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We study the configuration space of rectangulations and convex subdivisions of n points in the plane. It is shown
that a sequence of O(n logn) elementary flip and rotate operations can transform any rectangulation to any other
rectangulation on the same set of n points. This bound is the best possible for some point sets, while Θ(n) operations
are sufficient and necessary for others. Some of our bounds generalize to convex subdivisions of n points in the plane.
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1 Introduction
The study of rectangular subdivisions of rectangles is motivated by VLSI floorplan design [29] and car-
tographic visualization [14, 26, 33]. The rich combinatorial structure of rectangular floorplans has also
attracted theoretical research [6, 15]. Combinatorial properties lead to efficient algorithms for the recog-
nition and reconstruction of the rectangular graphs induced by the corners of the rectangles in a floor-
plan [22, 32], the contact graphs of the rectangles [25, 40], and the contact graphs of the horizontal and
vertical line segments that separate the rectangles [11]. The number of combinatorially different floorplans
with n rectangles is known to be B(n) = Θ(8n/n4), the nth Baxter number [43].

Rectangular subdivisions in the presence of points have also been studied in the literature. Given a finite
set P of points in the interior of an axis-aligned rectangle R, a rectangulation of (R,P ) is a subdivision
of R into rectangles by pairwise noncrossing axis-parallel line segments such that every point in P lies in
the relative interior of a segment (see Figure 1).
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Fig. 1: Two different rectangulations of a set of four points.

Finding a rectangulation of minimum total edge length has attracted attention [7, 8, 13, 19, 20, 21,
28, 30] due to its applications in VLSI design and stock cutting in the presence of material defects.
This problem is known to be NP-hard [30], however, its complexity is unknown when the points in P
are in general position in the sense that they have distinct x- and y-coordinates, that is, the points are
noncorectilinear. It is not hard to see that in this case the minimum edge-length rectangulation must
consist of exactly n line segments [7]. For the rest of this paper, we consider only noncorectilinear point
sets P , and rectangulations determined by |P | line segments, one containing each point in P .

The space of all the rectangulations of a point set P (within a rectangle R) can be explored using the
following two elementary operators introduced in [2] (refer to Figure 2).

p

ca b
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Fig. 2: A rectangulation r1 of a set of 6 points, r2 = FLIP(r1, p), and r3 = ROTATE(r2, c).

Definition 1 (Flip) Let r be a rectangulation of P and let p ∈ P be a point such that the segment s
that contains p does not contain any endpoints of other segments. The operation FLIP(r, p) changes the
orientation of s from vertical to horizontal or vice-versa.

Definition 2 (Rotate) Let r be a rectangulation of P . Let s1 = ab be a segment that contains p ∈ P . Let
s2 = cd be a segment such that c lies in ap ⊂ s1 and ac does not contain any endpoints of other segments.
The operation ROTATE(r, c) shortens s1 to cb, and extends s2 beyond c until it reaches another segment
or the boundary of R.

For a finite set of noncorectilinear points P ⊂ R, we denote by G(P ) = (V,E) the graph of rect-
angulations of P , where the vertex set is V = {r : r is a rectangulation of P} and the edge set is
E = {(r1, r2) : a single flip or rotate operation on r1 produces r2}. Since both operations are reversible,
G(P ) is an undirected graph. It is not hard to show that G(P ) is connected [2], and there is a sequence
of O(n2) flip and rotate operations between any two rectangulations in G(P ) when P is a set of n points
in R. It is natural to ask for the diameter of G(P ), which we call the flip diameter of P for short. For
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every set of n points in R, the flip diameter is at least Ω(n), since every point set admits a rectangulation
with all horizontal segments and one with all vertical segments, and each operation modifies at most two
segments.

Results
In this paper, we show that the flip diameter of P is O(n log n) for every n-element noncorectilinear
point set P (Section 2), and it is Ω(n log n) for some n-element noncorectilinear point sets (Section 3).
However, there are n-elements noncorectilinear points sets for which the flip diameter is Θ(n) (Section 4).
That is, the flip diameter is always between O(n log n) and Ω(n), depending on the point configuration,
and both bounds are the best possible.

We extend the flip and rotate operations and the notion of flip diameter to convex subdivisions (Sec-
tion 5). A convex subdivision of a set P ⊂ R2 of points is a subdivision of the plane into convex faces by
pairwise noncrossing line segments, halflines, and lines, each of which contains exactly one point of P .
We show that the flip diameter for the convex subdivisions of n points is alwaysO(n log n) and sometimes
Θ(n).

Related work
Determining the exact number of rectangulations on n noncorectilinear points remains an elusive open
problem in enumerative combinatorics [2, 3]. Recently, Felsner [16] proved that every combinatorial
floorplan with n + 1 rooms can be embedded into every set of n noncorectilinear points, hence every set
of n noncorectilinear points has at least B(n) = Θ(8n/n4) rectangulations.

The currently best known upper bound, O(18n/n4) by Ackerman [1], uses the so-called “cross-graph”
charging scheme [35, 36], originally developed for counting the number of (geometric) triangulations on n
points in the plane. This method is based on elementary “flip” operations that transform one triangulation
into another. Lawson [27] proved that every triangulation on n points in the plane in general position
(i.e., no three on a line) can be transformed into the Delaunay triangulation with O(n2) flips, and this
bound is the best possible by a construction due to Hurtado et al. [24]. However, for n points in convex
position, 2n−10 flips are sufficient, due to a bijection with binary trees with n − 2 internal nodes [37].
Hence the flip diameter of every triangulation on n points in the plane is always between Θ(n) and Θ(n2)
depending on the point configuration. Eppstein et al. [14] and Buchin et al. [5] define two elementary
flip operations on floorplans, in terms of the directed dual graph, and solve optimization problems on
floorplans by traversing the flip graph.

Generalizing simultaneous edge flips in a triangulation, Meijer and Rappaport [31] considered simulta-
neous edge flips in convex decompositions of a point set P . A convex decomposition of P is a subdivision
of the convex hull of P into convex polygons whose joint vertex set is P ; and two convex decompositions
of P are related by a simultaneous edge flip if their union contains no crossing edges.

2 An Upper Bound on the Flip Diameter of Rectangulations
In this section, we show that for every set P of n noncorectilinear points in a rectangle R, the diameter of
G(P ) is O(n log n).

Theorem 1 For every noncorectilinear set P of n points in the plane, the diameter of the graph G(P ) is
O(n log n).
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Given a rectangulation r of P , we construct a sequence of O(n log n) operations that transforms r into
a rectangulation with all segments vertical (a canonical rectangulation). Our method relies on the concept
of independent sets, defined in terms of the bar visibility graph. Let r be a rectangulation of P . The bar
visibility graph [12, 38, 42] on the horizontal segments of r is defined as a graph H(r), where the vertices
correspond to the horizontal segments in r; and two horizontal segments s1 and s2 are adjacent in H(r)
if and only if there are points a ∈ s1 and b ∈ s2 such that ab is a vertical segment (not necessarily in r)
that does not intersect any other horizontal segment in r. It is clear that the bar visibility graph is planar.

Observe that we can always change the orientation of any line segment s with O(n) operations: suc-
cessively shorten s using rotate operations until s contains no other segment endpoints, and then flip s.
This simple procedure is formulated in the following subroutine.

Shorten&Flip(r, s). Let s be a segment in a rectangulation r. Assume s = ab and p ∈ P
is in the relative interior of s. While s contains the endpoint of some other segment, let
c1 ∈ s and c2 ∈ s be the endpoints of some other segments closest to a and b, respectively
(possibly c1 = c2). If p 6∈ ac1, then apply ROTATE(r, c1) to shorten s = ab to c1b. Else,
apply ROTATE(r, c2) to shorten s to ac2. When s does not contain the endpoint of any other
segment, apply FLIP(r, p).

The proof of Theorem 1 follows from a repeated invocation of the following lemma.

Lemma 1 Let r be a rectangulation of a set of n pairwise noncorectilinear points in a rectangleR. There
is a sequence of O(n) flip and rotate operations that turns at least one quarter of the horizontal segments
into vertical segments, and keeps vertical segments vertical.

Proof: By the four color theorem [34], H(r) has an independent set I that contains at least one quarter
of the horizontal segments in r. The total number of endpoints of vertical segments that lie on some
horizontal segment in I isO(n). Successively call the subroutine Shorten&Flip(r, s) for all horizontal
segment s ∈ I .

The horizontal segments in I are shortened and flipped into vertical orientation. All operations maintain
the invariants that (1) the segments in I are pairwise disjoint, and (2) the remaining horizontal segments
in I form an independent set in the bar visibility graph (of all horizontal segments in the current rectan-
gulation). It follows that each operation either decreases the number of horizontal segments in I (flip), or
decreases the number of segment endpoints that lie in the relative interior of a segment in I (rotate). After
O(n) operations, all segments in I become vertical. Since only the segments in I are flipped (once each),
all vertical segments in r remain vertical, as required. 2

Proof of Theorem 1.: Let P be a set of n pairwise noncorectilinear points in a rectangle R. Denote by
r0 the rectangulation that consists of n vertical line segments, one passing through each point in P .

We show that every rectangulation r1 of P can be transformed into r0 by a sequence of O(n log n) flip
and rotate operations. By Lemma 1, a sequence ofO(n) operations can decrease the number of horizontal
segments by a factor of at least 4/3. After at most log n/ log(4/3) invocations of Lemma 1, the number
of horizontal segments drops below 1, that is, all segments become vertical and we obtain r0. 2
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Remark. The proof of Theorem 1 is constructive, and provides an algorithm for transforming a rectan-
gulation on n noncorectilinear points to the rectangulation with n vertical segments. If the rectangulations
are maintained in a doubly connected edge list (DCEL) data structure, then a flip or rotate operation can
be implemented in O(1) time, and the bar-visibility graph can be computed in O(n) time. The bottle-
neck of the overall running time is the 4-coloring of the bar-visibility graph. The current best algorithm
for 4-coloring an m-vertex planar graph runs in O(m2) time [34], and a repeated call to this algorithm
to exponentially decaying bar-visibility graphs takes O(n2) time. If we use an O(m)-time 5-coloring
algorithm [10, 18, 41], up to log n/ log(5/4) times, the overall running time improves to O(n).

3 A Lower Bound on the Flip Diameter of Rectangulations
We show that the diameter of the graph G(P ) is Ω(n log n) when P is an n-element bit-reversal point
set (alternatively, Halton-Hammersley point set) [9, Section 2.2]. For every integer k ≥ 0, we define a
point set Pk of size n = 2k with integer coordinates lying in the square R = [−1, n]2. For an integer m,
0 ≤ m < 2k, with binary representation m =

∑k
i=1 bi2

i−1, the bit-reversal gives y(m) =
∑k

i=1 bi2
k−i.

The bit-reversal point set of size n = 2k is Pk = {(m, y(m)) : m = 0, 1, . . . , n − 1}. By construction,
no two points in Pk are corectilinear.

Fig. 3: The sets P2, P3, and P4. The edges connect pairs of points whose binary representations differ in a single bit,
showing that Pk is a projection of a k-dimensional hypercube. The grey rectangles are spanned by point pairs whose
binary representations differ exactly in the last coordinate.

We establish a lower bound of k2k−3 for the diameter of G(Pk) using a charging scheme. We define
k2k−1 empty rectangles (called boxes) spanned by Pk, and charge one unit for “saturating” a box with
vertical segments (as defined below). We show that when a rectangulation with all horizontal segments
is transformed into one with all segments vertical, each box becomes saturated. We also show that each
rotate (resp., flip) operation contributes a total of at most 2 (resp., 4) units to the saturation of various
boxes in our set. It follows that at least (k2k−1)/4 = k2k−3 = n log n/8 operations are required to
saturate all k2k−1 boxes.

Consider the point set Pk for some k ∈ N. We say that a rectangle B ⊂ [−1, n]2 is spanned by Pk if
two opposite corners of B are in Pk; and B is empty if its interior is disjoint from Pk.
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Let B be the set of closed rectangular boxes spanned by point pairs in Pk in which the binary represen-
tation of the x-coordinates (b1, . . . , bk) differ in precisely one bit. See Figure 3 for examples. Each point
in Pk is incident to k boxes in B, since there are k bits. Every box in B is spanned by two points of Pk,
thus |B| = k · |Pk|/2 = k2k−1.

Each point is incident to k boxes of sizes 2i−1× 2k−i for i = 0, . . . , k− 1, since changing the ith bit bi
incurs an 2i−1 change in the x-coordinate and an 2k−i change in the y-coordinate. However, if we change
several bits successively, then either the x-coordinate changes by more than 2i−1 or the y-coordinate
changes by more than 2k−i, and so every box in B is empty. Note also that the boxes of the same size are
pairwise disjoint.

We now define the “saturation” of each box B ∈ B with respect to a rectangulation of Pk. Let B ∈ B
and let r be a rectangulation of Pk. The vertical extent of B is the orthogonal projection of B into the
y-axis. Consider the vertical segments of r clipped in B (i.e., the segments s∩B for all vertical segments
s in r). The saturation of B with respect to r is the percentage of the vertical extent of B covered
by projections of vertical segments of r clipped in B. See Figure 4 for examples. By definition, the

B1

B2

B3
B4

B5
B6

B7
B8

Fig. 4: A rectangulation of P4. The saturation of box B1, . . . , B8 is 1
2

, 0, 1, 0, 1, 1, 1, and 1, respectively.

saturation of B is a real number in [0, 1]. For every B ∈ B, we have that the saturation of B is 0 when
r is a rectangulation with all horizontal segments, and it is 1 when r consists of all segments vertical.
If we transform an all-horizontal rectangulation into an all-vertical one by a sequence of operations, the
total saturation of all k2k−1 boxes in B increases from 0 to k2k−1. The key observation is that a single
operation increases the total saturation of all boxes in B by at most a constant.

It remains to bound the impact of a single operation on the saturation of a box in B. Consider first an
operation ROTATE(r, c) that increases the saturation of some box B ∈ B. A rotate operation shortens a
segment s1 and extends an orthogonal segment s2. The saturation of a boxB can increase only if a vertical
segment grows, so we may assume that s1 is horizontal and s2 is vertical. Denote by s the newly inserted
portion of s2. Note that s lies in a single face of the rectangulation r. Similarly, if an operation FLIP(r, p)
increases the saturation of a box in B, then it replaces a horizontal segment by a vertical segment passing
through p. The new vertical segment lies in two adjacent faces of r, separated by the original horizontal
segment through p. We represent the new vertical segment as the union of two collinear vertical segments
s∪ s′ that meet at point p. In summary, an operation ROTATE(r, c) inserts one vertical segment s that lies
in the interior of a face of r, and an operation FLIP(r, p) inserts two such segments. We show now that if
such a new vertical segment s increases the saturation of some box in B ∈ B, then s must lie in B.
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Lemma 2 Suppose that an operation inserts a vertical segment s that lies in a face f of the rectangulation
r. If the insertion of s increases the saturation of a box B ∈ B, then s ⊂ B.

Proof: Suppose, to the contrary, that s 6⊂ B. Let p, q ∈ Pk denote the two opposite corners of points that
span B, such that p is the upper left or upper right corner of B, and q is the opposite corner of B. Since
s increases the saturation of B, it must intersect B. Hence f ∩ B 6= ∅. Since s 6⊂ B, at least one of the
endpoints of s lies in the exterior of B. Assume, without loss of generality, that the upper endpoint of s
lies outside B, and p is the upper left corner of B. Then, the top side of f is strictly above the top side of
B. Since point p cannot be in the interior of f , the left side of the face f intersects the top side of B. Note
that s and the left side of f have the same orthogonal projection on the y-axis. Therefore, the insertion of
s cannot increase the saturation of B, contradicting our assumption. We conclude that both endpoints of
s lie in B, and s ⊂ B. 2

Lemma 3 A rotate (resp., flip) operation increases the total saturation of all boxes in B by at most 2
(resp., 4).

Proof: Suppose that an operation ROTATE(r, c) inserts a vertical segment s, or an operation FLIP(r, p)
inserts two collinear vertical segments s ∪ s′ that meet at p. By Lemma 2, the insertion of s increases the
saturation of a box B ∈ B of height h by |s|/h if h ≥ |s|, and does not affect the saturation of boxes
of height h < |s|. Recall that the boxes in B have only k different sizes, 2i−1 × 2k−i for i = 1, . . . , k,
and the boxes of the same size are pairwise disjoint. Let j ∈ {1, 2, . . . , k} be the largest index such that
|s| ≤ 2k−j . For i = 1, . . . , j, segment s increases the saturation of at most one box of height h = 2k−i,
and the increase is at most |s|/h = |s| · 2i−k. So s increases the total saturation of all boxes in B by at
most

∑j
i=1 |s|2i−k ≤

∑j
i=1 2i−j < 2, as required. 2

Theorem 2 For every n ∈ N, there is an n-element point set P ⊂ [−1, n]2 such that the diameter of
G(P ) is Ω(n log n).

Proof: First assume that n = 2k for some k ∈ N0. We have defined a set Pk of n = 2k points and
a set B of k2k−1 = n log n/2 boxes spanned by Pk. The total saturation of all boxes in B is 0 in the
rectangulation with horizontal segments, and |B| = n log n/2 in the one with all segments vertical. By
Lemma 3, a single flip or rotate operation increases the total saturation by at most 4. Therefore, at least
n log n/8 operations are required to transform the horizontal rectangulation to the vertical one, and the
diameter of G(Pk) is at least n log n/8.

If n is not a power of two, then put k = blog2 nc and let P ⊂ [−1, n]2 be the union of Pk and n−2k

arbitrary (noncorectilinear) points in [2k, n]2. All axis-parallel segments containing the points in P \ Pk

are in the exterior of [−1, 2k]2. Therefore k2k−3 = Ω(n log n) operations are required when all segments
containing the points in Pk ⊂ P change from horizontal to vertical. 2

4 The Flip Diameter for Diagonal Point Sets
We say that a point set P is diagonal if all points in P lie on the graph of a strictly increasing function
(e.g., f(x) = x). In this section we show that the flip diameter is O(n) for any n-element diagonal set.
We denote by pi the segment that contains pi.
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Theorem 3 For every n ∈ N, the diameter of G(P ) is at most 11n when P is a diagonal set of n points.

Proof of Theorem 3: Without loss of generality, we may assume that the diagonal set is P = {pi : i =
1, . . . , n}, where pi = (i, i). Given a rectangulation r for P , we construct a sequence of at most 5.5n
flip and rotate operations that transforms r into a rectangulation with all segments vertical. Our algorithm
consists of the following four phases.
Phase 1: No three consecutive segments are parallel. We describe an algorithm that, given a rectangu-
lation r of P , applies less than 3n operations and returns a rectangulation in which no three consecutive
points are contained in parallel segments.

NoThreeParallel(r). While there are three consecutive points in P contained in parallel
segments, let pi−1, pi, pi+1 ∈ P be arbitrary points such that the segments pi−1 , pi , and
pi+1 are parallel, and call Shorten&Flip(r, pi ).

Note that Shorten&Flip(r, pi ) changes the orientation of the middle segment pi only. Hence, after
one invocation of Shorten&Flip(r, pi ), segments pi−1 , pi , and pi+1 have alternating orientations,
and will never be in the middle of a consecutive parallel triple. This implies that NoThreeParallel(r)
terminates after changing the orientation of at most n/2 segments, and no three consecutive points are in
parallel segments in the resulting rectangulation.

It remains to bound the number of flip and rotation operations: we have already seen that there are at
most n/2 flip operations, and we shall charge each rotation operation to the segment extended by that
operation. Note that after an invocation of Shorten&Flip(r, pi ), the two endpoints of pi lie on
pi−1 and pi+1 , respectively, and so segment pi is not extended after a flip in Phase 1. Thus, each
segment can be extended in two possible directions (left/right or up/down). We claim that each segment
is extended at most once in each direction. Suppose to the contrary that a segment pk is extended twice
in the same direction (refer to Figure 5, right). By symmetry, we may assume that pk is vertical, and

pi
pi−1

pi+1

pi

pj

pi+1

pi
pi−1

pi+1

pk

Fig. 5: Left-Middle: If the segment through pi−1, pi, and pi+1 are parallel, we perform Shorten&Flip(r0, pi ).
Right: If a rotation extends a vertical segment pk up from pi to pj , then pi+1 cannot be horizontal.

it is extended upward in two rotate operations involving some horizontal segments pi and pj (each of
which is sandwiched between two horizontal segments). In the first rotation, pk is extended from its
intersection with pi to an intersection with pj . Hence, the order of the corresponding three points is
k < i < j. This step creates a rectangle bounded by pi on the top, pj on the bottom, and pk on the left.
The right boundary of this rectangle cannot be pi+1 , since it is horizontal; and it cannot be any segment
p` , ` > i + 1, otherwise the rectangle would contain pi+1. The contradiction confirms the claim. We
conclude that this phase involves at most 2n rotations and at most n/2 flip operations.



The Flip Diameter of Rectangulations and Convex Subdivisions 9

Phase 2: Creating a staircase. We define a staircase in a rectangulation of P as a monotone increasing
path along the segments that does not skip two or more consecutive points (refer to Figure 6). In the second

a

c
b

Fig. 6: The left figure shows a rectangulation with a valid staircase, the right figure shows a rectangulation which
does not have a valid staircase.

phase of our algorithm, we transform a rectangulation r with no three consecutive parallel segments into
a rectangulation r that contains a staircase from the lower left to the upper right corner of R.

We construct a staircase π incrementally, starting from the lower left corner. In each step we succes-
sively extend π with one horizontal and one vertical segment to a point of P or to the upper right corner
of R. Let π be a current staircase from the lower left corner to a point a ∈ P . Denote by b and c the next
two points of the diagonal set P . If there is a monotone path from a to b or from a to c, then append this
path to π to obtain a longer staircase. Suppose there is no such path. Then the segments a and b must
be parallel, otherwise there would be a monotone path from a to b. The segment c must be perpendicular
to the segment a since there are no three consecutive parallel segments.

We would like to perform a rotation at the intersection of segments b and c , and then we can extend
π from a to c (along a and c ). However, other operations may be necessary before we can rotate at
b ∩ c . Successively rotate all intersection points of b with other segments that are to the right of b if b
is horizontal, and that are above b if b is vertical (rotating at b ∩ c eventually).

We claim that this phase requires at most n rotations. Let a, b, and c be defined as before, such that
there is no path from a to either b or c. Assume, by symmetry, that a and b are horizontal and c is vertical.
Let d1, . . . , dk be segment endpoints on b to the right of b. The bottom endpoints of the vertical segments
through d1 . . . dk are now below b, and so these endpoints will never be involved in another rotation in our
incremental procedure. Similarly, we perform a rotation at the left endpoint of each horizontal segment at
most once. Therefore, the total number of rotations is bounded by the number of segments, which is n.
Phase 3: Extending all vertical segments of the staircase to full length. The third phase of our al-
gorithm returns a rectangulation in which every vertical segment of the staircase extends to the top and
bottom sides of the bounding box R. The staircase subdivides R into two regions, one above and one
below (see Figure 7). We handle the two regions independently without modifying the staircase. To han-
dle the region above, we sweep from top to bottom and successively shorten each horizontal segment we
encounter until further shortening is impossible or would modify the staircase. If we encounter a horizon-
tal segment s that is not part of the staircase, we use subroutine Shorten&Flip(r, s) to shorten it as
much as possible and then flip it to vertical position. Similarly, we sweep the region below the staircase
bottom-up.

Each flip or rotate operation in Phase 3 increases the number of segment endpoints lying on the top
or bottom side of R. Therefore, the number of operations is bounded by the total number of segment
endpoints, which is 2n.
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Fig. 7: Left: a rectangulation with a valid staircase. Middle: the result of sweeping the region above the staircase.
Right: the result of sweeping the regions on both sides of the staircase.

Phase 4: Final steps. The vertical segments of the staircase extend to the top and bottom of the bounding
box and partition it into vertical strips (Figure 7, right). Each strip contains a horizontal segment of the
staircase, including a point in P . Because the staircase does not skip two or more consecutive points,
there are at most three points in each strip. The total number of points in all strips combined is less than
n.

If there is just one point in a strip, then we flip the horizontal segment that contains it. If there are
two points in a strip, then one lies on a horizontal and one on a vertical segment. In this case, perform a
rotation so the vertical segment reaches maximum length, and then flip the horizontal segment. If there
are three points in a strip, then the middle point lies on a horizontal segment and the other two lie on
vertical segments above and below the staircase, respectively. In this case, we perform two rotations so
that both vertical segments reach full length, and then flip the horizontal segment. Similarly to Phase 3,
each operation in this phase increases the number of segment endpoints lying on the top or bottom side of
R. Therefore, 2n is an upper bound on the number of operations in Phases 3 and 4 combined. 2

Remark. Felsner et al. [17] showed that the rectangulations of a diagonal point set are in bijection with
twin pairs of binary trees. Visually, the part of the boundaries of the rectangles lying above (resp., below)
the points in P form a binary tree whose vertices are the points in P and the top-right (resp., bottom-left)
corners of R. This observation allows determining the number of rectangulations for diagonal point sets
in terms of Baxter permutations (cf. [17]). Theorem 3 implies the following.

Corollary 1 For any two pairs of twin binary trees with n leaves, there is a sequence of twin binary trees
(t1, t

′
1), . . . , (tk, t

′
k) of size k = O(n) that starts with the first pair, ends with the second pair, and for

every i (1 ≤ i < k), either ti = ti+1 or ti+1 is obtained from ti by a single tree-rotate operation (the
same for t′i and t′i+1).

5 Generalization to Convex Subdivisions
Given a set P of n points in the plane, a convex subdivision for P is a subdivision of the plane into
convex cells by n pairwise noncrossing line segments (possibly lines or half-lines), such that each segment
contains exactly one point of P and no three segments have a point in common.

The flip and rotate operations can be interpreted for convex subdivisions of a point set P , as well (see
Figure 8). The definition of the operation ROTATE(r, c) is identical to the rectilinear version. The opera-
tion FLIP(r, p) requires more attention, since a segment may have infinitely many possible orientations.
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Fig. 8: A convex subdivision r1 of 6 points, r2 = FLIP(r1, p, σ), and r3 = ROTATE(r2, c).

Definition 3 (Flip) Let r be a convex subdivision of P , let p ∈ P be a point such that the segment s
containing p does not contain any endpoints of other segments, and let σ ∈ S1 be a unit vector. The
operation FLIP(r, p, σ) replaces s by a segment of direction σ containing p.

Similarly to the graph of rectangulations G(P ), we define the graph of convex subdivisions of P ,
Ĝ(P ) = (V,E), where the vertex set is V = {r : r is a convex subdivision of P} and the edge set is
E = {(r1, r2) : a single flip or rotate operation on r1 produces r2}. Our main result in this section is that
even though Ĝ(P ) is an infinite graph, its diameter is O(n log n), where n = |V |.

Theorem 4 For set P of n points, the graph Ĝ(P ) is connected and its diameter is O(n log n).

We show that any convex subdivision can be transformed into a subdivision with all segments vertical
through a sequence of O(n log n) operations. Subroutine Shorten&Flip(r, s) from Section 2 can be
adapted almost verbatim: for a unit vector σ ∈ S1, subroutine Shorten&Flip(r, s, σ) shortens segment
s maximally by rotate operations, and then flips it to direction σ.

Lemma 4 Let r be a convex subdivision of a set of n points in the plane with distinct x-coordinates.
There is a sequence of O(n) flip and rotate operations that turns at least a 1

36 fraction of the nonvertical
segments vertical, and keeps all vertical segments vertical.

Before proving Lemma 4, we need to introduce a few technical terms. Consider a convex subdivision
r of a set of n points with distinct x-coordinates. We say that a segment s1 hits another segment s2 if an
endpoint of s1 lies in the relative interior of s2. An extension of s1 beyond s2 hits s3 if s1 hits s2 and s1 is
contained in a segment s′1, such that s′1 hits s3 and s′1 crosses at most one segment (namely, s2). Note that
the operation ROTATE(r, s1 ∩ s2), if applicable, would extend s1 beyond s2 to hit segment s3. We define
the extension visibility digraph Ĥ(r) on all segments in r, where the vertices correspond to the segments
in r, and we have a directed edge (s2, s3) if s2 hits s3 or there is a segment s1 such that an extension of
s1 beyond s2 hits s3.

The graph Ĥ(r) is not necessarily planar: it is not difficult to construct a convex subdivision r for a
set of O(t2) points where Ĥ(r) contains a subgraph isomorphic to the complete graph Kt (Figure 9). It
is enough to describe the segments of such a construction (the points may lie anywhere in the interior of
the segments). Start with the sides of a convex t-gon, and extend the sides in counterclockwise direction
to obtain a convex subdivision. The extension visibility digraph of these t segments contains a cycle
(s1, . . . , st). Add short segments in the exterior of the initial t-gon: If a segment hits si and its supporting
line passes though sj , it generates an edge (si, sj) in the extension visibility digraph.
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Fig. 9: A convex subdivision r of a set of 15 points. The five bold segments induce K5 in the extension visibility
graph Ĥ(r).

Note that the number of edges in Ĥ(r) is at most 4n, since each segment hits at most two other seg-
ments, but some segments extend to infinity; and the extension of each segment beyond each of its end-
points hits at most one other segment. If P contains n points, the average degree in Ĥ(r) is less than 8.
Therefore, Ĥ(r) has an independent set of size at least n/9 (obtained by successively choosing minimum-
degree vertices [23, 39]).

Proof of Lemma 4.: Let r be a convex subdivision of a set of n points with distinct x-coordinates. Let
I0 be an independent set in the extension visibility graph Ĥ(r) induced by all nonvertical segments. As
noted above, I0 contains at least 1/9 of the nonvertical segments in r. Let I1 ⊆ I0 be an independent
set in the bar visibility graph of the segments in I0 (two nonvertical segments in I0 are mutually visible
if there is a vertical segment between them that does not cross any segment of the subdivision). Since
the bar visibility graph is planar, we have |I1| ≥ |I0|/4, and so I1 contains at least a 1/36 fraction of
the nonvertical segments in r. The total number of segment endpoints that lie in the relative interior
of segments in I1 is O(n). An invocation of subroutine Shorten&Flip(r, s, (0, 1)) for each segment
s ∈ I1 changes their orientation to vertical.

The operations maintain the invariants that (1) the segments in I1 are pairwise disjoint; and (2) the
nonvertical segments in I1 form an independent set in both Ĥ and the bar visibility graph of all segments
in I0. It follows that each operation either decreases the number of nonvertical segments in I1 (flip), or
decreases the number of segment endpoints that lie in the relative interior of a nonvertical segment in I1
(rotate). After performing O(n) operations, all segments in I1 become vertical. Since only the segments
in I1 change orientation (each of them is flipped to become vertical), all vertical segments in r remain
vertical, as required. 2

Proof of Theorem 4.: Let P be a set of n points in a bounding box. We may assume, by rotating the
point set if necessary, that the points in P have distinct x-coordinates. Denote by r0 the convex subdivision
given by n vertical line segments, one passing through each point in P .

Consider a convex subdivision r1 of P . By Lemma 4, O(n) operations can decrease the number of
nonhorizontal segments by a factor of at least 36/35. After at most log n/ log(36/35) invocations of
Lemma 4, the number of nonvertical segments drops below 1, that is, all segments become vertical and
we obtain r0, as claimed. 2
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A linear upper bound for collinear points

We show that the bound O(n log n) on the diameter of the flip graph Ĝ(P ) from Theorem 4 can be
improved to O(n) for some simple point configurations.

Theorem 5 For every n ∈ N, the diameter of Ĝ(P ) is O(n) when P is a set of n collinear points.

Proof: We may assume that P = {pi : i = 1, . . . , n}, pi = (i, 0). Let r be a convex subdivision of
P . No segment in r is horizontal, since each segment contains a unique point. We show that there is
a sequence of O(n) operations that transforms r into a convex subdivision with all segments vertical.
Suppose that not all segments in r are vertical, and let m > 0 be the minimum absolute value of the slope
of a nonvertical segment. Our algorithm proceeds in two phases.

Phase 1: Building a staircase. In this phase, we transform r into a convex subdivision in which every
pi is a nonvertical ray with a left endpoint at infinity, and has slope m/n when i is odd and −m/n
when i is even. We process the points p1, . . . , pn successively in this order. We maintain the following
invariant (refer to Figure 10): When we start processing pi, segments p1 , . . . , pi−1 are already rays with

p1 p2 p2p1

Fig. 10: Transforming a convex subdivision for n points lying on the x-axis into rays of alternating slopes m/n and
−m/n.

the desired properties, and they do not contain the endpoints of any segment pi , . . . , pn in their relative
interiors.

Suppose that points pj , for all 1 ≤ j < i, have already been processed. We use the subroutine
Shorten&Flip(r, pi , σ) to shorten pi and flip it into the desired orientation (of slope m/n or −m/n
depending on the parity of i). For i = 1, this already guarantees that segment p1 is a ray with a left
endpoint at infinity. If i > 1, however, the left endpoint of pi lies on the ray pi−1 , whose slope is
different from that of pi . Due to the invariant, pi−1 contains no segment endpoints to the right of the
intersection point pi−1 ∩ pi . We can now apply a rotation at pi−1 ∩ pi . Since the slopes of all segments
are at least m/n in absolute value, p i extends to infinity, and our invariant is established for segments
p1 , . . . , pi .

We argue that Phase 1 uses O(n) operations. For each point pi, we invoke Shorten&Flip(r, pi , σ),
which performs only one flip operation, followed by at most one rotation. It is enough to bound the
number of rotations performed in the invocations of subroutines Shorten&Flip. We claim that these
invocations extend each segment at most once in each direction. Suppose, to the contrary, that a segment
pk is extended in the same direction twice (when processing points pi and pj). Since the points are
processed from left to right, we have i < j < k. Consider the step in which a rotation extends pk from
its intersection with pi to an intersection with pj . Then, the x-axis and segment pk intersect pi and
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pj in different orders. Hence, pi and pj must cross each other, contradicting the fact that they are part
of a convex subdivision. This proves our claim. It follows that Phase 1 uses at most 5n operations.

Phase 2: Orienting all lines to be vertical. Refer to Figure 11. We are given a convex subdivision in

Fig. 11: The first four passes over the rays yield vertical lines through all even points, separating the odd points.

which every pi is a ray with a left endpoint at infinity, and has slopem/n when i is odd and−m/n when
i is even. Note that only consecutive segments intersect. (This is still not a “canonical” subdivision, as
m depends on the initial convex subdivision.) In Phase 2, we transform all segments into vertical lines.
We make five passes over the odd or even points: (1) For every odd point pi from right to left, rotate
ray pi into a line of slope m/n. As a result, the lines through the odd points separate the even points.
(2) We can now flip the segments through the even points independently into vertical segments. (3) For
every even point pi from left to right, rotate the top endpoints to infinity. (4) For every even point from
right to left, rotate the bottom endpoint to infinity. We obtain vertical lines through the even points, that
separate the odd points. (5) Finally, flip the segments through the odd points independently into vertical
lines. We made three passes over even segments and two passes over odd segments, so the total number
of operations in Phase 2 is 2n+ dn/2e ≤ 3n. The two phases combined use at most 8n operations. 2

6 Conclusions
We have shown that the diameter of the flip graph G(P ) is between Ω(n) and O(n log n) for every n-
element point set P , and these bounds cannot be improved. The diameter is Θ(n) for diagonal point
sets, and Θ(n log n) for the bit-reversal point set. The flip graph G(P ) of a noncorectilinear set P is
uniquely determined by the permutation of the x- and y-coordinates of the points [2] (e.g., diagonal point
sets correspond to the identity permutation). It is an open problem to find the average diameter of G(P )
over all n-element permutations. It would already be of interest to find broader families of point sets with
linear diameter: Is the diameter of G(P ) linear if P is in convex position, unimodal, or corresponds to a
separable permutation (see [4])?

We have shown that the diameter of the flip graph is also O(n log n) for the convex subdivisions of n
points in the plane. We do not know whether this bound is tight. It is possible that the flip diameter is
Ω(n log n) for the bit-reversal point set defined in Section 3, but our proof of Theorem 2 heavily relies on
axis-aligned boxes and does not seem to extend to convex subdivisions.

Given a convex subdivision r of a point set P , the flip and rotate operations can be thought of as a
continuous deformation; refer to Figure 12: FLIP(r, p, σ) rotates the segment containing p continuously to
position σ; and ROTATE(r, c) rotates continuously a portion of the segment containing c into the extension
of the segment that currently ends at c. The weight of an operation can be defined as the number of
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Fig. 12: Left: a convex subdivision r1 of 6 points. Middle: operation FLIP(r1, p, σ) performed as a continuous
deformation of the segment containing p. Right: operation ROTATE(r2, c) performed as a continuous deformation of
part of the segment containing c.

vertices swept during this continuous deformation. By Theorem 4, a sequence of O(n log n) operations
can transform any convex subdivision to any other convex subdivision on n points. A single operation,
however, may have Ω(n) weight. We conjecture that the weighted diameter of the graph Ĝ(P ) is also
O(n log n) for every n-elements point set P .
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[32] M. Rahman, T. Nishizeki, and S. Ghosh, Rectangular drawings of planar graphs, J. Algorithms,
50 (2004), 62–78.

[33] E. Raisz, The rectangular statistical cartogram, Geographical Review, 24 (1934), 292–296.
[34] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas, The four-colour theorem, J. Combinatorial

Theory, Series B, 70 (1997), 2–44.
[35] F. Santos and R. Seidel, A better upper bound on the number of triangulations of a planar point set,

J. Combinatorial Theory, Series A, 102 (2003), 186–193.
[36] M. Sharir and E. Welzl, Random triangulations of planar point sets, Proc. 22nd Sympos. on Compu-

tational Geometry, 2006, ACM Press, pp. 273–281.
[37] D. Sleator, R. Tarjan, And W. Thurston, Rotations distance, triangulations and hyperbolic geometry,

J. AMS, 1 (1988), 647–682.
[38] R. Tamassia and I. G. Tollis, A unified approach to visibility representations of planar graphs, Dicrete

& Computational Geometry, 1 (1986), 321–341.
[39] P. Turán, On an extremal problem in graph theory (in Hungarian), Math. Fiz. Lapok, 48 (1941),

436–452.
[40] P. Ungar, On diagrams representing graphs, J. London Math. Soc., 28 (1953), 336–342.
[41] M. H. Williams, A linear algorithm for colouring planar graphs with five colours, Computer Journal,

28 (1985), 78–81.
[42] S.K. Wismath, Characterizing bar line-of-sight graphs, in Proc. 1st Sympos. on Computational Ge-

ometry, 1985, ACM Press, pp. 147–152.
[43] B. Yao, H. Chen, C.K. Cheng, and R. Graham, Floorplan representations: Complexity and connec-

tions, ACM Trans. on Design Automation of Electronic Systems, 8 (2003), 55–80.


	1 Introduction
	2 An Upper Bound on the Flip Diameter of Rectangulations
	3 A Lower Bound on the Flip Diameter of Rectangulations
	4 The Flip Diameter for Diagonal Point Sets
	5 Generalization to Convex Subdivisions
	6 Conclusions

