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Three polynomials are defined for given sets S of n points in general position in the plane: The Voronoi polynomial
with coefficients the numbers of vertices of the order-k Voronoi diagrams of S, the circle polynomial with coefficients
the numbers of circles through three points of S enclosing k points of S, and the E≤k polynomial with coefficients
the numbers of (at most k)-edges of S. We present several formulas for the rectilinear crossing number of S in terms
of these polynomials and their roots. We also prove that the roots of the Voronoi polynomial lie on the unit circle if,
and only if, S is in convex position. Further, we present bounds on the location of the roots of these polynomials.

Keywords: Voronoi diagrams, (at most k)-edges, Crossing numbers, Roots of polynomials

1 Introduction
Let S be a set of n ≥ 4 points in general position in the plane, meaning that no three points of S are
collinear and no four points of S are cocircular. The Voronoi diagram of order k of S, Vk(S), is a
subdivision of the plane into cells such that points in the same cell have the same k nearest points of S.
Voronoi diagrams have found many applications in a wide range of disciplines, see e.g. Aurenhammer
(1991); Okabe et al. (2000). We define the Voronoi polynomial pV (z) =

∑n−1
k=1 vkz

k−1, where vk is the
number of vertices of Vk(S).

Proximity information among the points of S is also encoded by the circle polynomial of S, which we
define as pC(z) =

∑n−3
k=0 ckz

k, where ck denotes the number of circles passing through three points of S
that enclose exactly k other points of S.
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The numbers vk and ck are related via the well-known relation

vk = ck−1 + ck−2 (1)

where c−1 = 0 and cn−2 = 0, see e.g. Remark 2.5 in Lindenbergh (2003). These two polynomials pV (z)
and pC(z) are especially interesting due to their connection to the prominent rectilinear crossing number
problem.

The rectilinear crossing number of a point set S, cr(S), is the number of pairwise edge crossings
of the complete graph Kn when drawn with straight-line segments on S, i.e. the vertices of Kn are
the points of S. Equivalently, cr(S) is the number of convex quadrilaterals with vertices in S. We
denote cr(S) as α

(
n
4

)
, with 0 ≤ α ≤ 1. Note that for S in convex position, α = 1. The rectilinear

crossing number problem consists in, for each n, finding the minimum value of cr(S) among all sets
S of n points, no three of them collinear. This minimum is commonly denoted as cr(Kn). The limit
of cr(Kn)/

(
n
4

)
, when n tends towards infinity, is the so-called rectilinear crossing number constant α∗.

This problem is solved for n ≤ 27 and n = 30, and the current best bound for the rectilinear crossing
number constant is α∗ > 0, 37997; for more information, see the survey of Ábrego et al. (2013) and
the web page Aichholzer (2006a). A fruitful approach to the rectilinear crossing number problem is
proving bounds on the numbers of j-edges and of (≤ k)-edges of S, see Ábrego et al. (2012); Ábrego and
Fernández-Merchant (2017); Aichholzer et al. (2007); Balogh and Salazar (2006); Lovász et al. (2004).
An (oriented) j-edge of S is a directed straight line ℓ passing through two points of S such that the open
half-plane bounded by ℓ and on the right of ℓ contains exactly j points of S. The number of j-edges
of S is denoted by ej , and E≤k =

∑k
j=0 ej is the number of (≤ k)-edges. We then consider the E≤k

polynomial pE(z) =
∑n−3

k=0 E≤kz
k, which also encodes information on higher order Voronoi diagrams,

since the number of j-edges ej is the number of unbounded cells of the order-(j + 1) Voronoi diagram of
S, see e.g. Proposition 30 in Claverol et al. (2024). Note that pE(z) has no term E≤n−2.

For an illustration of the defined polynomials for a particular point set, see Figure 1.

Fig. 1: Left: 1591-th entry of the order type database for 8 points, from Aichholzer (2006b). With complex stream
plots of its Voronoi polynomial (center): pV (z) = 10 + 23z + 27z2 + 24z3 + 17z4 + 9z5 + 2z6, and its E≤k

polynomial (right): pE(z) = 4 + 13z + 22z2 + 34z3 + 43z4 + 52z5; roots are red points.

For a point set S, we show that cr(S) appears in the first derivatives of these three polynomials when
evaluated at z = 1 and, in addition, we obtain appealing formulas for cr(S) in terms of the roots of the
polynomials. Motivated by this, we study the location of such roots, showing several bounds on their
modulus. As a particular result, we also prove that the roots of the Voronoi polynomial lie on the unit
circle, {z : |z| = 1}, if, and only if, S is in convex position. Polynomials with zeros on the unit circle
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have been studied for instance in Chapoton and Han (2020); Chen (1995); Lakatos and Losonczi (2004);
Lalı́n and Smyth (2013).

Furthermore, the circle polynomial comes into play when considering the random variable X that
counts the number of points of S enclosed by the circle defined by three points chosen uniformly at
random from S. The probability generating function of X is pC(z)/

(
n
3

)
. In Michelen and Sahasrabudhe

(2019) a central limit theorem for random variables with values in {0, . . . , n} was shown, under the
condition that the variance is large enough and that no root of the probability generating function is too
close to 1 ∈ C. We show that the random variable X does not approximate a normal distribution, and use
the result from Michelen and Sahasrabudhe (2019) to derive that pC(z) has a root close to 1 ∈ C.

We first state in Section 2 the known relations for Voronoi diagrams, circles enclosing points, and j-
edges, that we will use. Then, in Section 3, we apply them to obtain properties of the three polynomials.
Section 4 is on the roots of the polynomials. Finally, Section 5 discusses open problems, the related
polynomial of j-edges, and conclusions.

Throughout this work, points (a, b) in the plane are identified with complex numbers z = a + ib. To
avoid cumbersome notation we omit indicating the point set S where it is clear from context; for example,
we write pC(z) instead of pSC(z).

2 Known relations
In this section, necessary results for the current paper are presented. These consist in the relations between
the number ck of circles enclosing k points of S, the crossing number cr(S), the number E≤k of (at most
k)-edges of S, and the number vk of vertices of the Voronoi diagram of order k of S.

A main source is the work by Lee (1982), from where several of the following formulas can be obtained.

• For any point set S, and 0 ≤ k ≤ n− 3, it holds that, see Ardila (2004); Clarkson and Shor (1989);
Claverol et al. (2024); Lee (1982); Lindenbergh (2003),

ck + cn−k−3 = 2(k + 1)(n− k − 2). (2)

• From Fabila-Monroy et al. (2012) we get the following two equations.

n−3∑
k=0

k · ck =

(
n

4

)
+ cr(S) = (1 + α)

(
n

4

)
. (3)

This was essentially also obtained in Urrutia (2004), though not stated in terms of cr(S).

n−3∑
k=0

k2 · ck =

(
n

5

)
+

(
n

4

)
+ (n− 3)cr(S). (4)

• For k ≤ n−3
2 it holds that, see Lemma 3.1 in Claverol et al. (2021),

ck ≥ (k + 1)(n− k − 2) (5)

and
cn−k−3 ≤ (k + 1)(n− k − 2). (6)
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• For every set S of n points in general position, the relation between E≤k and ck is, see e.g.
Property 33 in Claverol et al. (2024),

ck + E≤k = (k + 1)(2n− k − 2). (7)

For a point set S in convex position, we have equality in Equations (5) and (6) which can be derived
from Equations (7) and E≤k = (k + 1)n for S in convex position, and therefore

2ck = ck−1 + ck+1 + 2. (8)

Then, the number of vertices of Vk(S), for S in convex position fulfills, see e.g. Property 34,
Equation (4) in Claverol et al. (2024),

vk = ck−1 + ck−2 = (2k − 1)n− 2k2 . (9)

Note that, for S in convex position this implies that

vk = vn−k. (10)

3 Properties of the Voronoi, circle and E≤k
polynomials

In the following section, we will show the relations between the Voronoi and the circle polynomials,
pV (z) and pC(z). Some additional properties for pV (z), pC(z) and pE(z) will also be presented. Finally,
we will give a family of formulas for the crossing number in terms of the coefficients of these three
polynomials.

Proposition 1. For every set S of n points in general position, the circle polynomial pC(z) =
∑n−3

k=0 ckz
k

and the Voronoi polynomial pV (z) =
∑n−1

k=1 vkz
k−1 satisfy:

pV (z) = (1 + z)pC(z). (11)

Proof: This follows from the property vk = ck−1 + ck−2, for 1 ≤ k ≤ n − 1, where c−1 = 0 and
cn−2 = 0. Then,

pV (z) = c0 +

n−2∑
k=2

(ck−1 + ck−2)z
k−1 + cn−3z

n−2 = pC(z) + z · pC(z).

Proposition 2. For every set S of n points in general position, the circle polynomial pC(z) =
∑n−3

k=0 ckz
k

satisfies:

1. pC(1) =
(
n
3

)
.

2. p′C(1) =
(
n
4

)
+ cr(S).

3. p′′C(1) =
(
n
5

)
+ (n− 4)cr(S).
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4. pC(−1) = n−1
2 for n odd.

Proof: Since there are
(
n
3

)
different circles passing through three different points from S, the first claim

follows. The second one follows from Equation (3). The third equality follows from Equations (3) and (4).
Finally, we use Equation (2) to obtain the fourth equality; note that from Equation (2), for n odd it follows
that cn−3

2
= (n−1)2

4 .

pC(−1) =

n−3∑
k=0

(−1)kck =

n−3
2 −1∑
k=0

(
(−1)k2(k + 1)(n− 2− k)

)
+ (−1)

n−3
2 cn−3

2
=

n− 1

2
.

When we consider the Voronoi polynomial we get:

Proposition 3. For every set S of n points in general position, the Voronoi polynomial
pV (z) =

∑n−1
k=1 vkz

k−1 satisfies:

1. pV (1) = 2
(
n
3

)
.

2. p′V (1) =
(
n
3

)
+ 2
(
n
4

)
+ 2cr(S).

3. p′′V (1) = 2
(
n
4

)
+ 2
(
n
5

)
+ 2(n− 3)cr(S).

4. pV (−1) = 0.

5. p′V (−1) = n−1
2 for n odd.

Proof: This follows from Proposition 1 and Proposition 2. From pV (z) = (1 + z)pC(z), we get

p′V (z) = pC(z) + (1 + z) · p′C(z)

and
p′′V (z) = 2p′C(z) + (1 + z) · p′′C(z).

Then just substitute from Proposition 2. The fourth property follows directly from Proposition 1 and was
already noted by Lindenbergh (2003). The last property follows from taking derivatives in Proposition 1.

When we consider the E≤k
polynomial we get:

Proposition 4. For every set S of n points in general position, the E≤k
polynomial pE(z) =

∑n−3
k=0 E≤k

zk

satisfies:

1. pE(1) = 3
(
n
3

)
.

2. p′E(1) = 9
(
n
4

)
− cr(S).

3. p′′E(1) = 35
(
n
5

)
− (n− 4)cr(S).
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4. pE(−1) = n(n−1)
2 for n odd.

Proof: The first equality follows from Equation (7) by summing over all k, and Proposition 2, part 1.
Note that

∑n−3
k=0 ((k + 1)(2n− k − 2)) = 4

(
n
3

)
.

pE(1) =

n−3∑
k=0

E≤k =

n−3∑
k=0

((k + 1)(2n− k − 2)− ck) = 4

(
n

3

)
− pC(1) = 3

(
n

3

)
The second and third equalities follow from Equations (3) and (7).
The fourth equality follows from Equation (7) and Proposition 2, part 4. Note that for n odd:∑n−3

k=0(−1)k ((k + 1)(2n− k − 2)) = n2−1
2 .

pE(−1) =
n−3∑
k=0

(−1)kE≤k =
n−3∑
k=0

(−1)k ((k + 1)(2n− k − 2))− pC(−1) =
n(n− 1)

2

From the following result of Aziz and Mohammad, see Lemma 1 in Aziz and Mohammad (1980), we
get an intriguing family of formulas for the rectilinear crossing number in terms of the coefficients of the
three studied polynomials, and the roots of a non-zero complex number a ̸= −1.

Theorem 5 (Aziz and Mohammad, 1980). If P (z) is a polynomial of degree n and z1, . . . , zn are the
zeros of zn + a, where a ̸= −1 is any non-zero complex number, then for any complex number t,

tP ′(t) =
n

1 + a
P (t) +

1 + a

na

n∑
k=1

P (tzk)
zk

(zk − 1)2
.

Proposition 6. The coefficients of the polynomials pV (z), pC(z) and pE(z) satisfy

1) cr(S) =
n−3∑
j=0

cj

(
4

3(n− 3)

n−3∑
k=1

zj+1
k

(zk − 1)2

)
, (12)

where the zk are the (n− 3)-th roots of −3.

2) cr(S) =
n−1∑
j=1

vj

(
2

3(n− 1)

n−1∑
k=1

zjk
(zk − 1)2

)
, (13)

where the zk are the (n− 1)-th roots of −3.

3) cr(S) =
n−3∑
j=0

E≤j

(
−4

n− 3

n−3∑
k=1

zj+1
k

(zk − 1)2

)
, (14)

where the zk are now the (n− 3)-th roots of − 1
3 .
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Proof: Using Theorem 5 for t = 1 and for the circle polynomial pC(z), we get for any non-zero complex
number a ̸= −1,

(
n

4

)
+ cr(S) =

n− 3

1 + a

(
n

3

)
+

1 + a

(n− 3)a

n−3∑
k=1

n−3∑
j=0

cj
zj+1
k

(zk − 1)2
(15)

Taking a = 3 we get

cr(S) =
4

3(n− 3)

n−3∑
k=1

n−3∑
j=0

cj
zj+1
k

(zk − 1)2
=

n−3∑
j=0

cj

(
4

3(n− 3)

n−3∑
k=1

zj+1
k

(zk − 1)2

)
, (16)

where the zk are the (n− 3)-th roots of −3.

Using Theorem 5 for t = 1 and for the Voronoi polynomial pV (z), we get for any non-zero complex
number a ̸= −1,

(
n

3

)
+ 2

(
n

4

)
+ 2cr(S) =

n− 1

1 + a
2

(
n

3

)
+

1 + a

(n− 1)a

n−1∑
k=1

n−1∑
j=1

vj
zjk

(zk − 1)2
(17)

And again, for a = 3 we get

cr(S) =
2

3(n− 1)

n−1∑
k=1

n−1∑
j=1

vj
zjk

(zk − 1)2
=

n−1∑
j=1

vj

(
2

3(n− 1)

n−1∑
k=1

zjk
(zk − 1)2

)
, (18)

where the zk are the (n− 1)-th roots of −3.

Finally, using Theorem 5 for t = 1 and for the E≤k polynomial pE(z), we get for any non-zero complex
number a ̸= −1,

9

(
n

4

)
− cr(S) =

3(n− 3)

1 + a

(
n

3

)
+

1 + a

(n− 3)a

n−3∑
k=1

n−3∑
j=0

E≤j
zj+1
k

(zk − 1)2
(19)

and taking now a = 1
3 we get

cr(S) = − 4

n− 3

n−3∑
k=1

n−3∑
j=0

E≤j
zj+1
k

(zk − 1)2
=

n−3∑
j=0

E≤j

(
−4

n− 3

n−3∑
k=1

zj+1
k

(zk − 1)2

)
, (20)

where the zk are now the (n− 3)-th roots of − 1
3 .
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4 On the roots of Voronoi, circle and E≤k
polynomials

In this section, we present properties of the roots of our polynomials. Note that, by Proposition 1, the
Voronoi polynomial pV (z) has the same roots as the circle polynomial pC(z), plus the additional root
z = −1.

A direct relation between roots of polynomials and the rectilinear crossing number can be derived from
the well-known relation

P ′(z)

P (z)
=

n∑
i=1

1

z − ai
, (21)

where P (z) is a polynomial of degree n with roots a1, . . . , an, and z is any complex number such that
P (z) ̸= 0.

When we consider the circle polynomial pC(z) and z = 1, using Proposition 2 we get(
n
4

)
+ cr(S)(
n
3

) =

n−3∑
i=1

1

1− ai
, (22)

where the ai are the roots of pC(z) =
∑n−3

k=0 ckz
k.

Consider the reciprocal polynomial p∗C(z) =
∑n−3

k=0 ckz
n−k−3 of pC(z). It is well known that the roots

of a reciprocal polynomial p∗C(z) are 1/ai where ai is a root of pC(z).

Proposition 7.
n−3∑
k=0

(n− k − 3)ck = 3

(
n

4

)
− cr(S) (23)

Proof: We use Equation (21). Observe that for a root ai of pC(z) and a root 1/ai of p∗C(z) we have
1

1−ai
+ 1

1−1/ai
= 1. Then,

p′C(1)

pC(1)
+

p∗
′

C (1)

p∗C(1)
= n− 3.

Equation (23) follows by substituting p′C(1) =
(
n
4

)
+ cr(S), and pC(1) = p∗C(1) =

(
n
3

)
.

The following equation is obtained in a similar fashion:

Proposition 8.
−2
(
n
4

)
+ 2cr(S)(
n
3

) =

n−3∑
i=1

1 + ai
1− ai

, (24)

where the ai are the roots of pC(z) =
∑n−3

k=0 ckz
k.

Proof:
p′C(1)

pC(1)
− p∗

′

C (1)

p∗C(1)
=

n−3∑
i=1

1

1− ai
−

n−3∑
i=1

1

1− 1/ai
=

n−3∑
i=1

1 + ai
1− ai

.
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The left side of this equation simplifies to
−2(n4)+2cr(S)

(n3)
.

Note that Proposition 8 also works for the roots of the Voronoi polynomial pV (z), since the Voronoi
polynomial has the same roots as the circle polynomial, plus the additional root z = −1 for which the
corresponding term in the sum is zero.

Of particular interest is the polynomial pV (z) =
∑n−1

k=1 vkz
k−1 for a set of n points in convex position.

By Equation (9), vk = (2k − 1)n− 2k2. By Equation (10), pV (z) is a palindromic polynomial, so it has
roots ai and 1/ai. It follows that for sets S of n points in convex position

n−2∑
i=1

1

1− ai
=

n− 2

2
, (25)

where the ai are the roots of pV (z) =
∑n−1

k=1 vkz
k−1. We also have that for S in convex position, from

Proposition 8,
n−2∑
i=1

1 + ai
1− ai

= 0. (26)

For our next result we use the following theorem due to Malik (1969), also see the book by Rahman
and Schmeisser (2002), Corollary 14.4.2.

Theorem 9 (Rahman and Schmeisser, 2002). Let f be a polynomial of degree n having all its zeros in
the closed disk |z| ≤ k, where k ≤ 1. Then

max
|z|=1

|f ′(z)| ≥ n

1 + k
max
|z|=1

|f(z)|.

Theorem 10. Let S be a set of n points in general position in the plane. Then S is in convex position
if and only if all the roots of the Voronoi polynomial of S, pV (z) =

∑n−1
k=1 vkz

k−1, lie on the unit circle
{z : |z| = 1}.

Proof: In view of Proposition 1, we can consider the circle polynomial pC(z) instead of the Voronoi
polynomial.

If all the roots of pC(z) lie on the unit circle, in particular they are contained in the closed unit
disk. Thus, we can apply Theorem 9 to the circle polynomial. Since all its coefficients are positive,
max|z|=1 |f ′(z)| = f ′(1) and max|z|=1 |f(z)| = f(1). By Proposition 2, we get(

n

4

)
+ cr(S) ≥ n− 3

1 + k

(
n

3

)
.

Observing that (n− 3)
(
n
3

)
= 4
(
n
4

)
and k ≤ 1, this simplifies to

cr(S) ≥
(
n

4

)
3− k

1 + k
≥
(
n

4

)
.

Then, since the inequality cr(S) ≤
(
n
4

)
always holds, we have cr(S) =

(
n
4

)
, which implies that (is

actually equivalent to) S being in convex position.
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It remains to show that for a point set S in convex position all its roots lie on the unit circle. For S
in convex position we have equality in Equations (5) and (6), which implies that pC(z) is a palindromic
polynomial. By Equation (8), for S in convex position the coefficients of pC(z) satisfy 2ck = ck−1 +
ck+1 + 2. For a palindromic polynomial (with say coefficients ck) that satisfies 2ck ≥ ck−1 + ck+1 it is
known that all its roots lie on the unit circle, see e.g. Chapoton and Han (2020), Theorem 2.5.

In order to find a lower bound on the largest modulus of the roots of pC(z) with S not in convex
position, we use the following two theorems. The first one is due to Laguerre (1878), Theorem 1, see also
Nagy (1933), and Rahman and Schmeisser (2002), Theorem 3.2.1b.

Theorem 11 (Rahman and Schmeisser, 2002). Let f be a polynomial of degree n ≥ 2. If ζ, belonging
to the complex plane, is neither a zero nor a critical point of f , then every circle C that passes through ζ

and ζ − n f(ζ)
f ′(ζ) separates at least two zeros of f unless the zeros all lie on C.

The second theorem is due to Obrechkoff (1923), also see Eremenko and Bergweiler (2015) and Marden
(1966), Chapter IX, 41, Exercise 5.

Theorem 12 (Obrechkoff, 1923). For every polynomial P of degree n with non-negative coefficients and
every θ ∈

(
0, π

2

)
, the number of roots in the sector {z ∈ C\{0} | |arg(z)| ≤ θ} is at most 2θn

π .

Theorem 13. For every set S of n > 3 points in general position with rectilinear crossing number
cr(S) = α ·

(
n
4

)
, the Voronoi polynomial pV (z) =

∑n−1
k=1 vkz

k−1 has a root of modulus at least 1 +
(1−α)π2

16(n−3)2 +O
(

1
n4

)
.

Proof: First observe that if S is in convex position, then α = 1 and the statement of the theorem holds by
Theorem 10. Assume then that S is not in convex position. Therefore, not all points of S lie on a common
circle. We apply Theorem 11 to the circle polynomial pC(z) =

∑n−3
k=0 ckz

k and ζ = 1. Thus, by Proposi-

tion 2, every circle C passing through point (1, 0) and through point
(
1− (n−3)(n3)

(n4)+cr(S)
, 0

)
=
(
1− 4

1+α , 0
)

separates at least two zeros of pC(z). The center of the smallest such circle Cs is (α−1
α+1 , 0), and the radius

of Cs is 2
1+α . Let Ds denote the disk with boundary the circle Cs.

The unit disk is contained in Ds, touching it in the point (1, 0). This already shows that there exists a zero
of pC(z) that lies outside of the unit disk.

From Obrechkoff’s inequality, Theorem 12, we obtain that the sector T = {z ∈ C\{0} | |arg(z)| <
π

2(n−3)} is empty of roots of pC(z).

By Theorems 11 and 12, the region C\(Ds ∪ T ) contains a root of pC(z). Then, the modulus of the
largest root of pC(z) is at least the distance d from the origin to the intersection point in the first quadrant
of CS with the line y = tan

(
π

2(n−3)

)
x for n > 4; see Figure 2.

This distance d satisfies, see Figure 2,

(
2

1 + α

)2

=

(
α− 1

α+ 1

)2

+ d2 − 2d
1− α

1 + α
cos

(
π − π

2(n− 3)

)
.
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d

2

1+
α(

1− 4
1+α , 0

)
1−α
1+α

(1, 0)

CS

T

π
2(n−3)

Fig. 2: The sector T = {z ∈ C\{0} | |arg(z)| < π
2(n−3)

} is empty of roots of pC(z). The region C\(Ds ∪ T )

contains a root of pC(z), with modulus at least d. The unit circle is drawn dotted.

Since cos
(
π − π

2(n−3)

)
= − cos

(
π

2(n−3)

)
, we get

d2 + 2d
1− α

1 + α
cos

(
π

2(n− 3)

)
+

α− 3

1 + α
= 0, and then

d =

(−1 + α) cos
(

π
2(n−3)

)
+

√
cos2

(
π

2(n−3)

)
(−1 + α)2 − α2 + 2α+ 3

1 + α
.

For α fixed, the Taylor polynomial of

f(x) =
(−1 + α) cosx+

√
cos2 x(−1 + α)2 − α2 + 2α+ 3

1 + α

of degree four at the point 0 is

1 +
1− α

4
x2 +

−3α3 + 5α2 − 17α+ 5

192
x4.

Then

d = f

(
π

2(n− 3)

)
= 1 +

(1− α)π2

16(n− 3)2
+O

(
1

n4

)
.

We further show that the Voronoi polynomial pV (z) has a root close to point 1 in the complex plane.
For this, we use Theorem 1.2 from Michelen and Sahasrabudhe (2019).
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1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

0.5 0.5

0.5

0.5

Fig. 3: Left: Best known example for minimizing cr(S) for |S| = 100, from Aichholzer (2006a). Roots of its
Voronoi (center), and E≤k (right) polynomials, with circles illustrating, respectively, the bounds of Theorems 13
and 18.

Theorem 14 (Michelen and Sahasrabudhe, 2019). Let X ∈ {0, . . . , n} be a random variable with mean
µ, standard deviation σ and probability generating function fX and set X∗ = (X − µ)σ−1. If δ ∈ (0, 1)
is such that |1− ζ| ≥ δ for all roots ζ of fX then

sup
t∈R

|P(X∗ ≤ t)− P(Z ≤ t)| = O

(
log n

σδ

)
, (27)

where Z ∼ N(0, 1).

Theorem 15. Let α be a constant from (0, 1] and let S be a set of n points in general position in the
plane with cr(S)

(n4)
= α. Then, the Voronoi polynomial of S, pV (z) =

∑n−1
k=1 vkz

k−1, has a root ζ such that

|1− ζ| ∈ o
(

log(n)
n

)
.

Proof: Let X be the random variable that counts the number of points of S enclosed by the circle defined
by three points chosen uniformly at random from S. The probability generating function fX of X is
pC(z)/

(
n
3

)
. The roots of fX are also roots of pV (z), by Proposition 1. From Equations (3) and (4),

see Fabila-Monroy et al. (2012), the mean of X is µ =
∑n−3

k=0 k · ck
(n3)

=
p′
C(1)

pC(1) = (1+α)·(n−3)
4 and the

standard deviation of X is σ =

√
p′′
C(1)+p′

C(1)

pC(1) −
(

p′
C(1)

pC(1)

)2
= (n − 3) ·

√
α
8 − α2

16 − 1
80 + 1

5(n−3) . For

δ ∈ o
(

log(n)
n

)
, we have σδ(log n)−1 → ∞. In order to apply Theorem 14, it remains to show that X

does not approach a normal distribution when n tends towards infinity. For t = 0 in Equation (27), we get
from Proposition 2,

P (X∗ ≤ 0) = P(X ≤ µ) = P
(
X ≤ (1 + α)(n− 3)

4

)
.

By Equation (5), P(X = k) ≥ (k+1)(n−k−2)

(n3)
holds for k < n−3

2 . Then

P(X ≤ µ) ≥
(1+α)(n−3)/4∑

k=0

(k + 1)(n− k − 2)(
n
3

) ≥ (5− α)(1 + α)2

32
−O

(
1

n

)
.
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For α < 1,

lim
n→∞

|P(X∗ ≤ 0)− P(Z ≤ 0)| =
∣∣∣∣ (5− α)(1 + α)2

32
−O

(
1

n

)
− 1

2

∣∣∣∣ > 0,

but limn→∞
logn
σδ = 0. Then, Equation (27) does not hold for n large enough. It follows that there exists

a root ζ of fX with |1− ζ| < δ.
For α = 1, we know fX precisely. S is a set of n points in convex position and ck = (k−1)(n−k−2)

for every 0 ≤ k ≤ n− 3. By Equation (8), fX is a concave function. Then X does not approach a normal
distribution also for α = 1. It follows that there exists a root ζ of fX with |1− ζ| < δ.

Note that on the other hand, Obrechkoff’s Theorem 12 implies that no root of the Voronoi polynomial
can be too close to point 1 in the complex plane. Indeed, the largest disk centered at 1 and contained in
the sector T bounded by the two lines y = ± tan

(
π

2(n−3)

)
in the right half-plane (see Figure 2) given by

Obrechkoff’s Theorem, has radius r = sin
(

π
2(n−3)

)
. Then, the distance of the closest root to point 1 is

at least r ≥ sin
(

π
2(n−3)

)
≥ 1

n−3 .

In the following, we study the location of the roots of the E≤k polynomial pE(z) =
∑n−3

k=0 E≤kz
k

of a point set S. Note that its coefficients E≤k form an increasing sequence of positive numbers. The
well-known Eneström-Kakeya theorem, Kakeya (1912), tells us that all the roots of pE(z) are contained
in the unit disk, and more precisely, that they are contained in an annulus: The absolute values of the roots
of pE(z) lie between the greatest and the least of the n− 3 quotients

E≤n−4

E≤n−3
,
E≤n−5

E≤n−4
, . . . ,

E≤1

E≤2
,
E≤0

E≤1
.

We give a lower bound on the largest modulus of the roots of the E≤k polynomial.

Theorem 16. Let S be a set of n > 3 points in general position in the plane, with rectilinear crossing
number cr(S) = α ·

(
n
4

)
. Then, the E≤k polynomial of S, pE(z) =

∑n−3
k=0 E≤kz

k, has a root of modulus
at least 3+α

9−α .

Proof: From Proposition 4 we get

p′E(1)

pE(1)
=

9
(
n
4

)
− cr(S)

3
(
n
3

) =
(9− α) · (n− 3)

12
=

n−3∑
j=1

1

1− aj
, (28)

where the aj , for j = 1, . . . , n− 3, are the roots of pE(z).

The conjugate of a complex number w = a+ ib is denoted as w = a− ib. The following identity which
holds for any complex number w ̸= 1 is easily verified:

1

1− w
+

1

1− w
= 1 +

1− |w|2

|1− w|2
. (29)
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Since all the coefficients of pE(z) are real numbers, the non-real roots of pE(z) come in pairs, aj together
with its conjugate aj . We apply Equation (29) to each such pair w = aj and w = aj . For each real root
aj of pE(z), Equation (29) gives

1

1− aj
=

1

2

(
1 +

1− |aj |2

|1− aj |2

)
.

Then,
n−3∑
j=1

1

1− aj
=

n−3∑
j=1

1

2

(
1 +

1− |aj |2

|1− aj |2

)
.

We substitute into Equation (28) and obtain

(n− 3) · (3− α)

6
=

n−3∑
j=1

1− |aj |2

|1− aj |2
. (30)

The next inequality, which holds for every complex number w ̸= 1 with modulus |w| < 1 is easily
verified.

1− |w|2

|1− w|2
≥ 1− |w|

1 + |w|
(31)

Since the coefficients of pE(z) form an increasing sequence of positive numbers, the roots aj of pE(z) all
satisfy |aj | < 1. We use Inequality (31) in Equation (30). Then,

(n− 3) · (3− α)

6
≥ (n− 3) · min

j=1,...,n−3

1− |aj |
1 + |aj |

.

Note that the function f(x) = 1−x
1+x is decreasing for x ∈ (0, 1). Then, the minimum of 1−|aj |

1+|aj | is attained
when |aj | is maximum. It follows that |amax| = max

j=1,...,n−3
|aj | ≥ 3+α

9−α , by solving for |amax| in

(n− 3) · (3− α)

6
≥ (n− 3) · 1− |amax|

1 + |amax|
. (32)

This completes the proof.

Next, we show a better lower bound on the largest modulus of pE(z) when n is large enough. For
this, we use the following theorem of Titchmarsh (1939) (page 171), also see Gardner and Shields (2013),
Theorem A.

Theorem 17 (Gardner and Shields, 2013). Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤ M in the disk
|z| ≤ R and suppose F (0) ̸= 0. Then, for 0 < δ < 1, the number of zeros of F (z) in the disk |z| ≤ δR is
less than

1

log 1
δ

log
M

|F (0)|
.
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Theorem 18. Let S be a set of n points with h of them on the boundary of the convex hull of S, in general
position in the plane. Then pE(z) =

∑n−3
k=0 E≤kz

k has a root of modulus at least(
3
(
n
3

)
h

)− 1
n−3

.

Proof: By the maximum modulus principle and Proposition 4, |pE(z)| ≤ 3
(
n
3

)
in the disk |z| ≤ 1, and

pE(0) = E≤0 = h ̸= 0. We apply Theorem 17 with a large δ from the interval (0, 1) such that

1

log 1
δ

log
3
(
n
3

)
h

< n− 3.

Then, pE(z) has at least one root of modulus greater than δ. Solving for δ, we obtain that δ <

(
3(n3)
h

)− 1
n−3

.

For an illustration of Theorem 18, see Figure 3 (right) on page 12.

5 Discussion
We have introduced three polynomials pV (z), pC(z), pE(z) for sets S of n points in general position in the
plane, showing their connection to cr(S) and several bounds on the location of their roots. The obvious
open problem is using bounds on such roots to improve upon the current best bound on the rectilinear
crossing number problem. Besides, we think that the presented polynomials are interesting objects of
study on their own, also given the many applications of Voronoi diagrams.

For some of the formulas presented for one of the polynomials, such as for example Equations (22)
and (30), there are analogous statements for the other considered polynomials. These can be derived
easily and are omitted.

Further, several other polynomials on point sets can be considered. The reader interested in crossing
numbers probably has in mind the j-edge polynomial pe(z) =

∑n−2
j=0 ejz

j of a point set S. The known
formula for the rectilinear crossing number cr(S) in terms of the numbers of j-edges ej of S, see Lovász
et al. (2004), Lemma 5, translates into

2cr(S)− 6

(
n

4

)
= p′′e (1)− (n− 3)p′e(1).

As is the case for the Voronoi polynomial and the circle polynomial, for sets S of n points in convex
position, the j-edge polynomial pe(z) has all its roots on the unit circle. This is readily seen since pe(z) is
then n times the all ones polynomial, pe(z) = n

∑n−2
j=0 zj , as ej = n for all j, if S is in convex position.

Its roots are the (n− 1)th roots of unity, except z = 1.
For point sets that minimize cr(S), the roots of the Voronoi polynomial seem to be close to two circles,

such as in the example of Figure 3. For arbitrary point sets this phenomenon does not occur, but for n
large enough, the roots tend to lie close to the unit circle, also see Theorem 1 in Hughes and Nikeghbali
(2008).
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We finally propose to study the presented polynomials for random point sets. The expected rectilinear
crossing number is known for sets of n points chosen uniformly at random from a convex set K, for
several shapes of K, see e.g. Santaló (2004), Section 1.4.5. pp. 63-64, and the survey of Ábrego et al.
(2013).
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