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Finding distributions of permutation statistics over pattern-avoiding classes of permutations attracted much attention

in the literature. In particular, Bukata et al. found distributions of ascents and descents on permutations avoiding any

two patterns of length 3. In this paper, we generalize these results in two different ways: we find explicit formulas for

the joint distribution of six statistics (asc, des, lrmax, lrmin, rlmax, rlmin), and also explicit formulas for the joint

distribution of four statistics (asc, des, MNA, MND) on these permutations in all cases. The latter result also extends

the recent studies by Kitaev and Zhang of the statistics MNA and MND (related to non-overlapping occurrences of

ascents and descents) on stack-sortable permutations. All multivariate generating functions in our paper are rational,

and we provide combinatorial proofs of five equidistribution results that can be derived from the generating functions.

Keywords: Pattern-avoiding permutation, permutation statistic, generating function, bijection

1 Introduction

A permutation of length n is a rearrangement of the set [n] := {1, 2, . . . , n}. Denote by Sn the set of

permutations of [n]. For π ∈ Sn, let πr = πnπn−1 · · ·π1 and πc = (n+1−π1)(n+1−π2) · · · (n+1−πn)
denote the reverse and complement of π, respectively. Then πrc = (n+1−πn)(n+1−πn−1) · · · (n+1−
π1). A permutation π1π2 · · ·πn ∈ Sn avoids a pattern p = p1p2 · · · pk ∈ Sk if there is no subsequence

πi1πi2 · · ·πik such that πij < πim if and only if pj < pm. For example, the permutation 32154 avoids

the pattern 231. Let Sn(τ, ρ) denote the set of permutations in Sn that avoid patterns τ and ρ. The area of

permutation patterns attracted much attention in the literature (see Kitaev (2011) and reference therein).

Of interest to us are the following classical permutation statistics. For 1 ≤ i ≤ n − 1, i is an ascent

(resp., descent) in π ∈ Sn if πi < πi+1 (resp., πi > πi+1) and asc(π) (resp., des(π)) is the number of

ascents (resp., descents) in π. Also, πi is a right-to-left maximum (resp., right-to-left minimum) in π if πi

is greater (resp., smaller) than any element to its right. Note that πn is always a right-to-left maximum and
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a right-to-left minimum. Denote by rlmax(π) and rlmin(π) the number of right-to-left maxima and right-

to-left minima in π, respectively. We define left-to-right maximum, left-to-right minimum, lrmax(π) and

lrmin(π) in a similar way. For example, if π = 34152 then lrmax(π) = 3 and lrmin(π) = rlmin(π) =
rlmax(π) = asc(π) = des(π) = 2.

We are also interested in the statistics maximum number of non-overlapping ascents (denoted MNA)

and maximum number of non-overlapping descents (denoted MND). For example, des(13254) = 2 =
MND(13254) while 3 = des(32154) 6= MND(32154) = 2. These statistics are a particular case of the

study of the maximum number of non-overlapping consecutive patterns in Kitaev (2005) and recently,

Kitaev and Zhang (2024) studied MNA and MND on permutations avoiding a single pattern of length 3.

Also, k-tuples of (permutation) statistics (s1, s2, . . . , sk) and (s′1, s
′
2, . . . , s

′
k) are equidistributed over

a set S if
∑

a∈S

t
s1(a)
1 t

s2(a)
2 · · · t

sk(a)
k =

∑

a∈S

t
s′1(a)
1 t

s′2(a)
2 · · · t

s′k(a)
k .

There is a line of research in the literature on finding distributions of permutation statistics over pattern-

avoiding classes of permutations (see, for example, Barnabei et al. (2009, 2010); Bukata et al. (2018);

Elizalde (2004a,b) and references therein). In particular, Bukata et al. (2018) found distributions of as-

cents and descents on permutations avoiding any two patterns of length 3. In this paper, we generalize

these results in two different ways. Namely, we find explicit formulas for the joint distribution of six

statistics (asc, des, lrmax, lrmin, rlmax, rlmin), and also explicit formulas for the joint distribution

of four statistics (asc, des, MNA, MND) on these permutations. The latter result also extends recent

studies by Kitaev and Zhang (2024) of the statistics MNA and MND on stack-sortable permutations

(which are precisely 231-avoiding permutations). Moreover, we provide combinatorial proofs of five

equidistribution results observed from the multi-variable generating functions derived in this paper.

In what follows, we let g.f. stand for “generating function”. We will derive closed form expressions for

the following g.f.’s:

F(τ,ρ)(x, p, q, u, v, s, t) :=
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π),

G(τ,ρ)(x, p, q, y, z) :=
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)yMNA(π)zMND(π)

for all τ and ρ in S3. All of our g.f.’s are rational functions. Note that

des(π) = asc(πr) = asc(πc) = des(πrc),

lrmax(π) = rlmax(πr) = lrmin(πc) = rlmin(πrc),

MND(π) = MNA(πr) = MNA(πc) = MND(πrc)

and hence

F(τr ,ρr)(x, p, q, u, v, s, t) =
∑

n≥0

∑

π∈Sn(τr,ρr)

xnpasc(π)qdes(π)ulrmax(π)vrlmax(π)slrmin(π)trlmin(π)

=
∑

n≥0

∑

πr∈Sn(τ,ρ)

xnpdes(π
r)qasc(π

r)urlmax(πr)vlrmax(πr)srlmin(πr)tlrmin(πr)

= F(τ,ρ)(x, q, p, v, u, t, s);
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F(τc,ρc)(x, p, q, u, v, s, t) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpdes(π)qasc(π)ulrmin(π)vrlmin(π)slrmax(π)trlmax(π)

= F(τ,ρ)(x, q, p, s, t, u, v);

F(τrc,ρrc)(x, p, q, u, v, s, t) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)urlmin(π)vlrmin(π)srlmax(π)tlrmax(π)

= F(τ,ρ)(x, p, q, t, s, v, u);

G(τr,ρr)(x, p, q, y, z) = G(τc,ρc)(x, p, q, y, z) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpdes(π)qasc(π)yMND(π)zMNA(π)

= G(τ,ρ)(x, q, p, z, y);

G(τrc,ρrc)(x, p, q, y, z) =
∑

n≥0

∑

π∈Sn(τ,ρ)

xnpasc(π)qdes(π)yMNA(π)zMND(π) = G(τ,ρ)(x, p, q, y, z).

The following results appear in Simion and Schmidt (1985).

Theorem 1.1. Let An(τ, ρ) be the number of elements in Sn(τ, ρ). Then,

(a) An(123, 132) = An(123, 213) = An(321, 231) = An(321, 312) = 2n−1;

(b) An(231, 312) = An(132, 213) = 2n−1;

(c) An(213, 312) = An(132, 231) = 2n−1;

(d) An(213, 231) = An(132, 312) = 2n−1;

(e) An(132, 321) = An(123, 231) = An(123, 312) = An(213, 321) = 1 +
(

n
2

)

;

(f) An(123, 321) =











0 if n ≥ 5

n if n = 1 or n = 2

4 if n = 3 or n = 4.

In order to determine the distribution of the statistics over Sn(τ, ρ), for every τ, ρ ∈ S3, based on the

properties of the g.f.’s discussed above, out of all possible 15 pairs it is sufficient to examine the distri-

butions of the statistics over the first pair in each of (a)–(e) in Theorem 1.1 since the case of (123, 321)-
avoiding permutations is trivial.

This paper is organized as follows. In Section 2, we derive all our distribution results that are summa-

rized in Tables 1 and 2, where one can find references to the general results and to the formulas giving

individual distributions of the statistics, respectively. From our enumerative results we note five equidis-

tributions that are proved combinatorially in Section 3 via introduction of two bijective maps f and g.

Finally, in Section 4 we provide concluding remarks.
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(asc, des, lrmax, lrmin, rlmax, rlmin) (asc, des,MNA,MND)
Sn(123, 132) Theorem 2.4 Theorem 2.1

Sn(132, 321) Theorem 2.10 Theorem 2.7

Sn(231, 312) Theorem 2.16 Theorem 2.13

Sn(213, 231) Theorem 2.22 Theorem 2.19

Sn(213, 312) Theorem 2.28 Theorem 2.25

Tab. 1: G.f.’s for joint distributions of the statistics over Sn(τ, ρ)

asc des lrmax rlmax lrmin rlmin MNA MND
Sn(123, 132) (4) (5) (11) (12) (13) (14) (6) (7)

Sn(132, 321) (18) (19) (25) (26) (27) (28) (20) (21)

Sn(231, 312) (32) (33) (39) (40) (41) (42) (34) (35)

Sn(213, 231) (46) (47) (54) (55) (56) (57) (48) (49)

Sn(213, 312) (59) (60) (64) (65) (66) (67) (61) (62)

Tab. 2: G.f.’s for individual distributions of the statistics over Sn(τ, ρ)

2 Distributions over Sn(τ, ρ)
In this section, we find joint distribution of the seven classical statistics across the five types of arrange-

ments in Section 1. Furthermore, we find joint distribution of two more statistics: the maximum number

of non-overlapping descents (MND) and the maximum number of non-overlapping ascents (MNA) over

the same set of permutations.

Given permutations α ∈ Sa and β ∈ Sb, let α ⊕ β ∈ Sa+b denote the direct sum of α and β and let

α⊖ β ∈ Sa+b denote the skew-sum of α and β, defined as follows in Bukata et al. (2018):

α⊕ β =

{

α(i), 1 ≤ i ≤ a;

a+ β(i− a), a+ 1 ≤ i ≤ a+ b.

α⊖ β =

{

α(i) + b, 1 ≤ i ≤ a;

β(i − a), a+ 1 ≤ i ≤ a+ b.

For example, for α = 123 ∈ S3 and β = 4132 ∈ S4, α⊕ β = 1237465 and α⊖ β = 5674132.

2.1 Permutations in S
n
(123, 132)

We first describe the structure of a (123, 132)-avoiding permutation. Let π = π1 · · ·πn ∈ Sn(123, 132).
If πk = n, 1 < k ≤ n, then π1 > π2 > · · · > πk−1 in order to avoid 123. On the other hand, in order

to avoid 132, πi > n − k if i < k. Hence, πi = n − i for 1 ≤ i ≤ k − 1, while πk+1πk+2 · · ·πn must

be a (123, 132)-avoiding permutation in Sn−k. So π = (α ⊕ 1) ⊖ β, where α ∈ Sk−1 is a decreasing

permutation and β ∈ Sn−k is a (123,132)-avoiding permutation, and we use the structure of π to prove

the following theorems.

Theorem 2.1. For Sn(123, 132), we have

G(123,132)(x, p, q, y, z) =
A

1− 2q2x2z − pqx2yz − 2pq2x3yz + q4x4z2 − pq3x4yz2
, (1)
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where

A = 1 + x+ px2y + qx2z − 2q2x2z − q2x3z − pqx2yz + 2pqx3yz − 2pq2x3yz−

q3x4z2 + q4x4z2 + pq2x4yz2 − pq3x4yz2.

Proof:

Let π = π1 · · ·πn ∈ Sn(123, 132). If n = 0, it contributes 1 to G(123,132)(x, p, q, y, z). For n ≥ 1, we

consider three cases based on where the element n appears in π.

(a) If π1 = n, we let the g.f. for these permutations be

g(123,132)(x, p, q, y, z) :=
∑

n≥1

∑

π∈Sn(123,132)
π1=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).

(b) Suppose πk = n, where k = 2i, i ≥ 1. In this case, π = (α ⊕ 1) ⊖ β, where α ∈ S2i−1 is a

decreasing permutation with i− 1 non-overlapping descents and 2i− 2 descents, the corresponding

g.f. is
∑

i≥1

x2i−1q2i−2zi−1 =
x

1− x2zq2
,

and 1 ⊖ β is a (123,132)-avoiding permutation in Sn−2i+1. Because the first element of the per-

mutation 1 ⊖ β is the maximum, the corresponding g.f. is g(123,132)(x, p, q, y, z). Additionally,

πk−1 < πk = n, and πk−1πk contributes to MNA giving an extra factor of yp. In conclusion, the

g.f. for permutations in case (b) is

g(123,132)(x, p, q, y, z)
xyp

1− x2zq2
.

(c) Suppose πk = n, where k = 2i + 1, i ≥ 1. In this case, π = (α ⊕ 1) ⊖ β, where α ∈ S2i is a

decreasing permutation with i non-overlapping descents and 2i− 1 descents, the corresponding g.f.

is
∑

i≥1

x2iziq2i−1 =
x2zq

1− x2zq2
,

and 1 ⊖ β is a (123,132)-avoiding permutation in Sn−2i. Using similar considerations as those in

case (b), the g.f. for permutations in case (c) is

g(123,132)(x, p, q, y, z)
x2zypq

1− x2zq2
.

Combining cases (a)–(c), we have

G(123,132)(x, p, q, y, z) = 1 + g(123,132)(x, p, q, y, z) + g(123,132)(x, p, q, y, z)
xyp

1− x2zq2
+

g(123,132)(x, p, q, y, z)
x2zypq

1− x2zq2
. (2)

Next, we compute g(123,132)(x, p, q, y, z) similarly to the derivation of G(123,132)(x, p, q, y, z). If 1 ≤
n ≤ 2, the corresponding g.f. is x+ x2zq. Next, we distinguish three cases(n ≥ 3):
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(d) If π2 = n − 1 then π1π2 = n(n − 1) contributes to MND that is independent from the count of

MND in π3 · · ·πn, which can be any non-empty permutation in Sn−2(123, 132). Note that π2 > π3

contributes to a descent, so the corresponding g.f. in this case is x2zq2(G(123,132)(x, p, q, y, z)−1).

(e) Suppose πm = n−1, where m = 2i, i ≥ 2. In this case, α = ∅, β = γ⊖1⊖ζ, so π = 1⊖γ⊖1⊖ζ,

where 1 ⊖ γ ∈ S2i−1 is a decreasing permutation with i − 1 non-overlapping descents and 2i − 2
descents, and the corresponding g.f. is

∑

i≥2

x2i−1zi−1q2i−2 =
x3zq2

1− x2zq2
.

Also, the permutation 1 ⊖ ζ is in Sn−2i+1(123, 132) where ζ ∈ Sn−2i. Because the first element

of 1 ⊖ ζ is the maximum, the corresponding g.f. is g(123,132)(x, p, q, y, z). Moreover, πm−1 <
πm = n − 1, so πm−1πm forms an extra non-overlapping ascent and ascent. To summarize, the

corresponding g.f. for permutations in case (e) is

g(123,132)(x, p, q, y, z)
x3yzpq2

1− x2zq2
.

(f) Suppose πm = n − 1, where m = 2i + 1, i ≥ 1. In this situation, π = 1 ⊖ γ ⊖ 1 ⊖ ζ, where

1⊖γ ∈ S2i is a decreasing permutation contributing i non-overlapping descents and 2i−1 descents.

The g.f. for 1⊖ γ ∈ S2i is

∑

i≥1

x2iziq2i−1 =
x2zq

1− x2zq2
.

In conclusion, the g.f. for the permutations in case (f) is

g(123,132)(x, p, q, y, z)
x2zqyp

1− x2zq2
.

Summarizing (d)–(f) we obtain

g(123,132)(x, p, q, y, z) = x+ x2zq + x2zq2(G(123,132)(x, p, q, y, z)− 1) +

g(123,132)(x, p, q, y, z)
x3yzpq2

1− x2zq2
+ g(123,132)(x, p, q, y, z)

x2zqyp

1− x2zq2
. (3)

By simultaneously solving (2) and (3), we obtain (1).

Corollary 2.2. Setting three out of the four variables y, z, p and q equal to one individually in (1), we
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obtain single distributions of asc, des, MNA and MND over Sn(123, 132):

∑

n≥0

∑

π∈Sn(123,132)

xnpasc(π) =
1− x

1− 2x+ x2 − px2
; (4)

∑

n≥0

∑

π∈Sn(123,132)

xnqdes(π) =
1 + x− 2qx+ x2 − 2qx2 + q2x2

1− 2qx− qx2 + q2x2
; (5)

∑

n≥0

∑

π∈Sn(123,132)

xnyMNA(π) =
1− x

1− 2x+ x2 − x2y
; (6)

∑

n≥0

∑

π∈Sn(123,132)

xnzMND(π) =
1 + x+ x2 − 2x2z − x3z

1− 3x2z − 2x3z
. (7)

Remark 2.3. The distributions in (4) and (6) are the same because in 123-avoiding permutations asc =
MNA.

Theorem 2.4. For Sn(123, 132), we have

F(123,132)(x, p, q, u, v, s, t) =

1 + q2s2vx2 + stuvx(1 + ptux)− qsx(1 + puv2x2st(−1 + t)(−1 + u) + v(1 + px+ stux))

1 + q2s2vx2 − qsx(1 + v + pvx)
.

(8)

Proof: For π = π1 · · ·πn ∈ Sn(123, 132), if n = 0, it will give 1 to F(123,132)(x, p, q, u, v, s, t). Let

n ≥ 1, we consider the following cases.

• If π1 = n, the element n is the only left-to-right maximum, a left-to-right minimum and a right-to-

left maximum, and π1π2 is a descent. So lrmax(π) = 1 and the g.f. of permutations with π1 = n
is given by xquvs(F(123,132)(x, p, q, 1, v, s, t)− 1) + xuvst, where the element n gives a factor of

xquvs (multiplied by the g.f. of all non-empty permutations with the value of lrmax not taken into

account) and the term xuvst corresponds to the permutation of length 1.

• If πn = n, then π = (n− 1)(n− 2) · · · 1n = (α⊕ 1)⊖ β, where β is the empty permutation. The

g.f. for the decreasing permutation α is

∑

i≥1

xiqi−1usit =
usxt

1− xsq
.

So, the g.f. for permutations in this case is

xpuvt
∑

i≥1

xiqi−1usit =
u2sx2pvt2

1− xsq
,

where the element n gives a factor of xpuvt.
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• If πk = n, 1 < k ≤ n, we have π1 > π2 > · · · > πk−1 and lrmax(π) = 2. Then π = (α⊕ 1)⊖ β,

where any non-empty permutation in Sn−k(123, 132) is possible for β. The g.f. for α⊕ 1 is

xpquv
∑

i≥1

xiqi−1usi =
u2sx2pqv

1− xsq
,

where the maximum element n gives a factor of xpquv. So the g.f. in this case is

(F(123,132)(x, p, q, 1, v, s, t)− 1)
u2sx2pqv

1− xsq
.

Synthesizing the above three conditions yields

F(123,132)(x, p, q, u, v, s, t) =

1 + xquvs(F(123,132)(x, p, q, 1, v, s, t)− 1) + xtuvs+
u2sx2pvt2

1− xsq
+

(F(123,132)(x, p, q, 1, v, s, t)− 1)
u2sx2pqv

1− xsq
.

(9)

Let u = 1 in (9), we obtain

F(123,132)(x, p, q, 1, v, s, t) =

1 + xtvs+ xqvs(F(123,132)(x, p, q, 1, v, s, t)− 1) +
sx2pvt2

1− xsq
+

(F(123,132)(x, p, q, 1, v, s, t)− 1)
x2pqvs

1− xsq
.

(10)

By simultaneously solving (9) and (10), we obtain the desired result.

Corollary 2.5. Let p = q = 1, then setting three out of the four variables u, v, s and t equal to one

individually in (8), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over Sn(123, 132):

∑

n≥0

∑

π∈Sn(123,132)

xnulrmax(π) =
1− 2x+ ux− ux2 + u2x2

1− 2x
; (11)

∑

n≥0

∑

π∈Sn(123,132)

xnvrlmax(π) =
1− x

1− x− vx
; (12)

∑

n≥0

∑

π∈Sn(123,132)

xnslrmin(π) =
1− sx

1− 2sx− sx2 + s2x2
; (13)

∑

n≥0

∑

π∈Sn(123,132)

xntrlmin(π) =
1− 2x+ tx− tx2 + t2x2

1− 2x
. (14)

Remark 2.6. The distributions in (11) and (14) are the same because the patterns 123 and 132 are

invariant with respect to the (usual group-theoretic) inverse operation which exchanges the sets of left-to-

right maxima and right-to-left minima.
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2.2 Permutations in S
n
(132, 321)

We first describe the structure of a (132, 321)-avoiding permutation. Let π = π1 · · ·πn ∈ Sn(132, 321).
If π1 = n, then π = n12 · · · (n − 1). If πk = n, 1 < k < n, then πk+1 < πk+2 < · · · < πn in order

to avoid 321; on the other hand, in order to avoid 132, πi = n − k + i if 1 ≤ i ≤ k − 1. If πn = n
then π1π2 · · ·πn−1 ∈ Sn−1(132, 321). So π = (α ⊕ 1)⊖ β, where α ⊕ 1 ∈ Sk and β ∈ Sn−k are two

increasing (132, 321)-avoiding permutations. We use the structure of π to prove the following theorems.

Theorem 2.7. For Sn(132, 321), we have

G(132,321)(x, p, q, y, z) =
A

(1− p2x2y)3
, (15)

where

A = 1 + x+ px2y − 3p2x2y − 2p2x3y − 2p3x4y2 + 3p4x4y2 + p4x5y2 +

p5x6y3 − p6x6y3 + qx2z + 3pqx3yz + p2qx4yz + 2p2qx4y2z + p3qx5y2z.

Proof: Let π = π1 · · ·πn ∈ Sn(132, 321). The empty permutation, corresponding to the case of n = 0
gives the term of 1 in G(132,321)(x, p, q, y, z). If π ∈ S1, the corresponding g.f. is x. For n ≥ 2, the

permutations are divided into three classes depending on the position of n.

(a) If π1 = n then π = n12 · · · (n − 1). When n is even, the number of non-overlapping ascents is

(n− 2)/2, and the corresponding g.f. is

∑

i≥1

x2iy
2i−2

2 zqp2i−2 =
x2qz

1− x2yp2
.

When n is odd, the number of non-overlapping ascents is (n− 1)/2, and the corresponding g.f. is

∑

i≥1

x2i+1yizp2i−1q =
x3ypqz

1− x2yp2
.

(b) Let πk = n, where 1 < k < n. In this case, π = (α ⊕ 1) ⊖ β, where α ⊕ 1 ∈ Sk and β ∈ Sn−k

are two increasing (132, 321)-avoiding permutations. Aditionately, πk = n > πk+1, and πkπk+1

contributes to MND giving an extra factor of z. Using similar considerations as those in case (a),

the g.f. for permutations in case (b) is

z(x2ypq + x3yp2q)(x+ x2yp)

(1− x2yp2)2
.

(c) If πn = n, we let the g.f. for these permutations be

g(132,321)(x, p, q, y, z) :=
∑

n≥2

∑

π∈Sn(132,321)
πn=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).
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Combining cases (a)–(c), we have

G(132,321)(x, p, q, y, z) = 1 + x+
x2zq + x3yzpq

1− x2yp2
+ (16)

z(x2ypq + x3yp2q)(x + x2yp)

(1 − x2yp2)2
+ g(132,321)(x, p, q, y, z).

Next, we evaluate g(132,321)(x, p, q, y, z):

(d) If π ∈ S2, then π1π2 = 12 and the corresponding g.f. is x2yp.

(e) If π1 = n− 1 then π = (n − 1)12 · · ·n. Using similar considerations as those in case (a), the g.f.

for permutations in case (e) is

x3yzpq + x4yzp2q

1− x2yp2
.

(f) If πm = n− 1, where 1 < m < n− 1, then π = ((γ⊕ 1)⊖ ζ)⊕ 1, where α = (γ⊕ 1)⊖ ζ ∈ Sn−1

and β is the empty permutation. γ ⊕ 1 ∈ Sm and ζ ⊕ 1 ∈ Sn−m are two increasing (132, 321)-

avoiding permutations. Using similar considerations as those in case (a), the g.f. for permutations

in case (f) is

(x2ypq + x3ypq)2zq

(1− x2yp2)2
.

(g) If πn−1 = n − 1 then πn−1πn = (n − 1)n contributes to MNA giving an extra factor of x2yp.

Note that πn−2 < πn−1 = (n− 1) and any non-empty permutation in Sn−2(132, 321) is possible

for π1 · · ·πn−2. The g.f. in case (g) is x2yp2(G(132,321)(x, p, q, y, z)− 1).

Taking into account cases (d)–(g), we have

g(132,321)(x, p, q, y, z) = x2yp+
x3yzpq + x4yzp2q

1− x2yp2
+ (17)

(x2ypq + x3ypq)2zq

(1− x2yp2)2
+ x2yp2(G(132,321)(x, p, q, y, z)− 1).

Solving equations (16) and (17) simultaneously, we obtain the desired result (15).

Corollary 2.8. Setting three out of the four variables y, z, p and q equal to one respectively in (15), we
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obtain single distributions of asc, des, MNA and MND over Sn(132, 321):

∑

n≥0

∑

π∈Sn(132,321)

xnpasc(π) =
1 + x− 3px+ x2 − 2px2 + 3p2x2 + p2x3 − p3x3

(1− px)3
; (18)

∑

n≥0

∑

π∈Sn(132,321)

xnqdes(π) =
1− 2x+ x2 + qx2

(1 − x)3
; (19)

∑

n≥0

∑

π∈Sn(132,321)

xnyMNA(π) =
1 + x+ x2 − 2x2y + x3y + x4y + 3x4y2 + 2x5y2

(1− x2y)3
; (20)

∑

n≥0

∑

π∈Sn(132,321)

xnzMND(π) =
1− 2x+ x2 + x2z

(1 − x)3
. (21)

Remark 2.9. The distributions in (19) and (21) are the same because in 321-avoiding permutations

des = MND.

Theorem 2.10. For Sn(132, 321), we have

F(132,321)(x, p, q, u, v, s, t) =
A

(1 − ptx)(1− pux)(1 − ptux)
(22)

where

A = 1 + stuvx+ qs2tuv2x2 − p3t2u2x3 + p2tux2(1 + t+ u+ stuvx)−

px(u + st2uvx(1 + qsu(−1 + v)x) + t(1 + u+ su2vx).

Proof: Let π = π1 · · ·πn ∈ Sn(132, 321). If n = 0, we get the term of 1 in A(132,321)(x, y, z). If π ∈ S1,

the corresponding g.f. is xuvst. For n ≥ 2, we consider the following cases.

• If π1 = n then π = n12 · · · (n−1). The element n is the only left-to-right maximum, a left-to-right

minimum and a right-to-left maximum, and π1π2 is a descent. So lrmax(π) = 1 and the g.f. of

permutations with π1 = n is given by

xquvs
∑

i≥2

xi−1pi−2vsti−1 =
x2quv2s2t

1− xpt
,

where the element n gives a factor of xquvs.

• If πn = n then rlmax(π) = 1. Any non-empty permutation in Sn−1(132, 321) is possible for

π1π2 · · ·πn−1 and we do not need to consider right-to-left maxima. So the g.f. in this case is

xpuvt(F(132,321)(x, p, q, u, 1, s, t)− 1).

• If πk = n, 1 < k < n, then π = (α ⊕ 1)⊖ β, where α ∈ Sk−1 and β ∈ Sn−k are two increasing

(132, 321)-avoiding permutations. The g.f. for the permutation α ∈ Sk−1 is

∑

i≥1

xipiuis =
xpus

1− xpu
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(note that πk−1πk is an ascent). The g.f. for 1⊖ β ∈ Sn−k+1 is

xquv
∑

i≥2

xi−1pi−2vsti−1 =
x2quv2st

1− xpt
,

where the element n gives the factor of xquv. So the g.f. in this case is

x3pqu2v2s2t

(1− xpt)(1 − xpu)
.

Taking into account all the cases, we conclude that

F(132,321)(x, p, q, u, v, s, t) = 1 + xtuvs+
x2quv2s2t

1− xpt
+ (23)

x3pqu2v2s2t

(1− xpt)(1 − xpu)
+ xpuvt(F(132,321)(x, p, q, u, 1, s, t)− 1).

Let v = 1 in (23), we get

F(132,321)(x, p, q, u, 1, s, t) = 1 + xtus+
x2qus2t

1− xpt
+ (24)

xpusx2qust

(1− xpt)(1 − xpu)
+ xput(F(132,321)(x, p, q, u, 1, s, t)− 1).

By simultaneously solving (23) and (24), we obtain the desired result.

Corollary 2.11. Let p = q = 1, then setting three out of the four variables u, v, s and t equal to one

individually in (22), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over Sn(132, 321):

∑

n≥0

∑

π∈Sn(132,321)

xnulrmax(π) =
1− x− ux+ 2ux2

(1− x)(1 − ux)2
; (25)

∑

n≥0

∑

π∈Sn(132,321)

xnvrlmax(π) =
1− 3x+ vx+ 3x2 − 2vx2 + v2x2 − x3 + 2vx3 − v2x3

(1 − x)3
; (26)

∑

n≥0

∑

π∈Sn(132,321)

xnslrmin(π) =
1− 3x+ sx+ 3x2 − 2sx2 + s2x2 − x3 + sx3

(1− x)3
; (27)

∑

n≥0

∑

π∈Sn(132,321)

xntrlmin(π) =
1− x− tx+ 2tx2

(1− x)(1 − tx)2
. (28)

Remark 2.12. The distributions in (25) and (28) are the same because the patterns 132 and 321 are

invariant with respect to the inverse operation which exchanges the sets of left-to-right maxima and right-

to-left minima.
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2.3 Permutations in S
n
(231, 312)

We first describe the structure of a (231, 312)-avoiding permutation. Let π = π1 · · ·πn ∈ Sn(231, 312).
If π1 = n then π = n(n − 1) · · · 21. If πk = n, 1 < k < n, then πk+1 > πk+2 > · · · > πn in order to

avoid 312. On the other hand, in order to avoid 231, πi = n+ k− i if k+1 ≤ i ≤ n, π1π2 · · ·πk−1 must

be a permutation in Sk−1(231, 312). If πn = n, π1π2 · · ·πn−1 must be a permutation in Sn−1(231, 312).
Namely, for π ∈ Sn(231, 312), its structure is π = α ⊕ (1 ⊖ β), where α ∈ Sk−1(231, 312) and

1⊖ β ∈ Sn−k+1 is a decreasing (231, 312)-avoiding permutation. We use the structure of π to prove the

following theorems.

Theorem 2.13. For Sn(231, 312), we have

G(231,312)(x, p, q, y, z) = (29)

1 + x+ px2y − p2x2y + qx2z − q2x2z − pqx2yz + pqx3yz − p2qx3yz − pq2x3yz

1− p2x2y − q2x2z − pqx2yz − p2qx3yz − pq2x3yz
.

Proof: Let π = π1 · · ·πn ∈ Sn(231, 312). If n ≤ 1, we have the term of 1+x in G(231,312)(x, p, q, y, z).
For n ≥ 2, the permutations are divided into three classes depending on the position of n.

(a) If π1 = n then π = n(n−1) · · · 21. When n is even, π has n/2 non-overlapping descents and n−1
descents. The corresponding g.f. is

∑

i≥1

x2iziq2i−1 =
x2zq

1− x2q2z
.

When n is odd, π has (n− 1)/2 non-overlapping descents and n− 1 descents. The corresponding

g.f. is
∑

i≥1

x2i+1ziq2i =
x3zq2

1− x2zq2
.

(b) If πn = n, we let the g.f. for these permutations be

g(231,312)(x, p, q, y, z) :=
∑

n≥2

∑

π∈Sn(132,321)
πn=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).

(c) If πk = n, 1 < k < n, then π = α ⊕ (1 ⊖ β), where α ∈ Sk−1(231, 312) and 1 ⊖ β ∈ Sn−k+1

is a decreasing (231, 312)-avoiding permutation. For α ⊕ 1, the g.f. is g(231,312)(x, p, q, y, z). For

β ∈ Sn−k+1, similarly to case (a), we see that the corresponding g.f. is (xzq+x2zq2)/(1−x2zq2)
(note that πkπk+1 contributes to MND).

Combining cases (a)–(c), we have

G(231,312)(x, p, q, y, z) = 1 + x+
x2zq + x3zq2

1− x2zq2
+ (30)

g(231,312)(x, p, q, y, z)
xzq + x2zq2

1− x2zq2
+ g(231,312)(x, p, q, y, z).

Next we evaluate g(231,312)(x, p, q, y, z):
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(d) If n = 2, the g.f. is x2yp.

(e) If π1 = n− 1 then π = (n− 1)(n− 2) · · · 1n, and the corresponding g.f. is

xyp
x2zq + x3zq2

1− x2zq2
,

where the element n gives a factor of xyp.

(f) If πm = n − 1, 1 < m < n, then π = γ ⊕ (1 ⊖ ζ) ⊕ 1, where γ ∈ Sm−1(231, 312) and

ζ ∈ Sn−m−1(231, 312). For γ ⊕ 1, the g.f. is g(231,312)(x, p, q, y, z). For ζ ⊕ 1 ∈ Sn−m+1,

because the structure is the same as in case (b), we obtain the g.f. is (xzq + x2zq2)/(1 − x2zq2)
(recall that if ζ is of odd length, πmπm+1 will contribute to MND). To summarize, the g.f. in case

(f) is

xypg(231,312)(x, p, q, y, z)
xzq + x2zq2

1− x2zq2
,

where the element n gives the factor of xyp.

(g) If πn−1 = n−1 then πn−1πn = (n−1)n contributes to MNA, and it is independent from the count

of MNA in π1 · · ·πn−2, which can be any permutation in Sn−2(231, 312). So the corresponding

g.f. in this case is x2yp2(G(231,312)(x, p, q, y, z)− 1).

Combining cases (d)–(g), we have

g(231,312)(x, p, q, y, z) = x2yp+ xyp
x2zq + x3zq2

1− x2zq2
+ (31)

xypg(231,312)(x, p, q, y, z)
xzq + x2zq2

1− x2zq2
+ x2yp2(G(231,312)(x, p, q, y, z)− 1).

Solving the equations (30) and (31) simultaneously, we obtain (29).

Corollary 2.14. Setting three out of the four variables y, z, p and q equal to one respectively in (29), we

obtain single distributions of asc, des, MNA and MND over Sn(231, 312):

∑

n≥0

∑

π∈Sn(231,312)

xnpasc(π) =
1− px

1− x− px
; (32)

∑

n≥0

∑

π∈Sn(231,312)

xnqdes(π) =
1− qx

1− x− qx
; (33)

∑

n≥0

∑

π∈Sn(231,312)

xnyMNA(π) =
1− x2y

1− x− 2x2y
; (34)

∑

n≥0

∑

π∈Sn(231,312)

xnzMND(π) =
1− x2z

1− x− 2x2z
. (35)

Remark 2.15. The same distributions in (32) and (33), as well as in (34) and (35), follow from a more

general Theorem 3.1.
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Theorem 2.16. For Sn(231, 312), we have

F(231,312)(x, p, q, u, v, s, t) =
A

(1− qsx)(1 − qx− ptux)(1− qvx)(1 − qsvx)
(36)

where

A = 1− ptux+ stuvx+ q4s2v2x4 + q3svx3(−1− v + s(−1 + v(−1 + (−1 + p)tux)))−

qx(1 + v − ptuvx+ s2tuvx(1 + ptu(−1 + v)x) + s(1 + v − ptux− (−1 + p)tuvx+

pt2u2vx2 + tuv2x(1 − ptux))) + q2x2(v + s2v(1 + tu(1− p+ v)x)+

s(1 + v2(1 − (−1 + p)tux) + v(2 − ptux))).

Proof: Let π = π1 · · ·πn ∈ Sn(231, 312). The case of n = 0 contributes the term 1 to A(231,312)(x, y, z).
If π ∈ S1, the g.f. is xuvst. For n ≥ 2, we consider the following cases.

• If π1 = n then π = n(n− 1) · · · 1. The element n is the only left-to-right maximum, a left-to-right

minimum and a right-to-left maximum, and π1π2 is a descent. So lrmax(π) = 1 and the g.f. of

permutations with π1 = n is given by

xquvs
∑

i≥2

xi−1qi−2vi−1si−1t =
x2quv2s2t

1− xqvs
,

where the element n gives the factor of xquvs.

• If πn = n, then rlmax(π) = 1. Any non-empty permutation in Sn−1(231, 312) is possible for

π1π2 · · ·πn−1 and we do not need to consider right-to-left maxima. Therefore, the g.f. is

xpuvt(F(231,312)(x, p, q, u, 1, s, t)− 1), where the element n gives the factor of xpuvt.

• If πk = n, 1 < k < n, then π = α⊕ (1⊖ β), where α ∈ Sk−1(231, 312) and 1⊖ β ∈ Sn−k+1 is a

decreasing (231, 312)-avoiding permutation. For α⊕1 ∈ Sk−1, because we do not need to consider

right-to-left maxima, the g.f. is xpquv(F(231,312)(x, p, q, u, 1, s, t)− 1), where the element n gives

the factor of xpquv. For β, we have

∑

i≥1

xiqi−1vit =
xvt

1− xqv
.

So the g.f. in this case is (F(231,312)(x, p, q, u, 1, s, t)− 1)x
2pquv2t
1−xqv .

Taking into account all cases, we obtain

F(231,312)(x, p, q, u, v, s, t) = 1 + xtuvs+
x2quv2s2t

1− xqvs
+ (37)

(F(231,312)(x, p, q, u, 1, s, t)− 1)
x2pquv2t

1− xqv
+ xpuvt(F(231,312)(x, p, q, u, 1, s, t)− 1).
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Let v = 1 in (37), we obtain

F(231,312)(x, p, q, u, 1, s, t) = 1 + xtus+
x2qus2t

1− xqs
+ (38)

(F(231,312)(x, p, q, u, 1, s, t)− 1)
x2pqut

1− xq
+ xput(F(231,312)(x, p, q, u, 1, s, t)− 1).

By simultaneously solving (37) and (38), we obtain the desired result.

Corollary 2.17. Let p = q = 1, then setting three out of the four variables u, v, s and t equal to one

individually in (36), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over Sn(231, 312):

∑

n≥0

∑

π∈Sn(231,312)

xnulrmax(π) =
1− x

1− x− ux
; (39)

∑

n≥0

∑

π∈Sn(231,312)

xnvrlmax(π) =
1− 2x+ vx2

(1− 2x)(1 − vx)
; (40)

∑

n≥0

∑

π∈Sn(231,312)

xnslrmin(π) =
1− 2x+ sx2

(1− 2x)(1 − sx)
; (41)

∑

n≥0

∑

π∈Sn(231,312)

xntrlmin(π) =
1− x

1− x− tx
. (42)

Remark 2.18. The distributions in (39) and (42) (resp., (40) and (41)) are the same because the set

Sn(231, 312) is invariant under the composition of the reverse and complement operations, and applying

the composition exchanges the sets of left-to-right maxima and right-to-left minima (resp., right-to-left

maxima and left-to-right minima).

2.4 Permutations in S
n
(213, 231)

We first describe the structure of a (213, 231)-avoiding permutation. Let π = π1 · · ·πn ∈ Sn(213, 231).
If π1 = n then π = n(n − 1) · · · 21. If πk = n, 1 < k < n, then π1 < π2 < · · · < πk−1 in order

to avoid 213. On the other hand, in order to avoid 231, πi > πk−1 if k + 1 ≤ i ≤ n. If πn = n then

π = 12 · · ·n. So, for π ∈ Sn(213, 231), its structure is π = α⊕ (1⊖β), where α ∈ Sk−1 is an increasing

(213, 231)-avoiding permutation and 1 ⊖ β ∈ Sn−k+1(213, 231), and we use the structure of π to prove

the following theorems.

Theorem 2.19. For Sn(213, 231), we have

G(213,231)(x, p, q, y, z) = (43)

1 + x+ px2y − p2x2y + qx2z − q2x2z − pqx2yz + pqx3yz − p2qx3yz − pq2x3yz

1− p2x2y − q2x2z − pqx2yz − p2qx3yz − pq2x3yz
.

Proof: Let π = π1 · · ·πn ∈ Sn(213, 231) . If n ≤ 1 then G(213,231)(x, p, q, y, z) = 1 + x. For n ≥ 2,

the permutations are divided into three classes depending on the position of n.
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(a) If π1 = n, we let the g.f. for these permutations be

g(213,231)(x, p, q, y, z) :=
∑

n≥2

∑

π∈Sn(213,231)
π1=n

xnpasc(π)qdes(π)yMNA(π)zMND(π).

(b) If πn = n then π = 12 · · ·n. When n is even, π has n/2 non-overlapping ascents and n−1 ascents,

and the corresponding g.f. is
∑

i≥1

x2iyip2i−1 =
x2yp

1− x2yp2
.

When n is odd, π has (n− 1)/2 non-overlapping ascents and n− 1 ascents, and the corresponding

g.f. is
∑

i≥1

x2i+1yip2i =
x3yp2

1− x2yp2
.

(c) If πk = n, 1 < k < n, then π = α⊕ (1⊖β), where α ∈ Sk−1 is an increasing (213, 231)-avoiding

permutation and 1 ⊖ β ∈ Sn−k+1(213, 231), whose corresponding g.f. is g(213,231)(x, p, q, y, z).
For α ∈ Sk−1, take into account that if the increasing sequence is of odd length, πk−1πk contributes

to MNA giving an extra factor of y. To summarize, in this case the g.f. is

g(213,231)(x, p, q, y, z)
xpy + x2yp2

1− x2p2y
.

Combining cases (a)–(c), we obtain

G(213,231)(x, p, q, y, z) = 1 + x+ g(213,231)(x, p, q, y, z) +

g(213,231)(x, p, q, y, z)
xpy + x2yp2

1− x2p2y
+

x2yp+ x3yp2

1− x2p2y
. (44)

Next, we evaluate g(213,231)(x, p, q, y, z):

(d) If n = 2, the g.f. is x2zq.

(e) If π2 = n − 1 then any non-empty permutation in Sn(213, 231) is possible for π3 · · ·πn. The

corresponding g.f. is x2zq2(G(213,231)(x, p, q, y, z) − 1), where π1π2 contributes to MND giving

an extra factor of x2zq2(π2 > π3).

(f) If πn = n − 1 then π = 1 ⊖ (γ ⊕ 1), where γ ⊕ 1 ∈ Sn−1 is an increasing (213, 231)-avoiding

permutation. In this case, the corresponding g.f. is

x3yzpq + x4yzp2q

1− x2p2y
.

(g) If πm = n − 1, 2 < m < n, then π = 1 ⊖ (γ ⊕ (1 ⊖ ζ)), where γ ∈ Sm−2 is an increasing

(213, 231)-avoiding permutation and 1 ⊖ ζ ∈ Sn−m+1(213, 231), whose corresponding g.f. is
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g(213,231)(x, p, q, y, z). For 1 ⊖ γ ∈ Sm−1, note that if γ contains an odd number of elements,

πm−1πm contributes to MNA. To summarize, in this case the g.f. is

g(213,231)(x, p, q, y, z)
x2yzpq + x3yzp2q

1− x2p2y
,

where the element n gives a factor of xzq.

Combining cases (d)–(g), we obtain

g(213,231)(x, p, q, y, z) = x2zq + x2zq2(G(213,231)(x, p, q, y, z)− 1)+

x3yzpq + x4yzp2q

1− x2p2y
+ g(213,231)(x, p, q, y, z)

x2yzpq + x3yzp2q

1− x2p2y
. (45)

Solving equations (44) and (45) simultaneously, we obtain (43).

From Theorem 2.19 we have the following results.

Corollary 2.20. Setting three out of the four variables y, z, p and q equal to one respectively in (43), we

obtain single distributions of asc, des, MNA and MND over Sn(213, 231):

∑

n≥0

∑

π∈Sn(213,231)

xnpasc(π) =
1− px

1− x− px
; (46)

∑

n≥0

∑

π∈Sn(213,231)

xnqdes(π) =
1− qx

1− x− qx
; (47)

∑

n≥0

∑

π∈Sn(213,231)

xnyMNA(π) =
1− x2y

1− x− 2x2y
; (48)

∑

n≥0

∑

π∈Sn(213,231)

xnzMND(π) =
1− x2z

1− x− 2x2z
. (49)

Remark 2.21. The distributions in (46) and (47) (resp., (48) and (49)) are the same because the set

Sn(213, 231) is invariant under the complement operation, and applying complement exchanges ascents

and descents (resp., non-overlapping ascents and non-overlapping descents).

Theorem 2.22. For Sn(213, 231), we have

F(213,231)(x, p, q, u, v, s, t) =
A

(1− ptux)(1− ptx− qvx)(1 − qsvx)
(50)

where A is given by

1− ptx− ptux− qvx − qsvx+ stuvx+ p2t2ux2 + pqstvx2 + pqtuvx2 + pqstuvx2 − pst2uvx2+

q2sv2x2 − qstuv2x2 − p2qst2uvx3 − pq2stuv2x3 + pqs2t2uv2x3 + pqst2u2v2x3 − pqs2t2u2v2x3.

Proof: Let π = π1 · · ·πn ∈ Sn(213, 231). If n = 0, π contributes the term of 1 to A(213,231)(x, y, z). If

π ∈ S1, the g.f. is xuvst. For n ≥ 2, we consider the following cases.
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• If π1 = n then the element n is the only left-to-right maximum, a left-to-right minimum and a

right-to-left maximum, and π1π2 is a descent. So lrmax(π) = 1 and the g.f. of permutations with

π1 = n is given by xquvs(F(213,231)(x, p, q, 1, v, s, t)−1), where we used the g.f. of all non-empty

permutations with the value of lrmax not taken into account and the element n gives the factor of

xquvs.

• If πn = n then π = 12 · · ·n. So we have

xpuvt
∑

i≥1

xipi−1uisti =
x2pu2vst2

1− xput
,

where the element n gives the factor of xpuvt.

• If πk = n, 1 < k < n, then π = α ⊕ (1 ⊖ β), where α is an increasing permutation in

Sk−1(213, 231) and 1 ⊖ β ∈ Sn−k+1(213, 231). The g.f. for α ∈ Sk−1 is xust
1−xput and the el-

ement n gives a factor of xpquv. For the permutation β ∈ Sn−k, we do not need to consider

left-to-right maxima and left-to-right minima, so the g.f. is (F(213,231)(x, p, q, 1, v, 1, t)− 1). The

g.f. of permutations with πk = n, 1 < k < n, is

(F(213,231)(x, p, q, 1, v, 1, t)− 1)
x2pqu2vst

1− xput
.

Taking into account all cases, we obtain

F(213,231)(x, p, q, u, v, s, t) = 1 + xtuvs+ xquvs(F(213,231)(x, p, q, 1, v, s, t)− 1)+

(F(213,231)(x, p, q, 1, v, 1, t)− 1)
x2pqu2vst

1− xput
+

x2pu2vst2

1− xput
; (51)

If u = 1 in (51), we have

F(213,231)(x, p, q, 1, v, s, t) = 1 + xtvs+ xqvs(F(213,231)(x, p, q, 1, v, s, t)− 1)+

(F(213,231)(x, p, q, 1, v, 1, t)− 1)
x2pqvst

1− xpt
+

x2pvst2

1− xpt
; (52)

If s = 1 in (52), we have

F(213,231)(x, p, q, 1, v, 1, t) = 1 + xtv + xqv(F(213,231)(x, p, q, 1, v, 1, t)− 1)+

(F(213,231)(x, p, q, 1, v, 1, t)− 1)
x2pqvt

1− xpt
+

x2pvt2

1− xpt
. (53)

By simultaneously solving (51),(52) and (53), we obtain the desired result.
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Corollary 2.23. Let p = q = 1, then setting three out of the four variables u, v, s and t equal to one

individually in (50), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over Sn(213, 231):

∑

n≥0

∑

π∈Sn(213,231)

xnulrmax(π) =
1− 2x+ ux2

(1− 2x)(1 − ux)
; (54)

∑

n≥0

∑

π∈Sn(213,231)

xnvrlmax(π) =
1− x

1− x− vx
; (55)

∑

n≥0

∑

π∈Sn(213,231)

xnslrmin(π) =
1− 2x+ sx2

(1− 2x)(1 − sx)
; (56)

∑

n≥0

∑

π∈Sn(213,231)

xntrlmin(π) =
1− x

1− x− tx
. (57)

Remark 2.24. The distributions in (54) and (56) (resp., (55) and (57)) are the same because the set

Sn(213, 231) is invariant under the complement operation, and applying complement exchanges the sets

of left-to-right maxima and left-to-right minima (resp., right-to-left maxima and right-to-left minima).

2.5 Permutations in S
n
(213, 312)

We first describe the structure of a (213, 312)-avoiding permutation. Let π = π1 · · ·πn ∈ Sn(213, 312).
If πi = n then π1 < π2 < · · · < πi−1 in order to avoid 213. On the other hand, in order to avoid 312,

πi+1 > πi+2 > · · · > πn. We use the structure of π to prove the following theorems.

Theorem 2.25. For Sn(213, 312), we have

G(213,312)(x, p, q, y, z) =
A

p4x4y2 + (−1 + q2x2z)2 − 2p2x2y(1 + q2x2z)
, (58)

where A = (1− p3x3y2 + qxz − q2x2z − q3x3z2 + p2x2y(−1 + qxz) + pxy(1 + 2qxz + q2x2z)).

Proof: Let π = π1 · · ·πn ∈ Sn(213, 312). If πi = n then π1 < π2 < · · · < πi−1 in order to avoid 213.

On the other hand, in order to avoid 312, πi+1 > πi+2 > · · · > πn.

Next, we consider the following cases based on the parity of i. If i = 2k, k ≥ 1, we obtain
(

n−1
2k−1

)

permutations with k non-overlapping ascents and ⌊n−2k+1
2 ⌋ non-overlapping descents. If i = 2k+1, k ≥

0, we obtain
(

n−1
2k

)

permutations with k non-overlapping ascents and ⌊n−2k
2 ⌋ non-overlapping descents.

So we have

G(213,312)(x, p, q, y, z) = 1 +

∞
∑

n=1

⌊n/2⌋
∑

k=1

(

n− 1

2k − 1

)

xnykz⌊
n−2k+1

2
⌋p2k−1qn−2k+

∞
∑

n=1

⌊(n+1)/2⌋
∑

k=0

(

n− 1

2k

)

xnykz⌊
n−2k

2
⌋p2kqn−2k−1.

By using MATHEMATICA, we simplify G(213,312)(x, p, q, y, z) and obtain (58).
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Corollary 2.26. Setting three out of the four variables y, z, p and q equal to one respectively in (58), we

obtain single distributions of asc, des, MNA and MND over Sn(213, 312):

∑

n≥0

∑

π∈Sn(213,312)

xnpasc(π) =
1− px

1− x− px
; (59)

∑

n≥0

∑

π∈Sn(213,312)

xnqdes(π) =
1− qx

1− x− qx
; (60)

∑

n≥0

∑

π∈Sn(213,312)

xnyMNA(π) =
x− x2 + x2y

1− 2x+ x2 − x2y
; (61)

∑

n≥0

∑

π∈Sn(213,312)

xnzMND(π) =
x− x2 + x2z

1− 2x+ x2 − x2z
. (62)

Remark 2.27. The distributions in (59) and (60) (resp., (61) and (62)) are the same because the set

Sn(213, 312) is invariant under the reverse operation, and applying reverse exchanges ascents and de-

scents (resp., non-overlapping ascents and non-overlapping descents).

Theorem 2.28. For Sn(213, 312), we have

F(213,312)(x, p, q, u, v, s, t) = 1 + xuvst+
pqst2u2v2x3

(−1 + ptux)(−1 + pux+ qvx)
+

qs2tuv2x2

1− qsvx
+

pst2u2vx2

1− ptux
+

pqs2tu2v2x3

(−1 + pux+ qvx)(−1 + qsvx)
. (63)

Proof: Let π = π1 · · ·πn ∈ Sn(213, 312). If n = 0, we have the term of 1 in F(213,312)(x, p, q, u, v, s, t).
If π ∈ S1, the g.f. is xuvst. For n ≥ 2, suppose that π1 = i, πk = n and πn = j. We consider the

following cases.

If i = n, namely k = 1, then we have

F(213,312)(x, p, q, u, v, s, t) =

∞
∑

n=2

xnqn−1uvnsnt.

If j = n, namely k = n, then we have

F(213,312)(x, p, q, u, v, s, t) =

∞
∑

n=2

xnpn−1unvstn.

Next, let 2 ≤ i, j, k ≤ n − 1. If π1 = 1, in order to avoid 312, there are
(

n−j−1
n−k−1

)

permutations whose

g.f. is xnpk−1qn−kukvn−k+1stj , so the g.f. in this case is

∞
∑

n=2

n−1
∑

j=2

n−1
∑

k=j

(

n− j − 1

n− k − 1

)

xnpk−1qn−kukvn−k+1stj .
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If π1 6= 1, in order to avoid 213, there are
(

n−i−1
k−2

)

permutations whose g.f. is xnpk−1qn−kukvn−k+1sit,
so the g.f. in this case is

∞
∑

n=2

n−1
∑

i=2

n+1−i
∑

k=2

(

n− i− 1

k − 2

)

xnpk−1qn−kukvn−k+1sit.

In conclusion,

F(213,312)(x, p, q, u, v, s, t) = 1 + xtuvs+

∞
∑

n=2

xnqn−1uvnsnt+

∞
∑

n=2

xnpn−1unvstn+

∞
∑

n=2

n−1
∑

j=2

n−1
∑

k=j

(

n− j − 1

n− k − 1

)

xnpk−1qn−kukvn−k+1stj+

∞
∑

n=2

n−1
∑

i=2

n+1−i
∑

k=2

(

n− i− 1

k − 2

)

xnpk−1qn−kukvn−k+1sit

By using MATHEMATICA, we simplify F(213,312)(x, p, q, u, v, s, t) and obtain (63).

Corollary 2.29. Let p = q = 1, then setting three out of the four variables u, v, s and t equal to one

individually in (63), we obtain single distributions of lrmax, rlmax, lrmin and rlmin over Sn(213, 312):

∑

n≥0

∑

π∈Sn(213,312)

xnulrmax(π) =
1− x

1− x− ux
; (64)

∑

n≥0

∑

π∈Sn(213,312)

xnvrlmax(π) =
1− x

1− x− vx
; (65)

∑

n≥0

∑

π∈Sn(213,312)

xnslrmin(π) =
1− 2x+ sx2

(1− 2x)(1 − sx)
; (66)

∑

n≥0

∑

π∈Sn(213,312)

xntrlmin(π) =
1− 2x+ tx2

(1− 2x)(1 − tx)
. (67)

Remark 2.30. The distributions in (64) and (65) (resp., (66) and (67)) are the same because the set

Sn(213, 312) is invariant under the reverse operation, and applying reverse exchanges the sets of left-to-

right maxima and right-to-left maxima (resp., right-to-left minima and left-to-right minima).

3 Equidistribution results

From Theorems 2.13, 2.19 and 2.25, swapping the variables p and q, and y and z in the respective formu-

las, we obtain algebraic proofs of the following equidistribution results.

Theorem 3.1. The quadruples of statistics (asc, des,MNA,MND) and (des, asc,MND,MNA) are equidis-

tributed on Sn(231, 312) for all n ≥ 0.
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Theorem 3.2. The quadruples of statistics (asc, des,MNA,MND) and (des, asc,MND,MNA) are equidis-

tributed on Sn(213, 231) for all n ≥ 0.

Theorem 3.3. The quadruples of statistics (asc, des,MNA,MND) and (des, asc,MND,MNA) are equidis-

tributed on Sn(213, 312) for all n ≥ 0.

Theorem 3.4. The quadruple of statistics (asc, des,MNA,MND) on Sn(231, 312) has the same distri-

bution as (des, asc,MND,MNA) on Sn(213, 231).

Theorem 3.5. The quadruple of statistics (asc, des,MNA,MND) is equidistributed on Sn(231, 312) and

Sn(213, 231).

In this section we provide combinatorial proofs of the five theorems. The combinatorial proofs of

Theorems 3.2 and 3.3 are trivial: in Theorem 3.2 we can apply the complement operation to permutations

in Sn(213, 231), and in Theorem 3.3 we can apply the reverse operation to permutations in Sn(213, 312).
Combinatorial proofs of Theorems 3.1, 3.4 and 3.5 are much more involved and they require introduc-

tion of two bijective maps f and g in Sections 3.1 and 3.2, respectively. The map f , to be introduced next,

is shown by us in Lemma 3.6 to be an involution.

3.1 Map f and its applications

For π ∈ Sn(231, 312) line the elements in {1, 2, . . . n} in a row and insert a vertical line between element

x and x + 1 if π can be written as π = π′ ⊕ π′′ so that x ∈ π′ and x + 1 corresponds to 1 in π′′. For

example, for π = 124358769(14)(13)(12)(11)(10), we have

1|2|34|5|678|9|(10)(11)(12)(13)(14).

Clearly, this way to represent permutations in Sn(231, 312) by the increasing permutation 12 · · ·n with

vertical lines inserted between some of the elements is a bijection. Now the function f : Sn(231, 312) →
Sn(231, 312) is defined by representing the given permutation π as above, then replacing x(x + 1) with

x|(x + 1) and x|(x + 1) by x(x + 1) for all x ∈ {1, 2, . . . , n − 1}, that is, by removing the existing

vertical lines and inserting new vertical lines in all other places, and then outputting the corresponding

permutation. For the representation of the permutation π above, the replacement of lines gives

123|456|7|89(10)|(11)|(12)|(13)|(14)

and hence f(124358769(14)(13)(12)(11)(10)) = 3216547(10)98(11)(12)(13)(14).

Lemma 3.6. The map f is an involution, i.e. f2(π) = π for any π ∈ Sn(231, 312) and n ≥ 1.

Proof: Obvious from the definition of f .

Remark 3.7. Any involution is a bijection (a well-known and easily provable fact), hence f is a bijection.

Remark 3.8. Using the alternative description of f introduced in Lemma 3.6 we see that f has no fixed

points (the vertical lines cannot be in the same places after application of f ).

For π = 124358769(14)(13)(12)(11)(10), asc(π) = des(f(π)) = 6, des(π) = asc(f(π)) = 7,

MNA(π) = MND(f(π)) = 3, and MND(π) = MNA(f(π)) = 4. The notable relations between asc,
des, MNA and MND in π and f(π) are not a coincidence as is shown in the following theorem. Note

that the set of statistics in Theorem 3.1 cannot be extended by adding more statistics considered in this
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paper because lrmax(π) = 7, lrmax(f(π)) = 8, lrmin(π) = 1, lrmin(f(π)) = 3, rlmax(π) = 5,

rlmax(f(π)) = 1, rlmin(π) = 7 and rlmin(f(π)) = 8.

Next, we prove Theorem 3.1.

Proof: It is easy to see that the bijection f changes ascents to descents and vice-versa, this means that it

interchanges asc and des, and it also interchanges MNA and MND (a run of descents becomes a run of

ascents when we apply f ).

3.2 Map g and its applications

Recall that the structure of a permutation σ ∈ Sn(213, 231) is σ = σ′ ⊕ (1 ⊖ σ′′) where σ′ and σ′′

are (213, 231)-avoiding, possibly empty, permutations and σ′ (if non-empty) is increasing. Hence, σ
can be decomposed uniquely into a sequence of ascending runs ending at right-to-left maxima. Also,

the structure of a permutation π ∈ Sn(231, 312) is π = π′ ⊕ (1 ⊖ π′′) where π′ and π′′ are, pos-

sibly empty, (231, 312)-avoiding permutations and π′′ (if non-empty) is decreasing. Hence, π can be

decomposed uniquely into a sequence of decreasing runs beginning at left-to-right maxima. The map

g : Sn(231, 312) → Sn(213, 231) is defined as follows: g(π) has a right-to-left maximum in position

n+ 1− i if and only if π has a left-to-right maximum in position i. For example,

g(124358769(14)(13)(12)(11)(10)) = 1234(14)(13)56(12)(11)7(10)98. (68)

Because of the uniqueness of decomposition of π (resp., g(π)) into decreasing (resp., increasing) runs,

clearly, the map g is a bijection. Moreover, it is straightforward to see that asc(π) = des(g(π)), des(π) =
asc(g(π)), MNA(π) = MND(g(π)) and MND(π) = MNA(g(π)) giving us a proof of Theorem 3.4.

For our example (68), asc(π) = des(g(π)) = 6, des(π) = asc(g(π)) = 7, MNA(π) = MND(g(π)) =
3, and MND(π) = MNA(g(π)) = 4. Note that the set of statistics in Theorem 3.4 cannot be extended

by adding more statistics considered in this paper because in (68), lrmax(π) = lrmax(f(π)) = 7,

lrmin(π) = lrmin(f(π)) = 1, rlmax(π) = rlmax(f(π)) = 5 and rlmin(π) = 7 6= rlmin(f(π)) = 8,

and the fact that g(12) = 21 shows that none of the statistics in {lrmax, lrmin, rlmax, rlmin} can be

preserved.

Remark 3.9. We note that g has a single fixed point for each odd n and no fixed points for any even n.

Indeed, a fixed point must avoid the patterns 213, 231 and 312, and hence π = 12 · · · in(n−1) · · · (i+1)
for i ≥ 0 and g(π) = 12 · · · (n − i − 1)n(n− 1) · · · (n− i). Since π = g(π) we have that i = n−1

2 and

the observation follows.

Finally, we prove Theorem 3.5.

Proof: The map g(f(π)) proves the statement by Theorems 3.1 and 3.4.

4 Concluding remarks

In this paper, we found the joint distributions of (asc, des, lrmax, lrmin, rlmax, rlmin) and the joint

distributions of (asc, des, MNA, MND) on permutations avoiding any two patterns of length 3. All g.f.’s

derived in our paper are rational and we provided combinatorial proofs for five equidistribution results

observed from the formulas. It is remarkable that we were able to control so many statistics at the same

time while deriving explicit distribution results.
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Studying (joint) distributions of statistics in other permutation classes, for example, those considered

in Kitaev (2011) is an interesting direction of further research.
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