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We consider the class Sn(1324) of permutations of size n that avoid the pattern 1324 and examine the subset

Sa≺n
n (1324) of elements for which a ≺ n ≺ [a − 1], a ≥ 1. This notation means that, when written in one-

line notation, such a permutation must have a to the left of n, and the elements of {1, . . . , a − 1} must all be to the

right of n. For n ≥ 2, we establish a connection between the subset of permutations in S1≺n
n (1324) having the 1

adjacent to the n (called primitives), and the set of 1324-avoiding dominoes with n − 2 points. For a ∈ {1, 2}, we

introduce constructive algorithms and give formulas for the enumeration of Sa≺n
n (1324) by the position of a relative

to the position of n. For a ≥ 3, we formulate some conjectures for the corresponding generating functions.

Keywords: pattern-avoiding permutations, enumerative combinatorics

1 Introduction

Finding a closed formula for the enumeration of the class Sn(1324) remains an open problem that we

do NOT solve in this paper. However, in our attempt to understand what makes this class so difficult

to handle, we came across a simple but interesting type of statistics: distance between the smallest and

largest element of a permutation. We found that permutations of size n having the 1 adjacent to the n are

manageable and can be used to enumerate certain related subsets of Sn(1324).
The goal of this paper is to present our findings and formulate a conjecture for the enumeration of other

subsets of Sn(1324) according to similar positional statistics.

For a, k ≥ 1, let Sa≺n
n,k (1324) be the set of permutations σ ∈ Sn(1324) such that:

• σ−1(n)− σ−1(a) = k,

• σ−1(b)− σ−1(n) > 0 for every b ∈ {1, . . . , a− 1}.

Let Sa≺n
n (1324) =

⋃
k≥1

Sa≺n
n,k (1324) and observe that, in one-line notation, permutations in the set

Sa≺n
n (1324) have the entry a to the left of n and all the elements of {1, . . . , a − 1} to the right of n.

We also let

Ta,k(x) =

∞∑

n=k+1

|Sa≺n
n,k (1324)|xn and ga(x, t) =

∞∑

k=1

tkTa,k(x).
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In Section 2, we discuss S1≺n
n,k (1324) and give formulas for T1,k(x) and g1(x, t). First, we give a

bijection between S1≺n
n,1 (1324) and the set of 1324-avoiding dominoes with n− 2 points, which is known

to be counted by the OEIS sequence [3, A000139]. We then introduce a product σ1 ⊙ σ2 on S1≺n
n,1 (1324)

that we use to construct and enumerate the elements of S1≺n
n,k (1324). In Section 3, we examine the set

S2≺n
n,k (1324) and give explicit formulas for T2,k(x) and g2(x, t). Finally, in the last section of the paper,

we conjecture a formula for Ta,k(x) for 3 ≤ a ≤ k.

The significance of ga(x, t) lies in the fact that if G(x) =
∞∑

n=1
|Sn(1324)|x

n, then

G(x) =
1

1− x

(
x+

∞∑

a=1

ga(x, 1)

)
.

Note that for n ≥ 2, permutations in Sn(1324) that start with n are counted by the function xG(x). Thus

G(x) = x+ xG(x) +
∞∑
a=1

ga(x, 1).

Again, we are still far from giving a formula for G(x), but the breakdown using the sets Sa≺n
n,k (1324)

provides a different viewpoint that we believe is worth pursuing further.

2 Enumeration of S1≺n
n (1324)

We start by establishing a bijection between S1≺n
n,1 (1324) and the set of 1324-avoiding dominoes. As

studied by D. Bevan, R. Brignall, A. Elvey Price, and J. Pantone [1], a 1324-avoiding vertical domino

is a two-cell gridded permutation in Grid#
(

Av(213)
Av(132)

)
whose underlying permutation avoids 1324. These

dominoes are counted by the sequence 1, 2, 6, 22, 91, 408, 1938, 9614, . . . , cf. [3, A000139].

For example, the six distinct 1324-avoiding dominoes with two points are

Proposition 2.1 For n ≥ 2, there is a one-to-one correspondence between S1≺n
n,1 (1324) and the set of

1324-avoiding dominoes with n− 2 points.

Proof: The bijection relies on the inverse map. Every σ ∈ S1≺n
n,1 (1324) is of the form

σ = σL 1nσR,

where σL and σR are words (possibly empty) such that |σL| + |σR| = n − 2, and their reduced permu-

tations(i) red(σL) and red(σR) avoid 132 and 213, respectively. Clearly, since 1324 is an involution, σ−1

also avoids 1324. Moreover, if i = σ−1(1), then σ−1 is of the form

(i) The permutation red(σ) is obtained by replacing the ith smallest letter of σ by i, for i = 1, . . . , |σ|.
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i
i+ 1

σT

σB

where red(σT ) = red(σR)
−1 avoids 213 and red(σB) = red(σL)

−1 avoids 132. Finally, merging the

lines through i and i+ 1 as a separator, we get a 1324-avoiding domino. ✷

As a consequence ([1, Theorem 2] with n replaced by n− 2), we have

|S1≺n
n,1 (1324)| =

2 (3n− 3)!

(2n− 1)!n!
for n ≥ 2.

The elements of S1≺n
n,1 (1324) serve as primitives to factor and enumerate the elements of S1≺n

n,k (1324)
for every k ≥ 2.

We start with a definition.

Definition 2.2 A permutation σ ∈ S1≺n
n,1 (1324) will be called a primitive. For n ≥ 2, such a permutation

must be of the form σ = π 1n τ with red(π) ∈ Sk(132), red(τ) ∈ Sℓ(213), and k + ℓ = n − 2. Given

a primitive σ1 = π1 1mτ1 ∈ Sm(1324) and a permutation σ2 ∈ Sℓ(1324) of the form σ2 = π2 1 θ2 ℓ τ2
with |θ2| ≥ 0, we define the product

σ1 ⊙ σ2 = π̂2π1 1m θ̂2 n τ̂2τ1 ∈ Sn, (2.1)

where n = ℓ + m − 1, and π̂2, θ̂2, and τ̂2 are obtained from π2, θ2, and τ2, by increasing all of their

entries by m− 1 (see Figure 1).

π̂2

π1

θ̂2 τ̂2

τ1

1

m

n

Fig. 1: Visualization of σ1 ⊙ σ2.

For instance, 2143⊙ 41253 = 7 21 4 586 3. Also,

213⊙ 3142 = 5 21 364 and 3142⊙ 213 = 5 31 46 2.

In particular, ⊙ is not commutative. This is true even if σ1 and σ2 are both primitives. For example,

213⊙ 12 = 2134 but 12⊙ 213 = 3124.
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Proposition 2.3 If σ1 ∈ S1≺m
m,1 (1324) and σ2 ∈ S1≺ℓ

ℓ,k (1324), then

σ1 ⊙ σ2 ∈ S1≺n
n,k+1(1324) with n = ℓ+m− 1.

Proof: The permutations σ1 and σ2 must be of the form

σ1 = π1 1mτ1 and σ2 = π2 1θ2 ℓ τ2,

where red(π1) and red(π2) both avoid 132, red(τ1) and red(τ2) both avoid 213, red(θ2) avoids 21, and

|θ2| = k − 1. By (2.1), we have σ1 ⊙ σ2 ∈ S1≺n
n,k+1, so we only need to show that σ1 ⊙ σ2 avoids 1324.

The graph of σ1 ⊙ σ2 (see Figure 1) makes it clear that, since both σ1 and σ2 avoid 1324, the parts of

the permutation below and above the horizontal line y = m cannot have a 1324 pattern. Thus, if there is

a 1324 pattern in σ1 ⊙ σ2, the 1 will have to be in π1 1, and since π1 avoids 132, the 3, 2, and 4 of the

pattern will have to be above the line y = m. But this is not possible since θ2 ℓ τ2 avoids 213. ✷

Proposition 2.4 Every non-primitive σ ∈ S1≺n
n (1324) admits a unique decomposition

σ = σ1 ⊙ σ2,

where σ1 is a primitive in S1≺m
m,1 (1324) and σ2 ∈ S1≺ℓ

ℓ (1324) with ℓ = n−m+ 1.

Proof: If σ is not primitive, then it must be of the form σ = π 1θn τ , where red(π) avoids 132, red(τ)
avoids 213, and θ is increasing (i.e., avoids 21). Let m = min(θ). If there were indices i < j such that

π(i) < m < π(j), then the sequence (π(i), π(j),m, n) would make a forbidden 1324 pattern:

i j

π(i)

π(j)

m

n

Thus, if π is not empty, it must be of the form π = π2π1 where π2 consists of the values of π that are

larger than m, and π2 contains the values of π smaller than m, if any. Similarly, if τ(i) < m < τ(j) for

some i < j, then the sequence (1,m, τ(i), τ(j)) would make a forbidden 1324 pattern. Thus, if τ is not

empty, it must be of the form τ = τ2τ1 where the values of τ2 (if not empty) are larger than m and the

values of τ1 are smaller than m.

Now, if θ′ denotes θ without the entry m, then the graph of σ takes the form

π2

π1

θ′ τ2

τ1

1

m

n
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where any box could be empty. If we let σ1 = π1 1mτ1 and σ2 = red(π2 mθ′n τ2), then σ1 is primitive,

σ2 ∈ S1≺ℓ
ℓ (1324) with ℓ = n−m+ 1, and it is easy to see that σ = σ1 ⊙ σ2.

Now suppose σ = ρ1 ⊙ ρ2 with a primitive ρ1 of the form ρ1 = α1 1m
′ β1. The definition of ρ1 ⊙ ρ2

implies m′ = m and all the values of σ less than or equal to m must coincide with the values of ρ1. Hence

ρ1 = σ1 and the factorization is unique. ✷

Corollary 2.5 Every permutation in S1≺n
n,k (1324) can be uniquely decomposed as a product of k primitive

permutations.

(k = 3) 1234 = 12⊙ 12⊙ 12

(k = 2) 1243 = 12⊙ 132

1342 = 132⊙ 12

2134 = 213⊙ 12

3124 = 12⊙ 213

(k = 1) 1423, 1432, 2143, 3142, 2314, 3214 (primitives)

Tab. 1: Elements of S1≺4

4,k (1324) and their primitive decomposition.

In general, every permutation σ ∈ S1≺n
n,k (1324) with k primitive components is of the form depicted

in Figure 2, where Θ is increasing (possibly empty), and each primitive component can be read from the

horizontal regions determined by the values of σ to the right of 1 and to the left of n.

πk

. . .

π1

Θ

τk

. . .

τ1

1

m1

mk−1

n

Fig. 2: σ = σ1 ⊙ · · · ⊙ σk.

As mentioned at the beginning of this section, the elements of S1≺n
n,1 (1324) are counted by the OEIS

sequence [3, A000139]. Let f(x) denote the generating function for A000139 without the constant term,
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that is,

f(x) = x+ 2x2 + 6x3 + 22x4 + 91x5 + 408x6 + 1938x7 + 9614x8 + · · · , (2.2)

and recall the notation (given in the introduction)

T1,k(x) =

∞∑

n=k+1

|S1≺n
n,k (1324)|xn and g1(x, t) =

∞∑

k=1

tkT1,k(x).

By Proposition 2.1, we have T1,1(x) = xf(x). More generally:

Theorem 2.6 Let an,k = |S1≺n
n,k (1324)|. For n ≥ 3 and 2 ≤ k ≤ n− 1, we have

an,k =

n−k+1∑

m=2

am,1 · an−m+1,k−1.

Consequently, T1,k(x) = xf(x)k and thus g1(x, t) =
xtf(x)

1− tf(x)
.

Proof: By the above propositions, the permutations in S1≺n
n,k (1324) can be built by taking all possible

productsσ1⊙σ2, where σ1 is a primitive of size m for some m ≥ 2, and σ2 is a 1324-avoiding permutation

of size n−m+1 with σ−1
2 (n−m+1)−σ−1

2 (1) = k− 1. There are am,1 permutations of the first kind,

and an−m+1,k−1 of the latter. This leads to the claimed formula for an,k. Observe that an−m+1,k−1 only

makes sense whenever n−m+ 1 ≥ k, so we need m ≤ n− k + 1.

The formula for T1,k(x) can be shown by induction in k. As mentioned above, T1,1(x) = xf(x).
Suppose T1,k−1(x) = xf(x)k−1. Then,

xT1,k =

∞∑

n=k+1

an,kx
n+1 =

∞∑

n=k+1

( n−k+1∑

m=2

am,1 · an−m+1,k−1

)
xn+1

=

∞∑

n=k+2

( n−k∑

m=2

am,1 · an−m,k−1

)
xn

=

( ∞∑

m=2

am,1x
m

)( ∞∑

ℓ=k

aℓ,k−1x
ℓ

)
.

In other words, xT1,k = T1,1(x)T1,k−1(x) and therefore T1,k(x) = xf(x)k , as claimed. ✷

3 Enumeration of S2≺n
n (1324)

In this section, we focus on the set S2≺n
n,k (1324) and give formulas for the functions

T2,k(x) =

∞∑

n=k+1

|S2≺n
n,k (1324)|xn and g2(x, t) =

∞∑

k=1

tkT2,k(x)
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in terms of the functions f(x) and g1(x, t) from the previous section. Recall that S2≺n
n,k (1324) is the set

of permutations σ ∈ Sn(1324) having (in one-line notation) the 2 to the left of n at distance k, and the

1 to the right of n. Note that if the 1 is removed from such a permutation, the reduced permutation is

an element of S1≺n−1
n−1,k (1324). This basic observation is used as guideline for most of our combinatorial

arguments.

As before, we let an,k = |S1≺n
n,k (1324)|, so g1(x, t) =

∞∑
k=1

∞∑
n=k+1

an,k t
kxn.

Theorem 3.1 For n ≥ 3 and 2 ≤ k ≤ n− 1, we have

|S2≺n
n,k (1324)| = n−k

2 an−1,k. (3.1)

Moreover, the corresponding generating function satisfies

g2(x, t) =
1

2

(
x2 ∂g1

∂x
(x, t) − g1(x, t)

2
)
.

Proof: Let A(n, k) = S1≺n
n,k (1324). For every σ ∈ A(n− 1, k), we let

i = σ−1(1)− 1 and j = n− 1− σ−1(n− 1).

Thus, there are i entries to the left of 1, j entries to the right of n− 1, and i+ j + k + 1 = n− 1.

By inserting 1 at any of the the j+1 positions to the right of n−1, the permutation σ gives rise to j+1
permutations in S2≺n

n,k (1324), and with a similar process, the reverse complement σrc leads to i+ 1 such

permutations. In other words, the pair (σ, σrc) produces a total of i+ 1+ j + 1 = n− k permutations in

S2≺n
n,k (1324), but so does the pair (σrc, σ). Therefore, as we go over all permutations σ ∈ A(n−1, k), the

above process generates all of the elements of S2≺n
n,k (1324) twice. Thus there are n−k

2 an−1,k permutations

in S2≺n
n,k (1324).

Now, given that g1(x, t) =
∞∑
k=1

∞∑
n=k+1

an,k t
kxn, formula (3.1) implies

g2(x, t) =
1

2

(
x
∂

∂x

(
xg1(x, t)

)
− tx

∂

∂t
g1(x, t)

)

=
1

2

(
x2 ∂

∂x
g1(x, t) + xg1(x, t)− tx

∂

∂t
g1(x, t)

)
.

(3.2)

Finally, since g1(x, t) =
xtf(x)
1−tf(x) by Theorem 2.6, we get ∂

∂t
g1(x, t) =

xf(x)

(1−tf(x))2
, and it follows that

xg1(x, t) − tx ∂
∂t
g1(x, t) = −g1(x, t)

2. ✷

There is a formula for T2,k(x) that seems more suitable for generalizations. We start by letting

T2,0(x) = x2 (to account for the permutation 21, where the 2 is at distance zero from the maximal

element). Moreover, since T1,1(x) =
∞∑
n=2

an,1x
n and |S2≺n

n,1 (1324)| = n−1
2 an−1,1 by (3.1), we have

T2,1(x) =

∞∑

n=3

n− 1

2
an−1,1 x

n =
1

2
x2 d

dx
T1,1(x).

Note that by Theorem 2.6, this identity can be written as T2,1(x) =
1
2x

2 d
dx
(xf(x)).
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Theorem 3.2 For every k ≥ 2, we have

T2,k(x) = f(x)kT2,0(x) + kf(x)k−1
(
T2,1(x)− f(x)T2,0(x)

)
.

Proof: Every permutation σ ∈ S2≺n
n,k (1324) that ends with 1 is of the form σ = σ1 ⊖ 1, where σ1 ∈

S1≺n−1
n−1,k (1324). Thus, this subset (of permutations in S2≺n

n,k (1324) ending with 1) is counted by the

function xT1,k(x), which by Theorem 2.6 equals x
(
xf(x)k

)
= f(x)kT2,0(x).

Let A2,1(n) be the set of permutations in S2≺n
n,1 (1324) not ending with 1. This set is counted by the

generating function T2,1(x) − f(x)T2,0(x) (all permutations in S2≺n
n,1 (1324) minus those ending with 1).

We will show that every element σ ∈ S2≺n
n,k (1324) with σ(n) > 1 can be built from (and uniquely

corresponds to) a k-tuple of permutations (σ1, . . . , σk) such that:

• σℓ ∈ A2,1(mℓ) for some ℓ ∈ {1, . . . , k}, mℓ > 3,

• σj ∈ S
1≺mj

mj ,1
(1324) for every j 6= ℓ, mj ≥ 2,

• |σ1|+ · · ·+ |σk| = n+ k − 1.

The construction goes as follows. Given such a k-tuple, identify σℓ, mark the entry adjacent to the right

of 1 (always possible since σℓ does not end with 1), and let σ′
ℓ be the reduced permutation obtained from

σℓ by removing the 1. For example, given (12, 2413, 132), we have σ1 = 12, σ2 = 2413, σ3 = 132, and

so σ′
2 = 132.

Let σ′ = σ1 ⊙ · · · ⊙ σ′
ℓ ⊙ · · · ⊙ σk, and let i be the position of the transformed (via the dot product)

marked entry. Note that σ′ belongs to S1≺n−1
n−1,k (1324), and the position of n − 1 in σ′ is less than i. For

the above example, we get

σ′ = 12⊙ 132⊙ 132 = 12⊙ 13542 = 124653

Next, we let σ be the permutation obtained by inserting 1 into σ′ at position i. By our construction,

σ ∈ S2≺n
n,k (1324) and σ(n) > 1. For example, the tuple (12, 2413, 132) yields the marked permutation

σ′ = 124653, and so σ = 2357614. The permutations in S2≺7
7,3 (1324) not ending with 1 are all listed in

Table 2 together with their corresponding 3-tuples.

Conversely, given σ ∈ S2≺n
n,k (1324) not ending with 1, mark the entry adjacent to the right of 1, remove

the 1, and decompose the reduced permutation σ′ ∈ S1≺n−1
n−1,k (1324) as a product of k primitives. Use the

factors to make a k-tuple. Identify the component with the marked entry, call it σ′
ℓ, and insert 1 at the

position of the mark to obtain an element σℓ of A2,1. The resulting k-tuple is of the form described above.

Finally, since the generating function for |A2,1(n)| is T2,1(x) − f(x)T2,0(x), the set of k-tuples de-

scribed above, and thus the set of permutations in S2≺n
n,1 (1324) not ending with 1, are enumerated by the

generating function kf(x)k−1
(
T2,1(x)− f(x)T2,0(x)

)
. ✷

Remark 1 It is worth noting that the above formula for T2,k(x) can also be directly obtained from (3.2)

together with the fact that T1,k(x) = xf(x)k and T2,1(x) =
1
2x

2 d
dx
(xf(x)).
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(25134, 12, 12) ❀ 2567134

(12, 25134, 12) ❀ 2367145

(12, 12, 25134) ❀ 2347156

(25143, 12, 12) ❀ 2567143

(12, 25143, 12) ❀ 2367154

(12, 12, 25143) ❀ 2347165

(25413, 12, 12) ❀ 2567413

(12, 25413, 12) ❀ 2367514

(12, 12, 25413) ❀ 2347615

(25314, 12, 12) ❀ 2567314

(12, 25314, 12) ❀ 2367415

(12, 12, 25314) ❀ 2347516

(32514, 12, 12) ❀ 3256714

(12, 32514, 12) ❀ 4236715

(12, 12, 32514) ❀ 5234716

(42513, 12, 12) ❀ 4256713

(12, 42513, 12) ❀ 5236714

(12, 12, 42513) ❀ 6234715

(2413, 132, 12) ❀ 2467513

(2413, 12, 132) ❀ 2457613

(132, 2413, 12) ❀ 2467153

(12, 2413, 132) ❀ 2357614

(132, 12, 2413) ❀ 2457163

(12, 132, 2413) ❀ 2357164

(2413, 213, 12) ❀ 5246713

(2413, 12, 213) ❀ 6245713

(213, 2413, 12) ❀ 3246715

(12, 2413, 213) ❀ 6235714

(213, 12, 2413) ❀ 3245716

(12, 213, 2413) ❀ 4235716

Tab. 2: The 30 elements of S2≺7

7,3 (1324) not ending with 1.

4 Conjecture and final remarks

At the beginning of the paper, we introduced the notation

Ta,k(x) =

∞∑

n=k+1

|Sa≺n
n,k (1324)|xn and ga(x, t) =

∞∑

k=1

tkTa,k(x).

Let T1,0(x) = x and Ta,0(x) = |Sa−1(1324)|x
a. These functions account for the permutations of size

a that start with a.

Recall that, in one-line notation, a permutation σ ∈ Sa≺n
n,k (1324) has all of its entries less than a to the

right of n, and if they are removed, we are left with a reduced 1324-avoiding permutation of size n−a+1
having the 1 to the left of the maximal element. Thus, it is not unreasonable to expect a connection

between Ta,k(x) and T1,k(x). With that in mind, and based on how we proved Theorem 3.2, we spent

some time looking for an expansion of Ta,k(x) in terms of powers of f(x) and the functions Ta,j(x) for

j = 1, . . . , a− 1. Our search lead to the following conjecture.

Conjecture 1 For k ≥ a, we have the following equivalent formulas:

(i)
k∑

j=0

(−1)j
(
k
j

)
f(x)jTa,k−j = 0.

(ii) Ta,k(x) =
a−1∑
j=0

(
k
j

)
f(x)k−j

j∑
i=0

(−1)i
(
j
i

)
f(x)iTa,j−i(x).

(iii) Ta,k(x) =
a−1∑
j=0

(−1)a−j−1
(
k
j

)(
k−j−1
a−j−1

)
f(x)k−jTa,j(x).

For a = 1 the statements are trivial, and for a = 2, (ii) becomes

T2,k(x) = f(x)kT2,0(x) + kf(x)k−1
(
T2,1(x)− f(x)T2,0(x)

)
,

as claimed and proved in Theorem 3.2.
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For a = 3 the conjectured formula (ii) becomes

T3,k(x) = f(x)kT3,0(x)

+ kf(x)k−1
(
T3,1(x)− f(x)T3,0(x)

)

+
(
k
2

)
f(x)k−2

(
T3,2(x)− 2f(x)T3,1(x) + f(x)2T3,0(x)

)
,

where T3,0(x) = 2x3 (counting the permutations 312 and 321). Similar to what we did for a = 2, we

can interpret the term f(x)kT3,0(x) as counting the permutations in S3≺n
n,k (1324) that end with 12 or

21. Moreover, the function kf(x)k−1
(
T3,1(x) − f(x)T3,0(x)

)
can be interpreted as counting k-tuples

(σ1, . . . , σk), where σj ∈ S
1≺mj

mj ,1
(1324), mj ≥ 2, and one of these permutations, say σℓ, is marked in

such a way that it corresponds to an element of S3≺mℓ

mℓ,1
(1324) that does not end with 12 or 21.

Finally, rewriting the third component of T3,k(x) as

(
k
2

)
f(x)k−2

(
T3,2(x) − 2f(x)(T3,1(x)− f(x)T3,0(x)) − f(x)2T3,0(x)

)
,

it can be argued that this function counts k-tuples (σ1, . . . , σk) of primitives, where two of them, say σℓ1

and σℓ2 , are marked in such a way that the pair (σℓ1 , σℓ2) corresponds to a permutation in S3≺m
m,2 (1324),

m = mℓ1 +mℓ2 + 1, that does not end with 12 or 21.

Final remarks

In this paper, we have introduced a notion of positional statistics that seems particularly suited to and

provides a new way to think about 1324-avoiding permutations. As we did for a = 1 in Theorem 2.6

and for a = 2 in Theorem 3.1, the ultimate goal is to find an expression for ga(x, t) in terms of known

functions.

Proving the above conjecture would be a significant step in that direction, but it is not the whole story.

For instance, while the conjecture is true for a = 3, we still need to find T3,1(x) and T3,2(x) in order to

have a full expression for g3(x, t). For an arbitrary a > 3, our conjecture would reduce the problem to

finding Ta,j for j = 1, . . . , a− 1.

We have observed interesting properties for several patterns and hope that our work motivates the

community to explore positional statistics for patterns other than 1324.
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