A positional statistic for 1324*-avoiding permutations*

Juan B. Gil¹ Oscar A. Lopez² Michael D. Weiner¹

¹ *Penn State Altoona, Altoona, PA, U.S.A.*

² *Penn State Harrisburg, Middletown, PA, U.S.A.*

revisions 1st Dec. 2023, 22nd May 2024; accepted 17th Sep. 2024.

We consider the class $S_n(1324)$ of permutations of size n that avoid the pattern 1324 and examine the subset $S_n^{a\prec n}$ (1324) of elements for which $a \prec n \prec [a-1]$, $a \geq 1$. This notation means that, when written in oneline notation, such a permutation must have a to the left of n, and the elements of $\{1, \ldots, a-1\}$ must all be to the right of *n*. For $n \ge 2$, we establish a connection between the subset of permutations in $S_n^{1 \prec n}(1324)$ having the 1 adjacent to the n (called *primitives*), and the set of 1324-avoiding dominoes with $n - 2$ points. For $a \in \{1, 2\}$, we introduce constructive algorithms and give formulas for the enumeration of $S_n^{\alpha \prec n}(1324)$ by the position of a relative to the position of n. For $a \geq 3$, we formulate some conjectures for the corresponding generating functions.

Keywords: pattern-avoiding permutations, enumerative combinatorics

1 Introduction

Finding a closed formula for the enumeration of the class $S_n(1324)$ remains an open problem that we do NOT solve in this paper. However, in our attempt to understand what makes this class so difficult to handle, we came across a simple but interesting type of statistics: distance between the smallest and largest element of a permutation. We found that permutations of size n having the 1 adjacent to the n are manageable and can be used to enumerate certain related subsets of $S_n(1324)$.

The goal of this paper is to present our findings and formulate a conjecture for the enumeration of other subsets of $S_n(1324)$ according to similar positional statistics.

For $a, k \ge 1$, let $\mathcal{S}_{n,k}^{a \prec n}(1324)$ be the set of permutations $\sigma \in \mathcal{S}_n(1324)$ such that:

- $\sigma^{-1}(n) \sigma^{-1}(a) = k$,
- $\sigma^{-1}(b) \sigma^{-1}(n) > 0$ for every $b \in \{1, ..., a-1\}.$

Let $S_n^{a \prec n}(1324) = \bigcup$ $k \geq 1$ $S_{n,k}^{a \prec n}$ (1324) and observe that, in one-line notation, permutations in the set $S_n^{a \prec n}$ (1324) have the entry a to the left of n and all the elements of $\{1, \ldots, a-1\}$ to the right of n. We also let

$$
T_{a,k}(x) = \sum_{n=k+1}^{\infty} |\mathcal{S}_{n,k}^{a \prec n}(1324)| x^n \text{ and } g_a(x,t) = \sum_{k=1}^{\infty} t^k T_{a,k}(x).
$$

ISSN 1365–8050 © 2024 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

In Section 2, we discuss $S_{n,k}^{1\prec n}(1324)$ and give formulas for $T_{1,k}(x)$ and $g_1(x,t)$. First, we give a bijection between $S_{n,1}^{1\prec n}(1324)$ and the set of 1324-avoiding dominoes with $n-2$ points, which is known to be counted by the OEIS sequence [\[3](#page-9-0), A000139]. We then introduce a product $\sigma_1 \odot \sigma_2$ on $\mathcal{S}_{n,1}^{1\prec n}(1324)$ that we use to construct and enumerate the elements of $S_{n,k}^{1\prec n}(1324)$. In Section [3,](#page-5-0) we examine the set $S_{n,k}^{2 \prec n}(1324)$ and give explicit formulas for $T_{2,k}(x)$ and $g_2(x,t)$. Finally, in the last section of the paper, we conjecture a formula for $T_{a,k}(x)$ for $3 \le a \le k$.

The significance of $g_a(x, t)$ lies in the fact that if $G(x) = \sum_{n=1}^{\infty} |\mathcal{S}_n(1324)|x^n$, then

$$
G(x) = \frac{1}{1-x} \bigg(x + \sum_{a=1}^{\infty} g_a(x, 1) \bigg).
$$

Note that for $n \geq 2$, permutations in $S_n(1324)$ that start with n are counted by the function $xG(x)$. Thus $G(x) = x + xG(x) + \sum_{a=1}^{\infty} g_a(x, 1).$

Again, we are still far from giving a formula for $G(x)$, but the breakdown using the sets $\mathcal{S}_{n,k}^{a\prec n}(1324)$ provides a different viewpoint that we believe is worth pursuing further.

2 Enumeration of $\mathcal{S}_n^{1\prec n}$ $n^{1 \prec n}(1324)$

We start by establishing a bijection between $S_{n,1}^{1\prec n}(1324)$ and the set of 1324-avoiding dominoes. As studied by D. Bevan, R. Brignall, A. Elvey Price, and J. Pantone [\[1](#page-9-0)], a 1324-avoiding vertical *domino* is a two-cell gridded permutation in Grid $^{\#}$ ($_{\text{Av}(132)}^{\text{Av}(213)}$) whose underlying permutation avoids 1324. These dominoes are counted by the sequence $1, 2, 6, 22, 91, 408, 1938, 9614, \ldots$, cf. [\[3](#page-9-0), A000139].

For example, the six distinct 1324-avoiding dominoes with two points are

Proposition 2.1 For $n \geq 2$, there is a one-to-one correspondence between $S_{n,1}^{1 \prec n}(1324)$ and the set of 1324-avoiding dominoes with $n - 2$ points.

Proof: The bijection relies on the inverse map. Every $\sigma \in S_{n,1}^{1 \prec n}(1324)$ is of the form

$$
\sigma = \sigma_L \ln \sigma_R,
$$

where σ_L and σ_R are words (possibly empty) such that $|\sigma_L| + |\sigma_R| = n - 2$, and their reduced permutations⁽ⁱ⁾ red (σ_L) and red (σ_R) avoid 132 and 213, respectively. Clearly, since 1324 is an involution, σ^{-1} also avoids 1324. Moreover, if $i = \sigma^{-1}(1)$, then σ^{-1} is of the form

⁽i) The permutation $\text{red}(\sigma)$ is obtained by replacing the *i*th smallest letter of σ by *i*, for $i = 1, \ldots, |\sigma|$.

where $\text{red}(\sigma_T) = \text{red}(\sigma_R)^{-1}$ avoids 213 and $\text{red}(\sigma_B) = \text{red}(\sigma_L)^{-1}$ avoids 132. Finally, merging the lines through i and $i + 1$ as a separator, we get a 1324-avoiding domino.

As a consequence ([[1,](#page-9-0) Theorem 2] with n replaced by $n - 2$), we have

$$
|\mathcal{S}_{n,1}^{1\prec n}(1324)| = \frac{2(3n-3)!}{(2n-1)!n!} \text{ for } n \ge 2.
$$

The elements of $S_{n,1}^{1\prec n}(1324)$ serve as primitives to factor and enumerate the elements of $S_{n,k}^{1\prec n}(1324)$ for every $k \geq 2$.

We start with a definition.

Definition 2.2 A permutation $\sigma \in S_{n,1}^{1\prec n}(1324)$ will be called a primitive. For $n \geq 2$, such a permutation *must be of the form* $\sigma = \pi \ln \tau$ *with* $\text{red}(\pi) \in S_k(132)$, $\text{red}(\tau) \in S_\ell(213)$ *, and* $k + \ell = n - 2$ *. Given a primitive* $\sigma_1 = \pi_1 1m \tau_1 \in S_m(1324)$ *and a permutation* $\sigma_2 \in S_\ell(1324)$ *of the form* $\sigma_2 = \pi_2 1 \theta_2 \ell \tau_2$ *with* $|\theta_2| \geq 0$ *, we define the product*

$$
\sigma_1 \odot \sigma_2 = \hat{\pi}_2 \pi_1 \, 1m \, \hat{\theta}_2 \, n \, \hat{\tau}_2 \tau_1 \in \mathcal{S}_n,\tag{2.1}
$$

where $n = \ell + m - 1$ *, and* $\hat{\pi}_2$ *,* $\hat{\theta}_2$ *<i>, and* $\hat{\tau}_2$ *are obtained from* π_2 *,* θ_2 *<i>, and* τ_2 *, by increasing all of their entries by* $m - 1$ *(see Figure 1).*

Fig. 1: Visualization of $\sigma_1 \odot \sigma_2$.

For instance, $2143 \odot 41253 = 72145863$. Also,

 $213 \odot 3142 = 521364$ and $3142 \odot 213 = 531462$.

In particular, \odot is not commutative. This is true even if σ_1 and σ_2 are both primitives. For example, $213 \odot 12 = 2134$ but $12 \odot 213 = 3124$.

Proposition 2.3 If $\sigma_1 \in \mathcal{S}_{m,1}^{1\prec m}(1324)$ and $\sigma_2 \in \mathcal{S}_{\ell,k}^{1\prec \ell}(1324)$, then

$$
\sigma_1 \odot \sigma_2 \in \mathcal{S}_{n,k+1}^{1 \prec n}(1324) \text{ with } n = \ell + m - 1.
$$

Proof: The permutations σ_1 and σ_2 must be of the form

$$
\sigma_1 = \pi_1 \, 1m \, \tau_1
$$
 and
$$
\sigma_2 = \pi_2 \, 1\theta_2 \, \ell \, \tau_2
$$

where $\text{red}(\pi_1)$ and $\text{red}(\pi_2)$ both avoid 132, $\text{red}(\tau_1)$ and $\text{red}(\tau_2)$ both avoid 213, $\text{red}(\theta_2)$ avoids 21, and $|\theta_2| = k - 1$. By ([2.1](#page-2-0)), we have $\sigma_1 \odot \sigma_2 \in S_{n,k+1}^{1 \prec n}$, so we only need to show that $\sigma_1 \odot \sigma_2$ avoids 1324.

The graph of $\sigma_1 \odot \sigma_2$ (see Figure [1\)](#page-2-0) makes it clear that, since both σ_1 and σ_2 avoid 1324, the parts of the permutation below and above the horizontal line $y = m$ cannot have a 1324 pattern. Thus, if there is a 1324 pattern in $\sigma_1 \odot \sigma_2$, the 1 will have to be in π_1 1, and since π_1 avoids 132, the 3, 2, and 4 of the pattern will have to be above the line $y = m$. But this is not possible since $\theta_2 \ell \tau_2$ avoids 213.

Proposition 2.4 Every non-primitive $\sigma \in S_n^{1 \prec n}(1324)$ admits a unique decomposition

$$
\sigma=\sigma_1\odot\sigma_2,
$$

where σ_1 *is a primitive in* $S_{m,1}^{1\prec m}(1324)$ *and* $\sigma_2 \in S_\ell^{1\prec \ell}(1324)$ *with* $\ell = n - m + 1$ *.*

Proof: If σ is not primitive, then it must be of the form $\sigma = \pi \, 1\theta n \, \tau$, where red(π) avoids 132, red(τ) avoids 213, and θ is increasing (i.e., avoids 21). Let $m = \min(\theta)$. If there were indices $i < j$ such that $\pi(i) < m < \pi(j)$, then the sequence $(\pi(i), \pi(j), m, n)$ would make a forbidden 1324 pattern:

Thus, if π is not empty, it must be of the form $\pi = \pi_2 \pi_1$ where π_2 consists of the values of π that are larger than m, and π_2 contains the values of π smaller than m, if any. Similarly, if $\tau(i) < m < \tau(j)$ for some $i < j$, then the sequence $(1, m, \tau(i), \tau(j))$ would make a forbidden 1324 pattern. Thus, if τ is not empty, it must be of the form $\tau = \tau_2 \tau_1$ where the values of τ_2 (if not empty) are larger than m and the values of τ_1 are smaller than m.

Now, if θ' denotes θ without the entry m, then the graph of σ takes the form

where any box could be empty. If we let $\sigma_1 = \pi_1 1m \tau_1$ and $\sigma_2 = \text{red}(\pi_2 m \theta' n \tau_2)$, then σ_1 is primitive, $\sigma_2 \in S_\ell^{1 \prec \ell} (1324)$ with $\ell = n - m + 1$, and it is easy to see that $\sigma = \sigma_1 \odot \sigma_2$.

Now suppose $\sigma = \rho_1 \odot \rho_2$ with a primitive ρ_1 of the form $\rho_1 = \alpha_1 \ln' \beta_1$. The definition of $\rho_1 \odot \rho_2$ implies $m' = m$ and all the values of σ less than or equal to m must coincide with the values of ρ_1 . Hence $\rho_1 = \sigma_1$ and the factorization is unique.

Corollary 2.5 Every permutation in $S_{n,k}^{1\prec n}(1324)$ can be uniquely decomposed as a product of k primitive *permutations.*

$$
(k = 3) \t 1234 = 12 \odot 12 \odot 12
$$

\n
$$
(k = 2) \t 1243 = 12 \odot 132
$$

\n
$$
1342 = 132 \odot 12
$$

\n
$$
2134 = 213 \odot 12
$$

\n
$$
3124 = 12 \odot 213
$$

\n
$$
(k = 1) \t 1423, 1432, 2143, 3142, 2314, 3214 \t(primitive)
$$

Tab. 1: Elements of $S_{4,k}^{1,24}(1324)$ and their primitive decomposition.

In general, every permutation $\sigma \in S_{n,k}^{1 \prec n}(1324)$ with k primitive components is of the form depicted in Figure 2, where Θ is increasing (possibly empty), and each primitive component can be read from the horizontal regions determined by the values of σ to the right of 1 and to the left of n.

Fig. 2: $\sigma = \sigma_1 \odot \cdots \odot \sigma_k$.

As mentioned at the beginning of this section, the elements of $S_{n,1}^{1\prec n}(1324)$ are counted by the OEIS sequence [\[3](#page-9-0), A000139]. Let $f(x)$ denote the generating function for A000139 without the constant term, that is,

$$
f(x) = x + 2x2 + 6x3 + 22x4 + 91x5 + 408x6 + 1938x7 + 9614x8 + \cdots,
$$
 (2.2)

and recall the notation (given in the introduction)

$$
T_{1,k}(x) = \sum_{n=k+1}^{\infty} |\mathcal{S}_{n,k}^{1\prec n}(1324)|x^n
$$
 and $g_1(x,t) = \sum_{k=1}^{\infty} t^k T_{1,k}(x)$.

By Proposition [2.1](#page-1-0), we have $T_{1,1}(x) = xf(x)$. More generally:

Theorem 2.6 *Let* $a_{n,k} = |S_{n,k}^{1 \nless n} (1324)|$ *. For* $n ≥ 3$ *and* $2 ≤ k ≤ n − 1$ *, we have*

$$
a_{n,k} = \sum_{m=2}^{n-k+1} a_{m,1} \cdot a_{n-m+1,k-1}.
$$

Consequently, $T_{1,k}(x) = xf(x)^k$ *and thus* $g_1(x,t) = \frac{xtf(x)}{1 - tf(x)}$.

Proof: By the above propositions, the permutations in $S_{n,k}^{1\prec n}(1324)$ can be built by taking all possible products $\sigma_1\odot\sigma_2$, where σ_1 is a primitive of size m for some $m\geq 2$, and σ_2 is a 1324-avoiding permutation of size $n-m+1$ with $\sigma_2^{-1}(n-m+1)-\sigma_2^{-1}(1)=k-1$. There are $a_{m,1}$ permutations of the first kind, and $a_{n-m+1,k-1}$ of the latter. This leads to the claimed formula for $a_{n,k}$. Observe that $a_{n-m+1,k-1}$ only makes sense whenever $n - m + 1 \ge k$, so we need $m \le n - k + 1$.

The formula for $T_{1,k}(x)$ can be shown by induction in k. As mentioned above, $T_{1,1}(x) = xf(x)$. Suppose $T_{1,k-1}(x) = xf(x)^{k-1}$. Then,

$$
xT_{1,k} = \sum_{n=k+1}^{\infty} a_{n,k} x^{n+1} = \sum_{n=k+1}^{\infty} \left(\sum_{m=2}^{n-k+1} a_{m,1} \cdot a_{n-m+1,k-1} \right) x^{n+1}
$$

=
$$
\sum_{n=k+2}^{\infty} \left(\sum_{m=2}^{n-k} a_{m,1} \cdot a_{n-m,k-1} \right) x^n
$$

=
$$
\left(\sum_{m=2}^{\infty} a_{m,1} x^m \right) \left(\sum_{\ell=k}^{\infty} a_{\ell,k-1} x^{\ell} \right).
$$

In other words, $xT_{1,k} = T_{1,1}(x)T_{1,k-1}(x)$ and therefore $T_{1,k}(x) = xf(x)^k$, as claimed.

3 Enumeration of $S_n^{2\prec n}$ $n^{2} \leq n(1324)$

In this section, we focus on the set $S_{n,k}^{2 \prec n}(1324)$ and give formulas for the functions

$$
T_{2,k}(x) = \sum_{n=k+1}^{\infty} |\mathcal{S}_{n,k}^{2\prec n}(1324)| x^n
$$
 and $g_2(x,t) = \sum_{k=1}^{\infty} t^k T_{2,k}(x)$

in terms of the functions $f(x)$ and $g_1(x,t)$ from the previous section. Recall that $S_{n,k}^{2 \prec n}(1324)$ is the set of permutations $\sigma \in S_n(1324)$ having (in one-line notation) the 2 to the left of n at distance k, and the 1 to the right of n . Note that if the 1 is removed from such a permutation, the reduced permutation is an element of $S_{n-1,k}^{1 \prec n-1}(1324)$. This basic observation is used as guideline for most of our combinatorial arguments.

As before, we let
$$
a_{n,k} = |\mathcal{S}_{n,k}^{1 \prec n}(1324)|
$$
, so $g_1(x,t) = \sum_{k=1}^{\infty} \sum_{n=k+1}^{\infty} a_{n,k} t^k x^n$.

Theorem 3.1 *For* $n \geq 3$ *and* $2 \leq k \leq n-1$ *, we have*

$$
|\mathcal{S}_{n,k}^{2 \prec n}(1324)| = \frac{n-k}{2} a_{n-1,k}.
$$
\n(3.1)

Moreover, the corresponding generating function satisfies

$$
g_2(x,t) = \frac{1}{2} \left(x^2 \frac{\partial g_1}{\partial x}(x,t) - g_1(x,t)^2 \right).
$$

Proof: Let $\mathcal{A}(n,k) = \mathcal{S}_{n,k}^{1 \prec n}(1324)$. For every $\sigma \in \mathcal{A}(n-1,k)$, we let

$$
i = \sigma^{-1}(1) - 1
$$
 and $j = n - 1 - \sigma^{-1}(n - 1)$.

Thus, there are i entries to the left of 1, j entries to the right of $n-1$, and $i+j+k+1=n-1$.

By inserting 1 at any of the the $j + 1$ positions to the right of $n - 1$, the permutation σ gives rise to $j + 1$ permutations in $S_{n,k}^{2\prec n}(1324)$, and with a similar process, the reverse complement σ^{rc} leads to $i+1$ such permutations. In other words, the pair (σ, σ^{rc}) produces a total of $i + 1 + j + 1 = n - k$ permutations in $S_{n,k}^{2\prec n}$ (1324), but so does the pair (σ^{rc}, σ) . Therefore, as we go over all permutations $\sigma \in \mathcal{A}(n-1,k)$, the above process generates all of the elements of $S_{n,k}^{2 \to n}(1324)$ twice. Thus there are $\frac{n-k}{2}a_{n-1,k}$ permutations in $S_{n,k}^{2 \prec n}$ (1324).

Now, given that
$$
g_1(x,t) = \sum_{k=1}^{\infty} \sum_{n=k+1}^{\infty} a_{n,k} t^k x^n
$$
, formula (3.1) implies
\n
$$
g_2(x,t) = \frac{1}{2} \left(x \frac{\partial}{\partial x} \left(x g_1(x,t) \right) - t x \frac{\partial}{\partial t} g_1(x,t) \right)
$$
\n
$$
= \frac{1}{2} \left(x^2 \frac{\partial}{\partial x} g_1(x,t) + x g_1(x,t) - t x \frac{\partial}{\partial t} g_1(x,t) \right).
$$
\n(3.2)

Finally, since $g_1(x,t) = \frac{xtf(x)}{1-tf(x)}$ by Theorem [2.6](#page-5-0), we get $\frac{\partial}{\partial t}g_1(x,t) = \frac{xf(x)}{(1-tf(x))^2}$, and it follows that $xg_1(x,t) - tx\frac{\partial}{\partial t}g_1(x,t) = -g_1(x,t)^2$. ✷

There is a formula for $T_{2,k}(x)$ that seems more suitable for generalizations. We start by letting $T_{2,0}(x) = x^2$ (to account for the permutation 21, where the 2 is at distance zero from the maximal element). Moreover, since $T_{1,1}(x) = \sum_{n=2}^{\infty} a_{n,1} x^n$ and $|S_{n,1}^{2 \prec n}(1324)| = \frac{n-1}{2} a_{n-1,1}$ by (3.1), we have

$$
T_{2,1}(x) = \sum_{n=3}^{\infty} \frac{n-1}{2} a_{n-1,1} x^n = \frac{1}{2} x^2 \frac{d}{dx} T_{1,1}(x).
$$

Note that by Theorem [2.6,](#page-5-0) this identity can be written as $T_{2,1}(x) = \frac{1}{2}x^2 \frac{d}{dx}(xf(x))$.

Theorem 3.2 *For every* $k > 2$ *, we have*

$$
T_{2,k}(x) = f(x)^{k} T_{2,0}(x) + kf(x)^{k-1} (T_{2,1}(x) - f(x) T_{2,0}(x)).
$$

Proof: Every permutation $\sigma \in S_{n,k}^{2 \prec n}(1324)$ that ends with 1 is of the form $\sigma = \sigma_1 \oplus 1$, where $\sigma_1 \in$ $S_{n-1,k}^{1\prec n-1}(1324)$. Thus, this subset (of permutations in $S_{n,k}^{2\prec n}(1324)$ ending with 1) is counted by the function $xT_{1,k}(x)$, which by Theorem [2.6](#page-5-0) equals $x(xf(x)^k) = f(x)^k T_{2,0}(x)$.

Let $A_{2,1}(n)$ be the set of permutations in $S_{n,1}^{2 \nless n}$ (1324) not ending with 1. This set is counted by the generating function $T_{2,1}(x) - f(x)T_{2,0}(x)$ (all permutations in $S_{n,1}^{2 \to n}(1324)$ minus those ending with 1).

We will show that every element $\sigma \in S_{n,k}^{2 \to n}(1324)$ with $\sigma(n) > 1$ can be built from (and uniquely corresponds to) a k-tuple of permutations $(\sigma_1, \ldots, \sigma_k)$ such that:

- $\sigma_{\ell} \in A_{2,1}(m_{\ell})$ for some $\ell \in \{1, \ldots, k\}, m_{\ell} > 3$,
- $\sigma_j \in \mathcal{S}_{m_j,1}^{1 \prec m_j}$ (1324) for every $j \neq \ell, m_j \geq 2$,

$$
\bullet \ |\sigma_1| + \cdots + |\sigma_k| = n + k - 1.
$$

The construction goes as follows. Given such a k-tuple, identify σ_{ℓ} , mark the entry adjacent to the right of 1 (always possible since σ_ℓ does not end with 1), and let σ'_ℓ be the reduced permutation obtained from σ_{ℓ} by removing the 1. For example, given (12, 2413, 132), we have $\sigma_1 = 12$, $\sigma_2 = 241 \underline{3}$, $\sigma_3 = 132$, and so $\sigma'_2 = 132$.

Let $\sigma' = \sigma_1 \odot \cdots \odot \sigma'_k \odot \cdots \odot \sigma_k$, and let i be the position of the transformed (via the dot product) marked entry. Note that σ' belongs to $S_{n-1,k}^{1 \prec n-1}(1324)$, and the position of $n-1$ in σ' is less than i. For the above example, we get

$$
\sigma' = 12 \odot 132 \odot 132 = 12 \odot 13542 = 124653
$$

Next, we let σ be the permutation obtained by inserting 1 into σ' at position *i*. By our construction, $\sigma \in S_{n,k}^{2 \prec n}(1324)$ and $\sigma(n) > 1$. For example, the tuple $(12, 2413, 132)$ yields the marked permutation $\sigma' = 124652$, and so $\sigma = 2357614$. The permutations in $S_{7,3}^{2 \to 7}(1324)$ not ending with 1 are all listed in Table [2](#page-8-0) together with their corresponding 3-tuples.

Conversely, given $\sigma \in \mathcal{S}_{n,k}^{2 \prec n}(1324)$ not ending with 1, mark the entry adjacent to the right of 1, remove the 1, and decompose the reduced permutation $\sigma' \in S_{n-1,k}^{1 \prec n-1}(1324)$ as a product of k primitives. Use the factors to make a k-tuple. Identify the component with the marked entry, call it σ'_{ℓ} , and insert 1 at the position of the mark to obtain an element σ_{ℓ} of $A_{2,1}$. The resulting k-tuple is of the form described above.

Finally, since the generating function for $|\mathcal{A}_{2,1}(n)|$ is $T_{2,1}(x) - f(x)T_{2,0}(x)$, the set of k-tuples described above, and thus the set of permutations in $S_{n,1}^{2\to n}(1324)$ not ending with 1, are enumerated by the generating function $kf(x)^{k-1}(T_{2,1}(x) - f(x)T_{2,0}(x))$. \Box

Remark 1 It is worth noting that the above formula for $T_{2,k}(x)$ can also be directly obtained from ([3.2](#page-6-0)) together with the fact that $T_{1,k}(x) = xf(x)^k$ and $T_{2,1}(x) = \frac{1}{2}x^2 \frac{d}{dx}(xf(x))$.

A positional statistic for 1324*-avoiding permutations* 9

Tab. 2: The 30 elements of $S_{7,3}^{2 \to 7}(1324)$ not ending with 1.

4 Conjecture and final remarks

At the beginning of the paper, we introduced the notation

$$
T_{a,k}(x) = \sum_{n=k+1}^{\infty} |\mathcal{S}_{n,k}^{a \prec n}(1324)| x^n \text{ and } g_a(x,t) = \sum_{k=1}^{\infty} t^k T_{a,k}(x).
$$

Let $T_{1,0}(x) = x$ and $T_{a,0}(x) = |\mathcal{S}_{a-1}(1324)|x^a$. These functions account for the permutations of size a that start with a.

Recall that, in one-line notation, a permutation $\sigma \in S_{n,k}^{a \prec n}(1324)$ has all of its entries less than a to the right of n, and if they are removed, we are left with a reduced 1324-avoiding permutation of size $n-a+1$ having the 1 to the left of the maximal element. Thus, it is not unreasonable to expect a connection between $T_{a,k}(x)$ and $T_{1,k}(x)$. With that in mind, and based on how we proved Theorem [3.2](#page-7-0), we spent some time looking for an expansion of $T_{a,k}(x)$ in terms of powers of $f(x)$ and the functions $T_{a,j}(x)$ for $j = 1, \ldots, a - 1$. Our search lead to the following conjecture.

Conjecture 1 *For* $k \ge a$ *, we have the following equivalent formulas:*

(i)
$$
\sum_{j=0}^{k} (-1)^{j} {k \choose j} f(x)^{j} T_{a,k-j} = 0.
$$

\n(ii)
$$
T_{a,k}(x) = \sum_{j=0}^{a-1} {k \choose j} f(x)^{k-j} \sum_{i=0}^{j} (-1)^{i} {j \choose i} f(x)^{i} T_{a,j-i}(x).
$$

\n(iii)
$$
T_{a,k}(x) = \sum_{j=0}^{a-1} (-1)^{a-j-1} {k \choose j} {k-j-1 \choose a-j-1} f(x)^{k-j} T_{a,j}(x).
$$

For $a = 1$ the statements are trivial, and for $a = 2$, (ii) becomes

$$
T_{2,k}(x) = f(x)^k T_{2,0}(x) + kf(x)^{k-1} (T_{2,1}(x) - f(x)T_{2,0}(x)),
$$

as claimed and proved in Theorem [3.2.](#page-7-0)

For $a = 3$ the conjectured formula [\(ii\)](#page-8-0) becomes

$$
T_{3,k}(x) = f(x)^{k} T_{3,0}(x)
$$

+ $k f(x)^{k-1} (T_{3,1}(x) - f(x)T_{3,0}(x))$
+ $\binom{k}{2} f(x)^{k-2} (T_{3,2}(x) - 2f(x)T_{3,1}(x) + f(x)^{2}T_{3,0}(x)),$

where $T_{3,0}(x) = 2x^3$ (counting the permutations 312 and 321). Similar to what we did for $a = 2$, we can interpret the term $f(x)^k T_{3,0}(x)$ as counting the permutations in $\mathcal{S}_{n,k}^{3\prec n}(1324)$ that end with 12 or 21. Moreover, the function $kf(x)^{k-1}(T_{3,1}(x) - f(x)T_{3,0}(x))$ can be interpreted as counting k-tuples $(\sigma_1,\ldots,\sigma_k)$, where $\sigma_j \in S_{m_j,1}^{1 \prec m_j}(1324)$, $m_j \geq 2$, and one of these permutations, say σ_ℓ , is marked in such a way that it corresponds to an element of $S_{m_{\ell},1}^{3\prec m_{\ell}}(1324)$ that does not end with 12 or 21.

Finally, rewriting the third component of $T_{3,k}(x)$ as

$$
{k \choose 2} f(x)^{k-2} (T_{3,2}(x) - 2f(x)(T_{3,1}(x) - f(x)T_{3,0}(x)) - f(x)^2 T_{3,0}(x)),
$$

it can be argued that this function counts k-tuples ($\sigma_1, \ldots, \sigma_k$) of primitives, where two of them, say σ_{ℓ_1} and σ_{ℓ_2} , are marked in such a way that the pair $(\sigma_{\ell_1}, \sigma_{\ell_2})$ corresponds to a permutation in $\mathcal{S}_{m,2}^{3\prec m}(1324)$, $m = m_{\ell_1} + m_{\ell_2} + 1$, that does not end with 12 or 21.

Final remarks

In this paper, we have introduced a notion of positional statistics that seems particularly suited to and provides a new way to think about 1324-avoiding permutations. As we did for $a = 1$ in Theorem [2.6](#page-5-0) and for $a = 2$ in Theorem [3.1,](#page-6-0) the ultimate goal is to find an expression for $g_a(x, t)$ in terms of known functions.

Proving the above conjecture would be a significant step in that direction, but it is not the whole story. For instance, while the conjecture is true for $a = 3$, we still need to find $T_{3,1}(x)$ and $T_{3,2}(x)$ in order to have a full expression for $g_3(x, t)$. For an arbitrary $a > 3$, our conjecture would reduce the problem to finding $T_{a,j}$ for $j = 1, \ldots, a-1$.

We have observed interesting properties for several patterns and hope that our work motivates the community to explore positional statistics for patterns other than 1324.

Acknowledgements

We would like to thank the referees for their thorough and thoughtful reports which helped us improve the quality of the paper.

References

- [1] D. Bevan, R. Brignall, A. Elvey Price, J. Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, *European J. Combin.* 88 (2020), 103115.
- [2] S. Kitaev, *Patterns in permutations and words*, Monographs in Theoretical Computer Science, an EATCS Series, Springer, Heidelberg, 2011.
- [3] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, <http://oeis.org>.