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Permutations that avoid given patterns have been studigcbat depth for their connections to other fields of math-
ematics, computer science, and biology. From a combiratperspective, permutation patterns have served as a
unifying interpretation that relates a vast array of combinial structures. In this paper, we introduce the notibn o

patterns in inversion sequences. A sequegees, ..., ey,) iS an inversion sequence(f< e, < i for all i € [n].
Inversion sequences of lengthare in bijection with permutations of length an inversion sequence can be obtained
from any permutationr = w72 ..., by settinge; = |{j | 7 < ¢ and w; > m;}|. This correspondence makes

it a natural extension to study patterns in inversion segeemuch in the same way that patterns have been studied
in permutations. This paper, the first of two on patterns weigion sequences, focuses on the enumeration of inver-
sion sequences that avoid words of length three. Our resaifisect patterns in inversion sequences to a number of
well-known numerical sequences including Fibonacci numidgell numbers, Schroder numbers, and Euler up/down
numbers.

Keywords: inversion sequences, pattern avoidance, enumeratiorp@amumbers

1 Overview

A permutationt = mm ... 7T, € S, is said tocontaina patternc = oi05...0% € Sy if there exist
indicesi; < i < --- < iy such that for every, b € {1,2,...,k}, we haver;, < m;, if and only if
0. < op. Otherwiser is said toavoid the patterrv. LetS, (o) = {x € S,, | 7 avoidso}. Given any
o € Sy, theavoidance sequena# o is the integer sequence,

S1(0)];[S2(0)], [S3(a)], - -

The avoidance sequences for varisusount a great number of well-known combinatorial strucsures
a result, the study of permutation patterns provides a umgfinterpretation for a number of disparate
discrete structures. Early work of MacMahon [15] enumeg@permutations avoiding 123 and of Knuth
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[12, 13] on 231 and stack-sortable permutations estallislye1973 that for every € Ss, S,.(0) is
counted by the Catalan numbers. In 1985 Simion and Schmldighed the first systematic study of
pattern avoidance in permutations [23]. Thirty years |atleere is a rich body of work demonstrating
the connections between pattern avoidance and many areaatbématics and computation. See, for
example, the survey of Kitaev [11].

Recently, thes-inversion sequence];Ef), defined for a positive integer sequence (s, ..., s,) by
I = {(e1,e0,...,en) |0 < e; < 5},

were introduced in [20] to enumerate certain families otifians via Ehrhart theory. For a variety of
sequences, natural statistics oIff) have the same distribution as natural statistics on othénamerous
combinatorial families, a phenomenon that was used taesaftiopen question about Coxeter groups in
[21].

The words of lengtm over the alphabef0, 1,...,k — 1} can be viewed as the inversion sequences
I%Mk) Whens = (1,2, ...,n), thes-inversion sequencds, = 1511’2""’") have been used in various
ways to encode permutatioBs. For example, the ma@(n) : S,, — I,, defined forr =7, ... 7, € S,
by ©(n) = (e1,e2,...,¢e,), Wheree; = |{j | j < i and e; > e;}|, is a bijection with several nice
properties. These connections to words and permutatioke rhaatural to study pattern avoidance in
inversion sequences in the same way that pattern avoidasdeden studied in words and permutations.

Givenawordp = pips ...px € {0,1,..., k—1}*, define theeductionof p to be the word obtained by
replacing theth smallest entries gf with i—1. For instance, the reduction 852662 is 2031441. We say
that an inversion sequeneec 1,, containsthe patterrp, if there exist some indicels < is < --- < i
such that the reduction ef, e, ...e;, is p. Otherwisee is said toavoidp. LetI,(p) = {e € I, |
e avoidsp}. Theavoidance sequenc# p is the integer sequence

Li(p)l, L)l Ts(p)], - - --

Our focus in this paper is a study of inversion sequencesimgi three-letter word. We discover
a surprisingly rich collection of enumerative results, adlas intriguing conjectures. There will be sev-
eral examples where pattern-avoiding inversion sequeprodde more natural models of combinatorial
sequences than previously known.

This paper is one of the fif8tsystematic studies of pattern avoidance in inversion sepse although
in [7] Duncan and Steingrimsson considered pattern ancigl@n ascent sequencemtroduced in [3],
and obtained interesting enumerative results. (An asegntence is an integer sequenieg eo, . . ., ;)
in whiche; = 0 ande; is a nonnegative integer at most one more than the numbercehtssin the
sequencesges, eq, ..., e,—1). The ascent sequences of lengtthus form a subset df,.) Some of the
open questions posed in [7] were settled by Mansour andu&tatt [17].

Our approach in this paper is combinatorial. For each pattewe first observe an alternate charac-
terization of thep-avoiding inversion sequences. For exampe inversion sequences avoiding 011 are
those whose positive elements are distiisete Section 3.3). We then use the observation to define the
structure of thep-avoiding inversion sequences and relate them to equirusaombinatorial families

@) When our paper was first posted to the arXiv we were notified lapdaur that he and Shattuck had independently obtained
results onI, (o)| for the patterngr = 012, 021, 102, 201, 210 in [16]. Their methods are quite complementary to ours, as we
will describe in Section 2.
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via bijections, recurrences or generating functions. énglocess, we discover and prove refinements via
correspondences between natural statistics. For exathpleumber of 011-avoiding inversion sequences
in I,, with k zerosis equal to the number of partitions of arelement set inté nonempty blockéSection
3.3).

In Section 2 we consider inversion sequentgsvoiding a given 3-letter permutation §0, 1, 2}.

We show that the number of inversion sequences avoidir®js given by theodd-indexed Fibonacci
numbersand that the inversion sequences avoidi@gare counted by thiarge Schrdder numbers We
prove that the patterr01and210areWilf equivalenti.e. that they have the same avoidance sequence.
This sequence does not appear in the OEIS, but we derive aeace for it. Enumerative results for the
patterns 012, 021, 201, 102, and 210 also appear in [16],edlansour and Shattuck additionally prove
that the number of inversion sequences avoidifigis given by the sequence A200753 in the On-Line
Encyclopedia of Integer Sequences (OEIS) [10]. The numbewersion sequences avoidiig@0does

not appear in the OEIS and counting them remains an opengimobl

In Section 3 we consider inversion sequeriGeavoiding a given 3-letter pattern with repeated symbols.
We prove that the inversion sequences avoidiig are counted by th&uler up/down numbers. We
show that the inversion sequences avoidigare counted bpowers of twg, and those avoidingllare
counted by thaBell numbers. Additionally, we prove that the number of inversion sequesnavoiding
101is the same as the number avoiditiDand this is the same as the numbepefmutations avoiding
the vincular pattern 1-23-4. The avoidance sequence for the pat@tfdoes not appear in the OEIS nor
does the number of inversion sequences avoidd® Counting either of these sets is an open problem.

In Section 4, we return t621-avoiding inversion sequences. We examine the correspoedetween
I,(021) and Schrodefrn — 1)-paths, and betweeh), (021) and certain binary trees by introducing two
further bijections. Each bijection succeeds in relatingety of different statistics in inversion sequences
and those combinatorial families. Surprisingly, the asséatistic inI,,(021) is symmetricand we prove
this by defining a bijection betweeh,(021) and a tree structure that is known to be counted by the
Schroder numbers. Section 4 is a testament to the rich catdrial structure that can be uncovered
when examining a class of pattern-avoiding inversion segein-depth.

The results on inversion sequences avoiding permutatiodswards of length 3 are summarized in
Table 1. In the last column of the table, we U$g(p)| as an identifier for the avoidance sequence of
L.(p).

This paper is the first part of a larger study on patterns iefigion sequences. In subsequent work,
we consider a generalization of pattern-avoiding inversiequences that includes many more surprising
results and conjectures.

Throughoutthis paper, we Igt] = {1,2,...,n}. Foraninversion sequenee= (e, e, ...,e,) € I,
letoi(e) = (e}, €5, ..., e,) wheree, = 0 if e; = 0 and otherwise, = e; + ¢ (we allow for negative).
This operation will also be applied to substrings of an isi@r sequence.

We use concatenation to add an element to the beginning oofeardinversion sequence:- e is the
inversion sequend®, eq, ea, ..., e,) and for0 < i < n, e-iis the inversion sequengey, es, ..., ey, ).

2 Inversion sequences avoiding permutations

2.1 Avoiding 012 F5, ; and Boolean permutations

Let F;, denote theath Fibonacci number, whedg = 0, F; = 1 and forn > 2, F,, = F,,_1 + F,,_>. Note
thata,, = F5,_1 satisfies the recurreneg = 3a,,_1 — a,,—2, with initial conditionsa; = 1, as = 2.
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Pattermp

012
021
102
120
201
210

000
001
010
100
011
101
110

an = |I,(p)| counted by:

Fy,_1 (Boolean permutations)
Large Schroder numbers
A(w) = 1+ (z — 2*)(A(2))? [16]

?

Theorem 6 and (5)
Theorem 6 and (5)

Euler up/down numbers

2n=1 (|Sn(132,231)])
?

?

Bell numbers

S,,(1-23-4)
1S, (1-23-4)

in OEIS?

A001519
A006318
A200753
no (A263778)
no (A263777)
no (A263777)

A000111
A000079
no (A263779)
no (A263780)
A000110
A113227
A113227

sequence identifier

233
1806
1694
2803
4306
4306

1385
64
979
3399
877
3207
3207

Tab. 1: Enumeration of inversion sequences avoiding permutatonswords. (OEIS numbers in parentheses were

newly assigned after this paper was posted to the arXiv)

Permutations avoiding boti21 and3412 are known a8oolean permutationd 8, 25] and are counted
by F»,,_1. In this section we show thdf, (012) is the number of Boolean permutations/of.

Observation 1 The inversion sequences avoiditif are those whose positive elements form a weakly

decreasing sequence.

Theorem 1 |1,,(012)| = Fa,—1.

Proof: By Observation 1, it € I,_;(012), the following are all irl,,(012): e-0, e-1, and0-o4 (e). Every

element inl,, (012) arises from an element &f,_,(012) in at least one of these three ways, but certain

elements are counted twice, namely those of the form: - 0 wherex € I,,_5(012). Thus|I,(012)]
satisfies the recurreneg, = 3a,,_1 — a,—_2, With initial conditionsa; = 1, a; = 2. This is the same
recurrence satisfied bib,, ;.

a

In view of the connection between Boolean permutations amd@r groups highlighted in the recent
paper of Petersen and Tenner [18], it would be nice to havenplsibijection encoding them s 2-
avoiding inversion sequences.

2.2 Avoiding 021 the large Schréoder numbers

A Schidern-path is a path in the plane frorfo, 0) to (2n, 0), never going below the-axis, using only
the stepg1, 1) (up), (1, —1) (down) and(2, 0) (flat). For example, usiny, D, andF for up, down, and
flat steps, respectively, the Schroder 14-pate UUDUFUDUFDDDUUDUDDUUUFDDD is

shown in Figure 1.
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Fig. 1: The Schroder 14-path= UUDU FUDUFDDDUUDUDDUUUFDDD

Let R,, denote the set of Schroderpaths and let,, = |R,|. It is well known that the generating
function forr,, is

= n l—z—+Va2-6x+1
R(z) = Z rpa = o7 . (1)
n=0

To relate Schroder paths to inversion sequences, firstthatéhe021-avoiding inversion sequences have
the following simple characterization.

Observation 2 An inversion sequence avoidl if and only if its positive entries are weakly increasing.

Using this characterization, we show that the elementk,(#21) are in bijection with the Schroder
pathsinR,, 1.

Theorem 2 Forn > 1, |1,,(021)| = rp—1.

Proof: Let E(z) = Y7, |I,,(021)|z™. We show thafZ(x) satisfies

E(z) = 2+ zFB(z) + E*(x), (2)
which has solution
T2 61
Ble) =~ < eh(),

and the result will follow from (1).

Givene € I,,(021), consider the last position+ 1 such thak;;, attains its maximal valug. If =0,
then eithere = (0) ore = 0 - ¢’ for somee’ € 1,,_1(021). This accounts for the + xE(z) in (2). We
show that the: for which j > 0 are counted bys?(z).

If j > 0, then(es,...,e;) € I;(021). As for (ejt2,...,e,), We know that fori = 2,...,n — j, by
Observation 2 and by choice gfeithere;; = 0 or

j<ei<jri—l

It follows that subtracting — 1 from the positive entries d&; 2, . . . , e,) and adding @ to the beginning
of the sequence gives an elemenflpf ;(021). Conversely, for any sequences, ..., e;) € I;(021)
andf € I,_;(021), if we addj — 1 to all the positive elements gf and remove the initial 0 of, we
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can append the result fe,, . . ., ¢;, j) to obtain an element df, (021) in which j + 1 is the last position
whose entry attains its maximal value. O

We recall the operation;, defined in Section 1 to facilitate describing a bijection.c lis an inver-
sion sequence, an;,e;11,...,e;) IS a substring ofe in which all positive entries are larger than
k, theno_j(e;, eit1,...,€;) is the sequence obtained by subtractindrom the positive entries of

(61', Cidly--y ej).

The proof of Theorem 2 gives rise to the following recursiviedtion p from I,,(021) to Schrdder
(n — 1)-paths. For € I,,(021), letj + 1 be the last position such that,, attains its maximal valug.
Setp(0) to be the empty path. Then the Schroder path p(e) is defined by

(e) = Fp(ea, ... en) ifj=0
pre) = Up(ei,...,ej)Dp(o1-;(0- (ejt2,...,€,))) otherwise.

For examplep = p(0,1,0,1,0,2,5,7,7,7,9,0,10, 11, 12) is the Schrdoder 14-path shown in Figure 1.
By definition, p gives the following result.

Theorem 3 For n > 1, the number ob21-avoiding inversion sequences of lengthwith £ maximal
elements is the same as the number of &éir(n — 1)-paths withk — 1 initial up steps.

The number of Schrod€r — 1)-paths withk initial up steps is counted by sequence A132372 in the
OEIS [10].
Ira Gessel considered in [9] the generating function

oo

R(z,z) = Z Z an A e)

n=0pER,
whereflat(p) is the number of flat steps in a Schroder pathie showed that

1—axz—+/(1—22)?—4x
2z '

R(I,Z) = ©))

Similarly define
E(I, Z) _ Z Z xnzzeros(e)7
n=1 e€l, (021)

wherezeros(e) is the number of zeros in the inversion sequendeollowing the proof of Theorem 2, we
have
E(z,2) = 2+ x2F(z, 2) + E*(z,2) /2.

Solving, and comparing to (3) we have

2(1— 2z — /(1 —22)? — 4x)
2

E(z,z) = = xzR(z, 2).

This proves the following.

Theorem 4 For n > 1, the number o0621-avoiding inversion sequences of lengthvith £ zeros is the
same as the number of Sélder(n — 1)-paths withk — 1 flat steps.
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Note that the number of Schroder — 1)-paths withk — 1 flat steps is equal to the number of Schroder
(n — 1)-paths witht — 1 peaks (where a peak is an occurrenc&dJ). This can be seen by applying an
involution that replaces evefly D with ' and everyF' with U D. This gives us the following.

Corollary 1 For n > 1, the number 0621-avoiding inversion sequences of lengthvith £ zeros is the
same as the number of Sélder(n — 1)-paths withk — 1 peaks.

In Section 4 we provide a second bijection relating différgatistics in 021-avoiding inversion se-
quences and Schroder paths. We also show a correspondgh@eitain trees counted by the Schroder
numbers and use this to prove that the ascent statistic oi@3dling inversion sequences is symmetric.

2.3 The patterns 201and 210

In this section we prove that the patte2td and210 are Wilf equivalent on inversion sequences. This
has also been shown in [16]. The avoidance sequence for pladtsens did not appear in the OEIS, (it
has now been assigned A263777) but we derive a recurrenoatoute it.

Fore € I,,, call positionj aweak left-to-right maximurifi e; < e; forall 1 < < j.

Observation 3 The210-avoiding inversion sequences are precisely those thabegrartitioned into two
weakly increasing subsequences.

Proof: Suppose: has such a partitiop,, < e,, < -+ < e, andey, < ep, < --- < ¢, _,. If there
existsi < j < k such that; > e; > ey, then no two ofi, j, k can both be in{a4, ..., a;} or both be
in {b1,...,b,—+}, SOe avoids210. Conversely, ife avoids210, leta = (a1,...,a;) be the sequence
of weak left-to-right maxima oé. Thene,, < e,, < --- < ¢e,,. Consideri, j ¢ {a1,...,a;} where
1 < j. The fact that; is not a weak left-to-right maxima implies there exists semsuch thats < 7 and
es > e;. Thus to avoid 210, we must have< e;. O

Observation 4 Let(ey, es,...,e,) € I,,. Additionally, for anyi € [n], let M; = max(e1,es,...,€;—1).
Thene € I,,(201) if and only if for everyi € [n], the entrye; is a weak left-to-right maximum, or for
everyj > i, we havee; < e; ore; > M.

Proof: Lete € I, satisfy the conditions of Observation 4 and, to obtain arealttion, assume there
existi < j < k such thate;e;e, forms a 201 pattern (i.ee; < er < e;). Notice thatM; =
max{er,es,...,ej_1} > e;. It follows thatM; > e, > e;, which contradictions our assumption.

Conversely, if(eq, €2, . .., e,) € 1,(201), consider any;. If ¢; is not a weak left-to-right maximum,
then there exists some maximum valug = e, such that < 7 ande, > ¢;. Therefore, in order to avoid
a 201 pattern, any; wherej > ¢ must havee; > e; ore; > M; = e;. O

Theorem 5 Forn > 1, |1,,(210)| = |1,,(201)].

Proof: We exhibit a bijection based on the characterizations ine®ladions 3 and 4.

Givene € I,,(210), definef € I,,(201) as follows. Lete,, < e,, < --- < ¢,, be the sequence of
weak left-to-right maxima of and lete;,, < e, < --- < e,,_, be the subsequence of remaining elements
of e.
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Fori = 1,...,t, setf,, = e,,. Foreachy = 1,2,...,n — t, we extract an element of the multiset
B ={ep,,eby,---,6€p,_,} and assign it tgy,, fo,,- - -, f5,_, as follows:

Jo, =max{k |k € B—{fu,, foor---, fo,_, } and k < max(e1,...,ep, 1)}

By definition, f will satisfy the characterization property in Observatéof I,,(210). O

In order to get a recurrence that allows us to compute a femsef |I,,(210)| = |1,(201)|, we
define two statisticstop andbottom, one € I,(210) based on the decomposition @fdescribed in
Observation 3. Let,, < eq, < --- < e,, be the sequence of weak left-to-right maximaeadnd let

b, < ey, < --- < ep,_, be the subsequence of remaining elements dhen

top (e) = eq,; bottom (e) = e

If e is weakly increasing, then= n so we definéottom (e) = —1.

Theorem 6 LetT;, ., be the number of € I,,(201) with top (¢) = a andbottom (e) = b. Then

nab ZTn laz+ Z Tn 1,7,by (4)

i=—1 Jj=b+1

with initial conditionsT}, o, = 0if a > nandTy, 1 = 22 (" 1+%).

a

Proof: T}, ,—1 is the number of weakly increasing inversion sequencesayits a. This is the number
of Dyck paths whose last horizontal step is at heighthich is 2=2 (" ”“) Forb > 0, an inversion
sequence of lengthn with top (¢) = a andbottom (e) = b can be obtained by addirigto ane’ of
lengthn — 1 with top (¢/) = a andbottom (¢’) < b; or by addinga to ane’ of lengthn — 1 with
b < top (¢/) < a andbottom (e’) = b. O

From Theorems 5 and 6 we have

n—1 a—1 n—la—1
L,(210)] = [L,201)] = > > Thap = —n ( ) +) > Thap (6)

a=0b=-1 a=0 b=0

The first 12 terms of the sequendg(210)| are
1,2,6,24, 118,674, 4306, 29990, 223668, 1763468, 14558588, 124938648.

This sequence did not appear in the OEIS, but has now be@madsh263777.

A different recurrence to compufg, (210)| = |1,,(201]| is derived in [16]. It is more complicated than
(4) due to the choice of statistics. Nevertheless it is usgatéduce a generating function. Can (4) be
used to derive a simpler generating function?
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2.4 Inversion sequences avoiding 102
Our calculations showed that the number of inversion segggeinl,, avoiding 102 is:

1,2,6,22,89, 381, 1694, 7744, 36168, . . ..

We checked fom < 9 that this matches the sequence A200753 in the OEIS [10], evgeserating
function is given by
Ax) =1+ (z - 2*)(A(x))? (6)

but we were unable to prove this.

In [16], Mansour and Shattuck used a delicate generatingtifmargument to confirm that the gen-
erating function)_, ., |I,(102)|z" does satisfy (6) and from that they provide an explicit folarfor
1, (102)]. -

Is there a direct combinatorial argument to show that theegeimg function for thel02-avoiding
inversion sequences satisfies (6)?

2.5 Avoiding 120

Our calculations show that the number of inversion sequeageiding the patterh20 is given by:
1,2,6,23,103,515, 2803, 16334, 100700, . . .,

but this sequence did not appear in the OEIS (it has now bestgmnasi A263778) and we do not yet know
how to count it. This remains an open question.

3 Avoiding patterns with repeated letters
3.1 Avoiding 000 the Euler numbers and simsun permutations

The Euler up/down numbef,, is the number of permutationsof [n] such thatr; < mo > w3 < ™4 >
---. This is a well-known interpretation of the coefficients retTaylor series expansion ofn(x) +
sec(x):
xn
tan(z) + sec(x) = Z E"F
n>0

Several families are known to be in bijection with the up/dgermutations, including 0-1-2-increasing
trees [14]. These ane-vertex rooted unordered trees in which each vertex has st two children. Each
vertex has a distinct label from the get and labels increase along any path from the root to a leaf.

Theorem 7 |1,,(000)| = |Ep41]

Proof: Observe that < I,, avoids000 if and only if no entry occurs more than twice. We consider

0-1-2-increasing tre€s with n + 1 vertices labele®, 1, . .., n, which are counted by, ;. It is easy to
check that the mapping sending such a ffee the inversion sequeneewheree; is the parentof in T,
is a bijection between these trees dndo00). O

For an example of this bijection, see Figure 2. The bijectibheorem 7 shows that the set of labels
on the internal vertices dF is exactly the sefes,...,e,}.
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(o)

OO
(20 (&) (&)
ONORORON®

Fig. 2: The tree corresponding to= (0, 1,0, 3,2, 1, 2,4, 6,4) under the bijection of Theorem 7

Theorem 8 Let E,, ,, be the number 0600-avoiding inversion sequences of lengthwith & distinct
entries. Then
Enr=n—k+1DE, 11+ QCk—n+1)E,_11

with initial conditionsEy o = 1 andE,, , = 0fork > nork < [(n/2)].

Proof: Elements ofL,,(000) with & distinct entries can be constructed either by appendingnaised
entry to end of ar € I,,_1(000) with k£ — 1 distinct entries or by appending a used (but unrepeated) ent
to the end of ar € I,,_,(000) with % distinct entries.

If e € I,,_1(000) hask — 1 distinct entries, them — k of the possible entries are unused and available
for e,,. Additionally, sincee,, = n — 1 is also possible, there are a totakof- £ + 1 choices.

If e € I,,_1(000) hask distinct entries, then the other— 1 — k are repeats. To append a used entry to
e, while avoiding 000¢,, must be one of thé — (n — 1 — k) used, but unrepeated, elements. This gives
atotal of2k — n + 1 choices. The recurrence follows. O

Another family counted by the Euler up-down numbers is thd®$, of simsun permutationi24]. A
permutation is simsun if it has no double descents, even itaovingn,n — 1,...,k for any k. For
example, 25637814 is not simsun: removi)g, 6 yields the permutation 25314, whefe< 3 < 1 is
a double descent. It is known (e.g. [5]) thati,, . is the number of simsun permutations[of with &
descents then

TSk = (k+ 1)rsp—1k+ (n—2k+ 1)rsp_15-1 @)

with initial conditionsrsg,o = 1 andrs,, = 0 for k > [n/2].
We have the following relationship between simsun pernrtatand 000-avoiding inversion sequences.

Corollary 2 The number of00-avoiding inversion sequences In with n — k distinct entries is the
number of simsun permutations|ef with k& descents.

Proof: The number ot € 1,(000) with n — & distinct entries is obtained by replacikdoy n — k in
the recurrence of the previous theorem. IE&t, = E, ,,—; be the number 0600-avoiding inversion
sequences i, with n — k distinct entries. This gives:

Fn,k = (n—(n—k)—i—l)Fn,Lk—i—(2(n—k)—n+1)Fn,1_,k,1 = (k—|—l)Fn,Lk+(n—2k+1)Fn,17k,1
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with initial conditionsFy o = 1 andF,, ,, = 0 for k > |(n/2)], the same recurrence satisfiedsay, ;.. O

It would be interesting to have a natural bijection for Ctan} 2.
The Entringer numbersd,, ., count the number of down/up permutationsjof+ 1] with first entry
equal tok + 1. (These are A008281 in the OEIS [10].) They satisfy the nemae

dn k= dn,k—l + dn—l,n—k-

Our calculations suggest the following.

Conjecture 1 Forn > 1and0 < k <n — 1, d,, x is the number o¢ € I,,(000) withe,, = k — 1.

3.2 Avoiding 00L 2"~! and S,,(132,231)

In this section, we show that the 001-avoiding inversionuseges are counted by powers of 2. This
indicates a natural connection betwdgri001) and permutations of length avoiding certain patterns
of length 3: the permutations i8,, avoiding both213 and312 are counted b2"~!, as are nine other
pairs of permutations aif23. This was shown by Simion and Schmidt in [23]. Rotem in [19jwkd the
(231, 312) case.

Theorem 9 (Simion-Schmidt) |S,,(«, 8)| = 2"~ for any of the following pairgc, 3) of patterns:

(123,132), (123,213), (132,213), (132, 231), (132, 312),

(213,231), (213,312), (231,312), (231, 321), (312, 321).

Observation 5 For n > 1, I,(001) is the set ot € I,, satisfying, for some € [n],

e1 <eg< o< e > eyl > € > > ey (8)

Theorem 10 Forn > 1, |L,(001)| = 271,

Proof: We give two proofs based on Observation 5.

First proof. In an inversion sequeneesatisfying (8) for some, it must be the case that is maximal
(i.e. e; = i — 1) wheneverl < i < t. It follows that the rest of the sequenge= (ety1,...,e,) can
be viewed as a partition that fits in an— ¢ by t — 1 box, of which there arg("~*)*(!=1) = (»~1).
Summing ovet from 1 to n gives the result.

Second proofRecall from Section 1 the bijectiofi(n) : S,, — L, form = m ... 7, € S, defined by
O(m) = (e1,e2,...,en), Wheree; = |{j | j <iande; > e;}|. Note thate € I,, satisfies (8) if and only
if 7 = ©71(e) satisfies

T >Ty > e > My < M1 < Mg < 00 < Ty

Such permutations are the ones that avoid k8thand231, so the result follows by Theorem 9. O
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3.3 Avoiding 011 the Bell numbers

In this section we show that tiid 1-avoiding inversion sequences are counted by the Bell ntenbe
TheBell numberB,, is the number of ways to partition arrelement set into nonempty subsets called

blocks The numbersS,, ;, of such set partitions int& blocks are known as th8tirling numbers of

the second kindind they satisfy the recurrené, , = kSp—_1% + Sn—1,,—1 With initial conditions

Observation 6 The011-avoiding inversion sequences are those in which the pesititries are distinct.

Theorem 11 The number ofi11-avoiding inversion sequenceslip with k zeros isS,, .

Proof: An inversion sequence € I,(011) with k£ zeros can arise from an inversion sequence in
I,-1(011) in one of two ways. lIfe,, = 0 then(ey,...,e,—1) € I,_1(011) hask — 1 zeros. Other-
wise, (e1,...,e,—1) € I,_1 hask zeros and, by Observation 6, it has- 1 — & distinct positive entries
(out of the possible: — 2 positive elements ofn — 2].) This means that any of the remainikg- 1
positive elements can be assignea}o as well as the new possibility — 1, for a total ofk. Since the
only e € I,(011) with one zero i§0, 1,2, ...,n) and the only € I,,(011) with n zeros is(0, 0, .. .,0),

the recurrence of the Stirling numbers is satisfied with #raesinitial conditions. O

A restricted growth functiois a finite integer sequenee= (v, ...,v,) withv; = 1 and forl < i <
n, v; < 14+ max{vy,...,v;—1}. LetG, be the set of restricted growth functions of lengthElements
of G,, encode partitions ofin]: given a partitionlI of [n], order the blocks ofl as By, ..., By so that
min(B;) < min(B; 1) for 1 <14 < k. Thenv € G,, corresponds to the set partitibhwherei is in block
By of IT if and only if v; = b. The number of distinct entries ofis the number of blocks df.

For example ifvt = (1,2,3,1,3,2,4,5,6,3,4,2) then

I = ({1,4}, {2,6,12}, {3,5,10}, {7,11}, {8},{9}).

The proof of Theorem 11 gives rise to a bijection frdm011) to G,,. For an integer sequenge
let zerogs) be the number of zeros in LetI(011) be the set of alb11-avoiding inversion sequences,
regardless of length an@ the set of all restricted growth sequences.

Define a maps : I(011) — G for e € I(011) recursively. Ifle] = 1, thene = (0) and we define
k(e) = (1). Forle] = n > 1, assumex(ey,...,e,—1) has been defined and let= zeroge). Recall
from the proof of Theorem 11 that sineec 1,,(011), if e,, > 0 thene,, must be one of thé elements
of [n — 1] — {e1,...en—1}, call thema; < as < --- < ai. So with that notation, we definge) =
k(e1,...,en—1) - vy, Wherev,, =k +1if e, =0andv, =iif 0 < e, = a;.

For examplex(0,0,0,1,4,3,0,0,0,6,8,5) = (1,2,3,1,3,2,4,5,6, 3,4,2)

Itis not hard to prove by induction thatdf= (e, ...,e,) € I(011) ands(ey, ..., e,) = (V1,...,0p)
thenl < v; < zeros(es,...,e;) for all ¢, from which it clearly follows thaf(vy,...,v,) € G. ltis
straightforward to reverse, giving a length-preserving bijection betweE011) andG.

3.4 Wilf-equivalent patterns 101and 110 S, (1-23-4)

Our calculations suggested that the pattdfiisand100 are Wilf equivalent on inversion sequences. The
avoidance sequence for both patterns agree with sequeri@?217 in the OEIS [10], where it is said to
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be|S,,(1-23-4), the number of permutations avoiding the pattern 1-23a,ith) with noi < j < k such
thatm; < m; < mj41 < 7. The asymptotics ofS,,(1-23-4) were studied by Elizalde in [8], where he
established good upper and lower bounds.

The OEIS led us to a paper of David Callan [4], which shows plemmutations ofn] avoiding 1-23-4
are in bijection with increasing ordered trees with- 1 vertices whose leaves, taken in preorder, are also
increasing. Callan showed thatif, ; is the number of such trees with+ 1 vertices in which the root
hask children then

n—1

Unk = Un-1,k—1 T K Z Un—1,5 )
j=k

with initial conditionsug ¢ = 1 andu,, , = 0if £ > n, orn > 0 andk = 0.

Theorem 12 |1,,(101)| = |S,,(1-23-4).

Proof: Let Z,, ,, be the number of € I,,(101) with exactlyk zeros and let,, , = |Z,, x|. We show that
zn,1; Satisfies (9) with the same initial conditions.

Let Z,, . be the number o € Z, ;, with exactly? ones. Recall that applying_, to an inversion
sequence decreases the positive entries by 1.

Definey : I, — I,_1 by y(e1,...,en) = o_1(e2,...,e,). Note thaty(Z,, k.¢) = Zn—1kte—1. IN
fact, if ¢ = 0, y is a bijection betwee#,, ; o andZ,,_; ;1. However, if¢ > 0, each elementaf,,_; _;
is the image undey of £ elements ofZ,, .. To see this, let € Z, ., and lete = (e, , €p,, - -, €, ,),
be the subsequence @tonsisting of the zeros and onessinNotee;,, = 0 and, since: avoids101, the’
ones ine must be consecutive. There drsuch ways to place the onesdnnamely as:

(eb2a s aeb1+l)a (ebsa s aebz+l)7 s (ebk+1v s 7ebk+l)'

Thus, sincez, k. = Y2070 | Zn kel = |Znpol + X021 | Zn k.l we have

n—k n—k
Znk = |Zn-1k-1]+ E k| Zn-1k+e-1] = Zn—1k—1 +k E Zp—1,k+6—1-
=1 =1

Clearlyzp o = 1 andz, = 0if £ > n, orn > 0 andk = 0. Re-indexing the summation gives (9). O

Comparing the proof of the recurrence fgr;, here with Callan’s proof of the recurrence for ;, gives
rise to a bijection between01-avoiding inversion sequences wikthzeros and ordered increasing trees
with increasing leaves in which the root Hashildren. We omit the details for now.

Theorem 13 |1,,(101)| = |1,(110)|.

Proof: We observe that the number ok I,,(110) with k£ zeros and ones satisfies the same recurrence
(9). The proof follows the same process as that of Theoreno 112et point of considering the substring
of 0's and 1's for some < 1,,(110). Sincee now avoidsl 10, in the substring = (e, , €p,, - -, €t ),
consisting of its zeros and ones, all but the firehes must be in the laét- 1 positions ofé. This leaves

k possible positions for the first on&s, bs, . . ., bi11. O
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Using the recursion (9) fok,, x+1 andu,, x, if we takeku,, x+1 and subtractk + 1)u,,  the result is

k+1

T (un,k - un—l,k—l) .

Is there a simple interpretation for this in terms of invenstequences, trees, or permutations?

3.5 Avoiding 010 avoiding 100
Our calculations show that the number of inversion sequeaeeiding the patterd10 is given by:

Un,k+1 + kun—l,k =

1,2,5,15,53, 215,979, 4922, 26992, . . .,

but this sequence did not appear in the OEIS (is is now A268a7@ we do not yet know how to count
it.
Similarly, we have calculated thgt, (100)| begins like this:

1,2,6,23,106, 565, 3399, 22678, 165646, . . .,
but it also did not appear in the OEIS (it is now A263780).

4 Revisiting 021-avoidance

In this section, we delve deeper into the structure of 02diebrg inversion sequences and their relation-
ship to structures counted by the Schrdoder numbers. Riesintroduce a bijection that illustrates further
natural correspondences between statistics in inversemsences and Schroder paths. After, we consider
the ascent statistic, which we show is symmetrit,jf021) via a bijection with certain black/white binary
trees.

4.1 Another correspondence between I,,(021) and Schroder paths

Now we define a different bijection, which serves as a tooktate different statistics between inversion
sequences and Schroder paths. Using Observation 2, weedned for any € 1,,(021), e can be written
ase = bob1bs...b,_1 whereb; is the substrinde;, e;11,. . ., e;) such thak; is the first occurrence
of k, and, for everyt € {i,i+ 1,...,j}, we havee, = k ore; = 0. We call eactb;, ablockand say
that someby, is maximalif by = (exy1, ext2,. .., e;) (Makinge,+1 a maximal entry). Notice that any
maximal entrye ;1 must be the first entry ds,.

For example, ife = (0,1,0,1,0,2,5,7,7,7,9,0,10,11, 12), thenby = (0), b; = (1,0,1,0), by =
(2), b5 = (5), b7 = (7,7, 7), bg = (9,0), b10 = (10), b11 = (11), b12 = (12), andb3 = b4 = b6 =
bs = bi3 = by4 are all empty strings. Additionallyyg, b; andb; are maximal.

This decomposition is essential to describing our bijectiti also produces a recurrence relation on
021-avoiding inversion sequences.

Theorem 14 LetY,, . be the number of21-avoiding inversion sequences of lengtlwith & maximal
elements, including; = 0. Then

n—1

Yor =Y 14-1+2 Z Yn—1,, (10)
i—k

with initial conditionY; ; = 1.
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Proof: Given a 021-avoiding inversion sequence of lengthith £ maximal elements, Idb; be the last
maximal block. Consider the effect of removing the lastgnfrb;. If b; contains only one element, then
b; = b, since it is the last maximal block, and removibg gives an inversion sequence contributing
to Y,,—1,x—1. If b; contains more than one element, it could eng or 0. Either way, removing the last
entry shifts everything followindy; one position earlier. This shift may result in a number ofitodal
maximal blocks followingb;, so the resulting inversion sequence contributes to tme ¥6r_, ; where
k<i<n-—1.

Conversely, a 021-avoiding inversion sequence of lemgttith &£ maximal elements can be obtained
from a 021-avoiding inversion sequence of length- 1 with £ — 1 maximal elements by appending
n — 1 to the end. Additionally, given any 021-avoiding inversgaguence of length — 1 with at least
k maximal elements, ib; is thekth maximal block, we can obtain a some= I,,(021) with £ maximal
blocks by appending eithgror 0 to the end ob;. By doing this, all maximal blocks followinb; are no
longer maximal, since the entries have been shifted, iaguiti the desired number of maximal blocks.
m|

A valleyin a Schroder Path is B step immediately followed by abi step. Let thevalley wordof a
Schroder Path be the word obtained when any consecifivés replaced with & . So the Schroder path
UUDUFUDUFDDDUUDUDDUUUFDDD from Figure 1 would have valley word

UUVFUVFDDVUVDVUUFDDD.

We define a mapping : R,,_1 — 1,,(021) using the valley word for each elementfit),_,. The entries
of the valley word are interpreted as instructions for haidan inversion sequence.

Letp be the valley word of a path iR,,_;. DefineM to be a word on the elemen{8,1,2,...,n—1}
that keeps track of the current maximal blocks in the inegrsiequence being built, which we denete
Initially, set M = 0 ande = by whereby = (0). So, the initial length o€ is 1.

The valley wordp = p1ps ... p¢ is read left to right and eagh interpreted as an action performed on
M ande.

e If p;, = U, append/; to the end ok and M, where/; is equal to the current length ef This is
equivalent to starting a new blodi, at the end ot.

e If p;, = D, delete the last entry af/.
e If p, =V, append a 0 to the end of blotk wherej is the last entry of\/.
o If p; = F', append g to the end of bloclk; wherej is the last entry of\/.

Notice that this construction yields an inversion sequenitte weakly increasing positive entries and
therefore avoids 021. Additionally, is reversible and is a bijection. As an example,

$(UUVFUVFDDVUVDVUUFDDD) = (0,1,0,0,2,0,2,5,0,5,9,0,12,13,13),
is the image of the Schrdder path in Figure 1. Notice thatignot the same as
p(UUVFUVFDDVUVDVUUFDDD)

from Section 2.1.
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The bijectionp succeeds in relating different statistics in 021-avoiditvgrsion sequences and Schroder
paths. In the following theorem, the numberlafe zerosin an inversion sequencec I,,(021) is the
number of zeros occurring in the blocksbs ...b,,_;. Additionally, the number of distinct nonzero
values in an inversion sequenee= bob1bsy ... b, 1 € 1,(021)is |{b; | i # 0,b; # €¢}|. By using the
definition of ¢, we achieve the following results.

Corollary3 Forn > 1,

1. ifp € R,—1 with k valleys, therp(p) is an inversion sequence I (021) with k late zeros.

2. ifp € R,_1 wherek is the number of occurrences &fin the valley word op (alternatively, this
is the total number of up steps minus the number of valldyshd(p) is an inversion sequence in
I,,(021) with k distinct nonzero values.

3. if p € R, hask flat steps at height 0, the#(p) € I,,(021) begins withk + 1 zeros.

The number of Schrdder paths of lengthvith & valleys is counted by A101282 in OEIS.

Based on our computations, the following statistic seenmtoespond between inversion sequences
and Schroder paths. However, neithenor ¢ provide the necessary correspondence. a&oentin a
Schroder path is a maximal sequence of consecutive up steps

Conjecture 2 The number op € R,,_; with k — 1 ascents is equal to the numbereof 1,,(021) with &
distinct values.

The sequence in Conjecture 2 is counted by A090981 is OEI8itiddally, notice that Conjecture 2 in
tandem with (2) from Corollary 3 would prove that the numbieschroder paths iR, _; with k£ ascents
is equal to the number of paths Ry, _; with k& occurrences ol/ that are not a part of a vallepU'.

4.2 A symmetric statistic on 021-avoiding inversion sequences

As ascentin an inversion sequenceis an index: such thate; < e;11; the number of ascents in
is denoted byasc (e). In this section, we show that the ascent statistic is symmeh 021-avoiding
inversion sequences. That isgif ; is the number of € I,,(021) with k ascents then,, = an n—k—1.

We make use of a tree structure that appears in the thesisaf Brake [6]. DefineJ,,_; to be the
set of rooted binary trees an— 1 nodes, where each node is either black or white, and no natie is
same color as its right child. For an example, see Figure 3.7Lbe the set of all such trees with no
restriction on the number of nodes. In [6], Drake uses anrgiwa theorem for labeled trees to compute
the generating function foy", keeping track of the number of black nodes. One consequsrbat
|Tn| = rn, thenth large Schrdder number.

The trees iff,, are also related by a natural bijection to the separableytatians inS,,. A separable
permutationis a permutation that can be completely decomposed witletdined skew sums; the trees
in 7,, provide the recipe for this decomposition. (See [2].) Theasable permutations i8,, are exactly
those that avoi@413 and3142 and it is known thatS,, (2413, 3142)| = r,, ([22, 26]).

Returning to the ascent statistic on inversions sequenbasyve that for a fixed number of nodes, the
number of trees ifi” with & black nodes is the same as the number Wwitvhite nodes. Thus the symmetry
of the ascent statistic di3,(021) is a consequence of the following, which we will prove.

Theorem 15 The number of trees iff,,_; with k£ black nodes is the same as the number of inversion
sequences i, (021) with k ascents.
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Theorem 15 will follow from Proposition 1 below once we defareappropriate bijection. From that
we will have the following.

Corollary 4 Leta, ; be the number of € I,,(021) with k ascents. Then,, = an n—k—1-

We define a bijection betwedn (021) and7,,—1 such that the number of ascents in an inversion se-
quence is equal to the number of black nodes in the correspphicee. Define two operations oh.
GivenT,S € T, letw(T,S) be the tree with a white root that has left subtféand right subtreé.
Similarly, define3(T, S) to be the tree with a black root that has left subffeand right subtre&. Note
thatinw(T, S) andg(T, S), the treeS is required to have a black root and white root, respectively

Throughout this section, 1d£°(021) = {e € L,,(021) | e2 = 0} andI®! = {e € 1,,(021) | ex = 1}.
These sets are nonempty only fop> 2.

We define a bijection : 1,(021) — 7,—1 recursively. Set(0) to be the empty tree. The mapping
7 will be defined such that any inversion sequenc#ft{021) maps to a tree with a white root and any
inversion sequence iff!(021) maps to a tree with a black root. Anytime we consider the djmera
w(r(e),r(e")) and B(r(e'), (")), we will ensure that” begins with0,1 and0, 0, respectively, or
e’ = (0) in order to satisfy the condition on right children.

Given any inversion sequenee= (e, e, €3, ..., ¢,) € 1,,(021), we can consider two cases based on
whetheres = 0 orex = 1 (which is equivalent te € 19°(021) or e € 1%1(021), respectively). Let be
the largest value such that = e3 = ... = e;11. Additionally, letk + 1 be the earliest position after
¢+ 1suchthaky,; > k — ¢+ 1. If there is no such position, skt= n. Define

() = W(T(OZ cop—k(€rt1, €ht2y -y n)), T(0, €042, €043,...,65)) (fea=0
B(T(0° - op—k(Cri1, €hi2,s - €n)), T(0, €042, €043,...,e,)) ifea=1

where(0? denotes the sequencefateros. For an example, see Figure 3.

First we show tha0’ - oy (ert1,exi2,---,€,) iS @ 021-avoiding inversion sequence. Fdr-
ov—k(€k+1,€kt2,---,e,) €ach entrye,,; is in the (¢ + 4)-th position. So we must show that when-
evereg; # 0, we havel < ey, — k + £ < £+ i. By choice ofk and Observation 2, it follows that
k—(+1 < exy; < k+iandthe resultimmediately follows. Finally, note th&try 1 (exy1,er12,.-.,en)
will avoid the pattern 021, since its nonzero entries mustkheincrease.

Now consider(0, esy2, o453, ..., ¢ex). We know the nonzero entries 00, epy2, €r13, ..., ex) Will
weakly increase. Additionally, for € {¢ 4+ 2, + 3,...,k}, e; is in position: — ¢. Whenever,; # 0
we wantl < e; < i — ¢; this immediately follows by choice df. Therefore(0, es2,€es13,...,€5) IS a
021-avoiding inversion sequence. Notice that the defimitiof ¢ andk imply thate, o = 1 whene; =0
andey; 2 = 0 whenes = 1, which is necessary to satisfy the condition on right cleifdr

The mapping- has an inverse, ensuring that it is a bijection frb021) to 7,,—1.

Our bijection provides a correspondence between a numbstatétics on inversion sequences and
trees. First, we settle Theorem 15 with the following prapos. GivenT € T, defineB(T') to be the
number of black nodes ift.

Proposition 1 For anye € 1,,(021), asc (e) = B(7(e)).

Proof: (Induction.) We immediately see that this is true foe= 1. Forn > 1, lete € 1,,(021) with j
ascents. We show thafe) has;j black nodes. Setandk to be defined as in the definition of
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7(0,0,0,1,0,0,4,7,7,0,9,0,9,11,14) =

Fig. 3: An example ofr : I,(021) — Tn—1.

If £ = n—1, thene = (0,0,...,0) ore = (0,1,1,...,1). In either of these cases, the only
nodes ofr(e) are in the leftmost branch. Additionally(0,0,...,0) is a tree with all white nodes and

7(0,1,1,...,1) is a tree whose root is black and all other nodes are white.B%o(e)) = asc(e) in
either case.

If ¢ < n—1andk = n, then? + 1 is an ascent; additionally, if € 121 (021), then1 is guaranteed to be
an ascent. The only ascentsadbesides these are elementg6f+ 2, ¢ + 3,...,n}. Notice thatr(e) =

W(T(09),7(0, e02,€013,...,en)) if e € 199(021) or 7(e) = B(7(09),7(0, ep12,€r43,...,¢€,)) if € €
191(021). In each of theseB(7(e)) = B(7(0,er42, €043, --,en)) andB(r(e)) = 1+ 7(0, ery2, €13,
..., en) respectively. It follows inductively thaB(r(e)) = asc (e).
Now, if / < n — 1 andk < n, we have the following argument, which we break into two sadé
es = 0, then the choice of andk requires that + 1 andk are ascent positions. Additionally, there are no

ascentsirfe, ea, €3, ..., ep41), SOasc (e) = 1+asc(epia, €r43,...,ex)+14asc(ext1, Chta,---,en)-
It follows that
B(r(e)) = B(1(0°: op—(ert1,€rt2,---,€n))) + B(1(0, €042, €043, ..., €x))
= asc(0° op_p(err1,ehi2,---sen)) +asc(0,epra,€or3,...,ex)
= asc(€kt1,€kt2,---,6n) + 1+ asc(epta,erqs,...5) +1
= asc(e).
If e2 = 1, then the definitions of and k require thatl, ¢ + 1, andk are ascent positions. Addition-
ally, there are no ascents (@2, es,...,ep+1), SOasc(e) = 1+ 1 + asc(ept2,€r43,...,€5) + 1+
asc (Ex41, k42, - - -5 €n). It follows that
B(T(e)) = 1+ B(T(OZ . Ué—k(€k+1,€k+27 ceey en))) + B(T(O, €l42,€043, -+, ek))
= 1+asc(0° op—p(ert1,ert2,..- en)) +asc(0,ery2, €043, ..€x)
= 1+ asc(egt1,€kt2,---,6n) +1+asc(epio,erys, ... e5)+1
= asc(e).
O

It would be nice to have a direct combinatorial proof of Ctant 4.
There are two other natural statistics on trees and inverouences for which provides a corre-
spondence.
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Theorem 16 The number of maximal values in an inversion sequeneeI,, (021), not counting the
initial zero ofe, is equal to the number of black nodes in the leftmost branef{d).

Proof: Lete € I,,(021) with ¢t maximal values. By choice dfandk in the definition ofr, none of the

entrieses, ey, . . ., x Of e can be maximal. Therefore, the maximal valueg &fill all occur among the
entrieses, ez, €x11, €k+2, - - -, €,. Additionally, if e; is maximal, wheré € {k + 1,k + 2,...,n}, then
that corresponding entry will be maximal® - oy (ext1, €ri2;s---»en).

The number of black nodes in the left branchré#) is equal to the number of black nodes in the left
branch ofr(0°-o;_j(ext1, €rt2, - - -, en)) if ea = 0. If e3 = 1, then the number of black nodes in the left
branch ofr(e) exceeds the number of black nodes in the left braneH(@f - o1 (ex+1,€rt2,-- -5 €n))
by one. The result follows inductively. |

The mappingr visibly encodes the number of initial zeros in an inversieguence. The following
corollary follows quickly from the definition of.

Corollary5 Lete € 1,,(021) where0 = e; = es = --- = egy1. Then the toff nodes of the leftmost
branch ofr(e) are white.

5 Concluding remarks

This report only scratches the surface of pattern-avoidamdénversion sequences, but we hope that it
demonstrates the surprising ability of pattern-avoidimgersion sequences to provide simple and natural
models for familiar combinatorial sequences.

A number of open questions have been raised throughout #erp most notably, finding general
expressions for the avoidance sequences for the paft2end 10, and010. In addition to settling Con-
jecture 1 in Section 3.1 and Conjecture 2 in Section 4.1, itld/be nice to see a simple bijection between
I,,(012) and Boolean permutations pf] (Section 2.1); a combinatorial interpretation of the reeoce
at the end of Section 3.4 for the number of inversion sequetk, (101) with k zeros; and a direct
combinatorial proof of Corollary 4 in Section 4.2.

There are many obvious ways to extend or generalize this:vaanksider longer patterns, sets of pat-
terns, other statisticg;analogs, bijective proofs, or more natural bijectionstls@numeration questions;
or even consider pattern avoidancdjfi for other sequencesof positive integers.

In Part Il of this report, we consider a different generdlza of pattern-avoidance in inversion se-
guences and discover some nice surprises, a few conjectmeseveral open questions.
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