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In this paper, we study pattern avoidance in weak ascent sequences, giving some results for patterns of length 3.

This is an analogous study to one given by Duncan and Steingrı́msson (2011) for ascent sequences. More precisely,

we provide systematically the generating functions for the number of weak ascent sequences avoiding the patterns

001, 011, 012, 021, and 102. Additionally, we establish bijective connections between pattern-avoiding weak ascent

sequences and other combinatorial objects, such as compositions, upper triangular 01-matrices, and plane trees.
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1 Introduction

Weak ascent sequences were introduced recently by Bényi et al. (2023) as a family of integer sequences

that contains the well-known class of ascent sequences introduced by Bousquet-Mélou et al. (2010). The

weak ascent sequences encode a collection of permutations avoiding a length-4 bivincular pattern, upper-

triangular binary matrices that satisfy a column-adjacency rule, and factorial posets that are weakly (3+1)-

free.

A weak ascent sequence is a word x = x1x2 · · ·xn over the set of non-negative integers satisfying

x1 = 0 and xi ≤ wasc(x1x2 · · ·xi−1) + 1 for i = 2, . . . , n, where wasc(x1x2 · · ·xℓ) is the number of

weak ascents in the word x1x2 · · ·xℓ, that is, the number of positions j such that xj ≤ xj+1. We denote

the set of all weak ascent sequences of length n by Wn. By definition we set W0 = {ǫ}, where ǫ is the

empty word, the unique word of length zero. For example, the weak ascent sequences of length 4 are

W4 = {0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023,
0100, 0101, 0102, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123}.

A pattern p is a word containing each of the letters in {0, 1, . . . , i − 1} at least once for some integer

i ≥ 1. This is analogous to the classical definition of patterns for permutations, but here patterns may

contain repeated letters. A weak ascent sequence x = x1x2 · · ·xn ∈ Wn contains a pattern p = p1 · · · pk
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if there is a subsequence xi1xi2 · · ·xik of x, i1 < i2 < · · · < ik, which is order-isomorphic to p (appear

in the same order of size). We say that x avoids the pattern p if x does not contain any occurrence of p.

For example, the weak ascent sequence 0120244 ∈ W7 contains five occurrences of the pattern 001 and

avoids the pattern 312. Let Wn(p) denote the set of weak ascent sequences of length n that avoid the

pattern p and let wp(n) be the cardinality of Wn(p). Further, we set W(p) =
⋃

n≥0 Wn(p).

The goal of this work is to study weak ascent sequences avoiding certain patterns of length three. This

study is analogous to the one conducted by Duncan and Steingrı́msson (2011) on ascent sequences. Our

goal in this paper is to derive the generating function of some cases and show some connections with other

combinatorial objects. Our study is far from comprehensive on the topic.

The remainder of this paper is structured as follows. In Section 2, we provide enumerative results for the

number of weak ascent sequences avoiding the patterns 001, 011, 012, 021, and 102. These enumerations

correspond to known sequences in The On-Line Encyclopedia of Integer Sequences OEIS Foundation Inc

(2024). Additionally, we establish bijections with other combinatorial structures. In Section 3, we present

our computer calculations concerning other patterns (see Table 2) and propose a conjecture regarding the

case 210, which proves to be more challenging than it appears at first glance.

2 Enumerations

The goal of the current section is to enumerate weak ascent sequences avoiding each given pattern in

Table 1.

Pattern p Number of non-empty sequences avoiding p OEIS Formula/Generating function

001 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, . . . A000079 2n−1

011 1, 2, 5, 14, 43, 143, 510, 1936, 7775, 32869 A098569
∑n

m=1

(n−1+(m2 )
n−m

)

012 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181,. . . A001519 F2n−1 (Fibonacci)

021 1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236, . . . A106228 F021(x) = 1 + xF021(x)
1−xF021(x)2

102 1, 2, 6, 22, 89, 381, 1694, 7744, 36168, 171831 A200753 F102(x) = 1 + x(1− x)F102(x)
3.

Tab. 1: Weak ascent sequences avoiding a pattern of length three.

2.1 Pattern 001

The simplest case is probably the pattern 001. We apply here the generating tree method introduced by

West (1996). We recall the definition for the general case. Given a fixed set of patterns, B, let W(B)
denote the set of all non-empty weak ascent sequences that avoid every pattern contained in B. We define

the generating tree (see West (1996)) T (B) to be the plane tree as follows. We say T (B) is empty if there

is no weak ascent sequence of arbitrary length avoiding the set B, that is, 0 ∈ B. Otherwise, the root

can always be taken as 0. Starting with this root which stays at level 1, we construct the remainder of the

nodes of the tree T (B) recursively as follows. The children of x1 · · ·xn ∈ Wn(B) are those sequences

from the set

{x1 · · ·xn+1 | xn+1 = 0, 1, . . . ,wasc(x1 · · ·xn) + 1}

that avoid the patterns in B. For example, Figure 1 shows the first levels of the tree T ({001}).

http://oeis.org/A000079
http://oeis.org/A098569
http://oeis.org/A001519
http://oeis.org/A106228
http://oeis.org/A200753
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Fig. 1: Generating tree T ({001}).

We define an equivalence relation on the nodes of T (B). Let T (B;x) be the subtree consisting of the

weak ascent sequence x as the root and its descendants in T (B). We say that x is equivalent to x′ if and

only if T (B;x) ∼= T (B;x′) (in the sense of plane trees). Let T ′(B) be the same tree as T (B), where we

replace each node x by the first node x′ ∈ T (B) from top to bottom and from left to right in T (B) such

that T (B;x) ∼= T (B;x′). From now, we consider T ′(B) and T (B) identical.

Theorem 2.1. The generating function for the number of non-empty weak ascent sequences of length n
that avoid the pattern 001 is given by x/(1− 2x).

Proof: We consider the generating tree for the case B = {001}. The root of T (B) is a0 = 0. The

children of the root are b0 = 00 and a1 = 01, and their children are 000 and 010, 011, 012, respectively

(see Figure 1). Since T (B; 000) ∼= T (B; 00) and T (B; 010) ∼= T (B; 00), we see that the children of

the root a0 in T (B) are b0, a1 and their children are a0 and b0, b1, a2, respectively. More generally, let

am = 012 · · ·m and bm = 012 · · ·mm, then we see that T (B) satisfies the succession rules

am  b0, b1, . . . , bm, am+1 and bm  b0, b1, . . . , bm.

Define Am(x) (respectively, Bm(x)) to be the generating function for the number of nodes at level n ≥ 1
for the subtree of T (B; am) (respectively, T (B; bm)), where its root stays at level 1. Thus, the succession

rules of T (B) give

Am(x) = x+ x
m
∑

j=0

Bj(x) + xAm+1(x) and Bm(x) = x+ x
m
∑

j=0

Bj(x).

Define A(v) =
∑

m≥0Am(x)vm and B(v) =
∑

m≥0 Bm(x)vm. Then

A(v) =
x

1− v
+

x

1− v
B(v) +

x

v
(A(v) −A(0)) and B(v) =

x

1− v
+

x

1− v
B(v).

Therefore, B(v) = x/(1 − x− v), and the first equation with v = x gives

A(0) =
x

1− x
(1 +B(x)) =

x

1− 2x
.
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From the generating function it is clear that w001(n) = 2n−1 for all n ≥ 1. For example, the weak

ascent sequences corresponding to n = 4 are the 8 nodes at level 4 of the generating tree T ({001}) in

Figure 1.

2.1.1 A map

After obtaining this simple sequence for the numbers, we also describe a map from the set of 01 bitse-

quences of length n− 1 to the set of weak ascent sequences of length n avoiding the pattern 001.

Given a 01 bitsequence of length n − 1, associate first to it a path: for a 1 an up step, for a 0 a flat

step. Then, label the nodes of the path with their height. Record the labels (the heights) now in the

following order, first each label in the order as it occurs the first time, and then record the labels (that

already occurred once) in non-increasing order.

A sequence obtained in this way is a weak ascent sequence, as we can see that as follows. Let P
be the path, j the height of the path, and x the image of the map. First we show that x ∈ Wn.

The first j + 1 elements of x are 01 · · · j, i.e., integers up to j listed in increasing order. Clearly,

xi ≤ wasc(x1 · · ·xi−1) + 1, for i ≤ j + 1. Note, that wasc(x1 · · ·xj+1) = j. Further, from the

definition of the map it follows that for i ≥ j + 2 the values are necessarily xi ≤ j. Hence, for i ≥ j + 2
it is true that xi ≤ wasc(x1 · · ·xi−1) + 1, and we conclude x ∈ Wn.

The pattern 001 can not occur in x1 · · ·xj+1, since it is a strictly increasing sequence of integers. Hence,

if a pattern 001 occurs in x, the second element (corresponding to the second zero in the pattern) has an

index greater than j +1. However, the values after the (j +1)th element are ordered non-increasingly, so

we can not find an element that would correspond to 1 in an occurrence of the pattern 001. We see that

x ∈ Wn(001).

The steps of the map can be inverted. Let x be a weak ascent sequence avoiding 001 with a maximal

strictly increasing prefix of length j + 1. Draw a path of height j with so many flat steps at each level as

many times the value of the level occurs in the sequence x after the (j+1)th element. The path containing

flat steps and up steps can easily be decoded back to a 01 bitsequence.

Figure 2 shows some examples of the map for better understanding. Writing F for a flat step and U
for an up step, in Figure 2 the paths FUFU, FUUF, UFFU, UFUF and the corresponding weak ascent

sequences are given.

��
��

r r

r r

r

0 0

1 1
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01210 �
�
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r r

r

r r

0 0

1

2 2
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1 1 1
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01221

Fig. 2: Examples for the bijection.

After understanding the structure of the sequences in this class we provide also a direct counting. (This

was pointed out by one of the referees.) Namely, let j +1 be the length of the maximal strictly increasing

prefix of a weak ascent sequence x of length n avoiding 001. Then the remainder of x can consist precisely

of any weakly decreasing sequence of the letters {0, 1, . . . , j}, of which there are
(

n−1
j

)

. After summing

up on 0 ≤ j ≤ n− 1, we obtain 2n−1.
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2.2 Pattern 102

Let In denote the set of inversion sequences of length n, that is, integer sequences e = e1e2 · · · en such

that 0 ≤ ei < i for each i. Corteel et al. (2016) and Mansour and Shattuck (2015) began the study of

classical patterns in inversion sequences. Denote by In(p) the set of inversion sequences of length n that

avoid p. By the definitions we obtain the equality Wn(102) = In(102) for all positive integer n. Indeed,

let x be a sequence in In(102). Assume that x has a position j such that wasc(x1 · · ·xj−1)+1 < xj < j.

Then, the word x1 · · ·xj−1 contains a descent, so x1 · · ·xj−1xj contains the pattern 102. This gives a

contradiction, therefore x ∈ Wn(102). The other containment is clear and so the two sets are in fact

equal.

From Theorem 3.7 of Mansour and Shattuck (2015) we obtain the following result.

Theorem 2.2. The generating function for the number of weak ascent sequences of length n that avoid

102 satisfies f = 1 + x(1 − x)f3.

The series expansion of the generating function f is

1 + x+ 2x2 + 6x3 + 22x4 + 89x5 + 381x6 + 1694x7 + 7744x8 +O(x9).

The weak ascent sequences corresponding to the bold coefficient in the above series are

W4(102) = {0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021,
0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123}.

The sequence w102(n) coincides with the sequence A200753 and

w102(n) =

⌊n
2
⌋

∑

k=0

(−1)k

2(n− k) + 1

(

n− k

k

)(

3(n− k)

n− k

)

, for n ≥ 1.

2.3 Pattern 012

The pattern 012 also leads to a well-known combinatorial number sequence. The weak ascent sequences

avoiding pattern 012 are enumerated by the odd indexed Fibonacci numbers. Weak ascent sequences of

length 4 avoiding the pattern 012 are listed below

W4(012) = {0000, 0001, 0002, 0003, 0010, 0011, 0020, 0021, 0022, 0100, 0101, 0110, 0111}.

We find the generating function of the sequence w012(n) by analyzing the maximal prefix of zeros of the

elements in Wn(012).
Let Fτ ;a1a2···as

(x) be the generating function for the number of weak ascent sequences π = π1π2 · · ·πn

that avoid τ and have prefix a1a2 · · · as. Note that Fτ (x) = Fτ ;ǫ(x) is the generating function for the

number of weak ascent sequences that avoid τ , where ǫ is the empty word. By the definitions we have

that Fτ (x) = 1 + Fτ ;0(x).

Theorem 2.3. The generating function for the number of weak ascent sequences of length n that avoid

012 is given by

F012(x) =
1− 2x

1− 3x+ x2
.

http://oeis.org/A200753
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Proof: Let x be a weak ascent sequence in W(012) and have prefix 0m for some integer m ≥ 0. Then, we

have the decomposition x = 0mx′, where x′ ∈ W(012). If x′ = ǫ, then the generating function for this

case is xm. If x′ 6= ǫ, then the letter xm+1 of x satisfies 0 ≤ xm+1 ≤ wasc(0m)+1 = (m−1)+1 = m.

This implies the functional equation:

F012;0m(x) = xm + F012;0m+1(x) +

m
∑

j=1

F012;0mj(x).

From a similar argument we have the equality

F012;0mj(x) = xm+1 + F012;0mj0(x) +

j
∑

i=1

F012;0mji(x)

= xm+1 + xF012;0mj(x) + x

j
∑

i=1

F012;0mi(x).

By induction on j = 1, 2, . . . ,m, we obtain the expression

F012;0mj(x) =
xm+1(1 − x)j−1

(1− 2x)j
.

Thus,

F012;0m(x) = xm + F012;0m+1(x) +

m
∑

j=1

xm+1(1 − x)j−1

(1− 2x)j
=

xm(1 − x)m

(1 − 2x)m
+ F012;0m+1(x),

which leads to

F012(x) =
∑

m≥0

xm(1 − x)m

(1 − 2x)m
=

1− 2x

1− 3x+ x2
.

The series expansion of the generating function F012(x) is

1 + x+ 2x2 + 5x3 + 13x4 + 34x5 + 89x6 + 233x7 + 610x8 +O(x9).

The weak ascent sequences corresponding to the bold coefficient were given above.

We note that the generating function F012(x) coincides with the generating function of the sequence

F2n−1, where Fn denotes the n-th Fibonacci number and we also give a combinatorial proof for this fact.

2.3.1 Combinatorial proof

First, we mention that 012-avoiding weak ascent sequences are 012-avoiding inversion sequences since

a 012-avoiding inversion sequence always has the weak ascent property. So Wn(012) = In(012) for all

positive integer n. Corteel et al. (2016) considered already these sequences and proved that the numbers

w012(n) satisfy the recurrence w012(n) = 3w012(n − 1) − w012(n − 2), for n ≥ 3, with initial con-

ditions w012(1) = 1 and w012(2) = 2. They point out that the so-called Boolean permutations are also
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equinumerous and because of the connections to Coxeter groups it would be nice to find a simple bijec-

tion. Here, we present a bijection between 012-avoiding weak ascent sequences (or inversion sequences)

and a set that is well known to be enumerated by the odd-indexed Fibonacci numbers. The motivation of

our bijection is the characterization given in Observation 1 in Corteel et al. (2016).

Observation 2.4 (Corteel et al. (2016)). Inversion sequences that avoid the pattern 012 are those whose

positive elements form a weakly decreasing sequence.

On the other hand, several known classical combinatorial objects are counted by the Fibonacci numbers

F2n−1. For instance, the number of matchings of a path on 2n vertices, the number of coverings of a 1×2n
rectangle by 1 × 1 squares and 1 × 2 rectangles, the number of compositions of 2n by the numbers of 1
and 2. We formulate our result in terms of 1− 2 compositions.

First, we define three operations and show that each 012-avoiding weak ascent sequence is uniquely

determined by a sequence of these operations. Hence, there is a one-to-one correspondence between

sequences of such operations and 012 avoiding weak ascent sequences. Then, we show that an operation-

sequence can be simply decoded by a 1− 2 composition.

The operations O, I , and Eℓ, where ℓ is an integer ≥ 2, are defined as follows:

O: write a 0 at the end of the sequence.

I: write a 1 at the end of the sequence.

Eℓ: write at the beginning of the sequence ℓ− 1 0’s, increase each positive element by ℓ− 1, and write

ℓ at the end of the sequence (ℓ ≥ 2).

It is clear that if e is a 012-avoiding weak ascent sequence, then O(e), I(e), and Eℓ(e) are also 012-

avoiding weak ascent sequences. Moreover, if e has length n, then O(e) and I(e) have length n+ 1, and

Eℓ(e) has length n + ℓ. On the other hand, the operation-sequence which decodes a given 012 avoiding

inversion sequence is uniquely defined.

Example 2.5. We demonstrate how the operation-sequence E3OOIE2OOIIE4 generates the corre-

sponding weak ascent sequence. Let ǫ denote the empty weak ascent sequence. Then

E4(ǫ) → 0004

IE4(ǫ) → 00041

IIE4(ǫ) → 000411

OIIE4(ǫ) → 0004110

OOIIE4(ǫ) → 00041100

E2OOIIE4(ǫ) → 0000522002

OE2OOIIE4(ǫ) → 00005220020

IOE2OOIIE4(ǫ) → 000052200201

E3IOE2OOIIE4(ǫ) → 000000744004033.

Finally, we have to add a 0 at the beginning of the so-created sequence.
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Now we encode the operation-sequence by a composition of 1’s and 2’s. Write for a O two 1’s: 11,

for a I , write a 2, and for an operation Eℓ write ℓ − 1 2’s between two 1’s, i.e., 12ℓ−11. Note that

this encoding is unique, hence the map is invertible. Our example, E3IOE2OOIIE4, translates to the

composition

1221 · 2 · 11 · 121 · 11 · 11 · 2 · 2 · 12221.

The above bijection is based on the recursive structure of the elements in Wn(012), which we could

formulate as follows. (This bijection was pointed out by one of the referees.) Let x ∈ Wn(012). If the

last letter of x is 0 or 1, remove this last letter, obtaining a sequence of the set Wn−1(012). If the last

letter of x is k > 1, remove that last letter, remove the first k − 1 zeros from x, and subtract (k − 1) from

each remaining positive letter, to obtain such a sequence of the set Wn−k(012).

2.4 Pattern 021

The generating function for the case 021 can be derived using the previous technique, however, the deriva-

tion and the result are more complicated.

Theorem 2.6. The generating function F021(x) for the number of weak ascent sequences of length n that

avoid 021 satisfies F021(x) = 1 + xF021(x)/(1 − xF021(x)
2), which implies

F021(x)− 1 = −xv20 − v0 + x+ 1

x
,

where

v0 =
2
√
1− 4x− 2x2

3x
cos

(

−1

3
arccos

(

7x3 − 6x2 + 12x− 2

2(1− 4x− 2x2)3/2

)

+
π

3

)

+
x+ 1

3x
.

Proof: By the definitions, we have

F021;0m(x) = xm + F021;0m+1(x) +
m
∑

j=1

F021;0mj(x)

= xm + F021;0m+1(x) +
m
∑

j=1

xj−1F021;0m+1−j1(x), (1)

where we used here that F021;0mj(x) = xj−1F021;0m+1−j1(x). To see this fact consider a weak ascent

sequence π = 0mjπ′ of length n. Since π avoids 021, π′ does not contain any of the entries 1, 2, . . . , j−1.

In other words, each positive entry is at least j. Thus, π avoids 021 if and only if 0m+1−j1π′′ avoids 021,

where π′′ is obtained from π′ by decreasing each positive entry of π′ by j − 1. Clearly, 0m+1−j1π′′ is a

weak ascent sequence.

The generating function F021;0m1(x) satisfies

F021;0m1(x) = xm+1 + F021;0m10(x) +

m+1
∑

j=1

F021;0m1j(x).
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Clearly, F021;0m11(x) = F021;0m+11(x). As before, we have that F021;0m1j(x) = xj−1F021;0m+2−j1(x),
for all j = 2, 3, . . . ,m. So,

F021;0m1(x) = xm+1 + F021;0m10(x) +

m+1
∑

j=1

xj−1F021;0m+2−j1(x). (2)

Similarly, we have

F021;0m10(x) = xm+2 + F021;0m100(x) +

m+1
∑

j=1

F021;0m10j(x)

= xm+2 + F021;0m+110(x) +

m+1
∑

j=1

xjF021;0m+2−j1(x). (3)

In order to solve these recurrences, we define the generating functions A(v) =
∑

m≥1 F021;0m(x)vm−1,

B(v) =
∑

m≥1 F021;0m1(x)v
m−1, andC(v) =

∑

m≥1 F021;0m10(x)v
m−1. Clearly, A(0) = F021;0(x) =

F021(x) − 1. So, our next step is to find an explicit formula for the generating function A(0). Thus, by

multiplying (1)-(3) by vm−1 and summing over m ≥ 1, we obtain

A(v) =
x

1− xv
+

1

v
(A(v) −A(0)) +

1

1− xv
B(v), (4)

B(v) =
x2

1− xv
+ C(v) +

1

v(1 − xv)
B(v) − 1

v
B(0), (5)

C(v) =
x3

1− xv
+

1

v
(C(v) − C(0)) +

x

v(1− xv)
B(v)− x

v
B(0). (6)

By (4)-(5), we have

(v3x− v2x− v2 + vx+ 2v − 1)B(v)

= (v2x2 + v2x− 2vx− v + 1)B(0) + (v2x− v)C(0) + v2x3 + v2x2 − vx2. (7)

Let v0, v1, v2 be the roots of the polynomial equation v3x− v2x− v2 + vx+ 2v − 1 = 0, namely(i),

vj =
2
√
1− 4x− 2x2

3x
cos

(

−1

3
arccos

(

7x3 − 6x2 + 12x− 2

2(1− 4x− 2x2)3/2

)

+
π(2j + 1)

3

)

+
x+ 1

3x
.

By substituting v = v1 and v = v2 into (7), we obtain the following system of equations:

(v21x
2 + v21x− 2v1x− v1 + 1)B(0) + (v21x− v1)C(0) + v21x

3 + v21x
2 − v1x

2 = 0,

(v22x
2 + v22x− 2v2x− v2 + 1)B(0) + (v22x− v2)C(0) + v22x

3 + v22x
2 − v2x

2 = 0.

(i) See the following link to find the roots in terms of trigonometric functions: https://en.wikibooks.org/wiki/

Trigonometry/The_solution_of_cubic_equations

https://en.wikibooks.org/wiki/Trigonometry/The_solution_of_cubic_equations
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By solving this system for B(0) and C(0), we obtain that

B(0) =
v1v2x

2

(v2x− 1)(v1x− 1)
and C(0) = − (v2x+ v2 − 1)(v1x+ v1 − 1)x2

(v2x− 1)(v1x− 1)
,

where we simplified the expressions by using the fact that v = v1 and v = v2 satisfy v3x−v2x−v2+vx+
2v−1 = 0. Since v0, v1, v2 are solutions of v3x−v2x−v2+vx+2v−1 = 0, so v0+v1+v2 = (1+x)/x
and v0v1v2 = 1/x. Thus,

B(0) =
1

v20 − v0 + 1
and C(0) = −v20x(x + 1)− v0(x

2 + x+ 1) + x2 + 2x+ 1

v20 − v0 + 1
.

Now, by substituting these expressions into (5)-(6) and solving for B(v) and C(v), we obtain

B(v) = − vxv20 + v(xv − x− 1)v0 + 1

(v20 − v0 + 1)(v3x− v2(x+ 1) + v(x + 2)− 1)
.

Now, by (4) with v = 1, we have

A(0) =
x

1− x
+

1

1− x
B(1),

which, after simplification, implies that

A(0) = −xv20 − v0 + x+ 1

x
= F021(x) − 1.

Note that v0 is a root of the polynomial v3x− v2x− v2 + vx+ 2v − 1, so F021(x) satisfies

F021(x) = 1 +
xF021(x)

1− xF021(x)2
.

The series expansion of the generating function F021(x) is

1 + x+ 2x2 + 6x3 + 21x4 + 80x5 + 322x6 + 1347x7 + 5798x8 +O(x9).

The weak ascent sequences corresponding to the bold coefficient in the above series are

W4(021) = {0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0022, 0023,
0100, 0101, 0102, 0110, 0111, 0112, 0113, 0120, 0122, 0123}.

The sequence w021(n) coincides with the sequence A106228, and

w021(n) =

n−1
∑

k=0

1

n

(

2n− 2k − 2

n− k − 1

)(

n+ k − 1

n− 1

)

, for n ≥ 1.

It is known that node-labeled plane trees are enumerated by these numbers. We present a bijection between

weak ascent sequences avoiding 021 and node-labeled plane trees. However, in order to have a more

insightful picture, we consider a special matrix class that is in bijection with weak ascent sequences.

http://oeis.org/A106228
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2.4.1 Matrices

The structure of a weak ascent sequence is nicely recognizable in a certain class of upper triangular 01
matrices, WMat defined in Bényi et al. (2023). We recall the definition and some important properties.

Definition 2.7. Let WMatn be the set of upper triangular square 01-matrices A that satisfy the following

properties:

(a) There are n 1’s in A.

(b) There is at least one 1 in every column of A.

(c) For every pair of adjacent columns, the top-most 1 in the left column is weakly above the bottom-

most 1 in the right column.

There is a one-to-one correspondence between the set WMatn and the set of weak ascent sequences of

length n as it is shown in Bényi et al. (2023). Given a weak ascent sequence, w = 00211015, the columns

of the corresponding matrix M ∈ WMatn are constructed according to the decreasing subsequences

(decreasing runs) of w. The decomposition into decreasing subsequences is unique, in our example

w = 0|0|21|10|1|5. For each decreasing run there is a column with 1 entries in the rows given in the

particular subsequences, i.e., the 1 entries of the matrix are in positions (i, j) if the jth decreasing run

contains the value i− 1.

Forbidding a certain pattern in weak ascent sequences affects the structure of the corresponding matrix.

In certain cases, this structure is nice and gives an illuminating insight. This is the case for the pattern 021
which we describe now.

Let WMat(021) denote the set of matrices corresponding to weak ascent sequences avoiding the pattern

021. Recall that weak ascent sequences that avoid 021 are those whose positive elements form a non-

decreasing sequence. As a consequence, in a matrix M ∈ WMat(021) the 1 entries are of two types. The

1’s corresponding to the 0’s of the weak ascent sequence are all in the top row. The other 1’s corresponding

to the positive elements of the weak ascent sequence form a weakly increasing staircase path.

This characterization is sufficient. All M ∈ WMat whose 1 entries are either in the top row or form a

weakly increasing chain are exactly the matrices of WMat(021).
Note that our matrices are upper triangular, so each matrix can be associated with a path having all

steps above the diagonal, in other words with a Dyck path, with eventually some extra 1’s in the first

row. In particular, matrices with dimension n that do not contain any 1’s in the first row (besides the 1
entry in the first column that is contained in all matrices) can be associated to Dyck paths. Hence, the

subclass of n× n matrices in WMatn(021) is enumerated by the n-th Catalan number. (Note that in the

set WMatn(021) there are matrices of different dimensions.)

2.4.2 Bijection with node-labeled plane trees

We describe now a bijection between 021 avoiding weak ascent sequences and node-labeled plane trees

on n vertices. A plane tree is an oriented tree in which the children of a vertex are ordered.

Plane trees are enumerated by Catalan numbers and their combinatorics is very rich and popular, see

for example Stanley (2015). We recall some facts and decodings that are useful for our purposes. See for

more details for instance Dershowitz and Zaks (1980).

A plane tree can be decoded by a sequence (a1, . . . , an) of non-negative integers satisfying a1 + · · ·+
an ≥ i and

∑n
j=0 aj = n. See Exercise 86, page 33 in Stanley (2015). We obtain the corresponding
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sequence to a plane tree by traversing the tree in preorder (visiting the root, then traversing its subtrees

from left to right) and recording the outdegree of the node we just visited (the first time). For n = 3 the

five sequences are

(3, 0, 0) (2, 1, 0) (2, 0, 1) (1, 2, 0) (1, 1, 1).

We can associate a Dyck path to the sequence (a1, . . . , an) by the following rule:

Ha1DHa2D · · ·HanD,

where H denotes a horizontal step and D a down step. We call a vertex in the plane tree that is not the

root a node if its outdegree is greater than zero. We label the node v of the tree with an integer ℓv such that

0 ≤ ℓv ≤ odeg(v)− 1, where odeg(v) denotes the outdegree of v. A plane tree with such a labeling of all

nodes is called node-labeled plane tree. Note that we slightly modified the definition and terminology of

David Callan, see sequence A106228 in OEIS Foundation Inc (2024).

To each node-labeled plane tree we can associate a sequence (a1, a2[ℓ2] . . . , an[ℓn]) such that
∑i

j=0 ai ≥ i,
∑n

j=0 aj = n, and 0 ≤ ℓi < ai for all 1 ≤ i ≤ n. We call such a sequence an

augmented sequence. (Note that ℓ1 is not defined since there is no label associated to the root.) The 6
augmented sequences of length 3 are listed below.

(3, 0, 0) (2, 1[0], 0) (2, 0, 1[0]) (1, 2[0], 0) (1, 2[1], 0) (1, 1[0], 1[0]).

In the plane tree we can think of the label as a mark on one of the descendants of the node, whereas in

the Dyck path as a mark on one of the horizontal steps. More precisely, we define a marked Dyck path

associated to an augmented sequence (a1, a2[ℓ2], . . . , an[ℓn]) as follows:

Ha1DHa2−ℓ2hℓ2D · · ·Han−ℓnhℓnD.

For instance, if the augmented sequence is (1, 3[1], 2[1], 0, 0, 4[3], 0, 0, 1[0], 0, 1[0], 0), the corresponding

marked Dyck path is HDHHhDHhDDDHhhhDDDHDDHDD.

We associate now to a marked Dyck path a 01 matrix. If all ℓi = 0, then write for each horizontal step a

1 in the row of its height. More precisely, in row r, where r is given by the number of down steps standing

to the left of the particular horizontal step. This way we obtain the n × n matrices of the set Wn(021).
We illustrate this in the Example 2.8.

Example 2.8. Let’s consider the case n = 4. Of the 21 matrices in WMatn(021), fourteen have a single

1 in the first row. These 14 cases correspond to those labeled plane trees where all ℓi = 0. The corre-

sponding marked Dyck paths do not contain any h. For instance, the sequence (2, 1[0], 1[0]) corresponds

to the Dyck path HHDHDHDD:

❅
❅
❅
❅
❅
❅

0 0

1

2

http://oeis.org/A106228
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The matrix is given by putting a 1 entry for each horizontal step at its height

[

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

]

. The weak ascent

sequence is given by the heights of the horizontal steps w = 0012.

We now define the map also for cases when there is at least one positive ℓi. To a horizontal step, h, a 1
entry will correspond in the first row of the matrix. If ℓi = 1, we apply the following rule when visiting

the horizontal step h. If it would be a H we would write a 1 entry in the next column of the same row,

but as it is a h we write a 1 entry in the first row of the same column. At the same time we “delete”

the D followed by the h from the path implying actually that the heights of the next horizontal steps are

reduced by one. For instance, (1, 2[1], 1[0], 0) transforms to the marked Dyck path HDHhDHDD, the

corresponding matrix is
[

1 1 0
0 1 1
0 0 0

]

and the weak ascent sequence is 0101.

In the case of arbitrary ℓi we write ℓi 1’s in the first row in consecutive columns. We delete the D
(coming after the h’s) as well, reducing with that the height of all the following 1’s by one.

Example 2.9. For n = 4 there are 7 node-labeled plane trees with at least one positive label. Here we

give the list of them, the corresponding augmented sequences, and the corresponding matrices (in the

same order).

s s s

s

s

2

�
�❅

❅ s s s

s

s

1

�
�❅

❅

s

s s

s

s

1

�
�❅

❅ s

s

s

s

s

1

�
�❅

❅

s s

s

s

s

1

�
�❅

❅

s

s

s

s

s1

�
�
�
�

❅
❅

❅
❅ s

s

s

s

s

1�
�❅

❅
❅
❅�

�

(1, 3[2], 0, 0) (1, 3[1], 0, 0) (1, 2[1], 1[0], 0) (1, 2[1], 0, 1[0])

(1, 1[0], 2[1], 0) (2, 2[1], 0, 0) (2, 0, 2[1], 0).





1 1 1
0 1 0
0 0 0









1 0 1
0 1 1
0 0 0









1 1 0
0 1 1
0 0 0









1 1 0
0 1 0
0 0 1









1 0 1
0 1 0
0 0 1









1 1 1
0 0 1
0 0 0









1 1 1
0 0 0
0 0 1



 .

2.5 Pattern 011

The main observation for the structure of 011-avoiding weak ascent sequences is that each positive number

can occur only once. We introduce some notation and terminology. Let w = w1 · · ·wn be a weak ascent

sequence that avoids the pattern 011. If wj−1 ≤ wj for a j, we denote by q(wj) the value that is newly

available for wj+1, q(wj) = wasc(w1w2 · · ·wj) + 1. We say that wj is a candidate and q(wj) is its

follower. Further, let s(w1 · · ·wj) denote the set of all available values for wj+1.

From the set sj−1 we get the set sj depending on the value of wj . Three cases are possible:

A. If wj−1 = wj = 0, then sj = sj−1 ∪ {q(wj)}.

B. If wj−1 < wj , then sj = sj−1 ∪ {q(wj)} \ {wj}.

C. If wj−1 > wj , then if wj = 0, we have sj = sj−1, and if wj > 0, we have sj = sj−1 \ {wj}.
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If the follower q(wj) is also a candidate, meaning that it occurs in the weak ascent sequence and it is

greater than its left neighbour (note that it can not be equal to its left neighbour) then we can consider

also its follower, q(q(wj)). We can continue this procedure, obtaining a sequence of values wj , q(wj),
. . ., q(· · · q(wj)) until the last is not a candidate. This means that it is smaller than its left neighbour

in the weak ascent sequence or it does not occur in the weak ascent sequence as an element. Hence,

such a sequence is maximal if the first, starting candidate is zero and the last element is not a candidate.

Moreover, each 0 element in the weak ascent sequence determines such a maximal sequence and each

positive number from the set {1, 2, . . . , q(wn)} arises in exactly one such maximal sequence. Hence, a

set partition of {1, 2, . . . , q(wn)} uniquely defines a 011-avoiding weak ascent sequence w ∈ Wn(011).
More precisely, let i1, i2, . . ., im denote the positions of the zeros in the weak ascent sequence. For each

1 ≤ k ≤ m, wik = 0, define the set Sk containing the elements of the maximal sequence of the followers:

Sk = {q(wik), . . . , q(q(· · · (q(wik ))))}.

We illustrate the above definition by an example.

Example 2.10. Let us consider the weak ascent sequence w = 0001300524. We added in the following

table the value q(wj) above the element wj .

q(wj) 1 2 3 4 5 6 7 8

w 0 0 0 1 3 0 0 5 2 4

There are 5 zeros in the weak ascent sequence. Starting with the first zero, we have q(wi1 ) = q(w1) =
q(0) = 1, q(1) = 4, q(4) = 8. Hence, the maximal sequence is 0 − 1 − 4 − 8, and S1 = {1, 4, 8}. The

other sets are S2 = {2}, S3 = {3, 5, 7}, S4 = ∅, S5 = {6}.

After understanding the structure of this class, we derive its size. First, we provide a finer counting

according to the number of zeros.

Let B(n,m) denote the set of weak ascent sequences avoiding the pattern 011 of length n with m zeros

and let B(n,m) = |B(n,m)|. The initial condition is B(n, 1) = 1. We have the following proposition.

Proposition 2.11. For all 1 ≤ m ≤ n,

B(n,m) =

n
∑

k=m

B(k − 1,m− 1)

(

n− k +m− 1

n− k

)

.

Proof: Let w ∈ B(n,m) and k denote the position of the last zero. Then w1 · · ·wk−1 is in the set

B(k − 1,m − 1). The values wi, i > k are all positive numbers. Each positive number that occurs is

contained in one of the sets S1, . . . , Sm−1 or in the set that starts with the last zero at the mth position,

Sm. The number of ways to place n− k elements into m sets (possibly with repetition) is counted by the

binomial coefficient
(

n−k+m−1
n−k

)

.

Kube and Ruskey (2005) showed that the above recurrence is satisfied by the triangular binomial coef-

ficient,
(n−1+(m2 )

n−m

)

, which equals 1 when m = 1.

Theorem 2.12. The number of weak ascent sequences of length n that avoid the pattern 011 is given by

w011(n) =

n
∑

m=1

(

n− 1 +
(

m
2

)

n−m

)

.
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In A098569 we find several combinatorial interpretations of these numbers. Interestingly, though some

of the interpretations are integer sequences, none of these coincide with weak ascent sequences that avoid

the pattern 011. The corresponding matrices WMatn(011) are those in WMatn that have at most one 1
entry in each row except the first row.

3 Open questions

We leave as an open question the enumeration of the remaining cases of length 3. In Table 2 we give the

first few values of the sequence wp(n) for p ∈ {000, 010, 100, 101, 110, 120, 201, 210}.

Pattern p Number of sequences avoiding p

000 1, 2, 5, 15, 51, 194, 809, 3667, 17892, 93408

010 1, 2, 5, 15, 52, 202, 861, 3969, 19582, 102600

100 1, 2, 6, 22, 94, 452, 2398, 13832, 85838, 568412

101 1, 2, 6, 22, 93, 438, 2251, 12447, 73308, 456401

110 1, 2, 6, 22, 92, 424, 2112, 11229, 63174, 373692

120 1, 2, 6, 22, 91, 409, 1958, 9860, 51775, 281654

201 1, 2, 6, 23, 104, 528, 2919, 17225, 107022, 693327

210 1, 2, 6, 23, 104, 530, 2958, 17734, 112657, 750726

Tab. 2: Sequence wp(n) for p ∈ {000, 010, 100, 101, 110, 120, 201, 210}

Conjecture 3.1. The sequence w210(n) coincides with the sequence A117106.

Note that A117106 enumerates permutations avoiding the vincular pattern 2-41-3.
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