(p) is also in position i. As we know that hn fixes the increasing subsequence pi+1 · · · pn,

it suffices to prove that if x is the entry in position i of hn(p), then x > pi+1. Note that x is the rightmost

entry of gi,k−1(p1p2 · · · pi). Recall that gi fixes all entries of p1p2 · · · pi, except those that have co-rank

k − 2 in the string p1p2 · · · pi. On the other hand, pi is the rightmost entry in pi+1 · · · pn, so its co-rank

there is 1 < k − 2. So we are done, since x = pi > pi+1.

We can now prove that the function hn : Avn(Ak,k) → Avn(Bk,k) is indeed a bijection by showing

that it has an inverse. Let w = w1w2 · · ·wn ∈ Avn(Bk,k). Let us find the largest index i so that the

inequality wi > wi+1 holds. We can then obtain the unique permutation p that satisfies the equality

hn(p) = w by taking the permutation g−1
i (w1w2 · · ·wi) and postpending it by string pi+1pi+2 · · · pn.

5 Further directions

There are other several other patterns that are Wilf-equivalent with the monotone pattern 12 · · · k. For our

purposes, the following result is particularly relevant.

Theorem 5.1. Let 2 ≤ m ≤ k − 1. Then for all n, the equality

|Avn(123 · · ·k)| = |Avn(m(m− 1) · · · 21(m+ 1)(m+ 2) · · · k)|

holds.
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Proof: For two patterns q and q′ of length ℓ and ℓ′ respectively, let q⊕q′ denote the pattern of length ℓ+ℓ′

whose first ℓ entries form a copy of the pattern q, whose last ℓ′ entries form a copy of the pattern q′, and in

which the set of the first ℓ entries is the set {1, 2, · · · , ℓ}, and so the set of the last ℓ′ entries is necessarily

{ℓ+1, ℓ+2, · · · , ℓ+ ℓ′}. It then follows from results in Babson and West (2000), Backelin et al. (2007),

and Krattenthaler (2006) that for any pattern q, the equality |Avn(im⊕q)| = |Avn(dm⊕q)| holds, where

im is the increasing pattern of length m and dm is the decreasing pattern of length m. Then Theorem 5.1

is the special case when q = ik−m. The interested reader can check the details and the necessary notion

of shape-Wilf-equivalence on pages 762 -763 of Vatter (2015).

In other words, we can reverse the subsequence of the first m entries of the monotone pattern and get

a pattern that is Wilf-equivalent to the original monotone pattern. Unfortunately, Theorem 5.1 by itself is

not enough for our purposes. We would need an affirmative answer to the following question.

Question 5.2. Does there exist a bijection

Gn,m : Avn(123 · · ·k) → Avn(m(m− 1) · · · 21(m+ 1)(m+ 2) · · · k)

that fixes all right-to-left maxima?

If such a bijection exists, then the proof of Theorem 4.1 can be extended as follows. Let k > 3 be an

odd integer, and let 1 < m < k − 1. Let Ak,k,m be the set of k − 1 patterns of length k that start with

an m(m− 1) · · · 21(m+ 1)(m+ 2) · · · (k − 1)-pattern, and end in an entry less than k. So for instance,

A5,5,3 = {32154, 42153, 43152, 43251}. Then the generating function AAk,k,m
(z) is not algebraic.

It is possible that the answer to Question 5.2 is positive, but difficult. Indeed, such an answer would

yield a result that is stronger than Theorem 5.1, and that theorem is quite difficult to prove on its own.
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