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When nodes can repeatedly update their behavior (as in agent-based models from computational social science
or repeated-game play settings) the problem of optimal network seeding becomes very complex. For a popular
spreading-phenomena model of binary-behavior updating based on thresholds of adoption among neighbors, we con-
sider several planning problems in the design ofSticky Interventions: when adoption decisions are reversible, the
planner aims to find a Seed Set where temporary intervention leads to long-term behavior change. We prove that
completely converting a network at minimum cost isΩ(ln(OPT ))-hard to approximate and that maximizing con-
version subject to a budget is(1 − 1

e
)-hard to approximate. Optimization heuristics which rely on many objective

function evaluations may still be practical, particularlyin relatively-sparse networks: we prove that the long-term
impact of a Seed Set can be evaluated inO(|E|2) operations. For a more descriptive model variant in which some
neighbors may be more influential than others, we show that under integer edge weights from{0, 1, 2, ..., k} objective
function evaluation requires onlyO(k|E|2) operations. These operation bounds are based on improvements we give
for bounds on time-steps-to-convergence under discrete-time reversible-threshold updates in networks.

Keywords: Network seeding, Spreading phenomenon, Combinatorial optimization, Convergence

1 Introduction
In the social and behavioral sciences there is a growing interest in the descriptive power ofagent-based
models. The termagent-based describes a broad class of models in which many independent agents
repeatedly update their behavior in response to local interactions with other agents. After some time,
emergent properties of the global system may be observed. Popular agent-based modeling tutorials by
well-known social scientists and simulation researchers have been cited hundreds of times (such as Ax-
elrod and Tesfatsion (2006) and Macal and North (2010)). Many features in agent-based models build
on ideas that mathematicians and computer scientists have studied classically ascellular automata or
somewhat more recently asspreading-phenomena models.

In fields where controlled experiments are very difficult, agent-based models may offer a useful (if
approximate) synthetic experiment to shed light on the effects of proposed interventions. Given an agent-
based model, a natural question follows: what does the modelsuggest about the form of the best interven-
tions? What types of interventions will yield long-term improvements? Depending on the specification of
agent behavior, and on how heterogeneously-structured thepatterns of agent interaction are, this planning-
oriented question can raise serious computational and algorithmic challenges. Most positive theoretical
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2 G.Spencer

results we are aware of on maximizing influence in networks focus on a kind of “one-shot” influence
(adoption decisions are irreversible). In this paper we focus on seeding interventions when nodes may
repeatedly update their behavior (adoption decisions are reversible), as in most agent-based models.

In network settings, very few agent-based models proposed by social scientists yield optimization prob-
lems which have efficient accurate algorithms(i), so heuristic methods like genetic algorithms and local-
improvement algorithms are a natural recourse. These heuristic methods may demand many function eval-
uations, and may require significant replication to ameliorate issues associated with settling at local optima
while missing global optima. For example, running a local-improvement algorithm from 1,000 random
initial solutions may give an experimenter substantial peace of mind. Unfortunately, for increasingly-
complex agent-based simulations, even evaluating the predicted effect of an intervention may be quite
slow/computationally costly (and not simply as a matter of poor implementation). Some agent-based
models may not even converge to a consistent ordering on the quality of interventions: how long should
the agent behavior be allowed to evolve before the relative strength of two interventions is assessed?(ii)

Optimizers and mathematicians interested in encouraging computationally-responsible reasoning in the
social sciences (replication to reduce artifacts and the design of consistent evaluation metrics) should em-
phasize the variable computational costs associated with this diligence. Despite forbidding anecdotes, in
many cases, replication and convergence to a consistent ordering are reasonable demands. In this paper,
we prove hardness-of-approximation results for spreadinga {0, 1}-behavior with reversible adoptions,
but we also give quadratic bounds on function evaluation anddescribe near-convergence from an arbitrary
pattern of initial adoption.

Further, as new sources of data from large online-social networks become available (e.g. variable
strength of ties/variable sharing across links), what combinations of these these model features can be
incorporated without jeopardizing manageable convergence (and compute) times? Researchers may pre-
emptively limit descriptive power for fear that repeatedlyevaluating ever-more complex simulations will
be prohibitively slow for instances of real-world scale. Yet some powerful descriptive model features may
carry only mild computational costs. For our model, adding avariable-integer-edge-weight feature causes
only a modest increase in our function-evaluation bound. Including data-driven model features may in-
crease the specificity of simulations describing real systems that social scientists care about. We believe
that there is a role for mathematical theory in helping scientists understand the computational costs of
incorporating model features that capture new data sources.

Our focus. Spreading-phenomena models of threshold-based binary-behavior in networks have a long
history. Granovetter’s foundational work in the sociologyliterature in the late 70s motivated computa-
tionally inquiry on the effect of variation in (often synthetic) network structure (see Granovetter (1978)).
For example, Watts studied the distribution of long-term cascade sizes as a function of network structure
under threshold-spread models (see Watts (2002)). More recently, these models have been studied exten-
sively in sociology as “Complex Contagion.” For example, see Centola and Macy (2007), and Centola
et al. (2007). Threshold-based behavior updates also arisein behavioral economics models, as in Nyborg
et al. (2006). Empirical work on Twitter data has suggested that the Complex-Contagion model is useful to
understand spread of political activism in real-world contact networks (see Romero et al. (2011)). Thresh-
old decision rules also have provenance in game theory wherethey emerge asbest-response strategies for

(i) Or even satisfying approximation-algorithms which are efficient and provably near-optimal.
(ii) This is particularly problematic as the choice of time-stepinterval is often somewhat artificial in agent-based models.
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repeated game play in networks.(iii)

We consider a model of binary{0, 1}-behavior spreading in a network in which nodes update behavior
based on a threshold of adoption among their neighbors. These threshold values are given explicitly in
the input and may be heterogeneous. We assume that nodes willadopt a desirable behavior (Behavior
1) only when they observe enough of their neighbors choosingBehavior 1. If too few neighbors adopt
Behavior 1, a node will adopt Behavior 0. As in the game-theoretic setting, we allow all agents to update
concurrently and repeatedly.

If a planner can temporarily incentivize a small set of nodesto adopt Behavior 1, what does this
threshold-based spread model suggest about form of highly-effective interventions? For a given budget
there can exist a exponentially-large space of spatial interventions. Though the behavior-update process
does not necessarily converge to a stable pattern, there is asomewhat satisfying notion of the long-term
adoption caused by an intervention (this follows from a result of Goles (1985)).

We show that four natural variations of this intervention-planning problem are hard-to-approximate:
no polynomial-time algorithms can exist without substantial compromise in the guaranteed quality of
the solution. Can we still learn something about what these models predict about the form of effective
interventions?

Given a behavior-spread model, nearly the bare minimum required to explore optimized interventions is
the ability to repeatedly evaluate the objective function.For example, methods like local search algorithms
and genetic algorithms involve repeated computation of theobjective function value. Are heuristics which
require many function evaluations reasonable? For discrete-time reversible-threshold binary-behavior
updating we show that evaluating the long-term effect of an intervention takesO(|E|2) operations where
E is the edge set for the network. The constant hidden by the bigO notation is relatively small (at
most8 or 12 for the most general cases), and for an edge-weighted variant (which can describe variable-
strength ties in a social network) in which integer weights come from the set{1, 2, 3, ..., k} at worst
function evaluations costO(k|E|2) operations, still with constant at most8 (or 12). The foundation of
these bounds on compute time are new time-to-convergence results we prove for threshold automata in
networks: behavior updating is guaranteed to converge in2|E|+ |V | time steps (or2k|E|+ |V | time steps
for the edge-weighted case).

(iii) For background on game play in networks, see the widely-readtextbook of Easley and Kleinberg (2010).
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2 Model: Discrete-Time Reversible-Threshold Spread

Input: Finite networkG = (V,E).
Each nodei ∈ V has an integer thresholdbi (thebi may be non-uniform).

Initial State Vector: At each timet = {0, 1, 2, 3, ...}, eachi ∈ V has one of two behaviors:
Behavior 0 or Behavior 1. TheAdoption Vector , x(t) ∈ {0, 1}|V |, describes the pattern of adoption
at timet. a An initial adoption vector,x(0), is given. Note that

∑

j∈V xj(0) may be non-zero.

Planner Intervention at Seed Set:
The planner specifies ad-time-step intervention at subsetV ′ ⊆ V .
For all i ∈ V ′, setxi(0) = 1.

Evolution of Adoption:
At each timet ≥ 1, eachi ∈ V updates behavior:

• Decision Rule: If ( i ∈ V ′ AND t ≤ d− 1), then setxi(t) = 1.

Otherwise, nodei updates based on behavior of neighbors att− 1 :
If
∑

j∈δ(i) xj(t− 1) ≥ bi, then setxi(t) = 1.
If
∑

j∈δ(i) xj(t− 1) < bi, then setxi(t) = 0.

a If xi(t) = 1 this indicates nodei adopts behavior 1 at timet, etc.

These inputs and decision rule specify a sequence of binary vectorsx(0), x(1), x(2), ... that describes the
evolution of adoption of behavior inG.

Suppose that a planner can temporarily intervene to force a subset of nodes to adopt Behavior 1 for
the d time steps{0, 1, 2, ..., d − 1} (at timed these nodes resume normal updating). As other nodes
update according to the decision rule, Behavior 1 may start to spread in the network. As is common, we
refer to the subset of nodes where the planner intervenes as the Seed Set. Subject to constraints on the
size or cost of the Seed Set, our planner wants to choose the Seed Set which results in highest long-term
adoption (long after the temporary intervention has ended). Qualitatively, the planner would like to choose
aSticky Intervention for whichx(k) contains many 1s for arbitrarily largek. An intuitive definition of the
Long-term Rate of Adoption is

lim
k→∞

[

∑

i∈V

xi(k)
]

Unfortunately, for the decision rule defined,x(k) may not converge. When the limit above does not
exist,x(k) eventually alternates between two vectors (from Goles (1985))(iv) , so define theLong-term
Rate of Average Adoption as

lim
k→∞

[

∑

i∈V

1

2

(

xi(k) + xi(k + 1)
)]

(iv) For an example of a repeating cycle of length 2, see the appendix. In a computational setting, a useful stopping conditionfor
function evaluation should incorporate this possible settling at a 2-cycle behavior.
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Our planner seeks to maximize this well-defined objective function. There are two natural notions of what
it means tointervene temporarily.

Duration of Intervention:

• temporary (t) : The planner chooses a Seed Set and intervenes continuouslyuntil growth of Behav-
ior 1 stops(v), then stops intervening.

• fixed-duration(fd) : The planner chooses a Seed Set and intervenes ford consecutive time steps,
then stops intervening.

Comment (Adoption is reversible): In this model, nodes may update from Behavior0 to Behavior1, or
from Behavior1 to Behavior0. In particular, updates from1 to 0 may occur in cascades of Behavior 0
that start att = 1 based on an unstable pattern of adoption in the initial statevector,x(0), or in cascades
of Behavior 0 that start when the Seed SetV ′ is no longer forced to Behavior 1.

Planning Objective:

• Problem 1: Min-cost Complete Conversion (MCC)What is the smallest cardinality Seed Set
required to convert the entire network to Behavior 1 permanently?

• Problem 2: Budgeted Maximum Conversion (BMC)If the Seed Set contains at mostk nodes,
what is the maximum number of nodes that can be permanently converted to Behavior 1?

3 Seeding the Stickiest Intervention is Hard to Approximate
The following table summarizes our results on hardness of approximation for the four variants of the
seeding problem defined.

Summary of Results on Hardness of Approximation:
temporary (t) fixed-duration (fd)

Min-Cost
Complete Conversion Ω(ln(OPT ))) Ω(ln(OPT ))

(provided thatd ≥ 2)
Budgeted
Maximum Conversion < (1− 1

e
) ≈ 0.632 < (1− 1

e
) ≈ 0.632

(provided thatd ≥ 2)

For Min-cost Complete Conversion, we prove that no polynomial-time algorithm guarantees aO(ln(OPT ))-
approximation (unlessNP has slightly superpolynomial time algorithms). This is by reduction from
the Set Cover problem, for which Feige proved aln(n) threshold for efficient approximation (see Feige
(1998)). Notably, the lower bound we give here is a function of the size of the optimal Seed Set. For
Budgeted Maximum Conversion, we prove that no polynomial-time algorithm can guarantee more than a
(1− 1

e
)-fraction of the optimal value. This is by reduction from theMaximum-Coverage Problem, where

we again leverage a hardness result of Feige.

(v) Or, the growth of the 2-time-step average level of Behavior 1stops.
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Before proving these hardness results, we comment on directions for positive algorithmic results. Given
our (1 − 1

e
) inapproxamability result for Budgeted Maximum Conversion, readers may wonder whether

the (1 − 1
e
)-approximation algorithm for the suggestively-named “Linear-Threshold Model” of Kempe

et al. (2005) suggests a useful direction for the problems defined here. Unfortunately, the positive al-
gorithmic result in Kempe, et al. relies on a very specialized model assumption about the form of un-
certainty in threshold values. This assumption is used to prove that adoption is a submodular function
of the set of seeds.(vi) Known results on maximizing submodular functions subject to budget constraints
then immediately guarantee the success of certain greedy approaches to solution construction. In fact,
submodularity-dependent analysis informs much of the theoretical computer science work on influence
in networks (for example, also see Mossel and Roch (2010)). We emphasize that the objective in our
problems is not submodular, and greedy approaches may fail dramatically for very simple examples.

Consider theSet Cover Problem defined as follows. LetS denote a set of elements{1, 2, ..., n}. LetF
denote a group of subsets ofS which we will denoteJ1, J2, ..., J|F |. Call a set of indicesI a Set Cover if

∪i∈IJi = S.

The goal is to find a Set Cover of minimum cardinality.

Theorem 1 The Set Cover Problem can be reduced in polynomial time to an instance of Min-cost Com-
plete Conversion (for any period of seeding d ≥ 2). As a result, Min-cost Complete Conversion is
Ω(ln(OPT )) hard to approximate.

Proof: Given an arbitrary instance of the Set Cover Problem, construct an instance of Min-cost Complete
Conversion as follows. For each elementi ∈ S, create a nodexi. Denote this set of “element nodes”
by VS . For eachJk ∈ F create a nodexJk

. Denote this set of “subset nodes” byVF . Our constructed
instance has node setV = VS ∪ VF . For every(i, Jk)-pair with i ∈ S andJk ∈ F , if i ∈ Jk then include
edge(xi, xJk

) in edge setE. Notice that(V,E) gives a bipartite graph. Let the threshold for each node
xi ∈ VS be 1. Let the threshold for each nodexJk

∈ VF be the degree ofxJk
, which by construction is

|Jk|.
We make two observations about this class of constructed instances. First, forany seed set in the

constructed instance, all updates to Behavior 1 that will ever occur happen by the end oft = 2. To
see this, considerVS andVF separately. Supposexi ∈ VS is not a seed:xi can only be converted to
Behavior 1 if there exists someJk ∈ F with i ∈ Jk that hasxJk

a seed. Otherwise,xi is adjacent only
to non-seed subset nodes: due to the construction of the thresholds forVF , such non-seed subset nodes
are only converted to Behavior 1 whenevery node corresponding to a contained element already has
Behavior 1. Sincexi does not have Behavior 1, such a subset node will not be converted to Behavior
1 (and consequently will never cause nodes corresponding toits elements to adopt Behavior 1). Thus,
any non-seedxi ∈ VS that adopts Behavior 1 will do so because it is adjacent to a seed node. Since the
threshold forxi ∈ VS is 1, adoption of Behavior 1 must happen att = 1. Since any subset node is only
adjacent to element nodes, if the final non-trivial updates for element nodes occur att = 1, then the final
non-trivial updates for a subset node must be att = 2.

Second, suppose that a seed set contains a subset nodexJk
. If xJk

is forced to adopt Behavior 1 for
at leastt ∈ {0, 1} thenxJk

must adopt Behavior 1 for allt. This follows from our construction of the

(vi) Kempe et al. assume that each nodei chooses a fractional threshold uniformly from[0, 1]. Submodularity no longer holds if for
arbitraryǫ > 0, each nodei chooses a fractional threshold uniformly from[ǫ, 1].
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xi xa xb xc xz

xJk
xJl

xJm
xJq

VS

VF

...

...

andS = {i, a, b, c, ..., z}.

WhereF = {Jk, Jl, Jm, ..., Jq},

For example,Jk = {i, a, c}, etc.

Fig. 1: Schematic of constructed bipartite graph. The constructed instance of Min-cost Complete Con-
version. Each node inVS has threshold 1. Each node inVF has threshold equal to the cardinality of the
corresponding subsetJk.

thresholds. SincexJk
has Behavior 1 att = 0, at t = 1 all element nodes adjacent toxJk

will have
Behavior 1. As a result, att = 2, xJk

will freely choose Behavior 1 without being forced, and also, all
element nodes adjacent toxJk

will freely choose to adopt Behavior 1 (sincexJk
was forced to Behavior

1 att = 1). At later time steps updates are trivial: att, xJk
observed all neighbors adopting Behavior 1 at

t− 1, and all element nodes adjacent toxJk
observedxJk

adopting Behavior 1 att− 1. Effectively, seeds
which are subset nodes quickly “self-stabilize,” and do thesame for their element-node neighbors.

Now solve the constructed instance of Min-cost Complete Conversion whered ≥ 2 (the Seed Set will
at least be forced to Behavior 1 fort ∈ {0, 1}). Call the returned Seed SetQ. We explain how to massage
Q to find a seed set that only contains subset nodes which has size at most|Q| and still converts all ofV
to Behavior 1. This massagedQ will have a natural interpretation as a Set Cover forS of cardinality at
most|Q|.

Suppose that the seed setQ containsxi ∈ VS . If all neighbors ofxi are also seeds, thenxi can be
removed fromQ to obtain a strictly smaller seed set that converts all nodesby t = 2 (the only change is
thatxi will now convert to Behavior 1 att = 1 causing at most a 1 time step delay in other updates to
Behavior 1). Otherwise there exists somexJl

/∈ Q with i ∈ Jl. In this case, massageQ by removing
xi and adding such axJl

. Any subset node whose adoption of Behavior 1 depended onxi still adopts
Behavior 1 byt = 2 (since nowxi adopts Behavior 1 att = 1, asi ∈ Jl). Any other node updates altered
by this substitution result in Behavior 1 at a node in the place of Behavior 0. Thus, the massaged version
of Q still converts all ofV to Behavior 1 byt = 2 (by construction of the node thresholds, full adoption
is stable fort ≥ 3). Repeat this removal/massaging procedure untilQ contains only nodes corresponding
to subsets fromF .

Now interpret the subsets corresponding to nodes of massagedQ as a proposed set coverI of cardinality
at most|Q|. As verified above, the massaged seed setQ still converts all nodes ofV to Behavior 1 by
t = 2. Since non-seed element nodes inVS are converted only by adjacency to subset nodes which are
seeds (from our first observation), every element node inVS must be adjacent to some seed from massaged
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Q. By construction of edge setE, this means that alli ∈ S appear in some subset indexed byI. Thus,I
is a set cover containing at most|Q| sets fromF .

Finally, the optimal value for the Set Cover problem cannot be strictly less than the Min-Cost Complete
Conversion optimal value, since every set coverL with ∪i∈LJi = S corresponds to a seed set in our
constructed instance of Min-Cost Complete Conversion which converts all ofV to Behavior 1 (all element
nodes are converted to Behavior 1 att = 1 due to the covering property, and consequently all non-seed
subset nodes are converted att = 2).

Due to the correspondence demonstrated between solutions for an arbitrary Set Cover instance and
solutions of the same numerical value for our polynomially-constructed instance of Min-cost Complete
Conversion (for arbitraryd ≥ 2), anα-approximation algorithm for Min-cost Complete Conversion im-
mediately gives anα-approximation algorithm for Set Cover. Thus Min-cost Complete Conversion in-
heritsΩ(lnn)-hardness from the Set Cover Problem wheren = |S| (this hardness holds unlessNP has
slightly superpolynomial time algorithms, see Feige (1998) for details). Notice that|S| corresponds to
|VS | in our constructed Min-Cost Complete Conversion instance:our massaging procedure shows that
OPT ≤ |VS |, soΩ(ln(|VS |))-hardness of approximation certainly impliesΩ ln(OPT ))-hardness of ap-
proximation for Min-Cost Complete Conversion. ✷

A similar reduction (which introduces dummy nodes to stabilize element nodes and creates a complete-
subgraph gadget onVF to avoid permanent conversion of subset nodes) shows that the Budgeted Maximum-
Coverage Problem can be reduced in polynomial time to our Budgeted Maximum-Conversion Problem.
Again, Budgeted Maximum Conversion inherits a hardness dueto Feige (1998): unlessP = NP there is
no approximation algorithm that can guarantee a solution strictly better than a(1− 1

e
) fraction of optimal.

Theorem 2 The Budgeted Maximum Coverage Problem can be reduced in polynomial time to an instance
of Budgeted Maximum Conversion (for any intervention length d ≥ 2). As a result, Budgeted Maximum
Conversion is (1− 1

e
)-hard to approximate.

The details of this proof appear in the appendix.

4 Computing the Effect of Intervention:
Long-Term Average Adoption Rate

Given our hardness results in the previous section, we turn our attention to the feasibility of optimization
heuristics. Almost the bare minimum required by an optimization heuristic is the ability to repeatedly
evaluate the objective function associated with a candidate feasible solution. In our case, what is the long-
term effect of a particular seed set? If function evaluations are too-expensive computationally, it may limit
the size of instances where researchers can reasonably conduct computational studies. For Discrete-time
Reversible-threshold binary behaviors we give an upperbound on the number of operations required to
compute the Long-Term Average Adoption Rate which is quadratic in the cardinality of the edge set:

Theorem 3 The long-term average adoption rate can be computed in O(|E|2) operations.

Theorem 3 follows immediately from new bounds we give in Section 4.1 on the number of time steps
required before guaranteed convergence to the long-term average adoption rate. In each time step, the
number of operations required to update all nodes accordingto adoption in their neighborhoods isO(|E|),
as each nodex must sum over|δ(x)| terms (for a total of2|E| terms over all nodes).
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The bound in Theorem 3 is for the more complicated cases: fixed-duration intervention, and tempo-
rary intervention from an arbitrary initial state vectorx(0) ∈ {0, 1}|V |. For a temporary intervention
maintained until growth of Behavior 1 stops starting from initial state with||x(0)|| = 0, convergence in
O(|V |) time steps to a stable pattern of long-term adoption is obvious: the evolution of adoption may be
cleanly divided into a first phase is which adoption of Behavior 1 is growing (during the intervention), and
a second phase in which adoption of Behavior 1 is being eroded(after the intervention). Each phase lasts
at most|V | time steps: if a time step elapses with only trivial behaviorupdates (each node maintains their
behavior from the previous time step) then no non-trivial updates can possibly occur in future time steps.

In the the more complicated cases, adoption of Behavior 1 anderosion of Behavior 1 can occur simul-
taneously inG. Bounding time-until-convergence is significantly more subtle for these cases.(vii) Further,
in these cases the long-term rate of adoption may not be well defined. Instead, a simple long-term average
rate may be reliably computed after convergence to a cycle that oscillates between 2 adoption vectors. We
summarize our results in the table below.

Summary of Results on Stability and Convergence to Long-term Average Adoption:
Discrete-Time Reversible- Weighted-Neighbor
Threshold Seeding (DRSeed) Variant of DRseed

temporary (t) converges to: stable adoption vector converges to: stable adoption vector
Given ||x(0)|| = 0 convergence time bound:2|V | convergence time bound:2|V |

temporary (t) converges to: 2-cycle (from Goles (1985))converges to: 2-cycle (from Goles (1985))
From arbitrary x(0) convergence time bound:2(2|E|+ |V |) convergence time bound:2(2k|E|+ |V |)

(for edge-weights from {0, 1, 2, ..., k})

fixed-duration (fd) converges to: 2-cycle (from Goles (1985))converges to: 2-cycle (from Goles (1985))
From arbitrary x(0) convergence time bound:d+ 2|E|+ |V | convergence time bound:d+ 2k|E|+ |V |

(for edge-weights from {0, 1, 2, ..., k})

Before the proofs for the fixed-duration cases we make the following comment. How much could our
convergence bounds be improved? Though the adoption vectorevolves in an exponentially-large space,
for temporary interventions our bound on convergence time is linear in the number of nodes. In the more
general fixed-duration setting we give an upperbound on convergence time that is linear in the number of
edges in the network. Considering a network which is a simpleline graph shows that the best possible
upper bound on adoption-vector convergence time is|V |. We note that the average degree in social
networks is often bounded by a constant(viii) : for such networks all upper bounds given are linear in the
number of individuals in the network, so that at most a constant-factor improvement could be given.

In the next section, we harness special properties of our model to tighten a convergence argument given
in Goles (1985) for a more general class of threshold automata. In particular, our bound is linear in the
size of the edge set of the network regardless of degree distribution (whereas Goles (1985) stated looser
bounds and only claimed linear convergence time for uniform-degreenetworks). Our proof extends almost
immediately to the case in which edges have weights from the set{0, 1, 2, ..., k} for constantk.

(vii) Note that when||x(0)|| = 0, the temporary variant corresponds to a special case of the fixed-duration variant whend ≥ n.
(viii) This is often understood as a consequence of Dunbar’s socialbrain hypothesis (see Dunbar (1992)).
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4.1 Convergence from an Arbitrary Pattern of Initial Adoption
For adoption vectorx(t) ∈ {0, 1}|V |, let Nx(t) denote the set of indicesi for which xi(t) = 1. The
following lemma describes a basic property of our economic-threshold decision rule (which is not true of
the more general class Goles studied). We establish it now for use near the end of our convergence-bound
proof.

Lemma 1 (Monotonicity of the future adoption set in the current adoption set) Let x(t) and x′(t) denote
two adoption vectors at time t. Let x(T ) denote the result of applying the update rule to x(t) for T − t
steps, and let x′(T ) denote the result of applying the update rule to x′(t) for T−t steps. If Nx(t) ⊆ Nx′(t),
then for all T > t, Nx(T ) ⊆ Nx′(T ).

Proof: (of Lemma 1) By induction, starting at timet. From the assumptions of the theorem,Nx(t) ⊆
Nx′(t). Induction hypothesis: suppose that for timeT − 1 we haveNx(T−1) ⊆ Nx′(T−1). Consider time
stepT . For each nodei ∈ V : if i ∈ Nx(T ), then it must be the case that at leastbi neighbors ofi are
in Nx(T−1). Since all nodes which are inNx(T−1) are also inNx′(T−1) (by the induction hypothesis), at
leastbi neighbors ofi are inNx′(T−1). By the update rule fori, we get thatx′

i(T ) = 1, so thati ∈ Nx′(T ).
Thus,Nx(T ) ⊆ Nx′(T ). ✷

Theorem 4 (Main Theorem: Convergence Bound for Reversible Economic-Threshold Spread)
In graph G = (V,E), given an arbitrary initial adoption vector x(0) ∈ {0, 1}|V |:
within 2|E|+ |V | time steps the evolving adoption vector will converge to a cycle of length at most 2.

Next, we explain the proof of this main theorem, which requires a number of intermediate lemmas.
The decision rule of our model is a special case of the generalthreshold-based update rule analyzed in
Goles (1985). We follow Goles analysis closely, but by exploiting the monotonicity of our restricted case
(established in Lemma 1), and emphasizing a more combinatorial description of a key function, we give
significantly tighter results for our model.

Proceeding forward, we use the fact (from Goles (1985)) thatfor a specified set of integer thresholds
denotedbi for i ∈ V (our model as described until now), replacingbi with bi − 0.5 for all i ∈ V gives
an update procedure indistinguishable from updating that uses the originalbi.(ix) Thus, without loss of
generality, we assume all thresholds are half-integer.

The following lemma is directly from Goles (1985), but we include a proof for completeness.

Lemma 2 (Adoption enters a cycle, Goles (1985)) Given any x(0) ∈ {0, 1}|V |, there exists an integer
c with the property that x(t) = x(t + c) = x(t + 2c) = ... and that x(t) is not equal to any of x(t +
1), x(t+ 2), ..., x(t+ c− 1) for all t above some Transient TimeT .

Proof: (of Lemma 2) The space of possible adoption vectors,{0, 1}|V |, is finite. Thus, there exists a
time step at which some adoption vectory ∈ {0, 1}|V | occurs for the second time. Since the update
process is deterministic, the behavior from that point forward will be identical to the evolution after the
first occurrence ofy, giving a cycle. ✷

We’ll define and analyze a special functionE(x(t)). In contrast to the analysis in Goles (1985), we de-
scribeE(x(t)) in terms of the update process in the network. To do this we introduce the idea ofsightings.

(ix) E.g. replacing a threshold of 3 at nodei with a threshold of 2.5 changes nothing about how the adoption vector will change.
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Given an adoption vectory ∈ {0, 1}|V |, we say that nodei sights each of its neighbors which is 1 accord-
ing to y.(x) The expression forE(x(t)) will include two terms related to sightings.

Sightings Necessary to getx(t):
If x(t) occurs during our updating process, we can give a bound on howmany sightings must have
happened in the graph at timet− 1: if i is 1 att, it must have sighted at leastbi neighbors which were 1.
Thus, throughout the graph at least

|V |
∑

i=1

bixi(t) = 〈b, x(t)〉 = (Sightings Necessary to getx(t))

sightings must have happened att− 1. This counts accurately:bi is included exactly whenxi(t) is 1.

Sightings wasted in turning onx(t+ 1):
The adoption vectorx(t) produces the next statex(t+ 1): each nodei that is 1 inx(t+ 1) saw at leastbi
sightings inx(t), buti may also have sighted some extra neighbors at 1 beyond thebi that were required.
We saythese sightings were wasted in turning on x(t + 1). Let Ai denote theith row of the adjacency
matrix forG.(xi) The number of sightings that were wasted at nodei isAix(t)− bi.

So, summing overi:

|V |
∑

i=1

(Aix(t)− bi)(xi(t+ 1)) = 〈(Ax(t) − b), x(t+ 1)〉 (1)

= (Sightings wasted in turning onx(t+ 1)) (2)

This counts the correct quantity becauseAix(t)− bi is included in the sum exactly whenxi(t+ 1) = 1.

Defining E(x(t)):

E(x(t)) : = (Sightings Necessary to getx(t)) − (Sightings wasted in turning onx(t+ 1)) (3)

= 〈b, x(t)〉 − 〈(Ax(t) − b), x(t+ 1)〉 (4)

Lemma 3 Goles (1985) If the adoption vector has not entered a 2-cycle (aka, assuming x(t) 6= x(t+2)),
then E(x(t)) is decreasing:

E(x(t+ 1)) + 0.5 ≤ E(x(t)).

Proof: (of Lemma 3) The proof of this lemma is largely from Goles (1985): we include the details for
completeness and because they are critical to explaining the subsequent improvements we make.

(x) In terms of our update process: are the number of sightingsi makes atx(t) greater thanbi? If so, theni is 1 at timet+ 1.
(xi) The adjacency matrix ofG is the|V |× |V | matrix that hasAij = 1 exactly when the edge(i, j) is inG and has all other entries

0.
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We will showE(x(t)) − E(x(t + 1)) ≥ 0.5.

E(x(t)) − E(x(t+ 1)) = (5)

= 〈b, x(t)〉 − 〈(Ax(t) − b), x(t+ 1)〉 − 〈b, x(t+ 1)〉+ 〈(Ax(t + 1)− b), x(t+ 2)〉 (6)

= 〈b, x(t)〉 − 〈(Ax(t)), x(t + 1)〉+ 〈(Ax(t + 1)− b), x(t+ 2)〉 (7)

= 〈b, x(t)〉 − 〈(Ax(t + 1)), x(t)〉+ 〈(Ax(t + 1)− b), x(t+ 2)〉 (8)

= −〈(Ax(t + 1)− b), x(t)〉+ 〈(Ax(t + 1)− b), x(t+ 2)〉 (9)

= 〈x(t + 2)− x(t), (Ax(t + 1)− b)〉 (10)

In the algebra above: first we make a combined term for all sightings att by nodes which are 1 att + 1,
next we switch the order of summation: sightings by 1s fromt+ 1 atx(t) are the same as sightings by 1s
from t atx(t+ 1) (which is alternately true fromA a symmetric matrix), then simply combine terms.
The righthand side of the equality sums the following term over all nodesi:

[xi(t+ 2)− xi(t)](Aix(t+ 1)− bi) (11)

If i has the same state inx(t+ 2) andx(t) then the term fori has value 0.
If xi(t+ 2) = 1 andxi(t) = 0: xi(t+ 2) = 1 meansAix(t+ 1)− bi ≥ 0.5
If xi(t+ 2) = 0 andxi(t) = 1: xi(t+ 2) = 0 meansAix(t+ 1)− bi ≤ −0.5

These facts follow from the half-integrality of thebi. In both cases wherexi(t + 2) 6= xi(t), the term
for nodei contributes at least1/2 to the value ofE(x(t)) − E(x(t + 1)). Since we assumed we are not
in a 2-cycle yet (aka thatx(t) 6= x(t + 2)) there must be at least onei that contributes value 1/2. This
concludes the proof of Lemma 3. ✷

We can now prove that the evolving adoption vector will converge to a cycle of length at most 2.

Proof: (State of “Convergence” claimed in Theorem 4): Suppose the cycle guaranteed by Lemma 2 has
lengthc > 2 : x(t) = x(t+ c) andx(t) is not equal to any ofx(t+1), x(t+ 2), ..., x(t+ c− 1). We can
apply Lemma 3:

E(x(t)) > E(x(t + 1)) > E(x(t+ 2)) > ... > E(x(t+ c)). (12)

Sincex(t) = x(t+c), we also have thatE(x(t)) = E(x(t+c)). This gives a contradiction. Thusc ≤ 2.✷

It remains to prove how long this convergence will take. Following Goles, we showed in Lemma 3 that
E(x(t)) decreases in every time step unless the process has converged to its final 2-cycle, so bounding the
range ofE(x(t)) will give an upper bound on the transient time of the process.This is still our general
strategy, but to give an improved upper bound over that from Goles (1985), we use the monotonicity of
our process (Lemma 1) to show that unless the process is already very close to a 2-cycle, the decrease in
E(x(t)) is at least twice as large per time step as specified by Lemma 3:

Lemma 4 Unless the evolving adoption vector is within 2|V | time-steps of entering a 2-cycle, at least 2
nodes i have xi(t) 6= xi(t+ 2), so that

E(x(t+ 1)) + 1 ≤ E(x(t)).
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Proof: (of Lemma 4) Suppose thatx(t + 2) differs fromx(t) in only one position. We’ll show that the
adoption vector enters a 2-cycle within2|V | time steps. LetNx(t) denote the subset ofV corresponding to
nodes that are at 1 inx(t). Suppose thatxi(t+2) = 1 andxi(t) = 0, and for all otherj, xj(t+2) = xj(t).
By definition,Nx(t) ⊆ Nx(t+2). We use monotonicity (Lemma 1) to reason aboutNx(·) in the following
time steps.

ConsiderNx(t+1): it results from sightings atNx(t). SinceNx(t) ⊆ Nx(t+2), all sightings atNx(t)

happen atNx(t+2). Thus,Nx(t+3) is a superset ofNx(t+1): any node that decided to adopt based onx(t)
will certainly adopt based onx(t + 2). By the same rationale,Nx(t+1) ⊆ Nx(t+3) gives thatNx(t+2) ⊆
Nx(t+4). ThenNx(t+2) ⊆ Nx(t+4) gives thatNx(t+3) ⊆ Nx(t+5), etc. This argument holds iteratively.
To make this more clear, write the set of adopters in a z-pattern usingNx(t) ⇒ Nx(t+1) to denote that the
set of adopters at timet+ 1 results from the set of adopters at timet, and add the subset relationships:

Nx(t) ⇒ Nx(t+1)

⊇ ⇐ ⊇
Nx(t+2) ⇒ Nx(t+3)

⊇ ⇐ ⊇

Nx(t+4) ⇒ Nx(t+5)

⊇ ⇐ ⊇

Nx(t+6) ⇒ Nx(t+7)

··
·

· ·
·

··
·

Since the update process is deterministic, if any of these⊆ relationships is not proper then the adop-
tion vector has entered a 2-cycle. That is, ifNx(t+k) = Nx(t+k+2), then it also must be the case
thatNx(t+k+1) = Nx(t+k+3), so that for all time steps aftert + k the adoption vector alternates be-
tweenx(t + k) andx(t + k + 1). The maximum number of time steps that could elapse before a
⊆ relationship is forced to be non-proper is2|V |: since all the subsets must be proper, at least one
node is in(Nx(t+k+2) \ Nx(t+k)) for all k. The longest path that could ever be achieved is ifNx(t) is
the empty set andNx(t+2|V |) is the entire setV . After this many time steps it must be the case that
Nx(t+k+2) = Nx(t+k): the adoption vector has entered a 2-cycle within2|V | time steps.

A symmetric argument (with opposite direction of⊆ relationships) establishes the case wherexi(t +
2) = 0 andxi(t) = 1, and for all otherj, xj(t + 2) = xj(t). We have established that ifx(t + 2)
differs fromx(t) in only one position the adoption vector will enter a 2-cyclewithin 2|V | time steps.
Equivalently, if the adoption vector is more than2|V | time steps from entering a 2-cycle, then it must be
thatx(t+ 2) differs fromx(t) in strictly more than 1 position. Thus, evaluating the final expression from
the proof of Lemma 3:

E(x(t)) − E(x(t + 1)) = 〈x(t+ 2)− x(t), (Ax(t + 1)− b)〉 ≥ 1. (13)

This concludes the proof of Lemma 4. ✷
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Lemma 5 The range of values that E(x(t)) can achieve is ≤ 2|E|.

Proof: (of Lemma 5) Recall the definition ofE(x(t)):

E(x(t)) = (Sightings Necessary to getx(t)) − (Sightings wasted in turning onx(t+ 1)) (14)

From our definitions of necessary and wasted sightings, the first term is always positive (or 0) and the
second term is always negative (or 0). Letting the first term be as large as possible, and the second term
be as small as possible, we obtain an upper bound onE(x(t)) of

∑|V |
i=1 bi (every node in|V | makes the

necessary sightings for it to adopt).
An obvious lower bound onE(x(t)) assumes the first term is0 and makes the second term as large in

magnitude as possible (as many wasted sightings as possibleat every node):

E(x(t)) ≥ −

|V |
∑

i=1

(deg(i)− bj) = −

|V |
∑

i=1

(deg(i)) +
|V |
∑

i=1

bi. (15)

Thus the range ofE(x(t)) is at most the upper bound minus the lower bound:

|V |
∑

i=1

bi −
(

−

|V |
∑

i=1

(deg(i)) +
|V |
∑

i=1

bi

)

=

|V |
∑

i=1

(deg(i)) = 2|E|. (16)

This concludes the proof of Lemma 5. ✷

Proof: (Time to Convergence claimed in Theorem 4)The range ofE(x(t)) is at most2|E| from Lemma
5. At most2|V | time steps can decreaseE(x(t)) by only 1/2. Every other time step must result in
a decrease inE(·) of size at least 1. Thus, from any initial adoption vectorx(0) there are at most
(2|V | + (2|E| − |V |)/1) = 2|E| + |V | time steps before the adoption vector enters a stable state or
a 2-cycle. ✷

Extension: When Some Relationships Are More Influential.To our model input, add that each edge
e ∈ E has a weightwe from the set of integers{0, 1, 2, ..., k}, and modify the decision rule as follows.

• Decision Rule: For each nodei ∈ V , if the edge-weighted sum of neighbors ofi who adopt
Behavior 1 att− 1 is at leastbi, then nodei adopts Behavior 1 at timet. Otherwise nodei adopts
Behavior 0 at timet.

Our proof generalizes immediately. The matrixA is now the weighted adjacency matrix. The definition of
E(x(t)) is generalized so the terms describe the weighted amount of sightings to getx(t) and the wasted
amount of weighted sightings to getx(t + 1). Sums of degrees become sums of weighted degrees. The
range ofE(x(t)) is now2

∑

e∈E we ≤ 2k|E|.

Theorem 5 (Convergence Bound: Weighted-Neighbor Reversible-Threshold Updating).
In graph G = (V,E), where each edge has weight we from {0, 1, 2, ..., k}, given an arbitrary initial
adoption vector x(0) ∈ {0, 1}|V |: within (2

∑

e∈E we + |V |) ≤ (2k|E| + |V |) time steps the evolving
adoption vector will converge to a cycle of length at most 2.
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5 Conclusion and Future Directions
Motivated by the prevalence of repeated behavior updating in the computational social sciences litera-
ture, we considered the planning problem of designingSticky Seeding Interventions in Networks under
reversible-threshold discrete-time updating. We proved that several natural variants of the planning prob-
lem are hard-to-approximate (by reductions from Set Cover), but we also provided quadratic bounds on
function evaluation (even from arbitrary initial states ofadoption). Thus, optimization heuristics that
repeatedly evaluate the objective may be practical, even when empirically-motivated features like het-
erogeneous edge weights are added to the model. Incorporating model features that represent new data
sources (like variable edge-weights) increases the specificity of predictions, potentially allowing valuable
contrasts in qualitative properties of optimized interventions across different networks.

Our long-term spread objective that considers reversible adoption and heterogeneous edge weights is
already complicated to evaluate, even though the model we consider in this paper is entirely deterministic.
A prominent alternative to the game-theory-style concurrent-updating we’ve assumed israndom asyn-
chronous updating where nodes update in a random order one at a time.(xii) It is easy to construct small
examples where random asynchronous updating leads to strongly-different long-term behavior than con-
current updating (even in an expected-value sense), or where the randomly-realized long-term outcomes of
asynchronous updating vary enormously. It is unclear whether these types of differences might somehow
be damped at a larger scale. Efficient exact expected long-term spread evaluation in this asynchronous
context seems impossible due to the exponentially-large space of possible update orders, though perhaps a
strong assumption about the structure of the input network (as frequently appears in the statistical physics
literature) might provide some traction.

We close with a general comment. The study of spread in networks gives rise to a number of fascinat-
ing theoretical and applied questions. Variations in modelassumptions and network structure can cause
dramatic changes in the qualitative behavior of the system and in the form of optimized interventions.
Many positive theoretical results rely on rather-special assumptions (for example, very-specific structural
restrictions, or highly-special forms of uncertainty in the input instance). A significant future challenge
will be to understand which messages about networks are “stable” against some variation in these assump-
tions. While it may seem that theoretical reasoning, synthetic computational exploration, and scientific
investigation of real networks are diverging fields, we believe that each of these areas has rich insights to
offer to its counterparts.
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Appendix

Example of 2-cycle

As mentioned in Section 2, the adoption vector may not converge to a single repeating vector.

1
2

1

1

1

Fig. 2: (An alternating cycle of length 2 with average adoption 50%) Nodes are marked with their thresholds.
Start from an initial pattern of adoption in which only the center node has Behavior 1. The adoption pattern cycles
between two vectors; average adoption is50%.

Figure 2 demonstrates an example in which iterated application of the decision rule does not converge
to a single repeating adoption vector. In the example in Figure 2, an average rate of long term adoption
can be computed because the adoption vector enters a small cycle (of length 2).

The long-term behavior of the update rule is always at least as stable as the example in Figure 2: after
a sufficient number of time steps the adoption vector will either be a stable repeating vector or alternate
between 2 adoption vectors.(xiii) We show in the main text that convergence to such an alternating state
happens withinO(|E|)-time steps (where the hidden constant is small).

Hardness of Budgeted Maximum Conversion

Here we give the details of the proof of Theorem 2 from Section3.
Consider theBudgeted Maximum Coverage Problem defined as follows. LetS denote a set of elements

{1, 2, ..., n}. LetF denote a group of subsets ofS which we will denoteJ1, J2, ..., J|F |. Given a budgetk,
the objective is to specify a set ofk indicesI so that the cardinality of the following union is maximized:

∪i∈IJi. (17)

(xiii) This was true even for the more general class of threshold automata Goles studied.

http://www.pnas.org/content/99/9/5766.abstract


18 G.Spencer

Theorem 2The Budgeted Maximum Coverage Problem can be reduced in polynomial time to an instance
of Budgeted Maximum Conversion (for any intervention lasting at least 2 time steps). As a result, Budgeted
Maximum Conversion is (1 − 1

e
)-hard to approximate.

Proof: (of Theorem 2) Given an arbitrary instance of the Budgeted Maximum Coverage Problem, con-
struct an instance of Budgeted Maximum Conversion as follows. For each elementi ∈ S, create a node
xi. Denote this set of “element nodes” byVS . For each nodexi ∈ VS create a unique dummy nodeyi.
Denote this set of dummy nodes byVD. For eachJk ∈ F create a nodexJk

. Denote this set of “subset
nodes” byVF . Our constructed instance has node setV = VS ∪ VD ∪ VF . For every(i, Jk)-pair with
i ∈ S andJk ∈ F : if i ∈ Jk then include edge(xi, xJk

) in edge setE. For eachi ∈ S, include the edge
(xi, yi) in E. Finally, for each pair of subset nodes inVF , include the edge between them inE. Let the
threshold for each nodexi ∈ VS be 1. Let the threshold for each nodeyi ∈ VD be 1. Let the threshold
for each nodexJk

∈ VF be the degree ofxJk
, which by construction is|Jk| + |F | − 1. Let the budget

for seeding bek nodes (assumek < |F |− 1 as otherwise the best Maximum-Coverage index set could be
found by enumeration in polynomial time).

We make two observations about this class of constructed instances. First, no subset node will adopt
Behavior 1 except in time steps in which it is forced to do so. This follows from our construction of the
high thresholds forxJk

: the maximum number of neighbors ofxJk
adopting Behavior 1 is the number of

seeds (k) plus the number of elements inJk, for a total of|Jk|+ k < |Jk| + |F | − 1 (this is insufficient
for xJk

to freely choose Behavior 1). Thus, even if all element nodesadopt Behavior 1, among the subset
nodes only Seed nodes will adopt Behavior 1 (and only while the intervention is in place).

Second, suppose that a Seed Set contains a subset nodexJk
. If xJk

is forced to adopt Behavior 1 for at
leastt ∈ {0, 1} then all of the element nodes adjacent toxJk

must adopt Behavior 1 for allt. This follows
from our construction of the thresholds. SincexJk

has Behavior 1 att = 0, at t = 1 all element nodes
adjacent toxJk

will choose Behavior 1. Att = 2 each such element node observes thatxJk
had (forced)

Behavior 1 att = 1 and so continues to adopt Behavior 1. Also att = 2, the dummy node connected to
each such element node will choose to adopt Behavior 1. Then,at t = 3, regardless of adoption byxJk

,
each element node and its dummy will observe each other adopting Behavior 1 att = 2 and continue to
adopt Behavior 1. All future time steps have the same trivialupdates. Effectively, seeds which are subset
nodes quickly cause their corresponding (element node, dummy node)-pairs to “stabilize” at Behavior 1.

Now solve the constructed instance of Budgeted Maximum Conversion whered ≥ 2 (the Seed Set will
at least be forced to Behavior 1 fort ∈ {0, 1}). Call the returned Seed SetQ. From the budget constraint
for seeding we have|Q| ≤ k. We will massageQ to find a seed set that only contains subset nodes which
has size at most|Q| and still converts as many nodes to Behavior 1 asQ does. This massagedQ will have
a natural interpretation as a feasible solution for the Budgeted Maximum Coverage Problem forS.

For i ∈ S, suppose that either an element nodexi or a dummy nodeyi is in Q. If all Jk ∈ F that
havei ∈ Jk are inQ, thenxi (or yi respectively) can be removed fromQ to obtain a strictly smaller Seed
Set that converts to Behavior 1 all nodes thatQ does. Otherwise, there exists someJl ∈ F with i ∈ Jl
andxJl

/∈ Q. In this case, massageQ by removingxi (or yi respectively) and adding subset nodexJl
.

The resulting set of seeds still converts bothxi andyi to Behavior 1 (sincei ∈ Jl this happens byt = 2
even whend is as low as 2 by our second observation), and all other differences in node updates substitute
Behavior 1 in the place of Behavior 0 (as now all element nodes-and their dummy copies- adjacent to
xJl

will permanently adopt Behavior 1 from our second observation). Repeat this removal/massaging
procedure untilQ contains only nodes corresponding to subsets fromF .
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Now interpret the subsets corresponding to nodes of massaged Q as a proposed budgeted cover,I,
of cardinality at most|Q| ≤ k. As verified above, the massaged seed setQ still converts all nodes to
Behavior 1 thatQ did (and does so byt = 2). The number of elements fromS covered byI is precisely
half the number of nodes converted in our constructed Budgeted Maximum Conversion instance.

Finally, the optimal value for Budgeted Maximum Coverage problem cannot be strictly more than
half of the Budgeted Maximum Conversion optimal value, since every budgeted coverL whose union has
|∪i∈LJi| elements corresponds to a seed set in our constructed instance of Min-Cost Complete Conversion
which converts exactly2| ∪i∈L Ji| nodes to Behavior 1 (all element nodes corresponding to elements in
∪i∈LJi are converted to Behavior 1 att = 1, and their dummy partners are converted to Behavior 1 at
t = 2, and these nodes adopt Behavior 1 in all future time steps from our second observation).

Due to the correspondence demonstrated between solutions for an arbitrary Budgeted Maximum Cover-
age instance and solutions of exactly twice the numerical value for our polynomially-constructed instance
of Maximum Budgeted Conversion (for arbitraryd ≥ 2), anα-approximation algorithm for Maximum
Budgeted Conversion immediately gives anα-approximation algorithm for Budgeted Maximum Cover-
age. Thus budgeted maximum conversion (for arbitraryd ≥ 2) inherits (1 − 1/e)-hardness from the
Budgeted Maximum Coverage Problem (this hardness holds unlessP = NP , see Feige (1998) for de-
tails). ✷

A simpler reduction without the complete subgraph onVF is possible if thethreshold for a subset node
can exceed the degree of the node. This seems somewhat abusive of the model, however, so we have
included the argument as given.


