
ar
X

iv
:2

30
8.

00
50

1v
3

 [
cs

.D
S]

 1
0

Se
p

20
24

Discrete Mathematics and Theoretical Computer Science .
. vol. 26:3 #4 (2024)

Structural Parameterizations of the

Biclique-Free Vertex Deletion Problem

Lito Goldmann1 Leon Kellerhals1 Tomohiro Koana2∗

1 Technische Universität Berlin, Germany
2 Utrecht University, The Netherlands

revisions 7th Feb. 2024, 16th July 2024; accepted 30th Aug. 2024.

In this work, we study the Biclique-Free Vertex Deletion problem: Given a graph G and integers k and i ≤ j, find a set
of at most k vertices that intersects every (not necessarily induced) biclique Ki,j in G. This is a natural generalization
of the Bounded-Degree Deletion problem, wherein one asks whether there is a set of at most k vertices whose deletion
results in a graph of a given maximum degree r. The two problems coincide when i = 1 and j = r+1. We show that
Biclique-Free Vertex Deletion is fixed-parameter tractable with respect to k + d for the degeneracy d by developing
a 2O(dk2) · nO(1)-time algorithm. We also show that it can be solved in 2O(fk) · nO(1) time for the feedback vertex
number f when i ≥ 2. In contrast, we find that it is W[1]-hard for the treedepth for any integer i ≥ 1. Finally, we
show that Biclique-Free Vertex Deletion has a polynomial kernel for every i ≥ 1 when parameterized by the feedback
edge number. Previously, for this parameter, its fixed-parameter tractability for i = 1 was known (Betzler et al., 2012)
but the existence of polynomial kernel was open.

Keywords: Fixed-parameter tractability, Kernelization, Structural graph parameterizations, Biclique-free graphs

1 Introduction

The G-VERTEX DELETION problem, which, for a graph class G, asks whether a given graph G can be
turned into a graph G′ ∈ G by deleting at most k vertices, is arguably one of the most pervasive and
general graph theoretical problems. In this work, we focus on the class of biclique-free graphs, which
has received considerable attention from algorithmic perspectives (Aboulker et al., 2023; Eiben et al.,
2019; Fabianski et al., 2019; Koana et al., 2022; Lokshtanov et al., 2018; Telle and Villanger, 2019). For
i, j ∈ N, let Ki,j denote the complete bipartite graph on i vertices on one side and j vertices on the other
side. We consider the following problem.

BICLIQUE FREE VERTEX DELETION (BFVD)

Input: An undirected graph G and i, j, k ∈ N, i ≤ j.
Question: Does there exist a subset V ′ ⊆ V with |V ′| ≤ k such that G − V ′ does not contain

any Ki,j as a (not necessarily induced) subgraph?

∗Work was done while affiliated with TU Berlin. Supported by the DFG Project DiPa, Ni 369/21.

ISSN 1365–8050 © 2024 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/2308.00501v3

2 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

Note that we consider i and j to be part of the input, that is, they are not to be treated as a constant.
Hence, BFVD is a generalization of the BOUNDED DEGREE DELETION problem, defined as follows.

BOUNDED DEGREE DELETION (BDD)

Input: An undirected graph G and r, k ∈ N

Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that each vertex in G − V ′ has degree at
most r?

Note that an instance (G, k, r) of BDD is a yes-instance, if and only if the instance (G, 1, r + 1, k)
of BFVD is a yes-instance. Furthermore, note that the special case r = 0 of BDD, that is, BFVD
with i = j = 1, is VERTEX COVER.

BDD appears in the field of computational biology (Fellows et al., 2011). Its dual, the so-called k-PLEX

DELETION problem, is a clique relaxation problem that finds many applications in social network analysis
(Balasundaram et al., 2011; McClosky and Hicks, 2012; Moser et al., 2012; Seidman and Foster, 1978).
Hence, it is not surprising that its computational complexity has been studied extensively in the last two
decades (Balasundaram et al., 2010; Betzler et al., 2012; Bodlaender and van Antwerpen-de Fluiter, 2001;
Chen et al., 2010; Dessmark et al., 1993; Komusiewicz et al., 2009; Nishimura et al., 2005; Seidman and
Foster, 1978). Its parameterized complexity has been studied as well: BDD is fixed-parameter tractable
(FPT) with respect to r + k (Fellows et al., 2011; Moser et al., 2012; Nishimura et al., 2005), but W[2]-
hard with respect to k (Fellows et al., 2011). As for structural parameterizations, BDD is known to be
FPT with respect to the degeneracy plus k (Raman et al., 2008) and with respect to the feedback edge
number and to the treewidth plus r (Betzler et al., 2012). Recently, Ganian et al. (2021) showed that
BDD is W[1]-hard when parameterized by the feedback vertex number or the treedepth,(i) but FPT when
parameterized by the treecut width (Marx and Wollan, 2014). Lampis and Vasilakis (2023) proved some
fine-grained conditional lower bounds for BDD with respect to treewidth and vertex cover number.

Allowing i and j to be part of the input makes BFVD challenging to solve. Deciding whether the input
graph G is free of bicliques Ki,j is challenging on its own. In fact, the problem of determining whether
G contains a biclique is NP-hard and W[1]-hard with respect to i + j. Thus, BFVD is coNP-hard and
coW[2]-hard for i + j even if k = 0 (Lin, 2018). On degenerate graphs however, one can efficiently
enumerate all maximal bicliques (Eppstein, 1994). For this reason, and in order to see which results for
BDD also hold for its generalization, we study the computational tractability of BFVD with respect to
structural graph parameters.

Our results. We first show in Section 2 that BFVD can be solved in O∗(2O(vc·k)) time, where vc is
the minimum vertex cover size of G. This paves the way for the algorithms presented in Sections 3 and 4.
Using the O∗(2d)-time algorithm of Eppstein (1994), where d is the degeneracy of G, to enumerate all
maximal bicliques, we show that each vertex and edge not part of any biclique Ki,j can be identified (and
deleted) in time O∗(4d). When every edge is part of some biclique Ki,j , the set of vertices that appear
in the smaller side of some biclique Ki,j form a vertex cover. In Section 3, we show that BFVD can
be solved in O∗(2O(dk2)) time. The algorithm takes a win-win approach: If there are not many vertices
that appear in the smaller side of a biclique, then we use the aforementionedO∗(2O(vc·k))-time algorithm.
Otherwise, we can find a set of vertices which has a nonempty intersection with every solution. Fol-
lowing the same approach albeit with a more refined analysis, we develop in Section 3 an algorithm for

(i) see Section 2 for a definition of the parameters

Structural Parameterizations of Biclique-Free Deletion 3

BFVD running in O∗(2O(k2+fvn·k)) time. That actually implies that BFVD is fixed-parameter tractable
for fvn when i ≥ 2 since an instance with k ≥ fvn is a yes-instance. In contrast, we show in Section 5
that BFVD is W[1]-hard for every i ∈ N when parameterized by treedepth. To the best of our knowl-
edge, BFVD is the first problem shown to be FPT for the feedback vertex number but W[1]-hard for
the treedepth. Incidentally, there are several problems that behave in the opposite way, i. e., are FPT for
the treedepth but W[1]-hard for the feedback vertex number such as MIXED CHINESE POSTMAN (Gutin
et al., 2016), GEODETIC SET (Kellerhals and Koana, 2022), and LENGTH-BOUNDED CUT (Bentert et al.,
2022; Dvořák and Knop, 2018). Finally, we show in Section 6 that BFVD admits a polynomial kernel for
the feedback edge number, strengthening the fixed-parameter tractability result of Betzler et al. (2012).

2 Preliminaries

Let N be the set of positive integers. For n ∈ N, let [n] := {1, 2, . . . , n}.

Graphs. For standard graph terminology, we refer to Diestel (2017). For a graph G, let V (G) denote its
vertex and let E(G) denote its edge set. Let X ⊆ V (G) be a vertex set. We denote by G[X] the subgraph
induced by X and let G−X be G[V (G) \X]. For an edge set F ⊆ E(G), we denote by G \F the graph
(V (G), E \ F). Let NG(X) = {y | x ∈ X, xy ∈ E(G)} \X and NG[X] = NG(X) ∪X . We drop the
subscript ·G when not ambiguous. For simpler notation, we sometimes use x for {x}.

For fixed i ≤ j ∈ N, we say that a pair (S, T) of disjoint vertex sets is a biclique if |S| = i, |T | = j,
and st ∈ E(G) for every s ∈ S and t ∈ T . We refer to S as the smaller side and T as the larger side.
If |

⋂

s∈S N(s)| ≥ j, then let (S, ·) denote an arbitrary biclique (S, T) with |T | = j. Let SG be the
collection of smaller sides of all bicliques Ki,j of G and let ss(G) = |

⋃

S∈SG
S|. Whenever i and j are

clear from context, we allow ourselves to just call a Ki,j just biclique.

Graph parameters. The vertex cover number vc(G) is the size of a smallest set V ′ ⊆ V (G) such
that G − V ′ is edgeless. A set F ⊆ E(G) is a feedback edge set if G \ F is a forest. The feedback edge

number fen(G) is the size of a smallest such set. A set D ⊆ V (G) is a feedback vertex set if G−D is a
forest. The feedback vertex number fvn(G) is the size of a smallest such set.

For a graph G, a tree decomposition is a pair (T,B), where T is a tree and B : V (T) → 2V (G) such
that (i) for each edge uv ∈ E(G) there exists x ∈ V (T) with u, v ∈ B(x), and (ii) for each u ∈ V (G) the
set of nodes x ∈ V (T) with v ∈ B(x) forms a nonempty, connected subtree in T . The width of (T,B)
is maxx∈V (T)(|B(x) − 1|). The treewidth tw(G) of G is the minimum width of all tree decompositions
of G.

The treedepth of a connected graph G is defined as follows (Nešetřil and Ossona de Mendez, 2006).
Let T be a rooted tree with vertex set V (G), such that if uv ∈ E(G), then u is either an ancestor or a
descendant of v in T , i.e., the path from u to v in T does not contain the root as an inner vertex. We say
that G is embedded in T . The depth of T is the number of vertices in a longest path in T from the root to
a leaf. The treedepth td(G) of G is the minimum t such that there is a rooted tree of depth t in which G
is embedded.

See Figure 1 for the relationship between parameters. Throughout this paper, for any of the parameters
x(G) introduced above, we allow ourselves to simply write x if the graph G is clear from context.

Parameterized complexity. A parameterized problem is a subset L ⊆ Σ∗×N over a finite alphabetΣ.
Let f : N → N be a computable function. A parameterized problem L is fixed-parameter tractable (in

4 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

vc

fen

td

fvn

tw d

Fig. 1: A Hasse diagram of parameters we study in this paper. An edge from x (left) to y (right) indicates that
x(G) ≥ y(G)− 1 for every graph G.

FPT) with respect to k if (I, k) ∈ L is decidable in f(k) · |I|O(1) time. A kernel for this problem is an
algorithm that takes the instance (I, k) and outputs a second instance (I ′, k′) such that (i) (I, k) ∈ L if and
only if (I ′, k′) ∈ L and (ii) |I ′|+ k′ ≤ f(k) for a computable function f . The size of the kernel is f . We
call a kernel polynomial if f is a polynomial. To show that a problem L is (presumably) not in FPT, one
may use a parameterized reduction from a problem that is hard for the class W[1] to L. A parameterized
reduction from a parameterized problem L to another parameterized problem L′ is a function that acts
as follows: For functions f and g, given an instance (I, k) of L, it computes in f(k) · |I|O(1) time an
instance (I ′, k′) of L′ so that (I, k) ∈ L if and only if (I ′, k′) ∈ L′ and k′ ≤ g(k). For more details on
parameterized complexity, we refer to the standard monographs (Cygan et al., 2015; Downey and Fellows,
2013; Niedermeier, 2006).

Preliminary results. Our algorithms will use the following simple reduction rule.

Rule 1. Delete a vertex or edge that is not part of any biclique Ki,j .

Note, however, that to apply Rule 1 exhaustively, one has to enumerate all bicliques efficiently. Al-
though it may take Ω(2n) time to enumerate all bicliques (S, T), it is known that all maximal bicliques
can be listed in O∗(2d) time in d-degenerate graphs (Eppstein, 1994). In fact, we can enumerate all vertex
sets that comprise the smaller sides of all bicliques Ki,j , which we denote by SG, in O∗(4d) time as fol-
lows: First we enumerate all maximal bicliques. At least one side S′ of each maximal biclique is of size
at most d+1, since a d-degenerate graph does not contain a biclique Kd+1,d+1 (note that every vertex has
degree d + 1 in Kd+1,d+1). Hence, we may assume that i ≤ d. For each subset S ⊆ S′ of size i (there

are
(

|S′|
i

)

≤ 2d+1 many), we add S to SG if S is not in SG and |
⋂

s∈S N(s)| ≥ j. With SG at hand, we
can apply Rule 1 exhaustively with polynomial-time overhead.

After applying Rule 1 exhaustively, at least one endpoint of each edge appears in the smaller side of
some biclique, resulting in the following lemma.

Lemma 1. If Rule 1 has been applied exhaustively, then
⋃

S∈SG
S is a vertex cover of G.

Next, we show that BFVD is FPT when parameterized by the vertex cover number vc(G).

Proposition 2. BFVD can be solved in O∗(2O(vc·k)) time.

Proof: For an instance I = (G, k, i, j) of BFVD, let X be a vertex cover of G. Note that G − X is
biclique-free, thus if vc ≤ k, we return X as a solution and are done. So suppose that vc > k and let V ′

be a hypothetical solution of I. First, our algorithm guesses the subset X ′ = V ′ ∩X . For the remaining
vertices v ∈ V ′ \X , we know that N(v) ⊆ X , and we guess the neighborhood of each of the at most k
vertices in V ′ \ X . Let N be the (multi-)set of the guessed neighborhoods. Note that there are at most
2|X| choices for the first guess and at most 2|X| choices for each of the neighborhoods, resulting in at most

Structural Parameterizations of Biclique-Free Deletion 5

2O(vc·k) choices. We arbitrarily choose a distinct vertex v ∈ V (G) \X with N(v) = Y for each Y ∈ N
and we delete it from G. We also delete X ′ from the graph. If the resulting graph has no biclique Ki,j ,
which can be determined in O∗(2d) = O∗(2vc) time, then we conclude that I is a yes-instance.

Lemma 1 and Proposition 2 imply that BFVD is fixed-parameter tractable with respect to ss(G) on
d-degenerate graphs. This fact will play an important role in the algorithm presented in Sections 3 and 4.

Finally, we show that BFVD is FPT when k, i, j, d are part of the parameter. Our algorithm essentially
solves an instance of HITTING SET in which every set has size at most i+ j.

Proposition 3. BFVD can be solved in O∗(4d · (i + j)k) time.

Proof: We solve an instance I = (G, k, i, j) of BFVD recursively as follows: If there is a biclique (S, T)
(which can be found in O∗(4d) time), then I is a yes-instance if and only if (G − v, k − 1, i, j) is a
yes-instance for some v ∈ S ∪ T . The search tree has depth at most k and each node has at most i + j
children, and thus the running time is O∗(4d · (i+ j)k).

We remark that BFVD is unlikely to be FPT for i+ j+k, since it is coW[1]-hard for i+ j when k = 0,
as mentioned in the introduction.

3 FPT with degeneracy and solution size

In this section, we show that BFVD can be solved in O∗(2O(dk2)) time on graphs with degeneracy d, ex-
tending the known fixed-parameter tractability of BDD (Raman et al., 2008). Essentially, our algorithm
considers two cases based on the value of ss(G). If ss(G) is sufficiently small, then we invoke the algo-
rithm of Proposition 2. Otherwise, we aim to find a few vertices that intersect a solution. To find such
vertices, we use the following lemma of Alon and Gutner (2009), which has been also applied to show
fixed-parameter tractability of several domination problems (including BDD) (Alon and Gutner, 2009;
Golovach and Villanger, 2008; Raman et al., 2008).

Lemma 4 ((Alon and Gutner, 2009)). Let X be a set of at least (4d + 2)k vertices. Then there are at

most (4d+ 2)k vertices that are adjacent to at least |X |/k vertices of X .

Using Lemma 4, we will show that a set of O(dk) vertices that intersects a hypothetical solution can be
found in polynomial time whenever SG is sufficiently large (Lemma 6). Recall that SG is the collection
of smaller sides of all bicliques Ki,j . The proof of Lemma 6 relies on the following lemma.

Lemma 5. Let I = (G, k, i, j) be a yes-instance of BFVD. Let X ⊆ SG be a nonempty collection of

smaller sides of bicliques and let X =
⋃

X′∈X X ′. Suppose that V ′ is a solution of I with V ′ ∩X = ∅.

Then there exists a vertex v ∈ V ′ which has at least |X |/k neighbors in X .

Proof: Assume to the contrary that every vertex v in V ′ has less than |X |/k neighbors in X , i.e., |X ∩
N(v)| < |X |/k. Then we have X \N(V ′) 6= ∅ since

|X \N(V ′)| ≥ |X | −
∣

∣

∣

⋃

v∈V ′

(X ∩N(v))
∣

∣

∣
≥ |X | −

∑

v∈V ′

|X ∩N(v)| > 0.

Choose any u ∈ X \ N(V ′). By the definition of X , there exists a biclique (S, T) such that u ∈ S and
S ⊆ X . Since V ′ ∩X = ∅, the solution V ′ does not intersect S. It does not intersect T either, since every
vertex in T is adjacent to u. Thus, there remains a biclique Ki,j in G− V ′, a contradiction.

6 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

Lemma 6. Let I = (G, k, i, j) be an yes-instance of BFVD. If ss(G) > (4d+ 2)k, then we can find in

polynomial time a set W of at most (8d + 4)k + i vertices such that V ′ ∩W 6= ∅ for every solution V ′

of I.

Proof: We first find an inclusion-wise minimal subcollection X ⊆ SG of smaller sides of bicliques such
that |

⋃

X′∈X X ′| ≥ (4d + 2)k. This can be done in polynomial time using a simple greedy algorithm.
Let X =

⋃

X′∈X X ′. Note that |X | ≤ (4d + 2)k + i since otherwise the deletion of arbitrary X ′ ∈ X
from X gives us another desired subcollection, contradicting the minimality of X . We will include X
into W . Thus, V ′ ∩ W 6= ∅ holds if V ′ ∩ X 6= ∅. If V ′ ∩ X = ∅, then by Lemma 5, there exists a
vertex v ∈ V ′ which has at least |X |/k neighbors in X . Let U be the set of vertices u with at least |X |/k
neighbors in X . By Lemma 4, |U | ≤ (4d+ 2)k. Thus, the lemma holds for W = X ∪ U .

Finally, we show that BFVD is FPT with respect to k + d using Lemma 6.

Theorem 7. BFVD can be solved in time O∗(2O(dk2)).

Proof: Given an instance (G, k, i, j) of BFVD, we first apply Rule 1 exhaustively. If i > d, then we
obtain a trivial yes-instance since G does not have Kd+1,d+1. We consider two cases. Suppose first that
ss(G) ≤ (4d+ 2)k. Since

⋃

S∈SG
S is a vertex cover of G by Lemma 1, we can solve the instance using

the algorithm of Proposition 2 in O∗(2O(dk2)) time. Otherwise, we have ss(G) > (4d+ 2)k. In this case,
we can find in polynomial time a set W of size at most (8d+4)k+i ∈ O(dk) vertices that intersects every
solution by Lemma 6. For every vertex w ∈ W , we recursively solve the instance (G − w, k − 1, i, j)

until we have a trivial instance or ss(G) ≤ (4d+ 2)k. The running time is bounded by O∗(2O(dk2)).

4 FPT with feedback vertex number

In the previous section, we have seen an O∗(2O(dk2))-time algorithm for BFVD. We present an algorithm
for BFVD running in O∗(2O(k2+fvn·k)) time in this section:

Theorem 8. For i ≥ 2, BFVD can be solved in O∗(2O(k2+fvn·k)) time.

For i ≥ 2, any instance (G, k, i, j) with k ≥ fvn is a yes-instance, since a forest does not contain any
biclique Ki,j . Thus, we have the following corollary:

Corollary 9. For i ≥ 2, BFVD can be solved in O∗(2O(fvn2)) time.

We remark that, as the degeneracy of a graph is at most fvn + 1, this is faster than the running time of
the algorithm derived analogously from Theorem 7, which is O∗(2O(fvn3)).

Algorithm 1 provides an overview of the algorithm that shows Theorem 8. In a nutshell, we identify
several cases that are efficiently solvable. If none of the cases apply, then ss(G) ∈ O(k + fvn) holds,
and we can use the algorithm of Proposition 2. Let V ′ denote a hypothetical solution and let D be a
minimum feedback vertex set. We first guess the intersection D′ = V ′ ∩ D, which we delete from the
graph. Let R ⊆ V (G)\D be the set of vertices whose closed neighborhood contains at least three vertices
in

⋃

S∈SG
S. As we show later in Lemma 11, we can immediately conclude that we have a no-instance if

|R| > 3k (Line 5). Again, we guess the intersection R′ = V ′ ∩ R to be deleted from the graph. If more
than 2k vertices in the forest F = G−D remain in

⋃

S∈SG
S, then we can conclude that the instance has

no solution (Line 7), as we show in Lemma 12.

Structural Parameterizations of Biclique-Free Deletion 7

Algorithm 1: The algorithm for Theorem 8. We assume that Rule 1 is exhaustively applied
throughout.

Input :A graph G, integers i ≤ j, k, and a feedback vertex set D.
1 if j ≤ fvn + 1 then return the result of the algorithm of Proposition 3.
2 guess D′ ⊆ D. Remove D′ from G and D, set k ← k − |D′|.
3 F ← G−D. Root F arbitrarily.
4 R← {v ∈ V (F) | |NF [v] ∩

⋃
S∈SG

S| ≥ 3}.

5 if |R| > 3k then return no. (Lemma 11)
6 guess R′ ⊆ R, |R′| ≤ k. Remove R′ from G and F , set k ← k − |R′|.
7 if |V (F) ∩

⋃
S∈SG

S| > 2k then return no. (Lemma 12)

8 return the result of the algorithm of Proposition 2.

The following observation that at most one vertex of F appears in the smaller side of a biclique becomes
crucial to establish the correctness of Algorithm 1.

Observation 10. If j > fvn + 1, then the smaller side S of every biclique (S, T) contains at most one

vertex of V (F).

Proof: If j > fvn + 1, then for each biclique (S, T), there are two vertices u, v ∈ T ∩ V (F). If there are
two vertices in S ∩ V (F), then they induce a cycle with u and v in the forest, a contradiction.

The following lemma shows that Line 5 is correct. Since we delete the intersection D′ = V ′ ∩D from
the graph in Line 2, we may assume that V ′ ⊆ V (F).

Lemma 11. If |R| > 3k in Line 5, then every set V ′ ⊆ V (F) that intersects every Ki,j contains more

than k elements.

Proof: Partition R into three sets R0, R1, R2 such that v is in Rδ if the distance from v to the root of the
same component is δ modulo 3. At least one of the partitions, say R0, contains more than k elements.
By the definition of R, we have |NF [v] ∩

⋃

S∈SG
S| ≥ 3 for every v ∈ R. Note that NF [v] consists

of v itself, its parent (if it exists), and its child(ren). It follows that v has a child qv ∈
⋃

S∈SG
S. Let

(Sv, Tv) be an arbitrary biclique Ki,j with qv ∈ Sv and let Uv = Sv ∪ Tv. By Observation 10, we have
Sv ∩ V (F) = {qv}. Thus, Tv ∩ V (F) ⊆ NF (qv). As qv ∈ R1, we have NF (qv) ∩ R0 = {v}, and
all remaining neighbors of qv are in R2. Now pick v′ ∈ R0 with v′ 6= v and define Sv′ , Tv′ , Uv′ and
qv′ analogously. Then NF [qv] ∩ NF [qv′] = ∅ as v 6= v′ and qv 6= qv′ ; the remaining vertices in the
neighborhoods are children of either qv or qv′ and thus cannot be equal either. Consequently Uv ∩ V (F)
and Uv′ ∩ V (F) are disjoint. Hence, a set V ′ ⊆ V (F) intersecting every biclique contains at least one
vertex of Uv ∩ V (F) for every vertex in v ∈ R0. Thus, |V ′| ≥ |R0| > k.

Next, we show that Line 7 is correct. In Line 6, we delete the vertices of R included in the hypothetical
solution V ′. We thus may assume that V ′ is disjoint from R.

Lemma 12. If |V (F) ∩
⋃

S∈SG
S| > 2k in Line 7, then every set V ′ ⊆ V (F) \ R that intersects every

Ki,j contains more than k elements.

Proof: Suppose that there exists a set V ′ ⊆ V (F) \R that intersects every Ki,j of size at most k. By the
definition of R, every vertex v′ ∈ V ′ has |NF [v

′]∩
⋃

S∈SG
S| ≤ 2. As |V (F)∩

⋃

S∈SG
S| > 2k ≥ 2|V ′|,

8 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

we have
∣

∣

∣

(

V (F) ∩
⋃

S∈SG

S
)

\N [V ′]
∣

∣

∣
≥

∣

∣

∣
V (F) ∩

⋃

S∈SG

S
∣

∣

∣
−

∑

v′∈V ′

∣

∣NF [v
′] ∩

⋃

S∈SG

S
∣

∣ > 0.

This implies the existence of a vertex v ∈ (V (F) ∩
⋃

S∈SG
S) \ N [V ′]. Let (Sv, Tv) be an arbitrary

biclique with v ∈ Sv and let Uv = Sv ∪ Tv. By Observation 10, we have Uv ∩ V (F) ⊆ NF [v]. Since
v /∈ N [V ′], V ′ ⊆ V (F) does not intersect Uv, a contradiction.

Finally, we analyze the running time of Algorithm 1.

Lemma 13. Algorithm 1 runs in time O∗(2O(k2+fvn·k)).

Proof: In Algorithm 1, we guess D′ and R′. There are 2O(fvn) choices for D′ and 23k choices for R′,
amounting to 2O(k+fvn) choices. Since we have ss(G) ≤ |V (F)∩

⋃

S∈SG
S|+|D∩

⋃

S∈SG
S| ≤ 3k+fvn

in Line 8 and
⋃

S∈SG
S is a vertex cover of G by Lemma 1, the algorithm of Proposition 2 runs in time

O∗(2O(k2+fvn·k)). We spend O∗(4fvn) time elsewhere; hence Algorithm 1 runs in the claimed time.

The correctness of Algorithm 1 follows from Propositions 2 and 3 and Lemmas 11 and 12 and it runs
in time O∗(2O(k2+fvn·k)) by Lemma 13. This proves Theorem 8.

5 Parameterized hardness

Ganian et al. (2021) show that BFVD is W[1]-hard with respect to the treedepth of the input graph if
i = 1. We show that this holds true for every fixed value of i.

Theorem 14. For every fixed i, BFVD is W[1]-hard when parameterized by the treedepth.

Proof: We reduce from BDD, which is W[1]-hard when parameterized by treedepth (Ganian et al., 2021).
Given an instance (G, k, r) of BDD, we construct an instance (G′, k, i, j) as follows. We set j = n+r+1,
where n is the number of vertices in G. We will assume that n > i. For the construction of G′, we start
with a copy of G. For every v ∈ V (G), we introduce i − 1 vertices Sv = {s1v, . . . , s

i−1
v } and n vertices

Tv = {t1v, . . . , t
n
v} and add edges such that S′

v = {v} ∪ Sv and Tv form a biclique Ki,n. Moreover, for
every edge uv ∈ E(G), we add an edge between u and sv for every sv ∈ Sv .

Suppose that (G, k, r) has a solution V ′. We claim that V ′ is also a solution of (G′, k, i, j). Suppose to
the contrary that G− V ′ has a biclique Ki,j . Then, its smaller side is S′

v for some vertex v ∈ V (G) and
its larger side is a subset of (NG(v) \V ′)∪ Tv. To see why, observe that V (G)∪

⋃

v∈V (G) Sv constitutes
the set of vertices of degree at least n > i and that two vertices have at least n common neighbors in G′

if and only if they belong to the same S′
v. In particular, it holds that v /∈ V ′. Since every vertex in V \ V ′

has degree at most r in G − V ′, we have |NG(v) \ V ′| ≤ r and thus |(NG(v) \ V ′) ∪ Tv| ≤ n + r, a
contradiction.

Conversely, suppose that V ′ is a solution of (G′, k, i, j). We claim that the set V ′′ = {v ∈ V (G) |
(S′

v ∪ Tv) ∩ V ′ 6= ∅} is a solution of (G, k, r). Note that |V ′′| ≤ |V ′| ≤ k. Suppose that there exists
a vertex v ∈ V (G) \ V ′ of degree greater than r in G − V ′′. Then, S′

v is of size i and it has at least
|(NG(v) \ V ′) ∪ Tv| ≥ j common neighbors. We thus conclude that G− V ′′ is a solution.

Finally, we show that td(G′) ≤ i · td(G) + 1 by providing a rooted tree T ′ of depth td(G′) in which
G′ is embedded. The tree is based on a rooted tree T of depth td(G) in which G is embedded. We

Structural Parameterizations of Biclique-Free Deletion 9

replace every vertex v ∈ V (T) with a path consisting of the vertices in S′
v and attach the children of v

in T to the lowermost (furthest from the root) vertex in S′
v . Then we add each tv ∈ Tv as a leaf to the

lowermost vertex in S′
v . Note that any ancestor u ∈ V (G) of v is now ancestor of all vertices in S′

v, and
each vertex in S′

v is ancestor of each vertex in Tv; thus G′ is embedded in T ′. As we replace every vertex
with a path of length i, and attach at most one child at the bottom of the path, the depth of T ′ is at most
i · td(G) + 1.

6 Polynomial kernel with respect to feedback edge number

In this section, we show that BFVD admits a polynomial kernel when parameterized by the feedback
edge number fen.

Theorem 15. BFVD admits a kernel of size O(fen2) for i = 1 and O(fen) for i ≥ 2.

We start with the case i = 1. Then BFVD is equivalent to BOUNDED-DEGREE DELETION (BDD) as
there is a trivial parameter-preserving reduction (set r = j−1, where r is the degree bound of BDD and j
is the size of one of the biclique sides). It is known that BDD is fixed-parameter tractable for fen (Betzler
et al., 2012). We strengthen their result proving the existence of a polynomial kernel.

To develop a kernelization algorithm, we will work with the following generalization of BDD.

WEIGHTED BOUNDED-DEGREE DELETION (WBDD)

Input: An undirected graph G, two integers k, r ∈ N, and weights w ∈ N
V (G).

Question: Does there exist a subset V ′ ⊆ V (G) with |V ′| ≤ k such that each vertex v ∈ V (G)\V ′

has degree at most r − wv in G− V ′?

Herein, by wv we denote the weight of a vertex v. Note that BDD is a special case of WBDD, where
wv = 0 for each v ∈ V .

We use the weights in the following manner: Suppose that for an instance of WBDD, we identify a
vertex v which can be “avoided”, that is, there is a solution V ′ with v /∈ V ′. Then we can simplify the
instance as follows: delete v and increase the weight of every neighbor of v by one.

To show that BDD admits a kernel of size O(fen2), we first show that WBDD has a kernel of size
O(fen) for constant r. We then show how, given a WBDD instance of size O(fen), we can transform it
into a BDD instance of size O(fen2).

Linear kernel for WBDD. As a first step to obtain a linear kernel for WBDD, we apply reduction rules
based on deg(v) and wv . We first observe that our problem treats a vertex v the same whenever deg(v) +
wv ≤ r. Hence, we may set the weight wv of such vertices to r − deg(v).

Rule 2. If deg(v) + wv < r, then increase wv by one.

Next, if a weight of a vertex is too high, then it must be in any solution.

Rule 3. If wv > r, then delete v and decrease k by one.

After applying these two reduction rules, we have r−deg(v) ≤ wv ≤ r for every vertex v. In particular,
we have wv = r for every isolated vertex v, which can be deleted.

Rule 4. Let v ∈ V be an isolated vertex of G with wv = r. Then, delete v.

For a degree-one vertex v, we have wv = r − 1 or wv = r. In either case, it does not make sense to
take v into the solution, as deleting its neighbor affects the degrees of at least as many vertices.

10 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

Rule 5. Let v ∈ V be a vertex of G with N(v) = {u}. If wv = r − 1, then delete v and increase wu by
one. If wv = r, then delete both v and u, and decrease k by one.

Lemma 16. Rules 2 to 5 are correct and can be applied exhaustively in O(n+m) time.

Proof: Suppose V ′ ⊆ V (G) is a solution for an instance of WBDD and consider a vertex v ∈ V (G).
Suppose that deg(v) + wv ≤ r. Then, V ′ remains a solution if we replace wv with a weight w′

v , with
0 ≤ w′

v ≤ r − deg(v). Hence, Rule 2 is correct. Suppose next that wv > r. Then any solution V ′ must
contain v. Hence, G− {v} contains a solution of size k − 1 if and only if G contains a solution of size k,
and Rule 3 is correct. Suppose now that N(v) = {u}. If wv = r, then either u ∈ V ′ or v ∈ V ′. As
the choice of u ∈ V ′ decreases the degree of at least as many vertices as v ∈ V ′, we may always pick u
into V ′. Suppose that wv = r − 1. If v ∈ V ′, then (V ′ \ {v}) ∪ {u} is also a valid solution by the
same argument; Otherwise, V ′ remains a solution. Conversely, any solution for the resulting instance is a
solution for the original instance because we increase the weight wu by one; thus Rule 5 is correct. The
correctness of Rule 4 is obvious.

To apply the reduction rules exhaustively, we have to test for each vertex if one of the reduction rules
can be applied and repeat this test for all vertices where at least one neighbor got deleted by applying one
of the rules. This can be done in O(n + m) time by checking the weight and the degree of each vertex
on a list of vertices that still need to be tested. If a vertex gets deleted, then all neighbors that are not on
the list already need to be added again. The actual exhaustive application of the rules requires O(n+m)
time, since deleting all vertices while still maintaining a correct graph representation is possible in this
time. Combining the steps leads to O(n+m) time in total.

We will henceforth assume that Rules 2 to 5 have been exhaustively applied.
To obtain a linear kernel for WBDD, we use the following folklore result. We call a path maximal if

both of its endpoints have degree at least three and all inner vertices have degree exactly two. We call a
cycle maximal if at most one of its vertices has degree at least three.

Lemma 17 (See e.g., (Epstein et al., 2015; Kellerhals and Koana, 2022)). Let G be a graph in which each

vertex has degree at least two. Then, the number of vertices of degree at least three is at most 2fen − 2.

Moreover, the number of maximal paths and cycles in G is at most 3fen− 3.

By Lemma 17, the number of vertices of degree at least three is at most 2fen − 2. It remains to
bound the length of maximal paths and cycles in which each vertex has degree two. We introduce further
notation. For a (vertex-) weighted graph (G,w), let opt(G,w) denote the minimum integer k such that
(G, k, r, w) is a yes-instance of WBDD. If G is a path, then opt(G,w) is linear-time computable by a
trivial adaptation of Rules 2 to 5.

Our algorithm works as follows: If the graph contains a sufficiently long path P of degree-two vertices,
then we replace it with another weighted pathP ′ of shorter length. The replacement pathP ′ should behave
analogously to P in the context of WBDD. Our key finding is that the characteristic matrix of weighted
degree-two paths determines the behavior of weighted paths. Intuitively, the characteristic matrix captures
the increase in the optimal solution size when a subset of the four outermost vertices (i.e., the endpoints
and each of their neighbors) is included.

Definition 18. For an integer ℓ ≥ 5, let Pℓ denote the collection of weighted paths (P,w) on ℓ vertices
v1, . . . , vℓ such that wv1 = wvℓ = r − 1 and wvi ∈ {r − 2, r − 1, r} for each i ∈ [2, ℓ − 1]. For
a weighted path (P,w) ∈ Pℓ, the characteristic matrix of (P,w) is a 3 × 3 matrix M(P,w) such that
M(P,w)x,y = sx,y − opt(P,w), where sx,y is the minimum size of a vertex set S such that

Structural Parameterizations of Biclique-Free Deletion 11

(i) v1 ∈ S if x = 1, v2 ∈ S and v1 6∈ S if x = 2 and v1, v2 /∈ S if x = 3,

(ii) vℓ ∈ S if y = 1, vℓ−1 ∈ S and vℓ 6∈ S if y = 2 and vℓ, vℓ−1 /∈ S if y = 3, and

(iii) for every vertex v in P − S, degP−S(v) + wv ≤ r.

Here, we assume that sx,y = ∞ if there exists no set fulfilling (i), (ii), and (iii).

Note that, given a weighted path (P,w) ∈ Pℓ, we can compute its characteristic matrix in linear time
by adapting Rules 3 to 5. We verified the following lemma using a computer program which enumerates
the characteristic matrices of all weighted paths in Pℓ, ℓ ≤ 7.(ii) We remark that there are 11 distinct
characteristic matrices arising from weighted paths on seven vertices.

Lemma 19. For every weighted path (P,w) ∈ P7, there exists a weighted path (P ′, w′) ∈ P6 such that

M(P,w) = M(P ′, w′).

Observe that, given a weighted path (P,w) ∈ P7, we can compute a shorter weighted path (P ′, w′) such
that M(P,w) = M(P ′, w′) in O(1) time. With this at hand, we can show that every maximal path can be
replaced by a path on at most 6 vertices. For this, we need some additional notation. Let (G,w) be a graph
and let P = (v1, . . . , vℓ) be a path in G. We call P − {v1, vℓ} the inner path of P and V (P − {v1, vℓ})
its inner vertices. Let w∗ ⊆ N

V (P) be the weight vector obtained from w by restricting it to V (P) and
replacing the weights of v1 and vℓ with r − 1, that is, w∗

v1
= w∗

vℓ
= r − 1 and w∗

vi
= wvi for each inner

vertex vi.

Rule 6. Let P = (v1, . . . , v7) be a (not necessarily maximal) path whose inner vertices have all degree
two. Let (P ′, w′) ∈ P6 be a weighted path such that M(P ′, w′) = M(P,w∗). Then replace the inner
path of P with the inner path of P ′ and decrease k by opt(P,w∗)− opt(P ′, w′).

Lemma 20. Rule 6 is correct.

Proof: Let I = (G, k, r, w) be the instance of WBDD, which contains a path P = (v1, . . . , v7) as
described in Rule 6, and let I ′ be the instance of WBDD obtained from executing Rule 6. First, note that
the existence of a weighted path (P ′, w′) ∈ Pℓ in Rule 6 is guaranteed by Lemma 19. Suppose that I has
a solution S. Let

x =

1 if v1 ∈ S,

2 if v1 /∈ S, v2 ∈ S,

3 if v1, v2 6∈ S,

and y =

1 if v7 ∈ S,

2 if v6 ∈ S, v7 6∈ S,

3 if v6, v7 6∈ S.

Note that |S ∩ {v1, . . . , v7}| ≥ opt(P,w∗) + M(P,w∗)x,y by Definition 18. In particular, it holds that
M(P,w∗)x,y 6= ∞. By the assumption that M(P,w∗) = M(P ′, w′), there exists a subset Q of vertices
in P ′ = (v′1, . . . , v

′
6) such that

(i) v′1 ∈ Q if x = 1, v′2 ∈ Q and v′1 6∈ Q if x = 2, and v′1, v
′
2 /∈ Q if x = 3,

(ii) v′6 ∈ Q if y = 1, v′5 ∈ Q and v′6 6∈ Q if y = 2, and v′5, v
′
6 /∈ Q if y = 3,

(iii) for every vertex v in P ′ −Q, degP ′−Q(v) + wv ≤ r, and

(ii) The source code is made available at https://git.tu-berlin.de/akt-public/bfvd-kernel

12 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

(iv) |Q| = opt(P ′, w′) +M(P,w∗)x,y .

We claim that S′ = (S \ {v2, . . . , v6}) ∪ (Q \ {v′1, v
′
6}) is a solution of I ′. Since |S ∩ {v1, v7}| =

|Q ∩ {v′1, v
′
6}|, we have

|S′| = |S| − |S ∩ {v2, . . . , v6}|+ |Q \ {v′1, v
′
6}|

= |S| −
(

|S ∩ {v2, . . . , v6}|+ |S ∩ {v1, v7}|
)

+
(

|Q \ {v′1, v
′
6}|+ |Q ∩ {v′1, v

′
6}|

)

= |S| − |S ∩ {v1, . . . , v7}|+ |Q|

≤ k −
(

opt(P,w∗) +M(P,w∗)x,y
)

+
(

opt(P ′, w′) +M(P,w∗)x,y
)

= k −
(

opt(P,w∗)− opt(P ′, w′)
)

.

To verify that S′ is a solution, it suffices to show that (1) v1 ∈ S′ or S′ contains at least deg(v1)+wv1 − r
neighbors of v′1 in G′ and (2) v7 ∈ S′ or S′ contains at least deg(v7) + wv7 − r neighbors of v7 in G′.
(Note that G′ still contains the “original” endpoints v1 and v7 of P .) We only prove (1), since (2) can be
shown analogously. If x = 1, then (1) clearly holds as v1 ∈ S. If x = 2, then v1 /∈ S and v2 ∈ S; thus
S \ {v2, . . . , v6} contains at least deg(v1) + wv1 − r − 1 neighbors of v1, and as S \ {v2, . . . , v6} ⊆ S′

and v′2 ∈ S′, the set S′ contains at least deg(v1) + wv1 − r neighbors of v1. If x = 3, then v1, v2 /∈ S;
thus S \ {v2, . . . , v6} contains at least deg(v1) +wv1 − r neighbors of v1, and as S \ {v2, . . . , v6} ⊆ S′,
the same holds for S′.

The other direction can be shown analogously because the proof of the forward direction does not rely
on the fact that P ′ is shorter than P .

Note that we can apply Rule 6 exhaustively in linear time since we have at most |V (G)| applications of
Rule 6, each of which take O(1) time to compute.

Proposition 21. For constant r, WBDD has a kernel of size O(fen).

Proof: We claim that after we apply Rules 3 to 6 exhaustively, we have an instance where the graph is of
size O(fen). Note that Lemmas 16 and 20 establish the correctness of our rules. Moreover, we can apply
these rule in linear time. Since Rules 3 to 5 delete all vertices of degree at most one, we have at most
2fen − 2 vertices of degree at least three by Lemma 17. Moreover, we have at most 3fen − 3 maximal
paths and cycles whose internal vertices have degree two. By Rule 6, such a path or cycle is of length at
most eleven. Since each degree-two vertex and each edge is contained in such a maximal path or cycle,
the graph is of size O(fen). Finally, note that we need O(1) bits to encode each vertex weight.

Removing weights. Towards showing that BDD has a kernel of size O(fen2), we use the following
reduction rule to ensure that the weight of every vertex is at most O(fen).

Rule 7. If wv > 0 for every vertex v, then decrease each wv by one and decrease r by one.

Lemma 22. Rule 7 is correct.

Proof: By definition, for every vertex v, any solution must contain v or at least deg(v) + wv − r =
deg(v) + (wv − 1)− (r − 1) of its neighbors.

Proposition 23. BDD admits a kernel of size O(fen2).

Structural Parameterizations of Biclique-Free Deletion 13

Proof: First, we show that after applying all our reduction rules, the weight of every vertex is at most
O(fen). Since Rule 7 has been applied exhaustively, there exists a vertex v ∈ V with wv = 0. If
r ≥ deg(v) + wv = deg(v), then Rule 4 was not exhaustively applied. Thus r < deg(v), which by
Lemma 17 is in O(fen). We have applied Rule 3, and hence for each vertex v ∈ V (G), wv ≤ r ∈ O(fen).
An instance (G, k, r, w) of WBDD is equivalent to an instance (G′, k, r) of BDD, where G′ is a graph
obtained by adding to wv neighbors to every vertex v. Thus, we obtain a kernel of size O(fen2).

It is straightforward to adapt our algorithm to BFVD with i ≥ 2:

Rule 8. If v is a vertex with deg(v) = 1, then delete v.

Rule 8 is correct since a degree-one vertex is not part of any biclique when i ≥ 2.

Rule 9. If (v1, v2, v3, v4, v5) is a path on five vertices with deg(vi) = 2 for each i ∈ {2, 3, 4}, then
delete v3.

Lemma 24. Rule 9 is correct.

Proof: It suffices to show that v3 is not part of any biclique Ki,j with i ≥ 2. Suppose that v3 is part of a
biclique (S, T) with |S| ≥ 2 and |T | ≥ 2. Without loss of generality, assume that v3 ∈ S. Then the only
two neighbors of v3, namely, v2 and v4 must be contained in T . Note, however, that N(v2) ∩ N(v4) =
{v1, v3} ∩ {v3, v5} = {v3}, implying that |S| = 1, a contradiction.

One can apply Rules 8 and 9 exhaustively in linear time. By Lemma 17, we have the following:

Proposition 25. BFVD admits a kernel of size O(fen) for i ≥ 2.

Theorem 15 follows from Propositions 23 and 25.

7 Conclusion

In this work, we introduced the BICLIQUE FREE VERTEX DELETION (BFVD) problem and investigated
its parameterized complexity with respect to structural parameters. We showed that BFVD is FPT for
d + k, where d is the degeneracy and k is the solution size. This implies fixed-parameter tractability for
the feedback vertex number fvn when i ≥ 2. One natural question is whether the problem also admits a
polynomial kernel for fvn. Recently, it was shown that all maximal bicliques can be enumerated efficiently
on graphs of bounded weak closure (Koana et al., 2023), which is a superclass of degenerate graphs. Is
BFVD also FPT when parameterized by the weak closure and the solution size?

References

P. Aboulker, É. Bonnet, E. J. Kim, and F. Sikora. Grundy coloring and friends, half-graphs, bicliques.
Algorithmica, 85(1):1–28, 2023. URL https://doi.org/10.1007/s00453-022-01001-2.

N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of fixed size in de-
generated graphs. Algorithmica, 54(4):544–556, 2009. URL https://doi.org/10.1007/

s00453-008-9204-0.

B. Balasundaram, S. S. Chandramouli, and S. Trukhanov. Approximation algorithms for finding and
partitioning unit-disk graphs into co-k-plexes. Optimization Letters, 4(3):311–320, 2010. URL https:

//doi.org/10.1007/s11590-009-0146-5.

14 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in social network analysis: The max-
imum k-plex problem. Operations Research, 59(1):133–142, 2011. URL https://doi.org/10.

1287/opre.1100.0851.

M. Bentert, K. Heeger, and D. Knop. Length-bounded cuts: Proper interval graphs and structural parame-
ters. Journal of Computer and System Sciences, 126:21–43, 2022.

N. Betzler, R. Bredereck, R. Niedermeier, and J. Uhlmann. On bounded-degree vertex deletion parameter-
ized by treewidth. Discrete Applied Mathematics, 160(1):53–60, 2012. URL https://doi.org/

10.1016/j.dam.2011.08.013.

H. L. Bodlaender and B. van Antwerpen-de Fluiter. Reduction algorithms for graphs of small treewidth.
Information and Computation, 167(2):86–119, 2001. URL https://doi.org/10.1006/inco.

2000.2958.

Z. Chen, M. R. Fellows, B. Fu, H. Jiang, Y. Liu, L. Wang, and B. Zhu. A linear kernel for co-path/cycle
packing. In Proceedings of the 6th International Conference on Algorithmic Aspects in Informa-

tion and Management (AAIM 2010), pages 90–102, 2010. URL https://doi.org/10.1007/

978-3-642-14355-7_10.

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015. URL https://doi.org/10.1007/

978-3-319-21275-3.

A. Dessmark, K. Jansen, and A. Lingas. The maximum k-dependent and f -dependent set prob-
lem. In Proceedings of the 4th International Symposium on Algorithms and Computation (ISAAC

1993), number 762 in LNCS, pages 88–97. Springer, 1993. URL https://doi.org/10.1007/

3-540-57568-5_238.

R. Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics. Springer, 5th edition, 2017.
URL https://doi.org/10.1007/978-3-662-53622-3.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Texts in Computer Science. Springer, 2013.
URL https://doi.org/10.1007/978-1-4471-5559-1.

P. Dvořák and D. Knop. Parameterized complexity of length-bounded cuts and multicuts. Algorithmica,
80(12):3597–3617, 2018. URL https://doi.org/10.1007/s00453-018-0408-7.

E. Eiben, M. Kumar, A. E. Mouawad, F. Panolan, and S. Siebertz. Lossy kernels for connected dominating
set on sparse graphs. SIAM Journal on Discrete Mathematics, 33(3):1743–1771, 2019. URL https:

//doi.org/10.1137/18M1172508.

D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Information Processing Letters, 51(4):
207–211, 1994. URL https://doi.org/10.1016/0020-0190(94)90121-X.

L. Epstein, A. Levin, and G. J. Woeginger. The (weighted) metric dimension of graphs: Hard
and easy cases. Algorithmica, 72(4):1130–1171, 2015. URL https://doi.org/10.1007/

s00453-014-9896-2.

Structural Parameterizations of Biclique-Free Deletion 15

G. Fabianski, M. Pilipczuk, S. Siebertz, and S. Torunczyk. Progressive algorithms for domination and
independence. In Proceedings of the 36th International Symposium on Theoretical Aspects of Computer

Science (STACS 2019), pages 27:1–27:16, 2019. URL https://doi.org/10.4230/LIPIcs.

STACS.2019.27.

M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A generalization of nemhauser and trotter’s
local optimization theorem. Journal of Computer and System Sciences, 77(6):1141–1158, 2011. URL
https://doi.org/10.1016/j.jcss.2010.12.001.

R. Ganian, F. Klute, and S. Ordyniak. On structural parameterizations of the bounded-degree ver-
tex deletion problem. Algorithmica, 83(1):297–336, 2021. URL https://doi.org/10.1007/

s00453-020-00758-8.

P. A. Golovach and Y. Villanger. Parameterized complexity for domination problems on degener-
ate graphs. In Proceedings of the 34th International Workshop on Graph-Theoretic Concepts in

Computer Science (WG 2008), pages 195–205, 2008. URL https://doi.org/10.1007/

978-3-540-92248-3_18.

G. Gutin, M. Jones, and M. Wahlstrom. The mixed chinese postman problem parameterized by pathwidth
and treedepth. SIAM Journal on Discrete Mathematics, 30(4):2177–2205, 2016. URL https://doi.

org/10.1137/15M1034337.

L. Kellerhals and T. Koana. Parameterized complexity of geodetic set. Journal of Graph Algorithms and

Applications, 26(4):401–419, 2022. URL https://doi.org/10.7155/jgaa.00601.

T. Koana, C. Komusiewicz, A. Nichterlein, and F. Sommer. Covering many (or few) edges with k vertices
in sparse graphs. In P. Berenbrink and B. Monmege, editors, Proceedings of the 39th International

Symposium on Theoretical Aspects of Computer Science (STACS 2022), volume 219 of LIPIcs, pages
42:1–42:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL https://doi.org/

10.4230/LIPIcs.STACS.2022.42.

T. Koana, C. Komusiewicz, and F. Sommer. Computing dense and sparse subgraphs of weakly
closed graphs. Algorithmica, 85(7):2156–2187, 2023. URL https://doi.org/10.1007/

s00453-022-01090-z.

C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. Isolation concepts for efficiently enumerating
dense subgraphs. Theoretical Computer Science, 410(38-40):3640–3654, 2009. URL https://doi.

org/10.1016/j.tcs.2009.04.021.

M. Lampis and M. Vasilakis. Structural parameterizations for two bounded degree problems revisited.
In Proceedings of the 31st European Symposium on Algorithms (ESA 2023), 2023. URL https:

//doi.org/10.48550/arXiv.2304.14724. To appear.

B. Lin. The parameterized complexity of the k-biclique problem. Journal of the ACM, 65(5):34:1–34:23,
2018. URL https://doi.org/10.1145/3212622.

D. Lokshtanov, A. E. Mouawad, F. Panolan, M. S. Ramanujan, and S. Saurabh. Reconfiguration on sparse
graphs. Journal of Computer and System Sciences, 95:122–131, 2018. URL https://doi.org/

10.1016/j.jcss.2018.02.004.

16 Lito Goldmann, Leon Kellerhals, and Tomohiro Koana

D. Marx and P. Wollan. Immersions in highly edge connected graphs. SIAM Journal on Discrete Mathe-

matics, 28(1):503–520, 2014. URL https://doi.org/10.1137/130924056.

B. McClosky and I. V. Hicks. Combinatorial algorithms for the maximum k-plex problem. Jour-

nal of Combinatorial Optimization, 23(1):29–49, 2012. URL https://doi.org/10.1007/

s10878-010-9338-2.

H. Moser, R. Niedermeier, and M. Sorge. Exact combinatorial algorithms and experiments for finding
maximum k-plexes. Journal of Combinatorial Optimization, 24(3):347–373, 2012. URL https:

//doi.org/10.1007/s10878-011-9391-5.

J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds. Euro-

pean Journal of Combinatorics, 27(6):1022–1041, 2006. URL https://doi.org/10.1016/j.

ejc.2005.01.010.

R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. ISBN
9780198566076. URL https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.

0001.

N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable algorithms for nontrivial
generalizations of vertex cover. Discrete Applied Mathematics, 152(1):229–245, 2005. URL https:

//doi.org/10.1016/j.dam.2005.02.029.

V. Raman, S. Saurabh, and S. Srihari. Parameterized algorithms for generalized domination.
In Proceedings of the 2nd International Conference on Combinatorial Optimization and Ap-

plications (COCOA 2008), pages 116–126, 2008. URL https://doi.org/10.1007/

978-3-540-85097-7_11.

S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique concept. Journal of Math-

ematical Sociology, 6:139–154, 1978. URL https://doi.org/10.1080/0022250X.1978.

9989883.

J. A. Telle and Y. Villanger. FPT algorithms for domination in sparse graphs and beyond. Theoretical Com-

puter Science, 770:62–68, 2019. URL https://doi.org/10.1016/j.tcs.2018.10.030.

