
ar
X

iv
:2

30
8.

00
85

0v
5 

 [
m

at
h.

C
O

] 
 1

5 
Se

p 
20

24

Discrete Mathematics and Theoretical Computer Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vol. 26:3 #2 (2024)

String attractors of Rote sequences
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In this paper, we describe minimal string attractors of pseudopalindromic prefixes of standard complementary-

symmetric Rote sequences. Such a class of Rote sequences forms a subclass of binary generalized pseudostandard

sequences, i.e., of sequences obtained when iterating palindromic and antipalindromic closures. When iterating only

palindromic closure, palindromic prefixes of standard Sturmian sequences are obtained and their string attractors are

of size two. However, already when iterating only antipalindromic closure, antipalindromic prefixes of binary pseu-

dostandard sequences are obtained and we prove that the minimal string attractors are of size three in this case. We

conjecture that the pseudopalindromic prefixes of any binary generalized pseudostandard sequence have a minimal

string attractor of size at most four.

Keywords: pseudostandard sequences, generalized pseudostandard sequences, string attractors, Rote sequences,

palindromic closure, antipalindromic closure

1 Introduction

In the last years, significant attention has been dedicated to the study of string attractors. Their def-

inition and first results were provided by Kempa and Prezza [10]: a string attractor of a finite word

w = w0w1 · · ·wn−1, where wi are letters, is a subset Γ of {0, 1, . . . , n − 1} such that each non-empty

factor of w has an occurrence containing an element of Γ. They are closely related to methods of compres-

sion of highly repetitive data, so-called dictionary compressors. On one hand, it was shown by Kempa and

Prezza [10] that dictionary compressors can be interpreted as approximation algorithms for the smallest

string attractors, due to the measures induced by the compressors being lower bounded by the smallest

string attractor size. On the other hand, attractors are able to express bounds for and potentially unify the

dictionary compression measures.

However, the general problem of finding the minimum size of a string attractor is NP-complete. It

is therefore natural to study the problem in the context of combinatorics on words and to put certain

restrictions on the input, which makes the computation tractable.

In this paper we carry on the study of string attractors of important classes of sequences. Attractors of

minimum size of factors/prefixes/particular prefixes of the following sequences have been determined so
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far: standard Sturmian sequences [13, 6], the Tribonacci sequence [15], episturmian sequences [6], the

Thue-Morse sequence [12, 15, 5], the period-doubling sequence [15], the powers of two sequence [15, 11].

Recently, string attractors of fixed points of k-bonacci-like morphisms have been described [8].

When studying string attractors of episturmian sequences [6], we could see usefulness of palindromic

closures. It is thus natural to ask as the next question what can be said about string attractors of binary gen-

eralized pseudostandard sequences (defined in [3]), i.e., when iterating palindromic and antipalindromic

closures. Two subclasses of generalized pseudostandard sequences have been already studied: stan-

dard Sturmian sequences and the Thue-Morse sequence. Here, we consider pseudostandard sequences,

i.e., binary sequences obtained when iterating solely the antipalindromic closure, and complementary-

symmetric Rote sequences. We show that the minimal string attractor of antipalindromic prefixes of

pseudostandard sequences is of size three, while the minimal string attractor of pseudopalindromic pre-

fixes of complementary-symmetric Rote sequences is of size two. In the latter case, the description of

Rote sequences from [2] plays an important role. Based on computer experiments, we conjecture that

the minimum size of string attractors of pseudopalindromic prefixes of binary generalized peudostandard

sequences is at most four.

2 Preliminaries

An alphabet A is a finite set of symbols called letters. A word over A of length n is a string u =
u0u1 · · ·un−1, where ui ∈ A for all i ∈ {0, 1, . . . , n−1}. We let |u| denote the length of u. The set of all

finite words over A together with the operation of concatenation forms a monoid, denoted A∗. Its neutral

element is the empty word ε and we write A+ = A∗ \ {ε}. If u = xyz for some x, y, z ∈ A∗, then x is a

prefix of u, z is a suffix of u and y is a factor of u.

A sequence over A is an infinite string u = u0u1u2 · · · , where ui ∈ A for all i ∈ N. We always denote

sequences by bold letters.

A sequence u is eventually periodic if u = vwww · · · = v(w)ω for some v ∈ A∗ and w ∈ A+.

If u is not eventually periodic, then it is aperiodic. A factor of u = u0u1u2 · · · is a word y such that

y = uiui+1ui+2 · · ·uj−1 for some i, j ∈ N, i ≤ j. If i = j, then y = ε. In the context of string attractors,

the set {i, i+1, . . . , j−1} is called an occurrence of the factor y in u. (Usually, only the number i is called

an occurrence of y in u.) If i = 0, the factor y is a prefix of u. A factor w of u is left special if aw, bw are

factors of u for at least two distinct letters a, b ∈ A. A sequence u is said to be closed under reversal if

for each factor w = w0w1 · · ·wn−1, where wi ∈ A, u contains also its mirror image wn−1 · · ·w1w0. A

binary sequence u is called Sturmian if u is closed under reversal and u contains exactly one left special

factor of each length. If moreover each left special factor is a prefix of u, then u is standard Sturmian.

A string attractor (or attractor for short) of a word w = w0w1 · · ·wn−1, where wi ∈ A, is a set

Γ ⊂ {0, 1, . . . , n − 1} such that every non-empty factor of w has an occurrence in w containing at least

one element of Γ. If i ∈ Γ and a word f has an occurrence in w containing i, we say that f crosses i

and we also say that f crosses the attractor Γ. For instance, Γ = {1, 3} is an attractor of w = 010010

(it corresponds to the underlined positions). The factor 00 crosses the position 3 and thus it crosses the

attractor. Γ is an attractor of minimum size – minimal attractor for short – since each attractor necessarily

contains occurrences of all distinct letters of the word.
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3 Palindromic and antipalindromic closures
Throughout the paper, we deal only with binary sequences. Therefore we define the notions of reversal

and palindrome over a binary alphabet, too.

Definition 1. The map R : {0, 1}∗ → {0, 1}∗, called reversal, associates with each word its mirror

image, i.e., R(w0w1 · · ·wn−1) = wn−1 · · ·w1w0, where wi ∈ {0, 1} for each i ∈ {0, 1, . . . , n − 1}.

The map E : {0, 1}∗ → {0, 1}∗, called exchange antimorphism, is a composition of reversal and letter

exchange, i.e., E(w0w1 · · ·wn−1) = wn−1 · · ·w1 w0, where wi ∈ {0, 1} and 0 = 1 and 1 = 0. A word

w ∈ {0, 1}∗ is a palindrome if w = R(w) and w is an antipalindrome if w = E(w). A word is a

pseudopalindrome if it is a palindrome or an antipalindrome.

Consider w ∈ {0, 1}∗. Then wR is the shortest palindrome having w as prefix and it is called the

palindromic closure of w. Similarly, wE is the shortest antipalindrome having w as prefix and it is called

the antipalindromic closure of w. The pseudopalindromic closure is a term covering both palindromic

and antipalindromic closure.

Let w ∈ {0, 1}+. It follows immediately from the definition that wR = vxR(v), where w = vx and x

is the longest palindromic suffix of w. Similarly, wE = vyE(v), where y is the longest antipalindromic

suffix of w (possibly empty).

Example 2. We have (000)R = 000, (000)E = 000111, (0001)R = 0001000, (0001)E = 000111,

(01101)R = 0110110, (01101)E = 01101001.

Definition 3. Let ∆ = δ1δ2 · · · and Θ = ϑ1ϑ2 · · · , where δi ∈ {0, 1} and ϑi ∈ {E,R} for all i ∈ N, i ≥
1. The sequence u(∆,Θ), called generalized pseudostandard sequence, is the sequence having prefixes

wn obtained from the recurrence relation

wn+1 = (wnδn+1)
ϑn+1 ,

w0 = ε.

The bi-sequence (∆,Θ) is called the directive bi-sequence of the word u(∆,Θ).

Example 4. Consider u = u(∆,Θ) with ∆ = 01
ω and Θ = (RE)ω , then u is the Thue-Morse se-

quence [3]. Here are the first six pseudopalindromic prefixes:

w0 = ε

w1 = 0

w2 = 01

w3 = 0110

w4 = 01101001

w5 = 0110100110010110 .

For some special forms of (∆,Θ), well-known classes of sequences are obtained:

1. u is a standard Sturmian sequence if u = u(∆,Θ) for some ∆ containing both letters infinitely

many times and Θ = Rω.

2. u is a pseudostandard sequence if u = u(∆,Θ) for some ∆ and Θ = Eω.

In the sequel, when examining Rote sequences, we will need the following statement about the form of

palindromic prefixes of a standard Sturmian sequence. (i)

(i) The palindromic prefixes of standard Sturmian sequences are also known as central words [1].
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Proposition 5 (Proposition 7 [4]). Let u be a standard Sturmian sequence and let (un)
∞
n=0 be the se-

quence of palindromic prefixes of u ordered by length. If un contains both letters, then for some a ∈ {0, 1}

un = un−1aau ,

where u is the longest palindromic prefix of un followed by a (i.e., ua is a prefix of un).

4 String attractors of Sturmian sequences

String attractors of palindromic prefixes of episturmian sequences were described in [6] (Theorem 7). Let

us recall here the statement restricted to the binary alphabet, together with its proof. Similar ideas will be

used for pseudostandard sequences.

Theorem 6. [6] Let v be a non-empty palindromic prefix of a standard Sturmian sequence. For every

letter a occurring in v, denote

ra = max{|p| : p is a palindrome and pa is a prefix of v}.

Then Γ = {ra : a occurs in v} is an attractor of v and it is of minimum size.

Proof: To construct a standard Sturmian sequence, we use only palindromic closure in Definition 3 and

each palindromic prefix v is equal to wn for some n ∈ N. Let us assume that the first letter of ∆ is 0. We

will prove the statement by mathematical induction on n. Let us recall that we index positions from 0,

i.e., v = v0v1 · · · v|v|−1.

• For n = 1 we have w1 = 0 and its attractor equals {0}. The longest palindromic prefix of w1

followed by 0 is equal to w0 = ε and its length satisfies |w0| = 0.

• For n ≥ 2 we assume that wn−1 has an attractor of the form from the statement. We have wn =
(wn−1a)

R for some a ∈ {0, 1}. The following three situations may occur:

1. wn = wn−1a: According to the definition of palindromic closure, this happens only for

a = 0 and wn−1 = 0
n−1. The longest palindromic prefix of wn = 0

n followed by 0 is

wn−1 = 0
n−1. The length of wn−1 is n− 1 and, indeed, {n− 1} is an attractor of wn.

2. wn = wn−1awn−1: By the definition of palindromic closure, this happens only in case when

wn−1 = 0
n−1 and a = 1. Then wn = 0

n−1
10

n−1 and Γ = {n − 2, n − 1} is indeed an

attractor of wn.

3. wn = wn−1au for some u 6= ε and u 6= wn−1: Then wn−1 contains both letters. We want to

prove that Γ = {r0, r1}, as defined in the statement, is an attractor of wn. Since the longest

palindromic prefix of wn followed by b, where b ∈ {0, 1}, b 6= a, is the same as in wn−1,

we know by induction assumption that {rb, r
′
a} is an attractor of wn−1, where r′a = |wℓ| and

wℓ is the longest palindromic prefix of wn−1 followed by a. By the definition of palindromic

closure we have

wn = R(u)awℓ
︸ ︷︷ ︸

wn−1

au = R(u)awℓau
︸ ︷︷ ︸

wn−1

. (1)
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Then each factor f of wn either has an occurrence containing the position |wn−1|, i.e., corre-

sponding to the second (underlined) a in (1), or f is entirely contained in wn−1. In the latter

case, f has an occurrence crossing the attractor of wn−1. Thus, f either crosses the position

rb or f crosses the position r′a = |wℓ|. In the first case, we are done since f crosses Γ. In

the second case, according to (1), the factor f has also an occurrence in wn containing the

position ra = |wn−1| (corresponding to the underlined a). To sum up, we have proved that

each factor of wn has an occurrence crossing {ra, rb} = {r0, r1} = Γ.

Example 7. The most famous standard Sturmian sequence is the Fibonacci sequence

u = u(∆, Rω) ,

where ∆ = (01)ω. The first six palindromic prefixes of u with the positions of the attractor from Theo-

rem 6 underlined read:
w0 = ε

w1 = 0

w2 = 010

w3 = 010010

w4 = 01001010010

w5 = 0100101001001010010 .

5 String attractors of pseudostandard sequences

As a new result we will describe string attractors of antipalindromic prefixes of pseudostandard sequences.

Theorem 8. Let v be a non-empty antipalindromic prefix of a pseudostandard sequence starting with the

letter 0. For every letter a occurring in v, denote

ea = max{|q| : q is an antipalindrome and qa is a prefix of v}.

If such a prefix does not exist, then set ea = ea.

Then Γ = {e0, e1, |v| − e1 − 1} is an attractor of v.

Moreover, if v = wn, n ≥ 2, from Definition 3, then

• Γ is of size two if and only if ∆ starts with 0
n;

• Γ is a minimum size attractor if and only if ∆ does not start with 01
n−1.

Proof: To construct a pseudostandard sequence u, we use only antipalindromic closure in Definition 3

and each antipalindromic prefix v is equal to wn for some n ∈ N. We will prove the statement about the

form of attractors of wn by mathematical induction on n. Let us recall that we index positions from 0,

i.e., v = v0v1 · · · v|v|−1.

• If 0n is a prefix of∆, then we havewn = (01)n and e0 = 2n−2 and e1 = e0. ThenΓ = {e0, |wn|−
1− e0} = {2n− 2, 1} is indeed an attractor of wn = 01 for n = 1, resp. wn = 01(01)n−2

01 for

n ≥ 2 (we underlined the positions of Γ). In particular, this proves the result for all n ≥ 1 when

∆ = 0
ω.
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• Now, assume 0k1 is a prefix of ∆ for some k ≥ 1. Then wk+1 = (01)k10(01)k , e0 = |(01)k−1| =
2k − 2, and e1 = |(01)k| = 2k. It is readily seen that Γ = {2k − 2, 2k, 2k + 1} is an attractor of

wk+1 = (01)k−1
0110(01)k (we underlined the positions of Γ). Using the first item, each wn, for

1 ≤ n ≤ k, also has an attractor of the form from the statement.

• For n > k+1 we assume that wn−1 has an attractor of the form from the statement. The following

two situations may occur:

1. δn = 1 and wn = (wn−11)
E = v0wℓ1E(v), where wℓ 6= ε, wℓ is the longest antipalindromic

prefix followed by 1 in wn−1, and v is a prefix of the word wn. The longest antipalindromic

prefix q followed by 0 in wn−1 and in wn is the same (q may be empty if k = 1). The

longest antipalindromic prefix of wn followed by 1 is equal to wn−1 = v0wℓ. We assume

that {|q|, |wℓ|, |wn−1| − |wℓ| − 1} is an attractor of wn−1 and we want to show that Γ =
{|q|, |wn−1|, |wn|− |wn−1|− 1} is then an attractor of wn. Below, we underline the positions

of the attractor of wn−1 and the positions of Γ in wn:

wn−1 = q0 · · · = v0wℓ = wℓ1E(v) ;
wn = q0 · · · = v0wℓ1E(v) .

Each factor f of wn either crosses |wn−1|, i.e., the underlined 1, or f is contained in wn−1.

By the form of the attractor of wn−1, the factor f crosses |q| or |v| = |wn−1| − |wℓ| − 1 =
|wn| − |wn−1| − 1 or |wℓ|. In the last case, since wn−1 = wℓ1E(v) is a suffix of wn, we can

see that f has an occurrence in wn containing |wn−1|.

2. δn = 0 and wn = (wn−10)
E = v1wℓ0E(v), where wℓ is the longest antipalindromic prefix

followed by 0 in wn−1 (it may be empty), and v is a prefix of the word wn. The longest

antipalindromic prefix of wn followed by 0 is equal to wn−1 and the longest antipalindromic

prefix q of wn followed by 1 is the same as for wn−1. We assume that {|q|, |wℓ|, |wn−1| −
|q| − 1} is an attractor of wn−1 and we want to show that Γ = {|q|, |wn−1|, |wn| − |q| − 1}
is then an attractor of wn. Below, we underline the positions of the attractor of wn−1 and the

positions of Γ in wn:

wn−1 = q1 · · · = · · · 0q = wℓ0E(v) ;
wn = q1 · · · = · · · 0q = v1wℓ0E(v) .

Each factor f of wn either crosses |wn−1|, i.e., the underlined 0 in the last expression for wn

above, or f is contained in wn−1. By the form of the attractor of wn−1, the factor f crosses

|q| or |wn−1|− |q|− 1 or |wℓ|. In the last two cases, since wn−1 = wℓ0E(v) is a suffix of wn,

we can see that f has an occurrence in wn containing |wn| − |q| − 1 or |wn−1|.

Now let us show the attractor’s minimality. We could see in the above proof that if 0k is a prefix of ∆,

then the attractor Γ of wk from the theorem is of minimum size (equal to two).

• As soon as 0k1 for k ≥ 2 is a prefix of ∆, then wk+1 = (01)k−1
011001(01)k−1. It follows from

the following observation and Definition 3 that for each n ≥ k + 1, the factor 00, resp. 11, only

occurs as a factor of 011001 in wn. We can observe that the prefix 0
k
10 yields

wk+2 = (01)k−1
011001(01)k−1

011001(01)k−1 ,
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and similarly, for the prefix 0
k
11, we obtain

wk+2 = (01)k−1
011001(01)k−2

011001(01)k−1 .

Generally,

wn = (01)p0011001(01)p1011001 · · · (01)pj−1011001(01)pj , (2)

where pi ∈ {k− 2, k− 1} and p0 = pj = k− 1. From this, we can also see that the factors 011001

do not overlap anywhere in the word.

An attractor of size two does not exist any more. Let us explain why. All factors of length two, i.e.,

00, 01, 10, 11, have to cross the attractor. We underline below the possible positions in wn from (2)

for an attractor of size two containing 00, 01, 10, 11:

1. wn = · · · (01)pi011001(01)pi+1 · · ·

2. wn = · · · (01)pi011001(01)pi+1 · · ·

3. wn = · · · (01)pi011001(01)pi+1 · · · (01)pi+m011001(01)pi+m+1 · · ·

4. wn = · · · (01)pi011001(01)pi+1 · · · (01)pi+m011001(01)pi+m+1 · · ·

5. wn = · · · (01)pi011001(01)pi+1 · · · (01)pi+m011001(01)pi+m+1 · · ·

6. wn = · · · (01)pi011001(01)pi+1 · · · (01)pi+m011001(01)pi+m+1 · · ·

where i,m ∈ N,m ≥ 1, i +m + 1 ≤ j. However, in all the above cases, either 010, or 101 does

not cross the attractor.

• If 01k for k ≥ 1 is a prefix of ∆, then wk+1 = 011001(1001)k−1, where we underlined the

positions of an attractor of size two. In this case, the attractor Γ from the theorem is not minimal,

let us underline its positions: wk+1 = 011001(1001)
k−2

1001 for k ≥ 2 and wk+1 = 011001 for

k = 1.

• As soon as 01k0 for k ≥ 1 is a prefix of ∆, then wk+2 = 01(1001)k(0110)k01. It follows from

Definition 3 that for each n ≥ k + 2, the factor 00, resp. 11, only occurs as a factor of 011001 in

wn. An attractor of size two does not exist – the explanation is analogous as above.

Corollary 9. Let u be a pseudostandard sequence, i.e., u = u(∆, Eω).

• If ∆ ∈ {0ω, 1ω, 01ω, 10ω}, then all antipalindromic prefixes of u have minimal attractors of size

two.

• If ∆ 6∈ {0ω, 1ω, 01ω, 10ω}, then all sufficiently long antipalindromic prefixes of u have minimal

attractors of size three.
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Example 10. Consider ∆ = 01001 · · · . The first six prefixes of u(∆, Eω) with the positions of attractor

underlined read:

w0 = ε

w1 = 01

w2 = 011001

w3 = 011001011001

w4 = 011001011001011001

w5 = 0110010110010110011001011001011001 .

6 String attractors of complementary-symmetric Rote sequences

This section is devoted to the study of attractors of pseudopalindromic prefixes of complementary-symmetric

Rote sequences, which form a subclass of generalized pseudostandard sequences. However, besides being

generalized pseudostandard sequences, they are also closely related to Sturmian sequences.

Definition 11. Rote sequences are binary sequences having complexity 2n for each n ≥ 1. A Rote

sequence u is called complementary-symmetric (CS) if its language is closed under the letter exchange,

i.e., for each factor v = v0v1 · · · vn−1 of u, the word v = v0 v1 · · · vn−1 is also a factor of u.

Let u = u0u1 · · ·un−1 be a binary word on {0, 1} of length at least two. We denote by S(u) the word

v = v0v1 · · · vn−2 defined by

vi = (ui+1 + ui) mod 2 for i = 0, 1, . . . , n− 2.

For example, if u = 0011010, then S(u) = 010111. The definition may be extended to sequences: if u

is a sequence over {0, 1}, then S(u) denotes the sequence v = v0v1v2 · · · , where

vi = (ui+1 + ui) mod 2 for i = 0, 1, . . .

CS Rote sequences are connected to Sturmian sequences by a structural theorem.

Theorem 12 (Rote [14]). A binary sequence u is a CS Rote sequence if and only if the sequence S(u) is

a Sturmian sequence.

We say that a CS Rote sequence u is standard if both 0u and 1u are CS Rote sequences. Equivalently,

a sequence u is standard CS Rote if and only if S(u) is standard Sturmian. The relation between pseu-

dopalindromic prefixes of a standard CS Rote sequenceu and palindromic prefixes of a standard Sturmian

sequence S(u) is as follows.

Lemma 13 (Lemma 37 [2]). Let u be a standard CS Rote sequence. Let u0 = ε, u1, u2, . . . be the palin-

dromic prefixes of S(u) ordered by length, and w0 = ε, w1, w2, . . . be the pseudopalindromic prefixes of

u ordered by length. Then S(wn+1) = un for all n ∈ N, n ≥ 1.

Remark 14. Let us explain that it is not possible to use known attractors of palindromic prefixes of

standard Sturmian sequences to obtain attractors of pseudopalindromic prefixes of CS Rote sequences.

Consider the following palindromic prefix u = 010010010 of a standard Sturmian sequence. The cor-

responding standard CS Rote sequence starting with 0 has the antipalindromic prefix w = 0011100011,

i.e., S(w) = u. Let us underline the positions of the attractor of u from Theorem 6: u = 010010010
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and also from [13](Theorem 22): u = 010010010. Now, the factor 10 has a unique occurrence in w,

therefore each attractor of w has to contain either the position 4 or 5. However, there is no straightforward

way to get such positions from the underlined attractors of u (or their mirror image from Observation 17).

Blondin-Massé at al. [2] showed that standard CS Rote sequences form a subclass of binary generalized

pseudostandard sequences. Moreover, they described precisely the form of the corresponding directive

bi-sequence.

Theorem 15 ([2]). A sequence u is a standard CS Rote sequence if and only if it is aperiodic and u =
u(∆,Θ) for some directive bi-sequence (∆,Θ) such that Θ starts with R and no factor of length two of

the directive bi-sequence is in the set

{(ab, EE) : a, b ∈ {0, 1}} ∪ {(aa,RR) : a ∈ {0, 1}} ∪ {(aa,RE) : a ∈ {0, 1}} .

Moreover, the prefixes wn from Definition 3 coincide with all pseudopalindromic prefixes of u.

The aperiodicity of a binary generalized pseudostandard sequence may be recognized easily.

Theorem 16 ([7]). Let (∆,Θ) be a directive bi-sequence. Then u = u(∆,Θ) is aperiodic if and only if

there is no bijection f : {E,R} → {0, 1} such that f(ϑn) = δn+1 for all sufficiently large n.

In the proof of the main theorem on string attractors of pseudopalindromic prefixes of standard CS Rote

sequences, the following statements will be useful.

Observation 17. If w is a pseudopalindrome with an attractor Γ, the mirror image ΓR = {|w| − 1− γ :
γ ∈ Γ} is an attractor of w, too.

Lemma 18. Let u be a standard CS Rote sequence and let (wn)
∞
n=1 be the sequence of all non-empty

pseudopalindromic prefixes of u, ordered by length. Then for n ≥ 2 and a ∈ {0, 1} such that wn−1a is a

prefix of wn, we have:

1. If wn−1 = R(wn−1) and wn = R(wn), then wn = wn−1aw, where w is the longest antipalin-

dromic prefix of wn followed by a.

2. If wn−1 = R(wn−1) and wn = E(wn), then wn = wn−1aw, where w is the longest palindromic

prefix of wn followed by a.

3. If wn−1 = E(wn−1) and wn = R(wn), then wn = wn−1aw, where w is the longest palindromic

prefix of wn followed by a.

Proof: Assume without loss of generality that the Rote sequence starts with 0. The reader is invited to

check the cases, where S(wn) contains only one letter, i.e., the cases where wn = 0
n or wn = (01)

n
2 for

n even or wn = (01)
n−1

2 0 for n odd. In the sequel, assume S(wn) contains both letters. The possible

prefixes of (∆,Θ) are given in Theorem 15.

1. Since wn = wn−1aw and wn−1 as a palindrome has 0 as both the first and the last letter, then by

Lemma 13, Theorem 12, and Proposition 5, we obtain S(wn) = un = un−1aau = S(wn−1)aaS(w),
where un is the n-th palindromic prefix of the corresponding Sturmian sequence and u is the longest

palindromic prefix of un followed by a. Consequently,wn is equal to wn−1aw, where w starts with

1 (since S(aw) = au), ends with 0 (sincewn ends with 0) and is a pseudopalindrome by Lemma 13.
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Thus w = E(w). Therefore, since w is a suffix of wn = R(wn), we get w is an antipalindromic

prefix of wn followed by a. Moreover, it is the longest antipalindromic prefix with this property

because S(w) = u, where u is the longest palindromic prefix of S(wn) followed by a.

2. The proof is similar as before. Since wn = wn−1aw and wn−1 as a palindrome has 0 as both the

first and the last letter, then by Lemma 13, Theorem 12, and Proposition 5, we obtain S(wn) =
un−1aau, where u is the longest palindromic prefix of un followed by a. Consequently, wn is

equal to wn−1aw, where w starts with 1 (since S(aw) = au), ends with 1 (since wn ends with 1)

and is a pseudopalindrome by Lemma 13. Therefore, since w is a suffix of wn = E(wn), we get w

is the longest palindromic prefix of wn followed by a.

3. Since wn = wn−1aw and wn−1 as an antipalindrome has 1 as the last letter, then by Lemma 13,

Theorem 12, and Proposition 5, we obtain S(wn) = un−1aau, where u is the longest palindromic

prefix of un followed by a. Consequently, wn is equal to wn−1aw, where w starts with 0, ends with

0 and is a pseudopalindrome by Lemma 13. Therefore, since w is a suffix of wn = R(wn), we get

w is the longest palindromic prefix of wn followed by a.

Let us state the main theorem describing the minimal string attractors of pseudopalindromic prefixes of

standard CS Rote sequences.

Theorem 19. Let u be a standard CS Rote sequence, then the size of the minimal attractor of any pseu-

dopalindromic prefix equals the number of distinct letters contained in the prefix. More precisely, let

(wn)
∞
n=1 be the sequence of all non-empty pseudopalindromic prefixes of u ordered by length and con-

sider and consider wn containing both letters and let wn−1a be a prefix of wn, where a ∈ {0, 1}. Then

the minimal attractor of the pseudopalindromic prefix wn is of the following form:

1. If wn = E(wn) and w is the longest antipalindromic prefix of wn followed by a, then

Γ = {|w|, |wn−1|}

is an attractor of wn.

2. If wn = R(wn), wn−1 = E(wn−1), and w is the longest palindromic prefix of wn followed by a,

then

Γ = {|w|, |wn−1|}

is an attractor of wn.

3. If wn = R(wn), wn−1 = R(wn−1), and m is the minimum index satisfying that wi = R(wi) for

all i ∈ {m, . . . , n}, then the attractor of wm from Item 2 is an attractor of wn.

Proof: First of all, Theorem 15 describes the form of the unique bi-sequence (∆,Θ) satisfying that the

pseudopalindromic prefixes wn of u correspond to the prefixes wn given by Definition 3. It follows that Θ
has to start with R. Let us assume without loss of generality that (0, R) is the first element of (∆,Θ). If a

pseudopalindromic prefix contains one letter, then any position is its attractor. Further on, let us consider

pseudopalindromic prefixes wn containing two distinct letters. Let us proceed by induction on n.
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Consider the first pseudopalindromic prefix wk+1 containing both letters 0 and 1. Then by Theorem 15

(0k1, RkE) is a prefix of (∆,Θ) and k ≥ 1. Then wk+1 = 0
k
1
k and the longest antipalindromic prefix

of wk+1 followed by 0 is w0 = ε. Hence Γ = {0, k} is clearly an attractor of wk+1 = 00
k−1

11
k−1 (we

underlined the positions of Γ).

Assume that for some n ≥ k + 1, we have wn = E(wn) and wn−1a is a prefix of wn for a ∈ {0, 1}
and the claim on the attractor holds, i.e., wn has the attractor

Γ1 = {|wi|, |wn−1|} , (3)

where wi is the longest antipalindromic prefix of wn followed by a.

Let us assume ϑn = ϑn+m+1 = E (by Theorems 15 and 16 such an integer m exists and m ≥ 1),

while ϑℓ = R for all ℓ ∈ {n + 1, . . . , n + m}. We will show that under this assumption, wn+1 up to

wn+m+1 have also the attractors as described in Theorem 19. This will prove the theorem completely.

There are four situations to be considered according to Theorem 15.

1. m = 1 and (δn−1δnδn+1δn+2, ϑn−1ϑnϑn+1ϑn+2) = (aaaa,RERE);

2. m ≥ 2 and (δn−1δnδn+1 · · · δn+mδn+m+1, ϑn−1ϑnϑn+1 · · ·ϑn+mϑn+m+1) = (aam+1a,RERmE);

3. m = 1 and (δn−1δnδn+1δn+2, ϑn−1ϑnϑn+1ϑn+2) = (aaaa,RERE);

4. m ≥ 2 and (δn−1δnδn+1 · · · δn+mδn+m+1, ϑn−1ϑnϑn+1 · · ·ϑn+mϑn+m+1) = (aaama,RERmE).

We will treat the first two of them. The remaining ones are analogous. In both cases, using Lemma 18,

we have

wn = wn−1awj , (4)

wn = E(wn) = wjawn−1 , (5)

where wj is the longest palindromic prefix of wn followed by a. Since wn = (wn−1a)
E , it follows by

(4) and (5) that wn−1 = wjax, where x is the longest antipalindromic suffix of wn−1 preceded by a, or

equivalently, x is the longest antipalindromic prefix of wn−1 followed by a, i.e., x = wi, as defined in (3).

Hence, wn−1 = wjawi = wiawj , where we used palindromicity of wn−1 and wj and antipalindromicity

of wi in the last equality. Therefore, we get the following expressions for wn, where we underlined

the positions of the attractor Γ1 of wn from (3) (the first line) and the mirror image attractor Γ1
R from

Observation 17 (the second line):

wn = wn−1awj = wjawiawj = wiawjawj ,

wn = wjawn−1 = wjawjawi = wjawiawj .
(6)

1. m = 1 and (δn−1δnδn+1δn+2, ϑn−1ϑnϑn+1ϑn+2) = (aaaa,RERE):

• Using the definition of palindromic closure and (4), we obtain

wn+1 = (wna)
R = wn−1awjawn−1 = wnawn−1 . (7)
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We will show that Γ2 = {|wj |, |wn|} is an attractor of wn+1 – see the corresponding positions

underlined (we rewrite wn by (5)):

wn+1 = wjawn−1awn−1 . (8)

By (7), each factor f of wn+1 either crosses |wn|, i.e., the underlined a in (8), or is entirely

contained inwn. In that case, consider the mirror image attractorΓ1
R = {|wj |, |wn|−|wi|−1}

of wn. Using (6) we can rewrite wn+1 as

wn+1 =

wn−1

︷ ︸︸ ︷

wjawjawiawn−1
︸ ︷︷ ︸

wn

=

wn−1

︷ ︸︸ ︷

wjawiawjawiawj
︸ ︷︷ ︸

wn

, (9)

where we underlined the positions from Γ2. From this form, we can see that f contained in

wn either crosses |wj |, i.e., the underlined a, or f crosses the position |wn| − |wi| − 1 in (9)

and is contained in the word wn−1 = wjawi, where we underlined the position crossed by f

in wn−1. Observing the right-hand form of wn+1 in (9), the factor f has then an occurrence

containing the position |wn| in wn+1, i.e., the underlined a.

• Next, using antipalindromic closure, we obtain

wn+2 = (wn+1a)
E =

wn+1

︷ ︸︸ ︷

wn−1awn awn−1 . (10)

We will show that Γ3 = {|wn|, |wn+1|} is an attractor of wn+2. Each factor f of wn+2 =
wnawn−1awn−1 (we underlined the positions ofΓ3) either crosses |wn+1|, i.e., the underlined

a, or is entirely contained in wn+1 = wnawn−1. In this case, we can write wn+2 as

wn+2 =

wn+1

︷ ︸︸ ︷

wjawn−1awiawjawn−1
︸ ︷︷ ︸ ︸ ︷︷ ︸

wn wn−1

. (11)

By (8), f then either crosses |wn|, i.e., the underlined a, or f is contained in wn = wjawn−1

and crosses |wj |. However, since wn forms also a suffix of wn+2, the factor f has an occur-

rence in wn+2 containing the position |wn+1|, i.e., the underlined a.

2. m ≥ 2 and (δn−1δnδn+1 · · · δn+mδn+m+1, ϑn−1ϑnϑn+1 · · ·ϑn+mϑn+m+1) = (aam+1a,RERmE):
The proof that Γ2 = {|wj |, |wn|} is an attractor of wn+1 stays the same as above.

• Using the definition of palindromic closure, since wn−1 is the longest palindromic prefix of

wn+1 followed by a, we obtain

wn+2 = (wn+1a)
R = wnawn−1awn = wnawn+1 . (12)

We will show that Γ2 = {|wj |, |wn|} is an attractor of wn+2. Indeed, each factor f either

crosses |wn| or by (12) f is entirely contained in wn+1. Since wn+1 is a prefix of wn+2, the

factor f has an occurrence containing an element of Γ2.

Similarly, for k ∈ {3, . . . ,m}, we have wn+k = wnawn+k−1. The attractor of wn+k is again

equal to Γ2: each factor f either crosses |wn|, or f is entirely contained in the prefix wn+k−1

of wn+k and the attractor of wn+k−1 is by induction assumption Γ2 = {|wj |, |wn|}.
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• Using the definition of the antipalindromic closure, since wn is the longest antipalindromic

prefix followed by a, we have

wn+m+1 = (wn+ma)E = wn+m−1awnawn+m−1 = wn+mawn+m−1 .

We will show that Γ3 = {|wn|, |wn+m|} is an attractor of wn+m+1. Each factor f of

wn+m+1 = wnawn+m−1awn+m−1 (we underlined the positions of the expected attractor

Γ3) either crosses |wn+m|, i.e., the underlined a, or f is entirely contained in wn+m or in

wn+m−1. The word wn+m+1 can be expressed as

wn+m+1 =

wn+m−1 wn

︷ ︸︸ ︷ ︷ ︸︸ ︷

wnawkawn−1awjawn−1awjawk
︸ ︷︷ ︸ ︸ ︷︷ ︸

wn+m wn+m−1

, (13)

wn+m+1 =

wn+m−1 wn

︷ ︸︸ ︷ ︷ ︸︸ ︷

wn−1awjawkawn−1awjawkawn
︸ ︷︷ ︸

wn+m−1

, (14)

where k = n+m− 2 if m ≥ 3 and k = n− 1 if m = 2.

If f is contained in wn+m, then f crosses the attractor Γ2 = {|wj |, |wn|} of wn+m. It

means that either f crosses |wn|, i.e., the underlined a (see (13)), or f is contained in wn =
wjawn−1, where we underlined the position in wn crossed by f . Then by (13) the factor f

has an occurrence in wn+m+1 containing |wn+m|, i.e., the underlined a.

If f is contained in wn+m−1, then f crosses its attractor Γ2 = {|wj |, |wn|} (taking the po-

sitions only in wn+m−1). By (14) the factor f either crosses |wn| in wn+m−1, which means

that f crosses |wn+m| in wn+m+1, i.e., the underlined a, or f is contained in wn = wjawn−1

(a prefix of wn+m−1), where we underlined the position crossed by f . However, then f has an

occurrence in wn+m+1 containing |wn|, i.e., the underlined a, as can be observed from (14)

(since wn−1 is a prefix of wk).

Example 20. Let us consider a standard CS Rote sequence with the bi-sequence starting with

(0011001, RRERERE), i.e., corresponding to the situation of m = 1 treated in the proof of Theo-

rem 19. The attractors’ positions given in Theorem 19 for prefixes wn containing both letters are under-
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lined.

w1 = 0

w2 = 00

w3 =

w2

︷︸︸︷

00 11

w4 =

w1

︷︸︸︷

0 011100
︸ ︷︷ ︸

w3

w5 =

w3

︷ ︸︸ ︷

0011100011
︸ ︷︷ ︸

w4

w6 =

w2

︷︸︸︷

00 1110001100011100
︸ ︷︷ ︸

w5

w7 =

w5

︷ ︸︸ ︷

00111000110001110011100011
︸ ︷︷ ︸

w6

For illustration of the case m ≥ 2 from the proof of Theorem 19, let us consider a bi-sequence starting

with (001100001, RRERERRRE). The steps for n ≤ 6 are identical with the previous example.

w1 = 0

w2 = 00

w3 = 0011

w4 = 0011100

w5 = 0011100011

w6 =

w2
︷︸︸︷

00 1110001100011100
︸ ︷︷ ︸

w5

w7 =

w2
︷︸︸︷

00 111000110001110001100011100
︸ ︷︷ ︸

w5

w8 =

w2

︷︸︸︷

00 11100011000111000110001110001100011100
︸ ︷︷ ︸

w5

w9 =

w5

︷ ︸︸ ︷

0011100011000111000110001110001100011100111000111001110001110011100011
︸ ︷︷ ︸

w8
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7 Open problems

It still remains an open problem to find string attractors of pseudopalindromic prefixes wn of binary gen-

eralized pseudostandard sequences. Recall partial steps done in this paper and also those done previously.

For standard Sturmian sequences, the minimal attractors of factors containing two letters are of size two.

For pseudostandard sequences we have described attractors of size three for antipalindromic prefixes and

we have shown that, up to an exceptional case, they are minimal. For pseudopalindromic prefixes of

standard CS Rote sequences we have found attractors of size two. In both previous cases, we studied

only pseudopalindromic prefixes, neither prefixes nor factors in general. Even if we keep restricting our

focus to pseudopalindromic prefixes of binary generalized pseudostandard sequences, the attractor may

be larger. For instance, the minimal attractors of pseudopalindromic prefixes of length at least 8 of the

Thue-Morse sequence are of size four [12]. Based on computer experiments, we conjecture that the size of

minimal string attractors of pseudopalindromic prefixes of binary generalized pseudostandard sequences

is of size at most four. An even more demanding open problem is to study attractors of d-ary generalized

pseudostandard sequences for d > 2 (defined in [3] and studied in [9]).
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