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In this paper, we study the behaviour of the generalized power domination number of a graph by small changes on the

graph, namely edge and vertex deletion and edge contraction. We prove optimal bounds for γP,k(G − e), γP,k(G/e)

and for γP,k(G − v) in terms of γP,k(G), and give examples for which these bounds are tight. We characterize all

graphs for which γP,k(G− e) = γP,k(G) + 1 for any edge e. We also consider the behaviour of the propagation radius

of graphs by similar modifications.
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1 Introduction

Domination is now a well studied graph parameter, and a classical topic in graph theory. To address the

problem of monitoring electrical networks with phasor measurement units (see Baldwin et al. (1993)), power

domination was introduced as a variation of the classical domination (see Haynes et al. (2002)). The original-

ity of power domination is the introduction of an additional propagation possibility, relative to the possible

use of Kirchhoff’s laws in an electrical network. From this propagation, a vertex can end up to be monitored

even though it is at a large distance from any vertex selected to carry a phasor measurement unit. The orig-

inal status of this new parameter and its applied motivation makes a subject of increasing interest from the

community.

All graphs G = (V (G), E(G)) considered are finite and simple, that is, without multiple edges or loops.

The open neighbourhood of a vertex v of G, denoted by NG(v), is the set of vertices adjacent to v. The

closed neighbourhood of v is NG[v] = NG(v) ∪ {v}. For a subset S of vertices, the open (resp. closed)

neighbourhood NG(S) (resp. NG[S]) of S is the union of the open (resp. closed) neighbourhoods of its

elements. A vertex v in a graph is said to dominate its closed neighbourhood NG[v]. A subset S ⊆ V (G)
of vertices is a dominating set if NG[S] = V (G), that is if every vertex in the graph is dominated by some

vertex of S. The minimum size of a dominating set in a graph G is called its domination number, denoted

by γ(G).
We now define the generalized version of power domination, the case when k = 1 coincides with the orig-

inal power domination. For k-power domination, we define iteratively a set P i
G,k(S) of vertices monitored

by an initial set S (of PMU). The initial set of vertices monitored by S is defined as the set of dominated

vertices P0
G,k(S) = NG[S]. This step is sometimes called the domination step. Then this set is iteratively

extended by including the whole neighbourhood of all vertices that are monitored and have at most k non-

monitored neighbours. This second part is called the propagation rule. More formally, we define directly

the set of monitored vertices for k-power domination following the notation of Chang et al. (2012) :
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Definition 1 (Monitored vertices) Let G be a graph, S ⊆ V (G) and k ≥ 0. The sets
(

P i
G,k(S)

)

i≥0
of

vertices monitored by S at step i are defined as follows:

P0
G,k(S) = NG[S] (domination step), and

P i+1
G,k (S) =

⋃

{NG[v] : v ∈ P i
G,k(S) such that

∣

∣NG[v] \ P i
G,k(S)

∣

∣ ≤ k} (propagation steps).

Let us make some observations about this definition. First, the set of monitored vertices is monotone by

inclusion, i.e. P i
G,k(S) ⊆ P i+1

G,k (S). This is easy to check by induction, using the fact that whenever NG[v]

has been included in P i
G,k(S), it is included in P i+1

G,k (S). This also implies that P i
G,k(S) is always a union of

neighbourhoods. Observe also that if for some integer i0, P i0
G,k(S) = P i0+1

G,k (S), then Pj
G,k(S) = P i0

G,k(S)

for all j ≥ i0. We thus denote this set P i0
G,k(S) by P∞

G,k(S). When the graph G is clear from the context,

we simplify the notation to P i
k(S) and P∞

k (S).

Definition 2 (k-power dominating set) A set S is a k-power dominating set of G (abbreviated k-PDS) if

P∞
G,k(S) = V (G). The least cardinality of such a set is called the k-power domination number of G, denoted

by γP,k(G). A γP,k(G)-set is a k-PDS in G of cardinality γP,k(G).

Observe that k-power domination is also a generalization of domination, that we obtain when we set k =
0. In Chang et al. (2012), the authors showed along with some early results about k-power domination that

some bounds, extremal graphs and properties can be expressed for any k, including the case of domination.

In Dorbec et al. (2013), a bound from Zhao et al. (2006) on regular graphs is also generalized to any k.

The computational complexity of the power domination problem was considered in various papers (Aazami

(2010); Aazami and Stilp (2009); Guo et al. (2008); Haynes et al. (2002)), in which it was proved to be

NP-complete on bipartite and chordal graphs as well as for bounded propagation variants. Linear-time al-

gorithms are known for computing minimum k-power dominating sets in trees (Chang et al. (2012)) and in

block graphs (Wang et al. (2016)). The problem of characterizing the power domination number of a graph

is non trivial for simple families of graphs. Early studies try to characterize it for products of paths/grids

Dorfling and Henning (2006); Dorbec et al. (2008) though do not reach complete characterization in a few

cases. Other studies propose closed formulas for the power domination number in hexagonal grids (see

Ferrero et al. (2011)) or in Sierpiński graphs (see Dorbec and Klavžar (2014)).

In general, it remains difficult to prove lower bounds on the power domination number of a graph. One

reason why it is so is that power domination does not behave well when taking subgraphs. In this paper, we

explore in detail the behaviour of the power domination number of a graph when small changes are applied

to the graph, e.g. removing a vertex or an edge, or contracting an edge. (Recall that the graph obtained by

contraction of an edge e = xy, denoted by G/e, is obtained from G − e by replacing x and y by a new

vertex vxy (contracted vertex) which is adjacent to all vertices in NG−e(x) ∪ NG−e(y).) In particular, we

prove in Section 2 that though the behaviour of the power domination is similar to the domination in the

case of the removal of a vertex, the removal of an edge can decrease the power domination number and

the contraction of an edge can increase the power domination number, both phenomena that are impossible

in usual domination. We characterize the graphs for which the removal of any edge increases the k-power

domination number.

Another recent but natural question about power domination is related to the propagation radius. In a

graph, a vertex that is arbitrarily far apart from any vertex in the set S may eventually get monitored by S
as in the case of paths. However, in the applied circumstances of the monitoring of an electrical network,

applying too many times Kirchhoff’s laws successively would induce an unreasonable cumulated margin

of error. With this consideration in mind, it is natural to consider power domination with bounded time
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constraints, as was first studied in Aazami (2010), and then in Liao (2016). Inspired by this study, the k-

propagation radius of a graph G was introduced in Dorbec and Klavžar (2014) as a way to measure the

efficiency of a minimum k-power dominating set (k-PDS). It gives the minimum number of propagation

steps required to monitor the entire graph over all γP,k(G)-sets.

Definition 3 The radius of a k-PDS S of a graph G is defined by

radP,k(G,S) = 1 +min{i : P i
G,k(S) = V (G)} .

The k-propagation radius of a graph G as defined in Dorbec and Klavžar (2014) can be expressed as

radP,k(G) = min{radP,k(G,S), S is a k-PDS of G, |S| = γP,k(G)} .

We finally recall a few graph notations that we use in the following. We denote by Kn the complete

graph on n vertices, by Km,n the bipartite complete graph with partite sets of order m and n. The path and

cycle on n vertices are denoted by Pn and Cn, respectively. For two graphs G and H , G2H denotes the

Cartesian product of G and H , that is the graph with vertex set V (G)×V (H) and where two vertices (g, h)
and (g′, h′) are adjacent if and only if either g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G).

2 Variations on the power domination number

Before considering the different cases of vertex removal, edge removal and edge contraction, we propose

the following technical lemma which should prove useful. It states that if two graphs differ only on parts

that are already monitored, then propagation in the not yet monitored parts behave the same. For a graph

G = (V,E) and two subsets X and Y of V , we denote by EG(X,Y ) the set of edges uv ∈ E(G) such that

u ∈ X and v ∈ Y . Note that if X ⊆ Y , EG(X,Y ) contains in particular all edges of the induced subgraph

G[X ] of G on X . All along the rest of the paper, k denotes a positive integer.

Lemma 4 Let G = (VG, EG) and H = (VH , EH) be two graphs, S a subset of vertices of G and i a

non-negative integer. Define X = VG \ P i
G,k(S) and the subgraph G′ with vertex set NG[X ] and edge set

EG(X,NG[X ]).

Suppose there exists a subset Y ⊆ VH such that the subgraph H ′ = (NH [Y ], EH(Y,NH [Y ])) is iso-

morphic to G′ with a mapping ϕ : NG[X ] → NH [Y ] that maps X precisely to Y . Then, if for some

k-power dominating set T ⊆ VH and some integer j, Y ⊆ VH \ Pj
H,k(T ), then S is a k-PDS of G and

radP,k(G,S) ≤ i − j + radP,k(H,T ).

Proof: For ℓ ≥ 0, denote by Xℓ and Y ℓ respectively the sets X ∩P i+ℓ
G,k(S) and Y ∩ Pj+ℓ

H,k (T ). We prove by

induction that for all ℓ, Y ℓ ⊆ ϕ(Xℓ).

By hypothesis, X0 = ∅ and so ϕ(X0) = ∅ = Y 0, so it holds for ℓ = 0. Now assume that the property is

true for some ℓ ≥ 0. Suppose that some vertex v = ϕ(u) ∈ NH [Y ] satisfies the conditions for propagation

in H at step j+ℓ, i.e. v ∈ Pj+ℓ
H,k (T ) and |NH [v]\Pj+ℓ

H,k (T )| ≤ k. We show that u also satisfies the conditions

for propagation in G. First, remark that u is monitored at step i+ℓ: indeed, if u /∈ X , then by definition of X ,

u ∈ P i+ℓ
G,k, otherwise if u ∈ X , then v ∈ Y ∩ Pj+ℓ

H,k (T ) = Y ℓ, and thus by induction, u ∈ Xℓ ⊆ P i+ℓ
G,k. Now

consider any neighbour u′ of u not yet dominated. Then u′ ∈ X \Xℓ and ϕ(u′) ∈ Y \Y ℓ. Moreover, by the

isomorphism between G′ and H ′, ϕ(u′) is also adjacent to v, and was among the at most k non monitored

neighbours of v in H . Therefore, u has at most k non monitored neighbours in G, and also propagates in G.
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Applying this statement to all vertices in G′, we infer that Y ℓ+1 ⊆ ϕ(Xℓ+1). By induction, this is also true

for ℓ = radP,k(H,T )− j − 1, and we deduce that

X = ϕ−1(Y ) ⊆ ϕ−1
(

Y ℓ =
(

P
radP,k(H,T )−1
H,k (T ) ∩ Y

)

)

⊆
(

Xℓ =
(

P
radP,k(H,T )−j+i−1
G,k (S) ∩X

)

)

,

and thus that S is a k-power dominating set of G and radP,k(G,S) ≤ i− j + radP,k(H,T ). 2

We now use this lemma to state how the k-power domination number of a graph may change with atomic

variations of the graph.

2.1 Vertex removal

We denote by G− v the graph obtained from G by removing a vertex v and all its incident edges. Similar to

what happens for domination (see Haynes et al. (1998a)), we have the following:

Theorem 5 Let G be a graph and v be a vertex in G. There is no upper bound for γP,k(G − v) in terms of

γP,k(G). On the other hand, we have γP,k(G−v) ≥ γP,k(G)−1. Moreover, if γP,k(G−v) = γP,k(G)−1,

then radP,k(G) ≤ radP,k(G− v).

Proof: We first prove the lower bound, using Lemma 4. We define H = G − v with the obvious mapping

ϕ from V (G) \ v to V (H). Let T be a power dominating set of H = G − v, that induces the minimum

propagation radius. Then for the set S = T ∪ {v}, the conditions of Lemma 4 hold already from i = 0
and j = 0 and the bound follows. Moreover, we also get that radP,k(G,S) ≤ j − i + radP,k(H,T ) =
radP,k(G− v) . For proving there is no upper bound for γP,k(G− v) in terms of γP,k(G), we can consider

the star with n leaves K1,n, for which the removal of the central vertex increases the k-power domination

number from 1 to n. 2

We now describe examples that tighten the lower bound of the above theorem or illustrate better the

absence of upper bound (in particular for graphs that remain connected). A first example for which the

tightness of the lower bound can be observed is the 4× 4 grid P4 2P4, for which we get γP,1(P4 2P4) = 2
(see Dorfling and Henning (2006)) and γP,1((P4 2P4)− v) = 1 for any v. Simple examples for larger k are

the graphs Kk+2,k+2, for which the removal of any vertex drops the k-power domination number from 2 to

1 (those were the only exceptions in Dorbec et al. (2013)), as well as the complete bipartite graph Kk+3,k+3

minus a perfect matching.

We now describe infinite families of graphs to illustrate these bounds. The family of graphs Dk,n was

defined in Chang et al. (2012). It is made of n copies of k+3-cliques minus an edge, organized into a cycle,

and where the end-vertices of the missing edges are linked to the corresponding vertices in the adjacent

cliques in the cycle (see Fig. 1). Note that γP,k(Dk,n) = n, as each copy of Kk+3 − e must contain a vertex

of a k-power dominating set. Its propagation radius is 1 since Dk,n has a dominating set of size n. The

removal of an end-vertex of the edges linking two cliques (e.g. u in Fig. 1) does not change its k-power

domination number, but the removal of any other vertex (e.g. v in Fig. 1) decreases it by one, and increases

the propagation radius from 1 to 2. So this forms an infinite family tightening the lower bound for any value

of k and γP,k(G).
Now, an infinite family of graphs proving the absence of a upper bound is a generalization Wk,n of the

wheel (depicted in Fig. 1). It is made of Dk,n together with a vertex c adjacent to three vertices of degree

k + 2 in one particular clique and to one vertex of degree k + 2 in all the other cliques. Observe that for

n ≥ k + 2, {c} is the only power dominating set of Wk,n of order 1, and thus we get radP,k(Wk,n) =
radP,k(Wk,n, {c}) = 2+3⌊n−1

2 ⌋+2((n−1) mod 2). The removal of c induces the graph Dk,n, increasing

the k-power domination number from 1 to n, and dropping the propagation radius from roughly 3n
2 to 1.
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Kk+3 − e

u v

c
Kk+3 − e

W2,6D1,5

Fig. 1: The graphs Dk,n and Wk,n obtained by the addition of vertex c.

More constructions could be proposed to show that the propagation radius of a graph can evolve quite

freely when a vertex is removed, and there is little hope for other bounds on this parameter when a vertex is

removed. The most unlikely example is that the removal of a vertex increase both the k-power domination

number and the propagation radius by unbounded value. This is possible with the following variation on

Wk,pn. Consider pn subgraphs (Hi)0≤i<pn, all isomorphic to a clique minus an edge, on k + 3 vertices

when i ≡ 0 mod p and on k+1 vertices otherwise. We again connect the end-vertices of the missing edges

in the clique into a cycle joining Hi to Hi+1 (mod pn), and add a vertex c adjacent to three vertices of degree

k+2 in all copies Hi when i ≡ 0 mod p, and to one vertex of degree k in all the other copies. Then {c} is a

k-power dominating set of G inducing a propagation radius of 2. On the other hand, γP,k(G− c) = n (one

vertex is needed in each Hi, i ≡ 0 mod p) and has propagation radius 1 + 3⌊p−1
2 ⌋+ 2((p− 1) mod 2).

2.2 Edge removal

In a graph G, removing an edge e can never decrease the domination number. More generally, we have that

γ(G) ≤ γ(G − e) ≤ γ(G) + 1. However, the removal of an edge can decrease the k-power domination

number as stated in the following result. Indeed, it may happen that the removal of one edge allows the

propagation through another edge incident to a common vertex, and thus decreases the power domination

number.

Theorem 6 Let G be a graph and e be an edge in G. Then

γP,k(G)− 1 ≤ γP,k(G− e) ≤ γP,k(G) + 1 .

Moreover,
{

if γP,k(G)− 1 = γP,k(G− e), then radP,k(G) ≤ radP,k(G− e)

if γP,k(G− e) = γP,k(G) + 1, then radP,k(G− e) ≤ radP,k(G).

Proof: We first prove that γP,k(G−e) ≤ γP,k(G)+1. Let T be a γP,k(G)-set. If T is also a k-PDS of G−e,

then we are done, so assume T is not. Let j0 be the smallest integer j such that Pj
G,k(T ) ) Pj

G−e,k(T ),
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and let v be a vertex in Pj0
G,k(T ) \ Pj0

G−e,k(T ). Since v ∈ Pj0
G,k(T ), there exists some neighbour u of v

in Pj0−1
G,k (T ) such that |NG[u] \ Pj0−1

G,k (T )| ≤ k. Since NG−e[u] ⊆ NG[u], NG−e[u] is also included in

Pj0
G−e,k(T ), and v cannot be a neighbour of u any more, so e = uv. Thus we choose S = T ∪{v} and using

Lemma 4 (with the obvious mapping from G− e to G, and i = j = j0), we get that S is a k-PDS of G− e
of order γP,k(G) + 1. We also get that if γP,k(G− e) = γP,k(G) + 1, then radP,k(G− e) ≤ radP,k(G).

We now prove that γP,k(G)− 1 ≤ γP,k(G− e). Let T be a minimum k-PDS of H = G− e and u be an

end vertex of e. We apply Lemma 4, for S = T ∪ {u} and i = j = 0. We get that S is a k-PDS of G and

radP,k(G,S) = radP,k(G− e, T ). We infer that if S is minimal (that is γP,k(G) = γP,k(G− e) + 1), then

radP,k(G) ≤ radP,k(G− e). 2

As a first illustration of these possibilities, in the graph G drawn in Fig. 2, the removal of the edge e1
decreases the k-power domination number, the removal of the edge e3 increases it, and the removal of the

edge e2 does not have any consequence.

u

w′
1

w1

u1

v1

w′
2

w2

u2

v2

w′
k+1 wk+1 uk+1

vk+2

v3e1

e2
e3

..
.

..
.

. . .

..
.

Fig. 2: A graph G where γP,k(G) = 2 = γP,k(G− e2), γP,k(G− e1) = 1, γP,k(G− e3) = 3.

We now propose a graph family where the removal of an edge decreases the k-power domination number

but increases its propagation radius arbitrarily. The graph Gk,r,a represented in Fig. 3 satisfies γP,k(G) = 2
and radP,k(G) = a + 2 (which is reached with the initial set {u, v}). If the edge e is removed, we get a

new graph whose k-power domination number is 1 and which has propagation radius (r + 3)(a + 1) + 2.

So no upper bound can be found for radP,k(G − e) (in terms of radP,k(G)) when the removal of an edge

decreases the power domination number.

Similar graphs where the edge removal increases the power domination number can also be found. For

example, in the graph Gk,r,a, if we remove the topmost path of length a + 2 from w to v, except for the

vertex adjacent to v, we get another graph G′ such that {u} is the only γP,k(G
′)-set of order 1, and with

radP,k(G
′) = (r + 2)(a+ 1) + 3. Removing the same edge e, now {u, v} is a minimum γP,k(G

′ − e)-set

and radP,k(G
′ − e) = a + 2. This illustrates the fact that no lower bound can be found for radP,k(G − e)

(in terms of radP,k(G)) when the removal of an edge increases the power domination number.

We now characterize the graphs for which the removal of any edge increases the power domination num-

ber. Define a k-generalized spider as a tree with at most one vertex of degree k + 2 or more. See Fig. 4 for

an example.
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a w

e

a

k − 1

a

u v

x1

x2

xr

k + 1

k + 1

r + 1

k

Fig. 3: The graph Gk,r,a for k = 3 and r = 4 (zigzag edges represent paths of length a).

Theorem 7 Let G be a graph. For each edge e in G, γP,k(G − e) > γP,k(G) if and only if G is a disjoint

union of k-generalized spiders.

Proof:

First observe that if G is a disjoint union of k-generalized spiders, then its k-power domination number is

exactly its number of components, and clearly γP,k(G− e) > γP,k(G) for any edge e in G.

Let G be a graph and let S be a γP,k(G)-set. We label the vertices of G with integers from 1 to n and

consider the subsequent natural ordering on the vertices. For i ≥ 0, we define E′
i ⊆ E(G) as follows:

{

E′
0 = {uv ∈ E(G) | v ∈ N(S) \ S, u = min{x ∈ N(v) ∩ S}}

E′
i+1 =

{

uv ∈ E(G) | v ∈ P i+1
k (S) \ P i

k(S), u = min{x ∈ P i
k(S) ∩N(v), |N [x] \ P i

k(S)| ≤ k}
}

where the minima are taken according to the ordering of the vertices. Let E′ be the union of all E′
i for i ≥ 0.

If we consider the edges of E′ as defined above oriented from u to v, then the in-degree of each vertex not

in S is 1, of vertices in S is 0. Also the graph is acyclic, and each vertex not in S has out-degree at most k.

Thus the graph induced by E′ is a forest of k-generalized spiders. Note also that S is a k-PDS of this graph.

We now assume that for any edge e ∈ E(G), γP,k(G− e) > γP,k(G), and we then prove that E′ = E(G).
By way of contradiction, suppose there exists an edge e in E(G) and not in E′. We prove that S is a

k-PDS of G − e. For that, we prove by induction that for all i,P i
G,k(S) ⊆ P i

G−e,k(S). First observe that

P0
G−e,k(S) = P0

G,k(S). Indeed, suppose there exists a vertex x in P0
G,k(S) but not in P0

G−e,k(S), then e
has to be of the form xv with v ∈ S. But since e /∈ E′

0, there exists another vertex u < v in S such that

ux ∈ E′
0, and x ∈ P0

G−e,k(S).

Assume now P i
G,k(S) ⊆ P i

G−e,k(S) for some i ≥ 0, and let us prove that P i+1
G,k (S) ⊆ P i+1

G−e,k(S). Let

x be a vertex in P i+1
G,k (S). If x ∈ P i

G,k(S), then by induction hypothesis, x ∈ P i+1
G−e,k(S). If x /∈ P i

G,k(S),
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c1 c2 d1 d2 f1 f2 g1 g2

a1

b1 e1

ak+2

bk+1 ek+1

v

. . . . . . . . .

. . . . . . . . .

. . .

Fig. 4: A k-generalized spider, T

then there exists a vertex v ∈ P i
G,k(S), x ∈ NG[v] such that |NG[v] \ P i

G,k(S)| ≤ k. Suppose e 6= xv.

Then, since NG−e[v] ⊆ NG[v] and by induction hypothesis, v ∈ P i
G−e,k(S), x ∈ NG−e[v] and |NG−e[v] \

P i
G−e,k(S)| ≤ k, which implies x ∈ P i+1

G−e,k(S). If e = xv then by the choice of E
′

i+1, there exists a vertex

w ∈ P i
G,k(S), w < v,wx ∈ E

′

i+1 such that |NG[w] \ P i
G,k(S)| ≤ k and x ∈ NG[w] \ P i

G,k(S). Then

by induction hypothesis, w ∈ P i
G−e,k(S), x ∈ NG−e[w] and |NG−e[w] \ P

i
G−e,k(S)| ≤ k, which implies

x ∈ P i+1
G−e,k(S). Therefore E(G) = E′ and G is indeed a union of k-generalized spiders. 2

Observe that there also exist graphs for which the removal of any edge decreases the power domination

number, though we did not manage to characterize them. The simplest example is the complete bipartite

graph Kk+2,k+2, in which the removal of any edge decreases the k-power domination number from 2 to 1.

This graph already played a noticeable role among the k + 2-regular graphs, as observed in Dorbec et al.

(2013). Another example is the graph Kk+3,k+3 − M , where M is a perfect matching, in which we have

γP,k(Kk+3,k+3 −M) = 2 and γP,k((Kk+3,k+3 −M) − e) = 1 for any edge e. More complex examples

are the Cartesian product of K4 and W5, where the k-power domination number decreases from 3 to 2. A

general family of graphs having this property is the Cartesian product of two complete graphs of the same

order Ka2Ka, which shall be described in Section 2.4.

2.3 Edge contraction

Contracting an edge in a graph may decrease its domination number by one, but cannot increase it (see

Huang and Xu (2012)). As we prove in the following, increasing of the power domination number may

occur.

Theorem 8 Let G be a graph and e be an edge in G. Then

γP,k(G)− 1 ≤ γP,k(G/e) ≤ γP,k(G) + 1 .

Moreover,
{

if γP,k(G)− 1 = γP,k(G/e), then radP,k(G) ≤ radP,k(G/e)

if γP,k(G/e) = γP,k(G) + 1, then radP,k(G/e) ≤ radP,k(G).

Proof: Let e = xy be an arbitrary edge in G, we denote by vxy the vertex obtained by contraction of e in

G/e. We first prove that γP,k(G/e) ≥ γP,k(G) − 1. Let T be a minimum k-PDS of H = G/e. Suppose

first that the vertex vxy ∈ T , then taking S = T \ {vxy} ∪ {x, y}, the conditions of Lemma 4 hold from

i = j = 0 with the natural mapping from G \ {x, y} to H \ vxy . We infer that S is a k-PDS of G and
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radP,k(G,S) = radP,k(G/e, T ). We now consider the case when vxy /∈ T . Let j0 be the smallest j

such that vxy ∈ Pj
G/e,k(T ). Let w be a neighbour of vxy that brought vxy into Pj

G/e,k(T ), i.e. if j0 = 0,

w is a neighbour of vxy in T , otherwise when j0 > 0, w is a neighbour of vxy in Pj0−1
G/e,k(T ) such that

|NG/e[w] \ P
j0−1
G/e,k(T )| ≤ k. By definition of edge contraction, the edge wvxy corresponds to an edge wx

or wy in E(G). If wx ∈ E(G), then take S = T ∪ {y}, otherwise take S = T ∪ {x}. Then, applying

Lemma 4 (with the natural mapping from G \ {x, y} to H \ vxy and i = j = j0), we get that S is a

k-PDS of G and radP,k(G,S) = radP,k(G/e, T ). This implies that if γP,k(G) = γP,k(G/e) + 1, then

radP,k(G) ≤ radP,k(G/e).
We now prove that γP,k(G/e) ≤ γP,k(G)+1. Let T be a minimum k-PDS of G and let S = T \{x, y}∪

{vxy}. Let j0 be the smallest j such that NG[x]∪NG[y] ⊆ Pj
G,k(T ). Here also, we can use Lemma 4 (with

the natural mapping from (G/e) \ vxy to G \ {x, y} and i = j = j0), and get that S is k-PDS of G/e. We

also get that if γP,k(G/e) = γP,k(G) + 1, then radP,k(G/e) ≤ radP,k(G). 2

The bounds in Theorem 8 are tight. For example, the lower bound holds for the graphs Kk+2,k+2 and

Kk+3,k+3 −M , where M is a perfect matching, but also for the Cartesian product of two complete graphs

of same order Ka2Ka, as is described in the next section. The upper bound is attained for example for the

k-generalized spider T in Fig. 4, which satisfy γP,k(T ) = 1 and γP,k(T/a1b1) = 2 for k ≥ 2.

2.4 On the Cartesian product of twin complete graphs

The Cartesian product of two complete graphs of same (large enough) order is such that removing a vertex,

removing an edge or contracting an edge decrease its power domination number. We here prove these

properties.

Observation 9 Let a ≥ 1 and G = Ka 2Ka. Then γP,k(G) =

{

a− k if a ≥ k + 2 ,

1 otherwise.

Proof: Denote by {v1, . . . , va} the vertices of Ka. If a < k + 2, then any vertex in G = Ka 2Ka is a

minimum k-PDS. Now, assume a ≥ k + 2. Let S = {(vi, vi) | 1 ≤ i ≤ a− k}. Then P0
k(S) = {(vi, vj) |

i ≤ a− k or j ≤ a− k} and the set of vertices A = {(vi, vj) | a− k+1 ≤ i, j ≤ a} is yet to be monitored.

Since any vertex in P0
k(S) \ A has either 0 or k neighbours in A and each vertex in A is adjacent to some

vertex in P0
k(S), P

1
k(S) covers the whole graph. Thus S is a k-PDS of G. Therefore, γP,k(G) ≤ a− k.

We now prove that γP,k(G) ≥ a − k. By way of contradiction, suppose S is a k-PDS of G such that

|S| ≤ a − k − 1. Without loss of generality, assume that the elements of S belong to the first a − k − 1
columns and rows of G. Then the vertices in the set B = {(vi, vj) | a − k ≤ i, j ≤ a} are not adjacent to

any vertex in S, and P0
k(S) ∩ B = ∅. Since any vertex in G \ B has either 0 or k + 1 neighbours in B, no

vertices from this set may get monitored later on, a contradiction. 2

Observation 10 Let a ≥ k + 2 and G = Ka 2Ka. Then γP,k(G − v) = a − k − 1 for any vertex v in

V (G).

Proof: Denote by {v1, . . . , va} the vertices of Ka. We prove the result for v = (v1, v1) which implies the

result for any v by vertex transitivity. First observe that S = {(vi, vi) | 2 ≤ i ≤ a − k} is a k-PDS of

G− v. Indeed P0
k(S) = {(vi, vj) | 2 ≤ i ≤ a− k or 2 ≤ j ≤ a− k} then vertices (vi, v1) (resp. (v1, vi))

with 2 ≤ i ≤ a − k have only vertices (vj , v1) (resp. (v1, vj)) with a − k + 1 ≤ j ≤ a as unmonitored

neighbours, which are thus all in P1
k(S). The next propagation step covers the graph. Thus S is a k-PDS of

G− v and γP,k(G− v) ≤ a− k − 1. Now by Theorem 5 and Observation 9, γP,k(G− v) ≥ a− k − 1. 2
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Observation 11 Let a ≥ k+2 and G = Ka 2Ka. Then γP,k(G− e) = a− k− 1 for any edge e in E(G).

Proof: Denote by {v1, . . . , va} the vertices of Ka. By edge transitivity of G, we can assume that e =
(v1, v1)(v2, v1). Let S = {(vi, vi) | 2 ≤ i ≤ a − k}. Then P0

k(S) = {(vi, vj) | 2 ≤ i ≤ a − k or 2 ≤
j ≤ a − k}. Now the vertex (v2, v1) has only k unmonitored neighbours, namely the vertices (vj , v1) for

a − k < j ≤ a, and they all are in P1
k(S). Then all vertices (vj , v2) for a − k < j ≤ a have only k

unmonitored neighbours and thus P2
k(S) contains all vertices (vi, vj) for i ≥ 2. Then P3

k(S) contains the

whole graph and γP,k(G− e) ≤ a− k− 1. The lower bound follows from Theorem 6 and Observation 9. 2

Observation 12 Let a ≥ k + 2 and G = Ka 2Ka. Then γP,k(G/e) = a− k − 1 for any edge e in E(G).

Proof: Denote by {v1, . . . , va} the vertices of Ka. By edge transitivity of G, we can assume that e =
(v1, v1)(v2, v1) and we denote by ve the vertex in G/e obtained by contracting (v1, v1) and (v2, v1). Let

S = {ve} ∪ {(vi, vi) | 3 ≤ i ≤ a− k}. Then P0
k(S) contains all vertices (vi, vj) with 1 ≤ i ≤ a − k and

1 ≤ j ≤ a. After one propagation step, the whole graph is monitored so γP,k(G/e) ≤ a− k− 1. The lower

bound follows from Theorem 8 and Observation 9. 2
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