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Permutations that avoid given patterns have been studied ingreat depth for their connections to other fields of math-
ematics, computer science, and biology. From a combinatorial perspective, permutation patterns have served as a
unifying interpretation that relates a vast array of combinatorial structures. In this paper, we introduce the notion of
patterns in inversion sequences. A sequence(e1, e2, . . . , en) is an inversion sequence if0 ≤ ei < i for all i ∈ [n].
Inversion sequences of lengthn are in bijection with permutations of lengthn; an inversion sequence can be obtained
from any permutationπ = π1π2 . . . πn by settingei = |{j | j < i and πj > πi}|. This correspondence makes
it a natural extension to study patterns in inversion sequences much in the same way that patterns have been studied
in permutations. This paper, the first of two on patterns in inversion sequences, focuses on the enumeration of inver-
sion sequences that avoid words of length three. Our resultsconnect patterns in inversion sequences to a number of
well-known numerical sequences including Fibonacci numbers, Bell numbers, Schröder numbers, and Euler up/down
numbers.

Keywords: inversion sequences, pattern avoidance, enumeration, Schröder numbers

1 Overview
A permutationπ = π1π2 . . . πn ∈ Sn is said tocontaina patternσ = σ1σ2 . . . σk ∈ Sk if there exist
indicesi1 < i2 < · · · < ik such that for everya, b ∈ {1, 2, . . . , k}, we haveπia < πib if and only if
σa < σb. Otherwise,π is said toavoid the patternσ. Let Sn(σ) = {π ∈ Sn | π avoidsσ}. Given any
σ ∈ Sk, theavoidance sequenceof σ is the integer sequence,

|S1(σ)|, |S2(σ)|, |S3(σ)|, . . . .

The avoidance sequences for variousσ count a great number of well-known combinatorial structures. As
a result, the study of permutation patterns provides a unifying interpretation for a number of disparate
discrete structures. Early work of MacMahon [15] enumerating permutations avoiding 123 and of Knuth
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[12, 13] on 231 and stack-sortable permutations established by 1973 that for everyσ ∈ S3, Sn(σ) is
counted by the Catalan numbers. In 1985 Simion and Schmidt published the first systematic study of
pattern avoidance in permutations [23]. Thirty years later, there is a rich body of work demonstrating
the connections between pattern avoidance and many areas ofmathematics and computation. See, for
example, the survey of Kitaev [11].

Recently, thes-inversion sequences,I(s)n , defined for a positive integer sequences = (s1, . . . , sn) by

I
(s)
n = {(e1, e2, . . . , en) | 0 ≤ ei < si},

were introduced in [20] to enumerate certain families of partitions via Ehrhart theory. For a variety of
sequencess, natural statistics onI(s)n have the same distribution as natural statistics on other equinumerous
combinatorial families, a phenomenon that was used to settle an open question about Coxeter groups in
[21].

The words of lengthn over the alphabet{0, 1, . . . , k − 1} can be viewed as the inversion sequences

I
(k,k,...,k)
n . Whens = (1, 2, . . . , n), thes-inversion sequencesIn = I

(1,2,...,n)
n have been used in various

ways to encode permutationsSn. For example, the mapΘ(π) : Sn → In defined forπ = π1 . . . πn ∈ Sn

by Θ(π) = (e1, e2, . . . , en), whereei = |{j | j < i and ej > ei}|, is a bijection with several nice
properties. These connections to words and permutations make it natural to study pattern avoidance in
inversion sequences in the same way that pattern avoidance has been studied in words and permutations.

Given a wordp = p1p2 . . . pk ∈ {0, 1, . . . , k−1}k, define thereductionof p to be the word obtained by
replacing theith smallest entries ofpwith i−1. For instance, the reduction of3052662 is2031441. We say
that an inversion sequencee ∈ In containsthe patternp, if there exist some indicesi1 < i2 < · · · < ik
such that the reduction ofei1ei2 . . . eik is p. Otherwise,e is said toavoid p. Let In(p) = {e ∈ In |
e avoidsp}. Theavoidance sequenceof p is the integer sequence

|I1(p)|, |I2(p)|, |I3(p)|, . . . .

Our focus in this paper is a study of inversion sequences avoiding a three-letter wordp. We discover
a surprisingly rich collection of enumerative results, as well as intriguing conjectures. There will be sev-
eral examples where pattern-avoiding inversion sequencesprovide more natural models of combinatorial
sequences than previously known.

This paper is one of the first(i) systematic studies of pattern avoidance in inversion sequences, although
in [7] Duncan and Steingrı́msson considered pattern avoidance inascent sequences, introduced in [3],
and obtained interesting enumerative results. (An ascent sequence is an integer sequence(e1, e2, . . . , en)
in which e1 = 0 andei is a nonnegative integer at most one more than the number of ascents in the
sequences(e1, e2, . . . , ei−1). The ascent sequences of lengthn thus form a subset ofIn.) Some of the
open questions posed in [7] were settled by Mansour and Shattuck in [17].

Our approach in this paper is combinatorial. For each pattern p, we first observe an alternate charac-
terization of thep-avoiding inversion sequences. For example:the inversion sequences avoiding 011 are
those whose positive elements are distinct(see Section 3.3). We then use the observation to define the
structure of thep-avoiding inversion sequences and relate them to equinumerous combinatorial families

(i) When our paper was first posted to the arXiv we were notified by Mansour that he and Shattuck had independently obtained
results on|In(σ)| for the patternsσ = 012, 021, 102, 201, 210 in [16]. Their methods are quite complementary to ours, as we
will describe in Section 2.
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via bijections, recurrences or generating functions. In the process, we discover and prove refinements via
correspondences between natural statistics. For example,the number of 011-avoiding inversion sequences
in In with k zerosis equal to the number of partitions of ann-element set intok nonempty blocks(Section
3.3).

In Section 2 we consider inversion sequencesIn avoiding a given 3-letter permutation of{0, 1, 2}.
We show that the number of inversion sequences avoiding012 is given by theodd-indexed Fibonacci
numbersand that the inversion sequences avoiding021are counted by thelarge Schröder numbers. We
prove that the patterns201and210areWilf equivalent, i.e. that they have the same avoidance sequence.
This sequence does not appear in the OEIS, but we derive a recurrence for it. Enumerative results for the
patterns 012, 021, 201, 102, and 210 also appear in [16], where Mansour and Shattuck additionally prove
that the number of inversion sequences avoiding102 is given by the sequence A200753 in the On-Line
Encyclopedia of Integer Sequences (OEIS) [10]. The number of inversion sequences avoiding120does
not appear in the OEIS and counting them remains an open problem.

In Section 3 we consider inversion sequencesIn avoiding a given 3-letter pattern with repeated symbols.
We prove that the inversion sequences avoiding000are counted by theEuler up/down numbers. We
show that the inversion sequences avoiding001are counted bypowers of two, and those avoiding011are
counted by theBell numbers. Additionally, we prove that the number of inversion sequences avoiding
101is the same as the number avoiding110and this is the same as the number ofpermutations avoiding
the vincular pattern 1-23-4. The avoidance sequence for the pattern010does not appear in the OEIS nor
does the number of inversion sequences avoiding100. Counting either of these sets is an open problem.

In Section 4, we return to021-avoiding inversion sequences. We examine the correspondence between
In(021) and Schröder(n − 1)-paths, and betweenIn(021) and certain binary trees by introducing two
further bijections. Each bijection succeeds in relating a variety of different statistics in inversion sequences
and those combinatorial families. Surprisingly, the ascent statistic inIn(021) is symmetric, and we prove
this by defining a bijection betweenIn(021) and a tree structure that is known to be counted by the
Schröder numbers. Section 4 is a testament to the rich combinatorial structure that can be uncovered
when examining a class of pattern-avoiding inversion sequences in-depth.

The results on inversion sequences avoiding permutations and words of length 3 are summarized in
Table 1. In the last column of the table, we use|I7(p)| as an identifier for the avoidance sequence of
In(p).

This paper is the first part of a larger study on patterns in inversion sequences. In subsequent work,
we consider a generalization of pattern-avoiding inversion sequences that includes many more surprising
results and conjectures.

Throughout this paper, we let[n] = {1, 2, . . . , n}. For an inversion sequencee = (e1, e2, . . . , en) ∈ In,
let σt(e) = (e′1, e

′
2, . . . , e

′
n) wheree′i = 0 if ei = 0 and otherwisee′i = ei + t (we allow for negativet).

This operation will also be applied to substrings of an inversion sequence.
We use concatenation to add an element to the beginning or endof an inversion sequence:0 · e is the

inversion sequence(0, e1, e2, . . . , en) and for0 ≤ i ≤ n, e · i is the inversion sequence(e1, e2, . . . , en, i).

2 Inversion sequences avoiding permutations
2.1 Avoiding 012: F2n−1 and Boolean permutations
LetFn denote thenth Fibonacci number, whereF0 = 0,F1 = 1 and forn ≥ 2,Fn = Fn−1+Fn−2. Note
thatan = F2n−1 satisfies the recurrencean = 3an−1 − an−2, with initial conditionsa1 = 1, a2 = 2.
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Patternp an = |In(p)| counted by: in OEIS? sequence identifiera7

012 F2n−1 (Boolean permutations) A001519 233
021 Large Schröder numbers A006318 1806
102 A(x) = 1 + (x− x2)(A(x))3 [16] A200753 1694
120 ? no (A263778) 2803
201 Theorem 6 and (5) no (A263777) 4306
210 Theorem 6 and (5) no (A263777) 4306

000 Euler up/down numbers A000111 1385
001 2n−1 (|Sn(132, 231)|) A000079 64
010 ? no (A263779) 979
100 ? no (A263780) 3399
011 Bell numbers A000110 877
101 |Sn(1-23-4)| A113227 3207
110 |Sn(1-23-4)| A113227 3207

Tab. 1: Enumeration of inversion sequences avoiding permutationsand words. (OEIS numbers in parentheses were
newly assigned after this paper was posted to the arXiv)

Permutations avoiding both321 and3412 are known asBoolean permutations[18, 25] and are counted
byF2n−1. In this section we show thatIn(012) is the number of Boolean permutations of[n].

Observation 1 The inversion sequences avoiding012 are those whose positive elements form a weakly
decreasing sequence.

Theorem 1 |In(012)| = F2n−1.

Proof: By Observation 1, ife ∈ In−1(012), the following are all inIn(012): e·0, e·1, and0·σ1(e). Every
element inIn(012) arises from an element ofIn−1(012) in at least one of these three ways, but certain
elements are counted twice, namely those of the form0 · x · 0 wherex ∈ In−2(012). Thus|In(012)|
satisfies the recurrencean = 3an−1 − an−2, with initial conditionsa1 = 1, a2 = 2. This is the same
recurrence satisfied byF2n−1. ✷

In view of the connection between Boolean permutations and Coxeter groups highlighted in the recent
paper of Petersen and Tenner [18], it would be nice to have a simple bijection encoding them as012-
avoiding inversion sequences.

2.2 Avoiding 021: the large Schröder numbers

A Schr̈odern-path is a path in the plane from(0, 0) to (2n, 0), never going below thex-axis, using only
the steps(1, 1) (up),(1,−1) (down) and(2, 0) (flat). For example, usingU , D, andF for up, down, and
flat steps, respectively, the Schröder 14-pathp = UUDUFUDUFDDDUUDUDDUUUFDDD is
shown in Figure 1.
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Fig. 1: The Schröder 14-pathp = UUDUFUDUFDDDUUDUDDUUUFDDD

Let Rn denote the set of Schrödern-paths and letrn = |Rn|. It is well known that the generating
function forrn is

R(x) =

∞
∑

n=0

rnx
n =

1− x−
√
x2 − 6x+ 1

2x
. (1)

To relate Schröder paths to inversion sequences, first notethat the021-avoiding inversion sequences have
the following simple characterization.

Observation 2 An inversion sequence avoids021 if and only if its positive entries are weakly increasing.

Using this characterization, we show that the elements ofIn(021) are in bijection with the Schröder
paths inRn−1.

Theorem 2 For n ≥ 1, |In(021)| = rn−1.

Proof: Let E(x) =
∑∞

n=1 |In(021)|xn. We show thatE(x) satisfies

E(x) = x+ xE(x) + E2(x), (2)

which has solution

E(x) =
1− x−

√
x2 − 6x+ 1

2
= xR(x),

and the result will follow from (1).
Givene ∈ In(021), consider the last positionj + 1 such thatej+1 attains its maximal valuej. If j=0,

then eithere = (0) or e = 0 · e′ for somee′ ∈ In−1(021). This accounts for thex + xE(x) in (2). We
show that thee for which j > 0 are counted byE2(x).

If j > 0, then(e1, . . . , ej) ∈ Ij(021). As for (ej+2, . . . , en), we know that fori = 2, . . . , n − j, by
Observation 2 and by choice ofj, eitherej+i = 0 or

j ≤ ej+i < j + i− 1.

It follows that subtractingj−1 from the positive entries of(ej+2, . . . , en) and adding a0 to the beginning
of the sequence gives an element ofIn−j(021). Conversely, for any sequences(e1, . . . , ej) ∈ Ij(021)
andf ∈ In−j(021), if we addj − 1 to all the positive elements off and remove the initial 0 off , we
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can append the result to(e1, . . . , ej , j) to obtain an element ofIn(021) in whichj + 1 is the last position
whose entry attains its maximal value. ✷

We recall the operationσk defined in Section 1 to facilitate describing a bijection. Ife is an inver-
sion sequence, and(ei, ei+1, . . . , ej) is a substring ofe in which all positive entries are larger than
k, then σ−k(ei, ei+1, . . . , ej) is the sequence obtained by subtractingk from the positive entries of
(ei, ei+1, . . . , ej).

The proof of Theorem 2 gives rise to the following recursive bijection ρ from In(021) to Schröder
(n − 1)-paths. Fore ∈ In(021), let j + 1 be the last position such thatej+1 attains its maximal valuej.
Setρ(0) to be the empty path. Then the Schröder pathp = ρ(e) is defined by

ρ(e) =

{

Fρ(e2, . . . , en) if j = 0
Uρ(e1, . . . , ej)Dρ(σ1−j(0 · (ej+2, . . . , en))) otherwise.

For example,p = ρ(0, 1, 0, 1, 0, 2, 5, 7, 7, 7, 9, 0, 10, 11, 12) is the Schröder 14-path shown in Figure 1.
By definition,ρ gives the following result.

Theorem 3 For n ≥ 1, the number of021-avoiding inversion sequences of lengthn with k maximal
elements is the same as the number of Schröder(n− 1)-paths withk − 1 initial up steps.

The number of Schröder(n − 1)-paths withk initial up steps is counted by sequence A132372 in the
OEIS [10].

Ira Gessel considered in [9] the generating function

R(x, z) =

∞
∑

n=0

∑

p∈Rn

xnzflat(p),

whereflat(p) is the number of flat steps in a Schröder pathp. He showed that

R(x, z) =
1− xz −

√

(1− xz)2 − 4x

2x
. (3)

Similarly define

E(x, z) =

∞
∑

n=1

∑

e∈In(021)

xnzzeros(e),

wherezeros(e) is the number of zeros in the inversion sequencee. Following the proof of Theorem 2, we
have

E(x, z) = xz + xzE(x, z) + E2(x, z)/z.

Solving, and comparing to (3) we have

E(x, z) =
z(1− xz −

√

(1− xz)2 − 4x)

2
= xzR(x, z).

This proves the following.

Theorem 4 For n ≥ 1, the number of021-avoiding inversion sequences of lengthn with k zeros is the
same as the number of Schröder(n− 1)-paths withk − 1 flat steps.
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Note that the number of Schröder(n− 1)-paths withk− 1 flat steps is equal to the number of Schröder
(n− 1)-paths withk − 1 peaks (where a peak is an occurrence ofUD). This can be seen by applying an
involution that replaces everyUD with F and everyF with UD. This gives us the following.

Corollary 1 For n ≥ 1, the number of021-avoiding inversion sequences of lengthn with k zeros is the
same as the number of Schröder(n− 1)-paths withk − 1 peaks.

In Section 4 we provide a second bijection relating different statistics in 021-avoiding inversion se-
quences and Schröder paths. We also show a correspondence with certain trees counted by the Schröder
numbers and use this to prove that the ascent statistic on 021-avoiding inversion sequences is symmetric.

2.3 The patterns 201and 210

In this section we prove that the patterns201 and210 are Wilf equivalent on inversion sequences. This
has also been shown in [16]. The avoidance sequence for thesepatterns did not appear in the OEIS, (it
has now been assigned A263777) but we derive a recurrence to compute it.

Fore ∈ In, call positionj aweak left-to-right maximumif ei ≤ ej for all 1 ≤ i < j.

Observation 3 The210-avoiding inversion sequences are precisely those that canbe partitioned into two
weakly increasing subsequences.

Proof: Supposee has such a partitionea1
≤ ea2

≤ · · · ≤ eat
andeb1 ≤ eb2 ≤ · · · ≤ ebn−t

. If there
existsi < j < k such thatei > ej > ek, then no two ofi, j, k can both be in{a1, . . . , at} or both be
in {b1, . . . , bn−t}, so e avoids210. Conversely, ife avoids210, let a = (a1, . . . , at) be the sequence
of weak left-to-right maxima ofe. Thenea1

≤ ea2
≤ · · · ≤ eat

. Consideri, j 6∈ {a1, . . . , at} where
i < j. The fact thatei is not a weak left-to-right maxima implies there exists somees such thats < i and
es > ei. Thus to avoid 210, we must haveei ≤ ej . ✷

Observation 4 Let (e1, e2, . . . , en) ∈ In. Additionally, for anyi ∈ [n], letMi = max(e1, e2, . . . , ei−1).
Thene ∈ In(201) if and only if for everyi ∈ [n], the entryei is a weak left-to-right maximum, or for
everyj > i, we haveej ≤ ei or ej > Mi.

Proof: Let e ∈ In satisfy the conditions of Observation 4 and, to obtain a contradiction, assume there
exist i < j < k such thateiejek forms a 201 pattern (i.e.ej < ek < ei). Notice thatMj =
max{e1, e2, . . . , ej−1} ≥ ei. It follows thatMj > ek > ej, which contradictions our assumption.

Conversely, if(e1, e2, . . . , en) ∈ In(201), consider anyei. If ei is not a weak left-to-right maximum,
then there exists some maximum valueMi = es such thats < i andes > ei. Therefore, in order to avoid
a 201 pattern, anyej wherej > i must haveei ≥ ej or ej ≥ Mi = es. ✷

Theorem 5 For n ≥ 1, |In(210)| = |In(201)|.

Proof: We exhibit a bijection based on the characterizations in Observations 3 and 4.
Givene ∈ In(210), definef ∈ In(201) as follows. Letea1

≤ ea2
≤ · · · ≤ eat

be the sequence of
weak left-to-right maxima ofe and leteb1 ≤ eb2 ≤ · · · ≤ ebn−t

be the subsequence of remaining elements
of e.
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For i = 1, . . . , t, setfai
= eai

. For eachj = 1, 2, . . . , n − t, we extract an element of the multiset
B = {eb1 , eb2 , . . . , ebn−t

} and assign it tofb1 , fb2 , . . . , fbn−t
as follows:

fbj = max{k | k ∈ B − {fb1 , fb2 , . . . , fbj−1
} and k < max(e1, . . . , ebj−1)}.

By definition,f will satisfy the characterization property in Observation4 of In(210). ✷

In order to get a recurrence that allows us to compute a few terms of |In(210)| = |In(201)|, we
define two statistics,top andbottom , on e ∈ In(210) based on the decomposition ofe described in
Observation 3. Letea1

≤ ea2
≤ · · · ≤ eat

be the sequence of weak left-to-right maxima ofe and let
eb1 ≤ eb2 ≤ · · · ≤ ebn−t

be the subsequence of remaining elements ofe. Then

top (e) = eat
; bottom (e) = ebn−t

.

If e is weakly increasing, thent = n so we definebottom (e) = −1.

Theorem 6 LetTn,a,b be the number ofe ∈ In(201) with top (e) = a andbottom (e) = b. Then

Tn,a,b =

b
∑

i=−1

Tn−1,a,i +

a
∑

j=b+1

Tn−1,j,b, (4)

with initial conditionsTn,a,b = 0 if a ≥ n andTn,a,−1 = n−a
n

(

n−1+a

a

)

.

Proof: Tn,a,−1 is the number of weakly increasing inversion sequences withen = a. This is the number
of Dyck paths whose last horizontal step is at heighta which is n−a

n

(

n−1+a
a

)

. For b ≥ 0, an inversion
sequencee of lengthn with top (e) = a andbottom (e) = b can be obtained by addingb to ane′ of
lengthn − 1 with top (e′) = a andbottom (e′) ≤ b; or by addinga to ane′ of lengthn − 1 with
b < top (e′) ≤ a andbottom (e′) = b. ✷

From Theorems 5 and 6 we have

|In(210)| = |In(201)| =

n−1
∑

a=0

a−1
∑

b=−1

Tn,a,b =
1

n+ 1

(

2n

n

)

+

n−1
∑

a=0

a−1
∑

b=0

Tn,a,b. (5)

The first 12 terms of the sequence|In(210)| are

1, 2, 6, 24, 118, 674, 4306, 29990, 223668, 1763468, 14558588, 124938648.

This sequence did not appear in the OEIS, but has now been assigned A263777.
A different recurrence to compute|In(210)| = |In(201| is derived in [16]. It is more complicated than

(4) due to the choice of statistics. Nevertheless it is used to produce a generating function. Can (4) be
used to derive a simpler generating function?
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2.4 Inversion sequences avoiding 102
Our calculations showed that the number of inversion sequences inIn avoiding 102 is:

1, 2, 6, 22, 89, 381, 1694, 7744, 36168, . . . .

We checked forn ≤ 9 that this matches the sequence A200753 in the OEIS [10], whose generating
function is given by

A(x) = 1 + (x − x2)(A(x))3 (6)

but we were unable to prove this.
In [16], Mansour and Shattuck used a delicate generating function argument to confirm that the gen-

erating function
∑

n≥0 |In(102)|xn does satisfy (6) and from that they provide an explicit formula for
|In(102)|.

Is there a direct combinatorial argument to show that the generating function for the102-avoiding
inversion sequences satisfies (6)?

2.5 Avoiding 120
Our calculations show that the number of inversion sequences avoiding the pattern120 is given by:

1, 2, 6, 23, 103, 515, 2803, 16334, 100700, . . . ,

but this sequence did not appear in the OEIS (it has now been assigned A263778) and we do not yet know
how to count it. This remains an open question.

3 Avoiding patterns with repeated letters
3.1 Avoiding 000: the Euler numbers and simsun permutations
The Euler up/down numberEn is the number of permutationsπ of [n] such thatπ1 < π2 > π3 < π4 >
· · · . This is a well-known interpretation of the coefficients in the Taylor series expansion oftan(x) +
sec(x):

tan(x) + sec(x) =
∑

n≥0

En

xn

n!
.

Several families are known to be in bijection with the up/down permutations, including 0-1-2-increasing
trees [14]. These aren-vertex rooted unordered trees in which each vertex has at most two children. Each
vertex has a distinct label from the set[n] and labels increase along any path from the root to a leaf.

Theorem 7 |In(000)| = |En+1|

Proof: Observe thate ∈ In avoids000 if and only if no entry occurs more than twice. We consider
0-1-2-increasing treesT with n+ 1 vertices labeled0, 1, . . . , n, which are counted byEn+1. It is easy to
check that the mapping sending such a treeT to the inversion sequencee, whereei is the parent ofi in T,
is a bijection between these trees andIn(000). ✷

For an example of this bijection, see Figure 2. The bijectionof Theorem 7 shows that the set of labels
on the internal vertices ofT is exactly the set{e1, . . . , en}.
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Fig. 2: The tree corresponding toe = (0, 1, 0, 3, 2, 1, 2, 4, 6, 4) under the bijection of Theorem 7

Theorem 8 Let En,k be the number of000-avoiding inversion sequences of lengthn with k distinct
entries. Then

En,k = (n− k + 1)En−1,k−1 + (2k − n+ 1)En−1,k

with initial conditionsE0,0 = 1 andEn,k = 0 for k > n or k < ⌈(n/2)⌉.

Proof: Elements ofIn(000) with k distinct entries can be constructed either by appending an unused
entry to end of ane ∈ In−1(000) with k−1 distinct entries or by appending a used (but unrepeated) entry
to the end of ane ∈ In−1(000) with k distinct entries.

If e ∈ In−1(000) hask − 1 distinct entries, thenn− k of the possible entries are unused and available
for en. Additionally, sinceen = n− 1 is also possible, there are a total ofn− k + 1 choices.

If e ∈ In−1(000) hask distinct entries, then the othern− 1− k are repeats. To append a used entry to
e, while avoiding 000,en must be one of thek − (n− 1− k) used, but unrepeated, elements. This gives
a total of2k − n+ 1 choices. The recurrence follows. ✷

Another family counted by the Euler up-down numbers is the set RSn of simsun permutations[24]. A
permutation is simsun if it has no double descents, even after removingn, n − 1, . . . , k for anyk. For
example, 25637814 is not simsun: removing8, 7, 6 yields the permutation 25314, where5 < 3 < 1 is
a double descent. It is known (e.g. [5]) that ifrsn,k is the number of simsun permutations of[n] with k
descents then

rsn,k = (k + 1)rsn−1,k + (n− 2k + 1)rsn−1,k−1 (7)

with initial conditionsrs0,0 = 1 andrsn,k = 0 for k > ⌊n/2⌋.
We have the following relationship between simsun permutations and 000-avoiding inversion sequences.

Corollary 2 The number of000-avoiding inversion sequences inIn with n − k distinct entries is the
number of simsun permutations of[n] with k descents.

Proof: The number ofe ∈ In(000) with n − k distinct entries is obtained by replacingk by n − k in
the recurrence of the previous theorem. LetFn,k = En,n−k be the number of000-avoiding inversion
sequences inIn with n− k distinct entries. This gives:

Fn,k = (n−(n−k)+1)Fn−1,k+(2(n−k)−n+1)Fn−1,k−1 = (k+1)Fn−1,k+(n−2k+1)Fn−1,k−1
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with initial conditionsF0,0 = 1 andFn,k = 0 for k > ⌊(n/2)⌋, the same recurrence satisfied byrsn,k. ✷

It would be interesting to have a natural bijection for Corollary 2.
The Entringer numbers, dn,k, count the number of down/up permutations of[n + 1] with first entry

equal tok + 1. (These are A008281 in the OEIS [10].) They satisfy the recurrence

dn,k = dn,k−1 + dn−1,n−k.

Our calculations suggest the following.

Conjecture 1 For n ≥ 1 and0 ≤ k ≤ n− 1, dn,k is the number ofe ∈ In(000) with en = k − 1.

3.2 Avoiding 001: 2n−1 and Sn(132, 231)

In this section, we show that the 001-avoiding inversion sequences are counted by powers of 2. This
indicates a natural connection betweenIn(001) and permutations of lengthn avoiding certain patterns
of length 3: the permutations inSn avoiding both213 and312 are counted by2n−1, as are nine other
pairs of permutations of123. This was shown by Simion and Schmidt in [23]. Rotem in [19] showed the
(231, 312) case.

Theorem 9 (Simion-Schmidt) |Sn(α, β)| = 2n−1 for any of the following pairs(α, β) of patterns:

(123, 132), (123, 213), (132, 213), (132, 231), (132, 312),

(213, 231), (213, 312), (231, 312), (231, 321), (312, 321).

Observation 5 For n ≥ 1, In(001) is the set ofe ∈ In satisfying, for somet ∈ [n],

e1 < e2 < · · · < et ≥ et+1 ≥ et+2 ≥ · · · ≥ en. (8)

Theorem 10 For n ≥ 1, |In(001)| = 2n−1.

Proof: We give two proofs based on Observation 5.
First proof. In an inversion sequencee satisfying (8) for somet, it must be the case thatei is maximal

(i.e. ei = i − 1) whenever1 ≤ i ≤ t. It follows that the rest of the sequencep = (et+1, . . . , en) can
be viewed as a partition that fits in ann − t by t − 1 box, of which there are

(

(n−t)+(t−1)
t−1

)

=
(

n−1
t−1

)

.
Summing overt from 1 to n gives the result.

Second proof.Recall from Section 1 the bijectionΘ(π) : Sn → In for π = π1 . . . πn ∈ Sn defined by
Θ(π) = (e1, e2, . . . , en), whereei = |{j | j < i and ej > ei}|. Note thate ∈ In satisfies (8) if and only
if π = Θ−1(e) satisfies

π1 > π2 > · · · > πt < πt+1 < πt+2 < · · · < πn.

Such permutations are the ones that avoid both132 and231, so the result follows by Theorem 9. ✷
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3.3 Avoiding 011: the Bell numbers
In this section we show that the011-avoiding inversion sequences are counted by the Bell numbers.

TheBell numberBn is the number of ways to partition ann-element set into nonempty subsets called
blocks. The numbersSn,k of such set partitions intok blocks are known as theStirling numbers of
the second kindand they satisfy the recurrenceSn,k = kSn−1,k + Sn−1,k−1 with initial conditions
Sn,1 = Sn,n = 1.

Observation 6 The011-avoiding inversion sequences are those in which the positive entries are distinct.

Theorem 11 The number of011-avoiding inversion sequences inIn with k zeros isSn,k.

Proof: An inversion sequencee ∈ In(011) with k zeros can arise from an inversion sequence in
In−1(011) in one of two ways. Ifen = 0 then(e1, . . . , en−1) ∈ In−1(011) hask − 1 zeros. Other-
wise,(e1, . . . , en−1) ∈ In−1 hask zeros and, by Observation 6, it hasn− 1− k distinct positive entries
(out of the possiblen − 2 positive elements of[n − 2].) This means that any of the remainingk − 1
positive elements can be assigned toen, as well as the new possibilityn − 1, for a total ofk. Since the
only e ∈ In(011) with one zero is(0, 1, 2, . . . , n) and the onlye ∈ In(011) with n zeros is(0, 0, . . . , 0),
the recurrence of the Stirling numbers is satisfied with the same initial conditions. ✷

A restricted growth functionis a finite integer sequencev = (v1, . . . , vn) with v1 = 1 and for1 < i ≤
n, vi ≤ 1 + max{v1, . . . , vi−1}. LetGn be the set of restricted growth functions of lengthn. Elements
of Gn encode partitions of[n]: given a partitionΠ of [n], order the blocks ofΠ asB1, . . . , Bk so that
min(Bi) < min(Bi+1) for 1 ≤ i < k. Thenv ∈ Gn corresponds to the set partitionΠ wherei is in block
Bb of Π if and only if vi = b. The number of distinct entries ofv is the number of blocks ofΠ.

For example ifv = (1, 2, 3, 1, 3, 2, 4, 5, 6, 3, 4, 2) then

Π = ({1, 4}, {2, 6, 12}, {3, 5, 10}, {7, 11}, {8}, {9}).

The proof of Theorem 11 gives rise to a bijection fromIn(011) to Gn. For an integer sequences,
let zeros(s) be the number of zeros ins. Let I(011) be the set of all011-avoiding inversion sequences,
regardless of length andG the set of all restricted growth sequences.

Define a mapκ : I(011) → G for e ∈ I(011) recursively. If|e| = 1, thene = (0) and we define
κ(e) = (1). For |e| = n > 1, assumeκ(e1, . . . , en−1) has been defined and letk = zeros(e). Recall
from the proof of Theorem 11 that sincee ∈ In(011), if en > 0 thenen must be one of thek elements
of [n − 1] − {e1, . . . en−1}, call thema1 < a2 < · · · < ak. So with that notation, we defineκ(e) =
κ(e1, . . . , en−1) · vn wherevn = k + 1 if en = 0 andvn = i if 0 < en = ai.

For example,κ(0, 0, 0, 1, 4, 3, 0, 0, 0, 6, 8, 5) = (1, 2, 3, 1, 3, 2, 4, 5, 6, 3, 4, 2)
It is not hard to prove by induction that ife = (e1, . . . , en) ∈ I(011) andκ(e1, . . . , en) = (v1, . . . , vn)

then1 ≤ vi ≤ zeros(e1, . . . , ei) for all i, from which it clearly follows that(v1, . . . , vn) ∈ G. It is
straightforward to reverseκ, giving a length-preserving bijection betweenI(011) andG.

3.4 Wilf-equivalent patterns 101and 110: Sn(1-23-4)
Our calculations suggested that the patterns101 and100 are Wilf equivalent on inversion sequences. The
avoidance sequence for both patterns agree with sequence A113227 in the OEIS [10], where it is said to
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be |Sn(1-23-4)|, the number of permutations avoiding the pattern 1-23-4, that is, with noi < j < k such
thatπi < πj < πj+1 < πk. The asymptotics of|Sn(1-23-4)| were studied by Elizalde in [8], where he
established good upper and lower bounds.

The OEIS led us to a paper of David Callan [4], which shows thatpermutations of[n] avoiding 1-23-4
are in bijection with increasing ordered trees withn+ 1 vertices whose leaves, taken in preorder, are also
increasing. Callan showed that ifun,k is the number of such trees withn + 1 vertices in which the root
hask children then

un,k = un−1,k−1 + k
n−1
∑

j=k

un−1,j (9)

with initial conditionsu0,0 = 1 andun,k = 0 if k > n, orn > 0 andk = 0.

Theorem 12 |In(101)| = |Sn(1-23-4)|.

Proof: Let Zn,k be the number ofe ∈ In(101) with exactlyk zeros and letzn,k = |Zn,k|. We show that
zn,k satisfies (9) with the same initial conditions.

Let Zn,k,ℓ be the number ofe ∈ Zn,k with exactlyℓ ones. Recall that applyingσ−1 to an inversion
sequence decreases the positive entries by 1.

Defineγ : In → In−1 by γ(e1, . . . , en) = σ−1(e2, . . . , en). Note thatγ(Zn,k,ℓ) = Zn−1,k+ℓ−1. In
fact, if ℓ = 0, γ is a bijection betweenZn,k,0 andZn−1,k−1. However, ifℓ > 0, each element ofZn−1,k−1

is the image underγ of k elements ofZn,k,ℓ. To see this, lete ∈ Zn,k,ℓ and letẽ = (eb1 , eb2 , . . . , ebk+ℓ
),

be the subsequence ofe consisting of the zeros and ones ine. Noteeb1 = 0 and, sincee avoids101, theℓ
ones inẽ must be consecutive. There arek such ways to place the ones inẽ, namely as:

(eb2 , . . . , eb1+ℓ
), (eb3 , . . . , eb2+ℓ

), . . . (ebk+1
, . . . , ebk+ℓ

).

Thus, sincezn,k =
∑n−k

ℓ=0 |Zn,k,ℓ| = |Zn,k,0|+
∑n−k

ℓ=1 |Zn,k,ℓ|, we have

zn,k = |Zn−1,k−1|+
n−k
∑

ℓ=1

k|Zn−1,k+ℓ−1| = zn−1,k−1 + k

n−k
∑

ℓ=1

zn−1,k+ℓ−1.

Clearlyz0,0 = 1 andzn,k = 0 if k > n, orn > 0 andk = 0. Re-indexing the summation gives (9). ✷

Comparing the proof of the recurrence forzn,k here with Callan’s proof of the recurrence forun,k gives
rise to a bijection between101-avoiding inversion sequences withk zeros and ordered increasing trees
with increasing leaves in which the root hask children. We omit the details for now.

Theorem 13 |In(101)| = |In(110)|.

Proof: We observe that the number ofe ∈ In(110) with k zeros andℓ ones satisfies the same recurrence
(9). The proof follows the same process as that of Theorem 12 to the point of considering the substring
of 0’s and 1’s for somee ∈ In(110). Sincee now avoids110, in the substring̃e = (eb1 , eb2 , . . . , ebk+ℓ

),
consisting of its zeros and ones, all but the firstℓ ones must be in the lastℓ− 1 positions of̃e. This leaves
k possible positions for the first one:b2, b3, . . . , bk+1. ✷
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Using the recursion (9) forun,k+1 andun,k, if we takekun,k+1 and subtract(k + 1)un,k the result is

un,k+1 + kun−1,k =
k + 1

k
(un,k − un−1,k−1) .

Is there a simple interpretation for this in terms of inversion sequences, trees, or permutations?

3.5 Avoiding 010, avoiding 100
Our calculations show that the number of inversion sequences avoiding the pattern010 is given by:

1, 2, 5, 15, 53, 215, 979, 4922, 26992, . . . ,

but this sequence did not appear in the OEIS (is is now A263779) and we do not yet know how to count
it.

Similarly, we have calculated that|In(100)| begins like this:

1, 2, 6, 23, 106, 565, 3399, 22678, 165646, . . . ,

but it also did not appear in the OEIS (it is now A263780).

4 Revisiting 021-avoidance
In this section, we delve deeper into the structure of 021-avoiding inversion sequences and their relation-
ship to structures counted by the Schröder numbers. First,we introduce a bijection that illustrates further
natural correspondences between statistics in inversionssequences and Schröder paths. After, we consider
the ascent statistic, which we show is symmetric inIn(021) via a bijection with certain black/white binary
trees.

4.1 Another correspondence between In(021) and Schröder paths
Now we define a different bijection, which serves as a tool to relate different statistics between inversion
sequences and Schröder paths. Using Observation 2, we can see that for anye ∈ In(021), e can be written
ase = b0b1b2 . . .bn−1 wherebk is the substring(ei, ei+1, . . . , ej) such thatei is the first occurrence
of k, and, for everyt ∈ {i, i + 1, . . . , j}, we haveet = k or et = 0. We call eachbk a block and say
that somebk is maximalif bk = (ek+1, ek+2, . . . , ej) (makingek+1 a maximal entry). Notice that any
maximal entryej+1 must be the first entry ofbj .

For example, ife = (0, 1, 0, 1, 0, 2, 5, 7, 7, 7, 9, 0, 10, 11, 12), thenb0 = (0), b1 = (1, 0, 1, 0), b2 =
(2), b5 = (5), b7 = (7, 7, 7), b9 = (9, 0), b10 = (10), b11 = (11), b12 = (12), andb3 = b4 = b6 =
b8 = b13 = b14 are all empty strings. Additionally,b0, b1 andb7 are maximal.

This decomposition is essential to describing our bijection. It also produces a recurrence relation on
021-avoiding inversion sequences.

Theorem 14 Let Yn,k be the number of021-avoiding inversion sequences of lengthn with k maximal
elements, includinge1 = 0. Then

Yn,k = Yn−1,k−1 + 2

n−1
∑

i=k

Yn−1,i, (10)

with initial conditionY1,1 = 1.
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Proof: Given a 021-avoiding inversion sequence of lengthn with k maximal elements, letbj be the last
maximal block. Consider the effect of removing the last entry of bj . If bj contains only one element, then
bj = bn since it is the last maximal block, and removingbn gives an inversion sequence contributing
to Yn−1,k−1. If bj contains more than one element, it could end inj or 0. Either way, removing the last
entry shifts everything followingbj one position earlier. This shift may result in a number of additional
maximal blocks followingbj , so the resulting inversion sequence contributes to the term Yn−1,i where
k ≤ i ≤ n− 1.

Conversely, a 021-avoiding inversion sequence of lengthn with k maximal elements can be obtained
from a 021-avoiding inversion sequence of lengthn − 1 with k − 1 maximal elements by appending
n − 1 to the end. Additionally, given any 021-avoiding inversionsequence of lengthn − 1 with at least
k maximal elements, ifbj is thekth maximal block, we can obtain a somee ∈ In(021) with k maximal
blocks by appending eitherj or 0 to the end ofbj . By doing this, all maximal blocks followingbj are no
longer maximal, since the entries have been shifted, resulting in the desired number of maximal blocks.
✷

A valley in a Schröder Path is aD step immediately followed by anU step. Let thevalley wordof a
Schröder Path be the word obtained when any consecutiveDU is replaced with aV . So the Schröder path
UUDUFUDUFDDDUUDUDDUUUFDDD from Figure 1 would have valley word

UUV FUV FDDV UVDV UUFDDD.

We define a mappingφ : Rn−1 −→ In(021) using the valley word for each element inRn−1. The entries
of the valley word are interpreted as instructions for building an inversion sequence.

Let p be the valley word of a path inRn−1. DefineM to be a word on the elements{0, 1, 2, . . . , n− 1}
that keeps track of the current maximal blocks in the inversion sequence being built, which we denotee.
Initially, setM = 0 ande = b0 whereb0 = (0). So, the initial length ofe is 1.

The valley wordp = p1p2 . . . pℓ is read left to right and eachpi interpreted as an action performed on
M ande.

• If pi = U , appendℓi to the end ofe andM , whereℓi is equal to the current length ofe. This is
equivalent to starting a new blockbℓi at the end ofe.

• If pi = D, delete the last entry ofM .

• If pi = V , append a 0 to the end of blockbj wherej is the last entry ofM .

• If pi = F , append aj to the end of blockbj wherej is the last entry ofM .

Notice that this construction yields an inversion sequencewith weakly increasing positive entries and
therefore avoids 021. Additionally,φ is reversible and is a bijection. As an example,

φ(UUV FUV FDDV UV DV UUFDDD) = (0, 1, 0, 0, 2, 0, 2, 5, 0, 5, 9, 0, 12, 13, 13),

is the image of the Schröder path in Figure 1. Notice that this is not the same as

ρ(UUV FUV FDDV UVDV UUFDDD)

from Section 2.1.
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The bijectionφ succeeds in relating different statistics in 021-avoidinginversion sequences and Schröder
paths. In the following theorem, the number oflate zerosin an inversion sequencee ∈ In(021) is the
number of zeros occurring in the blocksb1b2 . . .bn−1. Additionally, the number of distinct nonzero
values in an inversion sequencee = b0b1b2 . . .bn−1 ∈ In(021) is |{bi | i 6= 0,bi 6= ǫ}|. By using the
definition ofφ, we achieve the following results.

Corollary 3 For n ≥ 1,

1. if p ∈ Rn−1 with k valleys, thenφ(p) is an inversion sequence inIn(021) with k late zeros.

2. if p ∈ Rn−1 wherek is the number of occurrences ofU in the valley word ofp (alternatively, this
is the total number of up steps minus the number of valleys), thenφ(p) is an inversion sequence in
In(021) with k distinct nonzero values.

3. if p ∈ Rn−1 hask flat steps at height 0, thenφ(p) ∈ In(021) begins withk + 1 zeros.

The number of Schröder paths of lengthn with k valleys is counted by A101282 in OEIS.
Based on our computations, the following statistic seems tocorrespond between inversion sequences

and Schröder paths. However, neitherρ nor φ provide the necessary correspondence. Anascentin a
Schröder path is a maximal sequence of consecutive up steps.

Conjecture 2 The number ofp ∈ Rn−1 with k − 1 ascents is equal to the number ofe ∈ In(021) with k
distinct values.

The sequence in Conjecture 2 is counted by A090981 is OEIS. Additionally, notice that Conjecture 2 in
tandem with (2) from Corollary 3 would prove that the number of Schröder paths inRn−1 with k ascents
is equal to the number of paths inRn−1 with k occurrences ofU that are not a part of a valley,DU .

4.2 A symmetric statistic on 021-avoiding inversion sequences
As ascentin an inversion sequencee is an indexi such thatei < ei+1; the number of ascents ine
is denoted byasc (e). In this section, we show that the ascent statistic is symmetric on 021-avoiding
inversion sequences. That is, ifan,k is the number ofe ∈ In(021) with k ascents thenan,k = an,n−k−1.

We make use of a tree structure that appears in the thesis of Brian Drake [6]. DefineTn−1 to be the
set of rooted binary trees onn − 1 nodes, where each node is either black or white, and no node isthe
same color as its right child. For an example, see Figure 3. Let T be the set of all such trees with no
restriction on the number of nodes. In [6], Drake uses an inversion theorem for labeled trees to compute
the generating function forT , keeping track of the number of black nodes. One consequenceis that
|Tn| = rn, thenth large Schröder number.

The trees inTn are also related by a natural bijection to the separable permutations inSn. A separable
permutationis a permutation that can be completely decomposed with direct and skew sums; the trees
in Tn provide the recipe for this decomposition. (See [2].) The separable permutations inSn are exactly
those that avoid2413 and3142 and it is known that|Sn(2413, 3142)| = rn ([22, 26]).

Returning to the ascent statistic on inversions sequences,observe that for a fixed number of nodes, the
number of trees inT with k black nodes is the same as the number withk white nodes. Thus the symmetry
of the ascent statistic onIn(021) is a consequence of the following, which we will prove.

Theorem 15 The number of trees inTn−1 with k black nodes is the same as the number of inversion
sequences inIn(021) with k ascents.
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Theorem 15 will follow from Proposition 1 below once we definean appropriate bijection. From that
we will have the following.

Corollary 4 Letan,k be the number ofe ∈ In(021) with k ascents. Thenan,k = an,n−k−1.

We define a bijection betweenIn(021) andTn−1 such that the number of ascents in an inversion se-
quence is equal to the number of black nodes in the corresponding tree. Define two operations onT .
GivenT, S ∈ T , let ω(T, S) be the tree with a white root that has left subtreeT and right subtreeS.
Similarly, defineβ(T, S) to be the tree with a black root that has left subtreeT and right subtreeS. Note
that inω(T, S) andβ(T, S), the treeS is required to have a black root and white root, respectively.

Throughout this section, letI00n (021) = {e ∈ In(021) | e2 = 0} andI01n = {e ∈ In(021) | e2 = 1}.
These sets are nonempty only forn ≥ 2.

We define a bijectionτ : In(021) → Tn−1 recursively. Setτ(0) to be the empty tree. The mapping
τ will be defined such that any inversion sequence inI

00
n (021) maps to a tree with a white root and any

inversion sequence inI01n (021) maps to a tree with a black root. Anytime we consider the operations
ω(τ(e′), τ(e′′)) andβ(τ(e′), τ(e′′)), we will ensure thate′′ begins with0, 1 and0, 0, respectively, or
e′′ = (0) in order to satisfy the condition on right children.

Given any inversion sequencee = (e1, e2, e3, . . . , en) ∈ In(021), we can consider two cases based on
whethere2 = 0 or e2 = 1 (which is equivalent toe ∈ I

00
n (021) or e ∈ I

01
n (021), respectively). Letℓ be

the largest value such thate2 = e3 = . . . = eℓ+1. Additionally, letk + 1 be the earliest position after
ℓ+ 1 such thatek+1 ≥ k − ℓ+ 1. If there is no such position, setk = n. Define

τ(e) =

{

ω(τ(0ℓ · σℓ−k(ek+1, ek+2, . . . , en)), τ(0, eℓ+2, eℓ+3, . . . , ek)) if e2 = 0

β(τ(0ℓ · σℓ−k(ek+1, ek+2, . . . , en)), τ(0, eℓ+2, eℓ+3, . . . , ek)) if e2 = 1
.

where0ℓ denotes the sequence ofℓ zeros. For an example, see Figure 3.
First we show that0ℓ · σℓ−k(ek+1, ek+2, . . . , en) is a 021-avoiding inversion sequence. For0ℓ ·

σℓ−k(ek+1, ek+2, . . . , en) each entryek+i is in the (ℓ + i)-th position. So we must show that when-
everek+i 6= 0, we have1 ≤ ek+i − k + ℓ < ℓ + i. By choice ofk and Observation 2, it follows that
k−ℓ+1 ≤ ek+i < k+i and the result immediately follows. Finally, note that0ℓ·σℓ−k(ek+1, ek+2, . . . , en)
will avoid the pattern 021, since its nonzero entries must weakly increase.

Now consider(0, eℓ+2, eℓ+3, . . . , ek). We know the nonzero entries of(0, eℓ+2, eℓ+3, . . . , ek) will
weakly increase. Additionally, fori ∈ {ℓ + 2, ℓ + 3, . . . , k}, ei is in positioni − ℓ. Wheneverei 6= 0
we want1 ≤ ei < i − ℓ; this immediately follows by choice ofk. Therefore,(0, eℓ+2, eℓ+3, . . . , ek) is a
021-avoiding inversion sequence. Notice that the definitions ofℓ andk imply thateℓ+2 = 1 whene2 = 0
andeℓ+2 = 0 whene2 = 1, which is necessary to satisfy the condition on right children.

The mappingτ has an inverse, ensuring that it is a bijection fromIn(021) to Tn−1.
Our bijection provides a correspondence between a number ofstatistics on inversion sequences and

trees. First, we settle Theorem 15 with the following proposition. GivenT ∈ T , defineB(T ) to be the
number of black nodes inT .

Proposition 1 For anye ∈ In(021), asc (e) = B(τ(e)).

Proof: (Induction.) We immediately see that this is true forn = 1. Forn > 1, let e ∈ In(021) with j
ascents. We show thatτ(e) hasj black nodes. Setℓ andk to be defined as in the definition ofτ .
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τ(0, 0, 0, 1, 0, 0, 4, 7, 7, 0, 9, 0, 9, 11, 14) =

Fig. 3: An example ofτ : In(021) → Tn−1.

If ℓ = n − 1, then e = (0, 0, . . . , 0) or e = (0, 1, 1, . . . , 1). In either of these cases, the only
nodes ofτ(e) are in the leftmost branch. Additionally,τ(0, 0, . . . , 0) is a tree with all white nodes and
τ(0, 1, 1, . . . , 1) is a tree whose root is black and all other nodes are white. So,B(τ(e)) = asc (e) in
either case.

If ℓ < n− 1 andk = n, thenℓ+1 is an ascent; additionally, ife ∈ I
01
n (021), then1 is guaranteed to be

an ascent. The only ascents ofe besides these are elements of{ℓ + 2, ℓ + 3, . . . , n}. Notice thatτ(e) =
ω(τ(0ℓ), τ(0, eℓ+2, eℓ+3, . . . , en)) if e ∈ I

00
n (021) or τ(e) = β(τ(0ℓ), τ(0, eℓ+2, eℓ+3, . . . , en)) if e ∈

I
01
n (021). In each of these,B(τ(e)) = B(τ(0, eℓ+2, eℓ+3, . . . , en)) andB(τ(e)) = 1 + τ(0, eℓ+2, eℓ+3,
. . . , en) respectively. It follows inductively thatB(τ(e)) = asc (e).

Now, if ℓ < n − 1 andk < n, we have the following argument, which we break into two cases. If
e2 = 0, then the choice ofℓ andk requires thatℓ+1 andk are ascent positions. Additionally, there are no
ascents in(e1, e2, e3, . . . , eℓ+1), soasc (e) = 1+asc (eℓ+2, eℓ+3, . . . , ek)+1+asc(ek+1, ek+2, . . . , en).
It follows that

B(τ(e)) = B(τ(0ℓ · σℓ−k(ek+1, ek+2, . . . , en))) +B(τ(0, eℓ+2, eℓ+3, . . . , ek))
= asc (0ℓ · σℓ−k(ek+1, ek+2, . . . , en)) + asc (0, eℓ+2, eℓ+3, . . . , ek)
= asc (ek+1, ek+2, . . . , en) + 1 + asc (eℓ+2, eℓ+3, . . . ek) + 1
= asc (e).

If e2 = 1, then the definitions ofℓ andk require that1, ℓ + 1, andk are ascent positions. Addition-
ally, there are no ascents in(e2, e3, . . . , eℓ+1), so asc (e) = 1 + 1 + asc (eℓ+2, eℓ+3, . . . , ek) + 1 +
asc (ek+1, ek+2, . . . , en). It follows that

B(τ(e)) = 1 +B(τ(0ℓ · σℓ−k(ek+1, ek+2, . . . , en))) +B(τ(0, eℓ+2, eℓ+3, . . . , ek))
= 1 + asc (0ℓ · σℓ−k(ek+1, ek+2, . . . , en)) + asc (0, eℓ+2, eℓ+3, . . . ek)
= 1 + asc (ek+1, ek+2, . . . , en) + 1 + asc (eℓ+2, eℓ+3, . . . , ek) + 1
= asc (e).

✷

It would be nice to have a direct combinatorial proof of Corollary 4.
There are two other natural statistics on trees and inversion sequences for whichτ provides a corre-

spondence.
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Theorem 16 The number of maximal values in an inversion sequencee ∈ In(021), not counting the
initial zero ofe, is equal to the number of black nodes in the leftmost branch in τ(e).

Proof: Let e ∈ In(021) with t maximal values. By choice ofℓ andk in the definition ofτ , none of the
entriese3, e4, . . . , ek of e can be maximal. Therefore, the maximal values ofe will all occur among the
entriese1, e2, ek+1, ek+2, . . . , en. Additionally, if ei is maximal, wherei ∈ {k + 1, k + 2, . . . , n}, then
that corresponding entry will be maximal in0ℓ · σℓ−k(ek+1, ek+2, . . . , en).

The number of black nodes in the left branch ofτ(e) is equal to the number of black nodes in the left
branch ofτ(0ℓ ·σl−k(ek+1, ek+2, . . . , en)) if e2 = 0. If e2 = 1, then the number of black nodes in the left
branch ofτ(e) exceeds the number of black nodes in the left branch ofτ(0ℓ · σℓ−k(ek+1, ek+2, . . . , en))
by one. The result follows inductively. ✷

The mappingτ visibly encodes the number of initial zeros in an inversion sequence. The following
corollary follows quickly from the definition ofτ .

Corollary 5 Let e ∈ In(021) where0 = e1 = e2 = · · · = eℓ+1. Then the topℓ nodes of the leftmost
branch ofτ(e) are white.

5 Concluding remarks
This report only scratches the surface of pattern-avoidance in inversion sequences, but we hope that it
demonstrates the surprising ability of pattern-avoiding inversion sequences to provide simple and natural
models for familiar combinatorial sequences.

A number of open questions have been raised throughout this paper; most notably, finding general
expressions for the avoidance sequences for the patterns120, 110, and010. In addition to settling Con-
jecture 1 in Section 3.1 and Conjecture 2 in Section 4.1, it would be nice to see a simple bijection between
In(012) and Boolean permutations of[n] (Section 2.1); a combinatorial interpretation of the recurrence
at the end of Section 3.4 for the number of inversion sequences in In(101) with k zeros; and a direct
combinatorial proof of Corollary 4 in Section 4.2.

There are many obvious ways to extend or generalize this work: consider longer patterns, sets of pat-
terns, other statistics,q-analogs, bijective proofs, or more natural bijections; settle enumeration questions;
or even consider pattern avoidance inI

(s)
n for other sequencess of positive integers.

In Part II of this report, we consider a different generalization of pattern-avoidance in inversion se-
quences and discover some nice surprises, a few conjectures, and several open questions.
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Thanks to Michael Albert for making his PermLab software freely available [1]. Thanks to the Simons
Foundation for a grant to the third author which supported the travel of the second author for collaboration.
We extend our thanks to Toufik Mansour for sending us an advance copy of [16].

We especially owe a debt of gratitude to Neil Sloane and the OEIS Foundation, Inc. Our work was
greatly facilitated by the On-Line Encyclopedia of IntegerSequences [10].



20 Sylvie Corteel, Megan A. Martinez, Carla D. Savage, MichaelWeselcouch

References
[1] Michael Albert. Permlab: Software for permutation patterns, 2012.

http://www.cs.otago.ac.nz/staffpriv/malbert/permlab.php.

[2] Michael Albert, Cheyne Homberger, and Jay Pantone. Equipopularity classes in the separable per-
mutations.Electron. J. Combin., 22(2):#P2.2, 2015.

[3] Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes, and Sergey Kitaev. (2+2)-free posets,
ascent sequences and pattern avoiding permutations.J. Combin. Theory, Ser. A, 117(7):884 – 909,
2010.

[4] David Callan. A bijection to count (1-23-4)-avoiding permutations. 2010. Unpublished manuscript,
http://arxiv.org/abs/1008.2375.

[5] Chak-On Chow and Wai Chee Shiu. Counting simsun permutations by descents.Ann. Comb.,
15(4):625–635, 2011.

[6] Brian Drake. An inversion theorem for labeled trees and some limits of areas under lattice paths.
ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–BrandeisUniversity.

[7] Paul Duncan and Einar Steingrı́msson. Pattern avoidance in ascent sequences.Electron. J. Combin.,
18(1):Paper 226, 17, 2011.

[8] Sergi Elizalde. Asymptotic enumeration of permutations avoiding generalized patterns.Adv. in Appl.
Math., 36(2):138–155, 2006.
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