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A graph G is said to be an (s, k)-polar graph if its vertex set admits a partition (A,B) such that A and B induce,

respectively, a complete s-partite graph and the disjoint union of at most k complete graphs. Polar graphs and

monopolar graphs are defined as (∞,∞)- and (1,∞)-polar graphs, respectively, and unipolar graphs are those graphs

with a polar partition (A,B) such that A is a clique.

The problems of deciding whether an arbitrary graph is a polar graph or a monopolar graph are known to be NP-

complete. In contrast, deciding whether a graph is a unipolar graph can be done in polynomial time. In this work

we prove that the three previous problems can be solved in linear time on the classes of P4-sparse and P4-extendible

graphs, generalizing analogous results previously known for cographs.

Additionally, we provide finite forbidden subgraph characterizations for (2, 2)-polar graphs on P4-sparse and P4-

extendible graphs, also generalizing analogous results recently obtained for the class of cographs.
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1 Introduction

All graphs in this paper are finite and simple; for basic terminology not defined here we refer the reader

to the beautiful book of Bondy and Murty [1]. For graphs G and H , we denote that H is an induced

subgraph of G by H ≤ G. Given a family of graphs H, we say that G is H-free if G does not have

induced subgraphs isomorphic to any graph H ∈ H; accordingly, we say that G is an H-free graph if it

is {H}-free. A property of graphs is hereditary if it is closed under taking induced subgraphs. Given a

hereditary property P of graphs, a minimal P-obstruction is a graph G that does not have the property P
but such that any vertex-deleted subgraph of G does.

A k-cluster is the disjoint union of at most k complete graphs; a cluster is a k-cluster for some positive

integer k. It is easy to verify that k-clusters coincide with {Kk+1, P3}-free graphs, while clusters are

precisely P3-free graphs. A complete k-partite graph is the complement of a k-cluster, or equivalently, a

{Kk+1, P3}-free graph; a complete multipartite graph is the complement of a cluster, i.e., a P3-free graph.
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An (s, k)-polar partition of a graph G is a partition of VG in two possible empty sets A and B such that

G[A] is a complete s-partite graph, and G[B] is a k-cluster. If G admits an (s, k)-polar partition we say

that it is an (s, k)-polar graph. A (k, k)-polar partition is simply referred as a k-polar partition, and a

graph which admits such partition is a k-polar graph. A 1-polar graph is commonly called a split graph;

in the classic article of Foldes and Hammer [9], split graphs were characterized to be {2K2, C4, C5}-free

graphs. If we replace s or k by ∞, it means that the number of components of G[A] or G[B], respectively,

is unbounded. An (∞,∞)-polar partition of a graph is simply called a polar partition, and a graph

with such partition is a polar graph. A graph with polar partition (A,B) such that A is an independent

set (respectively, a clique) is called a monopolar graph (resp. a unipolar graph). Naturally, the polar

partitions associated to monopolar and unipolar graphs are referred as monopolar and unipolar partitions,

respectively.

Graphs without induced paths on four vertices are known as cographs. A graph such that any set of five

vertices induces at most one P4 is called a P4-sparse graph, and a graph such that, for any vertex subset

W inducing a P4 there exists at most one vertex v /∈ W belonging to a P4 which shares vertices with W ,

is a P4-extendible graph.

In [3] it was proved that any hereditary property of graphs restricted to P4-sparse graphs and P4-

extendible graphs can be characterized by a finite set of forbidden induced subgraphs. In the same paper,

such characterizations for the properties of having a polar partition, a monopolar partition, a unipolar

partition, and an (s, 1)-polar partition for any fixed positive integer s were given. In this paper, we

continue with the work started in [3], establishing linear-time algorithms to find maximum subgraphs

associated with properties related to polarity in P4-sparse and P4-extendible graphs, and giving forbidden

subgraph characterizations for P4-sparse and P4-extendible graph which admit a 2-polar partition. For

the sake of length we invite the reader to read [3] where a discussion on the relevance of the topic of this

paper can be found.

The rest of the paper is organized as follows. Section 2 is devoted to a brief introduction of P4-sparse

and P4-extendible graphs. In Section 3 we give complete lists of minimal P4-sparse and P4-extendible

2-polar obstructions, while in Section 4 we provide algorithms for finding maximum polar, unipolar, and

monopolar subgraphs in both P4-sparse and P4-extendible graphs. Conclusions and some open problems

are given in Section 5.

2 Cograph generalizations

We use G + H to denote the disjoint union of the graphs G and H ; accordingly, we denote by nG the

disjoint union of n copies of the graph G. The join of G and H , defined as the graph G+H , will be

denoted by G⊕H . We say that two vertex subsets are completely adjacent if every vertex of one of them

is adjacent to any vertex of the other. Similarly, if no vertex of one of them is adjacent to a vertex of the

other, we say that those vertex subsets are completely nonadjacent. The following proposition include

some characterizations for cographs which are particularly relevant for this work.

Theorem 1. [4] Let G be a graph. The following statements are equivalent.

1. G is a P4-free graph (i.e. a cograph).

2. G can be constructed from trivial graphs by means of join and disjoint union operations.

3. For any nontrivial induced subgraph H of G, either H or H is disconnected.
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It follows from item 3 of the previous theorem that cographs can be uniquely represented by a rooted

labeled tree, its cotree, introduced by Corneil, Lerchs and Stewart Burlingham in [4]. In [2], Bretscher,

Corneil, Habib and Paul, showed that cographs can be recognized, and its associated cotree can be con-

structed, in linear time by an algorithm based on LexBFS. From here, using bottom-up algorithms on

their cotrees, many algorithmic problems which are difficult in general graphs can be efficiently solved on

cographs.

Much of the relevance of cographs comes from real-life applications involving graph models with just a

few induced paths of length three, as discussed by Corneil, Perl and Stewart Burlingham in [5]. Evidently,

P4-free graphs (cographs) are the most restrictive graph class in this way, so it becomes important to ask

whether a cograph superclass with less restrictions on the amount of allowed induced P4’s has a behavior

similar to cographs, particularly, whether it allows us to develop efficient algorithms for solving problems

by using a unique tree representation. Next, we briefly introduce two graph classes which are unlikely to

have many induced paths on four vertices. Such families are known to have unique tree representations

analogous to the cotree, which can be computed in linear time and can be used to solve some problems in

linear time.

2.1 P4-sparse

The P4-sparse graphs are defined as the graphs such that the subgraphs induced by any five vertices have

at most one induced copy of P4. Clearly, P4-sparse graphs are precisely the {C5, P5, P5, P, P , F, F }-free

graphs (see Figure 1). Additionally, Jamison and Olariu [14] provided a connectedness characterization

of P4-sparse graphs based on some special graphs called spiders, which we now introduce.

A graph G is said to be an spider if its vertex set admits a partition (S,K,R) such that S is an in-

dependent set with at least two vertices, K is a clique, R is completely adjacent to K but completely

nonadjacent to S, and there is a bijection f : S → K such that either N(s) = {f(s)} for each s ∈ S or

N(s) = K − {f(s)} for each s ∈ S. For a spider G = (S,K,R) we will say that S is its legs set, K is

its body, and R is its head. A headless spider is a spider with empty head. An spider will be called thin

(respectively thick) if d(s) = 1 (respectively d(s) = |K|−1) for any s ∈ S. Observe that the complement

of a thin spider is a thick spider and vice versa.

Theorem 2. [14] A graph G is a P4-sparse graph if and only if for every nontrivial induced subgraph

H of G, exactly one of the following statements is satisfied

1. H is disconnected.

2. H is disconnected.

3. H is an spider.

The next observation about spiders will be important in Section 3. It follows from the fact that a graph

is (0,∞)-polar (i.e. a cluster) if and only if it is a P3-free graph and, complementarily, that a graph is

(∞, 0)-polar if and only if it is a P3-free graph.

Remark 3. Let G be a spider. If G is a headless spider or the head of G induces a split graph, then G
is a split graph that has both, P3 and its complement, as proper induced subgraphs. Hence, G is not a

minimal (s, k)-polar obstruction for any election of s and k.
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2.2 P4-extendible graphs

Given a graph G and a vertex subset W , we denote by S(W ) the set of vertices x ∈ VG −W such that x
belongs to a P4 sharing vertices with W . If a vertex subset W inducing P4 is such that S(W ) has at most

one vertex, we say that W ∪ S(W ) is an extension set. In [13], P4-extendible graphs were introduced by

Jamison and Olariu as the graphs G such that, for every set W inducing a P4, W ∪ S(W ) is an extension

set.

An extension set D is separable if no vertex of D is both an endpoint of some P4 and a midpoint of

some P4 in G[D]. Notice that any extension set must induce one of the eight graphs depicted in Figure 1;

we call these graphs extension graphs. In addition, separable extension sets must induce one of P4, P, F
or their complements; these graphs are called separable extension graphs.

For a separable extension graph X with midpoints set K and endpoints set S, a graph H is said to be

an X-spider if H is an induced supergraph of X such that R := VH \VX is completely adjacent to K but

completely nonadjacent to S. If H is an X-spider, we say that (S,K,R) is an X-spider partition of H ,

and we refer to S,K and R as the legs set, the body, and the head of H , respectively. From now on, every

time we use the term X-spider, we are assuming that X is a separable extension graph.

P4 C5 P5 P5 (house)

P (banner) P F (chair) F (kite)

Fig. 1: The eight extension graphs. Black vertices are the midpoints of separable extension graphs.

Jamison and Olariu also gave in [13] the following connectedness characterization for the class of

P4-extendible graphs.

Theorem 4. [13] A graphG is a P4-extendible graph if and only if, for every nontrivial induced subgraph

H of G, precisely one of the following conditions holds

1. H is disconnected.

2. H is disconnected.

3. H is an extension graph.

4. There is a unique separable extension graph X such that H is an X-spider with nonempty head.
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Notice that any extension graph, but P4, is a P4-extendible graph which is not a P4-sparse graph. In

addition, any headless spider of order at least six is a P4-sparse graph which is not a P4-extendible graph.

Thus, P4-sparse and P4-extendible graphs are two cograph superclasses which are incomparable to each

other.

3 Minimal 2-polar obstructions

Throughout this section we give complete lists of minimal P4-sparse and minimal P4-extendible 2-polar

obstructions, obtaining in this way characterizations for the P4-sparse and P4-extendible graphs which

admit a 2-polar partition. These characterizations generalize analogous results given for cographs by

Hell, Hernández-Cruz and Linhares-Sales in [11]. In fact, we base our characterizations in the following

propositions, most of them taken from the mentioned paper.

We start with two lemmas which provide some useful general structural properties about minimal k-

polar obstructions.

Lemma 5. [11] Let H be a minimal k-polar obstruction. The following statements are true

1. H has at most k + 2 components.

2. H has at least one nontrivial component.

3. H has at most k + 1 trivial components.

4. If H has at least one trivial component, H has at most one noncomplete component.

5. If H 6∼= (k + 1)Kk+1, every complete component of H is isomorphic to K1 or K2.

Lemma 6. [11] Let H be a minimal 2-polar obstruction.

1. H has at least seven vertices.

2. If H has seven vertices and three connected components, then at least one of them is an isolated

vertex.

Next, we give a slight correction to Lemma 2 in [11], which characterize the minimal k-polar obstruc-

tions with the maximum possible number of components; it is worth noticing that it does not affect the

main results in such paper.

Lemma 7. Let k be an integer, k ≥ 2, and let G be graph. Then, G is a minimal k-polar obstruction with

exactly k+2 connected components if and only if G ∼= ℓK1+(k− ℓ+1)K2+G′, where ℓ is an integer in

the set {1, . . . , k+1} and G′ is a connected complete k-partite graph which is a minimal (1, ℓ− 1)-polar

obstruction and such that, if ℓ ≤ k, G′ is a (1, ℓ)-polar graph.

Proof: Suppose G ∼= ℓK1 + (k − ℓ + 1)K2 + G′, where ℓ is an integer in the set {1, . . . , k + 1} and

G′ is a connected complete k-partite graph which is a minimal (1, ℓ − 1)-polar obstruction such that, if

ℓ ≤ k, it is a (1, ℓ)-polar graph. If G is a (1, k)-polar graph, then G′ is a (1, ℓ − 1)-polar graph, but it

is not. Thus, since G is not (1, k)-polar, if its admits a k-polar partition (A,B), the subgraph G[A] is a

connected graph and hence it is completely contained in some component of G. But then, G would have

at most k + 1 connected components, which is not the case. Hence, G is not a k-polar graph.
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Let v be an isolated vertex of G. Then G− v is the disjoint union of a k-cluster with G′, and since G′

is a complete k-partite graph, then G− v is a k-polar graph. Now, since G′ is a minimal (1, ℓ− 1)-polar

obstruction, for any vertex w of G′, G′ −w can be partitioned into an stable set and an (ℓ− 1)-cluster, so

G−w is a (1, k)-polar graph, and then a k-polar graph. Finally, if at least one component of G is a copy of

K2, then ℓ ≤ k and we have that G′ is a (1, ℓ)-polar graph. Thus, for any vertex u in a K2-component of

G, G− u is a (1, k)-polar graph. Hence, G is a minimal k-polar obstruction which evidently has exactly

k + 2 connected components.

For the converse implication, assume that G is a minimal k-polar obstruction with precisely k + 2
components and ℓ isolated vertices. If ℓ = 0 then G properly contains K1 + (k + 1)K2 as an induced

subgraph, but that is impossible because both, G and K1 + (k + 1)K2 are minimal k-polar obstructions.

Then, G has at least one isolated vertex, and evidently G is not an empty graph, so ℓ ≤ k + 1. We know

by Lemma 5 that G has at most one noncomplete connected component and that any complete component

of G has at most two vertices, so G ∼= ℓK1 + (k − ℓ + 1)K2 +G′ where ℓ ∈ {1, . . . , k + 1} and G′ is a

connected graph.

Notice that G′ is not a (1, ℓ − 1)-polar graph, otherwise G would be a (1, k)-polar graph, and hence

a k-polar graph. Let u be a vertex of G′. By the minimality of G, we have that G − u is a k-polar

graph. Moreover, since G − u has at least k + 2 connected components, any k-polar partition of G − u
is necessarily a (1, k)-polar partition, which implies that G′ − u is a (1, ℓ− 1)-polar graph. Then G′ is a

minimal (1, ℓ−1)-polar obstruction. Now, let v be an isolated vertex of G. By the minimality of G, G−u
has a k-polar partition (A,B), but it cannot be a (1, k)-polar partition or G would be a (1, k)-polar graph.

Thus, either G′ ∼= K2 and ℓ = 1, or A = V (G′) and hence G′ is a complete k-partite graph. Finally, if

l ≤ k, G has at least one K2-component. Let w be a vertex in one of such components. Then G− w is a

k-polar graph with k+2 connected components, which implies that in fact G−w is a (1, k)-polar graph,

and hence G′ is a (1, ℓ)-polar graph.

A partial complement of a graph H is either the usual complement of H , or a graph H1 +H2, where

H1 and H2 are subgraphs of H obtained by splitting the components of H into two parts, H1 and H2.

The next result shows how the partial complement operation preserves 2-polarity, which will be useful for

giving compact lists of minimal 2-polar obstructions on P4-sparse and P4-extendible graphs. Remarkably,

this lemma was originally proven for the special class of cographs, but the same proof works for any

hereditary class of graphs closed under complement and disjoint union operations, particularly, it works

for the classes of P4-sparse and P4-extendible graphs.

Lemma 8. [11] Let G be a hereditary class of graphs closed under complement and disjoint union

operations, and let G ∈ G be a 2-polar graph. Then, any partial complement of G is a 2-polar graph

belonging to G.

Based on the previous propositions, we can easily check that the graphs in Figures 5 to 11, as well as

their complements, are all of them minimal 2-polar obstructions: it is enough to verify that, for each of the

mentioned figures, one of its graphs, let say F , is a 2-polar obstruction, and that the closure of {F} under

partial complements is precisely the set of all graphs in the same figure and their complements. In the

following sections we prove that any minimal 2-polar obstruction that is a P4-sparse or a P4-extendible

graph is either a graph depicted in Figures Figures 5 to 11 of the complement of one of them.
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3.1 P4-sparse minimal 2-polar obstructions

Throughout this section we characterize P4-sparse graphs admitting a 2-polar partition by means of its

family of minimal obstructions. At the end of the section we conclude that any P4-sparse minimal 2-polar

obstruction is in fact a cograph, which is interesting since also any known P4-sparse minimal (s, k)-polar

obstruction is a cograph. We start by proving that the complement of any connected P4-sparse minimal

2-polar obstruction is a disconnected graph.

Proposition 9. If G is a spider, then G is 2-polar if and only if G is a split graph.

Proof: Let (S,K,R) be the spider partition of G. We only need to prove that any 2-polar spider is, in

fact, a split graph. Since k-polar graphs are closed under complements, and headless spiders trivially are

split graphs, we can assume that G is a thin spider with nonempty head. Let (V1, V2, V3, V4) be a 2-polar

partition of G, and for any i ∈ {1, 2, 3, 4}, let Ri = Vi ∩ R. Notice that, since K is completely adjacent

to R, Ri = ∅ for some i ∈ {1, . . . , 4}.

First, suppose that (R1, R3, R4) is a (1, 2)-polar partition of G[R]. Again, some of R1, R3 and R4

must be empty because K and R are completely adjacent and K has at least two vertices. Thus, either

(R1, R3) is a split partition of G[R], or (R3, R4) is a (0, 2)-polar partition of G[R]. But the second case is

not possible since then, S∪K ⊆ V1∪V2, which is impossible since G[S∪K] is not a complete multipartite

graph. Hence, G[R] is a split graph and, by Remark 3, also is G. The case in which (R1, R2, R3) is a

(2, 1)-polar partition of G[R] can be treated in a similar way.

Corollary 10. If G is a spider, then G is not a minimal 2-polar obstruction. In consequence, for any

P4-sparse minimal 2-polar obstruction H , either H or its complement is disconnected.

Proof: Let (S,K,R) be the spider partition of G. As in the lemma above, we can suppose that G is a thin

spider. Assume for a contradiction that G is a minimal 2-polar obstruction so, by the previous lemma and

Remark 3, we have that G[R] is not a split graph. Then, for any r ∈ R, G− r is a spider which is 2-polar,

so G[R] − r is a split graph. Thus G[R] is a P4-sparse minimal split obstruction, that is to say, G[R]
is isomorphic to either 2K2 or C4. From here is easy to prove that deleting either one leg or one vertex

of the body of G the resulting graph is not a 2-polar graph, contradicting the minimality of G. Hence, a

P4-sparse minimal 2-polar obstruction is not a spider, and the result directly follows from Theorem 2.

By Lemma 5, any P4-sparse minimal 2-polar obstruction has at most four connected components. With

the purpose of giving the complete list of such obstructions, we mention first some useful propositions on

minimal (s, 1)-polar obstructions.

Theorem 11. [3] Let s be an integer, s ≥ 2. If G is a disconnected minimal (s, 1)-polar obstruction,

then G satisfies one of the following assertions:

1. G is isomorphic to one of the graphs depicted in Figure 2.

2. G ∼= 2Ks+1.

3. G ∼= K2 + (2K1 ⊕Ks).

4. G ∼= K1 + (C4 ⊕Ks−1).
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E1 = K1 + 2K2 E2 = 2P3 E3 = C4 + 2K1 E7 = K1 + P3 +K2

E10 = K1 + C5 E11 = K1 + P E12 = K1 + P5

Fig. 2: Some minimal (∞, 1)-polar obstructions.

Proposition 12. [3] Let s be a positive integer. Any P4-sparse minimal (s, 1)-polar obstruction G is a

cograph. In consequence, either G or its complement is disconnected.

Proposition 13. [3] There are exactly nine P4-sparse minimal (2, 1)-polar obstructions; they are the

graphs E1, . . . , E9 depicted in Figures 2 and 3.

E4 = 3K2 E5 = K2 + C4 E6 = K1 +W4

E8 = K2 + (K2 ⊕ 2K1) E9 = 2K3 E13 = K2 + C5

Fig. 3: Some minimal (2, 1)-polar obstructions.

Now we have the necessary tools to prove that there are exactly three P4-sparse minimal 2-polar ob-

structions with four connected components.

Proposition 14. Let ℓ be a positive integer. If G is a connected P4-sparse minimal (1, ℓ − 1)-polar

obstruction which is a complete multipartite graph, then G is isomorphic to either Kℓ,ℓ or K1 ⊕ C4.

Proof: Clearly, if ℓ = 1, G ∼= K2, while if ℓ = 2, G ∼= C4. For ℓ ≥ 3, we have from Proposition 12

that G is a disconnected graph, and it follows from Theorem 11 that G is isomorphic to either Kℓ,ℓ or

K1 ⊕ C4.
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Corollary 15. If G is a P4-sparse graph, then G is a minimal 2-polar obstruction with exactly 4 connected

components if and only if G ∼= ℓK1 + (3− ℓ)K2 +Kℓ,ℓ for some integer ℓ ∈ {1, 2, 3}.

Proof: Let G be a P4-sparse graph. By Lemma 7 we have that G is a minimal 2-polar obstruction with

precisely four connected components if and only if G ∼= ℓK1 + (3 − ℓ)K2 + G′, where ℓ ∈ {1, 2, 3},

and G′ is a connected complete bipartite graph which is a minimal (1, ℓ− 1)-polar obstruction such that,

if ℓ 6= 3, G′ is a (1, ℓ)-polar graph. In addition, we have from Proposition 14 that the only connected

P4-sparse minimal (1, ℓ − 1)-polar obstruction which is a complete bipartite graph is Kℓ,ℓ. The result

follows since Kℓ,ℓ trivially is a (1, ℓ)-polar graph.

Hannebauer [10] proved that, for any nonnegative integers s and k, any P4-sparse minimal (s, k)-polar

obstruction has at most (s + 1)(k + 1) vertices. Thus, we have by Lemma 6 that any P4-sparse minimal

2-polar obstruction has at least seven and at most nine vertices. The following three lemmas completely

characterize such minimal obstructions depending on their order; the proofs are simple generalizations of

the analogous proofs given in [11] for cographs.

Lemma 16. The disconnected P4-sparse minimal 2-polar obstructions on 7 vertices are exactly the

graphs F1, . . . , F5 depicted in Figure 4.

F1 F2 F3 F4 F5

Fig. 4: P4-sparse minimal 2-polar obstructions on 7 vertices.

Proof: Let H be a disconnected P4-sparse minimal 2-polar obstruction on seven vertices. By the ob-

servation after Lemma 8 it is enough to prove that H ∼= Fi for some i ∈ {1, . . . , 5}. If H has four

connected components or it can be transformed by a sequence of partial complementations into a graph

with four components, it follows from Corollary 15 and Lemma 8 that H is isomorphic to Fi for some

i ∈ {1, . . . , 5}. Thus, we can assume that any graph obtained from H by partial complementations has at

most three components; from here we can replicate the argument in Lemma 7 of [11] to assume that H is

a graph with precisely two connected components, one of them being a trivial graph.

Since H is not a 2-polar graph, its nontrivial component must contain a minimal (2, 1)-polar obstruction

H ′ as an induced subgraph. Moreover, H ′ cannot be a disconnected graph on six vertices, so we have

from Proposition 13 that H ∈ {K1 + 2K2, 3K2, 2K2 ⊕ 2K1}. If H ′ ∼= 3K2, H is the graph F5 in

Figure 4. If H ′ ∼= 2K2 ⊕ 2K1, is straightforward to verify that H is a (1, 2)-polar graph, which cannot

occur. Otherwise, if H ′ ∼= K1 + 2K2, we have that H ∼= F3, because P4-sparse graphs are {P, P5}-free

and H ′ is contained in a connected component of H on six vertices.

Lemma 17. The disconnected P4-sparse minimal 2-polar obstructions on 9 vertices are the graphs

F21, . . . , F24 depicted in Figure 5.
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F21 F22 F23 F24

Fig. 5: P4-sparse minimal 2-polar obstructions on 9 vertices.

Proof: Almost all the arguments used in the proof of Lemma 8 in [11] are still valid for P4-sparse graphs.

We only have to care about the case when H is a P4-sparse minimal 2-polar obstruction on 9 vertices with

three connected components and precisely two isolated vertices. In such a case the nontrivial connected

component of H , B3, is either a spider or the join of two smaller P4-sparse graphs T1 and T2. In the

former case, since the head of B3 has at most three vertices, B3 is a split graph, so H is too. The latter

case follows as in the original proof.

F6 F7 F8 F9

F10 F11 F12

Fig. 6: Family A of P4-sparse minimal 2-polar obstructions on 8 vertices.

Lemma 18. The disconnected P4-sparse minimal 2-polar obstructions on 8 vertices are the graphs

F6, . . . , F20 and F25, depicted in Figures 6 and 7.

Proof: The proof of Lemma 9 in [11] is still valid for P4-sparse graphs with the only addition of the graph

F25 as a partial complement of the graph F19, which was omitted by mistake in [11]. The main arguments

are similar to those used in the proof of Lemma 17.

We summarize the results of this section in the following theorem.
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F13 F14 F15 F16 F17

F18 F19 F20 F25

Fig. 7: Family B of P4-sparse minimal 2-polar obstructions on 8 vertices.

Theorem 19. There are exactly 50 P4-sparse minimal 2-polar obstructions, and each of them is a co-

graph. The disconnected P4-sparse minimal 2-polar obstructions are the graphs F1, . . . , F25 depicted in

Figures 4 to 7.

3.2 P4-extendible minimal 2-polar obstructions

In [3] it was observed that the set of cograph minimal (s, k)-polar obstructions is a proper subset of the

set of P4-extendible minimal (s, k)-polar obstructions for the cases min{s, k} = 1 and s = k = ∞. In

the present section we give the complete family of P4-extendible minimal 2-polar obstructions, and show

that also in the case s = k = 2 there are P4-extendible minimal (s, k)-polar obstructions which are not

cographs. Indeed, each graph depicted in Figures 8 to 11 is a P4-extendible minimal 2-polar obstruction

which is not a cograph.

We start by proving that there exists only one P4-extendible connected minimal 2-polar obstruction

whose complement is also a connected graph.

Lemma 20. If G = (S,K,R) is a P -spider and H = G[R], then G is a minimal 2-polar obstruction if

and only if H ∼= P3, that is, if G is isomorphic to the graph F26 in Figure 8.

Proof: If H ∼= P3, then G ∼= F26, so G is a minimal 2-polar obstruction. Suppose for a contradiction

that G is another P -spider minimal 2-polar obstruction. Being P3-free, H is a cluster. Moreover, if

H is not a complete multipartite graph, then G properly contains F3 as an induced subgraph, which is

impossible. Then H is a cluster which is a complete multipartite graph, so it is either a complete or

an empty graph. However, it is easy to check that in both cases G is a 2-polar graph, contradicting our

original assumption.
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F26

Fig. 8: A connected P4-extendible minimal 2-polar obstruction with connected complement.

The proofs of the next proposition and its corollaries are very similar to the proofs of Proposition 9 and

its corollaries, so we only sketch them without going into details.

Proposition 21. Let X ∈ {P4, F}. If G is an X-spider, then G is a 2-polar graph if and only if R induces

a split graph.

Proof: Let (S,K,R) be the spider partition of G. First, assume that (A,B) is a split partition of G[R].
Then, (A ∪ S,B ∪ K) is a split partition of G, so G is a split graph, and hence a 2-polar graph. Now,

suppose that G has a 2-polar partition (V1, V2, V3, V4), and let Ri = Vi ∩ R for each i ∈ {1, . . . , 4}.

Notice that, if R1 and R2 are both nonempty, then S ∪K ⊆ V3 ∪V4, which is impossible since X is not a

cluster. Analogously, since X is not a complete multipartite graph, R3 and R4 cannot be both nonempty.

Therefore G[R] is a split graph.

Corollary 22. Let X ∈ {P4, F}. If G is an X-spider, then it is not a minimal 2-polar obstruction.

Proof: Let (S,K,R) be the spider partition of G. In order to reach a contradiction, suppose that G is

a minimal 2-polar obstruction. By Proposition 21, G[R] is not a split graph, but for any vertex v ∈ R,

G[R] − v is. Hence, G[R] is a minimal split obstruction, i.e., G[R] is isomorphic to some of 2K2, C4

or C5. But then, G contains F3, F3 or F27, respectively, as a proper induced subgraph, contradicting the

minimality of G.

Corollary 23. If G is a P4-extendible minimal 2-polar obstruction different from F26 and its complement,

then G or its complement is disconnected.

Proof: It is a simple exercise to verify that any extension graph is a 2-polar graph. In addition, by

Lemma 20 and Proposition 21, the only X-spiders that are minimal 2-polar obstructions are F26 and its

complement. Therefore, by Theorem 4, any other P4-extendible minimal 2-polar obstruction is discon-

nected or has a disconnected complement.

As we did in the case of P4-sparse graphs, now we characterize the P4-extendible minimal 2-polar

obstructions with the maximum possible number of connected components. We start by quoting two

useful results of P4-extendible minimal (s, 1)-polar obstructions.

Theorem 24. [3] Let s be an integer, s ≥ 2. If G is a P4-extendible graph, then G is a minimal

(s, 1)-polar obstruction if and only if G satisfies exactly one of the following assertions:

1. G is isomorphic to one of the seven graphs depicted in Figure 2.
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2. G is isomorphic to some of 2Ks+1,K2 + (Ks ⊕ 2K1) or K1 + (Ks−1 ⊕ C4).

3. For some nonnegative integers s1, s2, . . . , st such that s = t − 1 +
∑t

i=1
si, the complement of

G is a disconnected graph with components G1, . . . , Gt, where each Gi is a minimal (1, si)-polar

obstruction whose complement is different from the graphs in Figure 2.

Corollary 25. There are exactly 13 P4-extendible minimal (2, 1)-polar obstructions; they are the graphs

E1, . . . , E13 depicted in Figures 2 and 3.

As the reader can check, the proofs of the next proposition and its corollary are analogous to those of

Proposition 14 and Corollary 15.

Proposition 26. Let ℓ be a positive integer. If G is a connected P4-extendible minimal (1, ℓ − 1)-polar

obstruction which is a complete multipartite graph, then G is isomorphic to either Kℓ,ℓ or K1 ⊕ C4.

Proof: Clearly, if ℓ = 1, then G ∼= K2, while if ℓ = 2, we have G ∼= C4. By Theorem 24, if ℓ ≥ 3, G is

isomorphic to either Kℓ,ℓ or K1 ⊕ C4.

Corollary 27. If G is a P4-extendible graph, then G is a minimal 2-polar obstruction with exactly 4

connected components if and only if G ∼= ℓK1 + (3 − ℓ)K2 +Kℓ,ℓ for some integer ℓ ∈ {1, 2, 3}.

Proof: This result represents to P4-extendible graphs the same as Corollary 15 is to P4-sparse graphs. In

fact, the proof of this result is basically the same as that of Corollary 15, but using instead Proposition 26,

which is to P4-extendible graphs as Proposition 14 is to P4-sparse graphs.

By Lemma 6, we have that no P4-extendible minimal 2-polar obstruction has less than seven vertices.

In the rest of the section we give the complete list of such obstructions, obtaining as a consequence that

they have at most 9 vertices, as in the case of P4-sparse graphs. We remark that these proofs are very

similar in flavor to the analogous proofs for P4-sparse graphs.

Lemma 28. The disconnected P4-extendible minimal 2-polar obstructions on 7 vertices are exactly the

graphs F1, . . . , F5 depicted in Figure 4.

Proof: Let H be a disconnected P4-extendible minimal 2-polar obstruction on 7 vertices. By the ob-

servation after Lemma 8, it is enough to prove that H ∼= Fi for some i ∈ {1, . . . , 5}. It follows from

Corollary 27 that, if H has four components, or it can be transformed into a graph with four components

through a sequence of partial complementations, then it is one of F1, . . . , F5.

So, assume that none of the graphs that can be obtained from H by means of partial complements has

more than three connected components. Notice that any P4-extendible graph H on seven vertices with

exactly two components, can be transformed by partial complementation into a graph with at least three

components, one of which is an isolated vertex, except in the case that H is the disjoint union of K1 with

an X-spider on 6 vertices, in which case it can be checked that H is a (1, 2)-polar graph. Taking a partial

complementation separating one isolated vertex of H from the rest of the graph, we obtain a graph with

two components, one of them being an isolated vertex. Let us suppose without loss of generality that H
has this form.

Since H is not 2-polar, its nontrivial component must contain a P4-extendible minimal (2, 1)-polar

obstruction H ′ as an induced subgraph. Moreover, either H ′ has fewer than six vertices, or it has exactly

six vertices and is connected, so it follows from Corollary 25 that H ′ ∈ {K1 + 2K2, 3K2,K2 + C4}. If
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H ′ ∼= 3K2, then H is the graph F5 in Figure 4. If H ′ ∼= K2 + C4, it is straightforward to verify that H
is a (1, 2)-polar graph. Otherwise, H ′ ∼= K1 + 2K2. But H ′ is contained in a connected component of

H on six vertices, which must be isomorphic to K1 ⊕ (K1 + 2K2) because H is a P4-extendible graph.

Then, H is isomorphic to F3.

The next technical lemma will be needed to give the complete list of P4-extendible minimal 2-polar

obstructions with at least eight vertices.

Lemma 29. Let H be a disconnected minimal 2-polar obstruction. If H has a componentH ′ which is not

a cograph, then H −H ′ is a split graph. In consequence, at most one component of H is not a cograph.

Proof: If H − H ′ is not a split graph it contains 2K2, C4 or C5 as an induced subgraph, and H would

contain F1, F2 or F29 as a proper induced subgraph, respectively (see Figures 4 and 9). Now, assume for a

contradiction that H has at least two components, H1 and H2, which are not cographs. By the first part of

this lemma, H −H1 and H −H2 (and hence H1) are split graphs, so H is the disjoint union of two split

graphs, which implies that it is a (1, 2)-polar graph, contradicting that H is a 2-polar obstruction.

F27 F28 F29 F30 F31

Fig. 9: Family C of P4-extendible minimal 2-polar obstructions on 8 vertices.

In the proof of our following lemma, we will implicitly use Lemma 8, and the observation right after it,

when analyzing which minimal obstructions appear in the different cases. Hence, it is natural that at most

one graph from each figure appears in the proof. For example, since F13 appears as an induced subgraph

in one of the cases, then none of the graphs F14, . . . , F25 (see Fig. 7) will be explicitly mentioned in the

proof.

Lemma 30. The only disconnected P4-extendible minimal 2-polar obstructions with at least 8 vertices

are the graphs F6, F7, . . . , F25, F27, F28, . . . , F41 depicted in Figures 5 to 7 and 9 to 11.

Proof: Let H be a P4-extendible disconnected minimal 2-polar obstruction with at least eight vertices. By

the observation after Lemma 8, it is enough to prove that H ∼= Fi for some i ∈ {6, . . . , 41}, i 6= 26. If H
can be transformed by means of partial complementations into a graph with four connected components,

we have by Corollary 27 that H is one of F13, . . . , F25.

Now, assume that H can be transformed by partial complementations into a graph H ′ with three com-

ponents, but it cannot be transformed into a graph with four connected components. Notice that at least

one component of H ′ is a cograph, otherwise 3P4 is an induced subgraph of H ′, but F1 is a proper induced

subgraph of 3P4, contradicting that H is a minimal 2-polar obstruction. Having a cograph component, H ′

can be transformed by a finite sequence of partial complementations into a graphH ′′ with three connected

components where at least one of them, B3, is a trivial component. Moreover, since H ′′ is also a minimal
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F32 F33 F34

F35
F36

Fig. 10: Family D of P4-extendible minimal 2-polar obstructions on 8 vertices.

F37 F38 F39

F40 F41

Fig. 11: Family E of P4-extendible minimal 2-polar obstructions on 8 vertices.

2-polar obstruction, H ′′ − B3 is 2-polar but it is neither a (2, 1)- nor a (1, 2)-polar graph. Therefore, a

component B2 of H ′′ − B3, is a complete graph while its other component, B1, is a (2, 1)-polar graph

that is neither a split nor a complete bipartite graph. Without loss of generality we can assume that B1, B2

and B3 are the components of H itself. Denote by m the order of B2.

Suppose first that m ≥ 2. Since B1 is not a split graph, then it contains some of 2K2, C5 or C4 as an

induced subgraph. If 2K2 ≤ B1, then H properly contains a copy of F1, while if C5 ≤ B1, then H must

be isomorphic to F30. Otherwise, B1 contains a copy C of C4. Observe that if B1 contains K1+C4 as an

induced subgraph, then H properly contains a copy of F13, which is impossible. Hence, any vertex in B1



16 Fernando Esteban Contreras-Mendoza and César Hernández-Cruz

not in C is adjacent to some vertex of C. Let u be a vertex in B1 not in C. If u is adjacent to exactly one

vertex of C, then H ∼= F32; if u is adjacent to two adjacent vertices of C, then H ∼= F37; if u is adjacent

to exactly three vertices of C, H ∼= F7; and if u is adjacent to all vertices of C, then H properly contains

a copy of F4. Thus, if H is none of the graphs mentioned before, any vertex u in B1 not in C is adjacent

to two antipodal vertices in C. In addition, two vertices adjacent to the same pair of antipodal vertices

cannot be adjacent to each other, otherwise H contains F7 as a proper induced subgraph. Furthermore,

any two vertices adjacent to distinct pairs of antipodal vertices in C must be adjacent to each other, or H
would contain F32 as a proper induced subgraph. It is easy to observe that under such restrictions B1 is a

complete bipartite graph, which is impossible.

Now let us consider the case m = 1. We have that B1 is a connected P4-extendible graph with at least

six vertices, so B1 is either an X-spider or the join of two smaller P4-extendible graphs. Suppose first

that B1 is an X-spider and let R be its head. If R contains 2K2, C4 or C5 as an induced subgraph, then

H properly contains F3, F4 or F28, respectively, but this is impossible. Then, R is a split graph, which

implies that X /∈ {P4, F, F }, or H would be a split graph. We can assume that X = P . If R contains an

induced P3, then H properly contains an induced copy of F26, so R must be a cluster. Hence, R is a split

graph which is a cluster, so R = Ka+bK1 for some nonnegative integers a and b. Observe that a ≥ 2 and

b ≥ 1, otherwise H is a 2-polar graph or it contains F9 as a proper induced subgraph. Then, R contains an

induced copy ofP3, but this implies that H has a proper induced copy ofF3. Hence, B1 is not an X-spider,

so B1 is the join of two smaller P4-extendible graphs, T1 and T2, and hence H = T1 ⊕ T2 + B2 + B3.

If the complement of Ti is disconnected for some i ∈ {1, 2}, then B1 + B2 +B3 has four connected

components, a contradiction. Then each Ti has a connected complement, so it is isomorphic to K1 or

it contains P4 as an induced subgraph. Evidently, at least one of T1 and T2 is a nontrivial graph. First

assume, without loss of generality, that T1 is an isolated vertex, then B1 + B2 +B3 has three connected

components, one of them isomorphic to K2, and other isomorphic to K1, so we are in the case m = 2.

Otherwise, each of T1 and T2 contain an induced copy of P4, so B1 + B2 +B3 contains F1 as a proper

induced subgraph, which is impossible.

Finally, assume that H cannot be transformed by partial complementations into a graph with at least

three connected components. Thus, H has exactly two connected components, and the complement of any

of them is also a connected graph. Then, by Lemma 29, H is the disjoint union of K1 and an X-spider,

but exactly as in the case m = 1, it can be proved that this is impossible for a P4-extendible minimal

2-polar obstruction.

We summarize the results of this section in the following theorem.

Theorem 31. There are exactly 82 P4-extendible minimal 2-polar obstructions, they are the graphs

F1, . . . , F41 and their complements.

4 Largest polar subgraphs

In this section, we give algorithms to find maximum order induced subgraphs with some given properties

(related to polarity) in P4-sparse and P4-extendible graphs using their tree representations. Ekim, Ma-

hadev and de Werra [6] previously obtained similar results for cographs using the cotree. Given a graph

G, we denote by MC(G),MI(G), and MS(G) a maximum subset of VG inducing a complete graph, an

empty graph, and a split graph, respectively. We use MB(G) and McB(G) to denote a maximum sub-

set of VG inducing a bipartite and a co-bipartite graph, respectively. We also use MUC(G) and MJI(G)
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to denote maximum subsets of VG inducing a cluster and a complete multipartite graph, respectively;

MM(G),McM(G), and MP(G) stand for maximum subsets of VG inducing a monopolar, a co-monopolar

and a polar subgraph of G, while MU(G) and McU(G) are used for denoting maximum subsets of VG

inducing a unipolar or a co-unipolar graph, respectively. To simplify the notation, when we are working

with preset subgraphs Gi of G, we write MCi instead of MC(Gi) and, if there is no possibility of con-

fusion, we write MC instead of MC(G); we use an analogous notation for all other maximal subgraphs.

Given a family F of subsets of VG, a witness of M = maxF∈F{|F |} in F is an element F ′ of F such

that |F ′| = M .

The following proposition provides recursive characterizations for the aforementioned maximum sub-

graphs in a disconnected graph.

Proposition 32. Let G = G0 + G1 be a graph, and let W be a subset of VG. The following statements

hold true.

1. W is a maximum clique of G if and only if W is a witness of max{|MC0|, |MC1|}.

2. W is a maximum independent set of G if and only if W is a witness of max{|MI0 ∪MI1|}.

3. W induces a maximum bipartite subgraph of G if and only if W is a witness of max{|MB0∪MB1|}.

4. W induces a maximum co-bipartite subgraph of G if and only if W is a witness of

max{|McB0|, |McB1|, |MC0 ∪MC1|}.

5. W induces a maximum split subgraph of G if and only if W is a witness of maxi∈{0,1}{|MIi ∪
MS1−i|}.

6. W induces a maximum cluster in G if and only if W is a witness of max{|MUC0 ∪MUC1|}.

7. W induces a maximum complete multipartite subgraph of G if and only if W is a witness of

max{|MI|, |MJI0|, |MJI1|}.

8. W induces a maximum monopolar subgraph of G if and only if W is a witness of max{|MM0 ∪
MM1|}.

9. W induces a maximum co-monopolar subgraph of G if and only if W is a witness of

max
i∈{0,1}

{|MSi ∪MI1−i|, |McMi|, |MCi ∪MJI1−i|}.

10. W induces a maximum polar subgraph of G if and only if W is a witness of

max{|MM|, |MP0 ∪MUC1|, |MP1 ∪MUC0|}.

11. W induces a maximum unipolar subgraph of G if and only if W is a witness of

max
i∈{0,1}

{|MUi ∪MUC1−i|, |MU1−i ∪MUCi|}.
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12. W induces a maximum co-unipolar subgraph of G if and only if W is a witness of

max{|MB|, |MI0 ∪McU1|, |MI1 ∪McU0|}.

Proof: In this paper, we present several propositions whose proofs are based on similar ideas to those

used in the current one. Nonetheless, for the sake of completeness, we include the entire proof for all

such propositions. In this particular proof, we consider that property 9 is a good example of the general

arguments used for proving the entire statement.

1. Let W be a maximum clique of G. Evidently, for some i ∈ {0, 1}, W ∩ VGi
= ∅ and W ∩ VG1−i

is a clique of G1−i. It follows that W is a maximum clique for either G0 or G1 such that |W | =
max{|MC0|, |MC1|}.

2. Let W be a maximum independent set of G. Clearly, W ∩ VGi
is an independent set of Gi for each

i ∈ {0, 1}. It follows that W is the union of a maximum independent set of G0 with a maximum

independent set of G1.

3. Let W be a set inducing a maximum bipartite subgraph of G. For each i ∈ {0, 1}, G[W ∩ VGi
] is

a bipartite graph, and the disjoint union of two bipartite graphs clearly is a bipartite graph, so the

result follows.

4. Let W be a set inducing a maximum co-bipartite subgraph of G, and let (A,B) be a partition of W
into two cliques. Clearly, each of A and B is completely contained in one of VG1

or VG2
. If both A

and B are contained in VGi
for some i ∈ {0, 1}, then W induces a maximum co-bipartite subgraph

of Gi. Otherwise, A ⊆ VGi
and B ⊆ VG1−i

for some i ∈ {0, 1}, so G[A] is a maximum clique in

Gi and G[B] is a maximum clique in G1−i. The result easily follows from here.

5. Let W be a set inducing a maximum split subgraph of G, and let (A,B) be a split partition of G[W ].
Since B is a clique, B is contained in either VG0

or VG1
. Hence, for some i ∈ {0, 1}, W ∩ VGi

induces a split graph while W ∩VG1−i
is an independent set. It follows that W = Vi ∪V1−i, where

Vi is a subset of VGi
inducing a maximum split graph, V1−i is a maximum independent subset of

VG1−i
, and |W | = maxi∈{0,1}{|MIi ∪MS1−i|}.

6. Let W be a set inducing a maximum cluster of G. Clearly, for each i ∈ {0, 1}, W ∩ VGi
induces a

cluster. It follows that W is the union of a set inducing a maximum cluster of G0 with a set inducing

a maximum cluster of G1.

7. Let W be a set inducing a maximum complete multipartite subgraph of G. If W is an independent

set, it is evidently a maximum independent set of G. Otherwise, G[W ] is a connected graph, so W
is completely contained in VGi

for some i ∈ {0, 1}, and therefore,W induces a maximum complete

multipartite subgraph of Gi. In any case we have that |W | = max{|MI|, |MJI0|, |MJI1|}.

8. Let W be a set inducing a maximum monopolar subgraph of G. Evidently, for any i ∈ {0, 1},

W ∩ VGi
induces a monopolar graph, so we have that W is the union of a set inducing a maximum

monopolar subgraph of G0 with a set inducing a maximum monopolar subgraph of G1.
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9. Let W be a set inducing a maximum co-monopolar subgraph of G, and let (A,B) be a partition of

W such that A induces a complete multipartite graph and B is a clique. Since B is a clique, it is

completely contained in either VG0
or VG1

. Now, if A is an independent set, then W = Vi∪V1−i for

some i ∈ {0, 1}, where Vi induces a maximum split subgraph of Gi and V1−i induces a maximum

independent set of G1−i. Otherwise, if A is not an independent set, it induces a connected graph

and is contained in either VG0
or VG1

; hence, either W induces a maximum co-monopolar subgraph

of Gi for some i ∈ {0, 1}, or there exists i ∈ {0, 1} such that W is the union of a maximum clique

in Gi and a set inducing a maximum complete multipartite subgraph of G1−i.

10. Let W be a set inducing a maximum polar subgraph of G, and let (A,B) be a polar partition

of G[W ]. If A is an independent set, then W ∩ VGi
induces a monopolar subgraph of Gi for

each i ∈ {0, 1}, so W induces a maximum monopolar subgraph of G. Otherwise, if A is not an

independent set, G[A] is connected and A is completely contained in VGi
for some i ∈ {0, 1};

hence, W is the union of a set inducing a maximum polar subgraph of Gi with a set inducing a

maximum cluster of G1−i.

11. Let W be a set inducing a maximum unipolar subgraph of G, and let (A,B) be a unipolar partition

of G[W ]. Since A is a clique, it is completely contained in VGi
for some i ∈ {0, 1}. Thus,

W ∩ VG1−i
induces a cluster and W ∩ VGi

induces a unipolar graph, so W is the union of a set

inducing a maximum unipolar subgraph of Gi with a set inducing a maximum cluster in G1−i.

12. Let W be a set inducing a maximum co-unipolar subgraph of G, and let (A,B) be a unipolar

partition of G[W ]. Since G[B] is a complete multipartite graph, if B∩VG1
6= ∅ and B∩VG2

6= ∅,

B is an independent set, so W induces a bipartite graph. Otherwise, B ∩ VGi
= ∅ for some

i ∈ {0, 1}, and we have that W ∩ VGi
is an independent set and W ∩ VG1−i

induces a co-unipolar

graph. The result follows easily from here.

Since G ⊕ H = G+H for any pair of graphs G and H , the following statement is an immediate

consequence of the previous proposition, so we omit the proof. Notice that, by Theorem 1, Propositions 32

and 33 can be used together in a mutual recursive algorithm to determine the maximum subgraphs listed

in them for any cograph.

Proposition 33. Let G = G0 ⊕ G1 be a graph, and let W be a subset of VG. The following statements

hold true.

1. W is a maximum clique of G if and only if W is a witness of max{|MC0 ∪MC1|}.

2. W is a maximum independent set of G if and only if W is a witness of max{|MI0|, |MI1|}.

3. W induces a maximum bipartite subgraph of G if and only if W is a witness of max{|MB0|, |MB1|,
|MI0 ∪MI1|}.

4. W induces a maximum co-bipartite subgraph of G if and only if W is a witness of max{|McB0 ∪
McB1|}.

5. W induces a maximum split subgraph of G if and only if, W is a witness of maxi∈{0,1}{|MCi ∪
MS1−i|}.
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6. W induces a maximum cluster in G if and only if W is a witness of max{|MC|, |MUC0|, |MUC1|}.

7. W induces a maximum complete multipartite graph of G if and only if W is a witness of

max{|MUI0 ∪MUI1|}.

8. W induces a maximum monopolar subgraph of G if and only if W is a witness of

max
i∈{0,1}

{|MSi ∪MC1−i|, |MMi|, |MIi ∪MUC1−i|}.

9. W induces a maximum co-monopolar subgraph of G if and only if W is a witness of max{|McM0∪
McM1|}.

10. W induces a maximum polar subgraph of G if and only if W is a witness of

max{|McM|, |MP0 ∪MJI1|, |MP1 ∪MJI0|}.

11. W induces a maximum unipolar subgraph of G if and only if W is a witness of

max{|McB|, |MU1 ∪MC0|, |MU0 ∪MC1|}.

12. W induces a maximum co-unipolar subgraph of G if and only if W is a witness of

max{|McU0 ∪MJI1|, |McU1 ∪MJI0|}.

In the next sections, we characterize maximum subgraphs related to polarity properties in both P4-

sparse and P4-extendible graphs, and we use such characterizations to give linear time algorithms to find

the largest subgraphs with such properties in a given graph of the mentioned graph families.

4.1 Largest polar subgraph in P4-sparse graphs

We start by introducing a tree representation for P4-sparse graphs which is the base for our algorithms.

Let G1 = (V1,∅) and G2 = (V2, E2) be disjoint graphs such that V2 = K ∪ R ∪ {s0}, where K is a

clique completely adjacent to R, |K| = |V1|+1 ≥ 2 and either NG2
(s0) = {k0} or NG2

(s0) = K \{k0}
for some vertex k0 in K . Let f be a bijection from V1 to K \ {k0}. We define G1 G2 as the graph G
with vertex set V1 ∪V2 such that G[V1] ∼= G1, G[V2] ∼= G2 and, for each s ∈ V1, either NG(s) = {f(s)},

provided NG2
(s0) = {k0}, or NG(s) = K \ {f(s)} otherwise.

Proposition 34. [14] If G is a graph, then G is a spider if and only if there exist graphs G1 and G2 such

that G = G1 G2.

By Theorem 2, for any nontrivial P4-sparse graph G, either G is disconnected, or G is disconnected, or

G is an spider. Hence, for each P4-sparse graph G, a labeled tree T with G as its root and some subgraphs

of G as each node can be constructed in the following way. Let H be a node of T . If H is a trivial graph,

it is an unlabeled node in T with no children. If H is a disconnected graph, it is labeled as a 0-node and its

children are its connected components. If H is disconnected, H is labeled as a 1-node and its children are

the complements of the connected components of H. Finally, if H is a spider, let say H = H1 H2, H is
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labeled as a 2-node and its children are H1 and H2. The labeled tree constructed in this way is called the

ps-tree of G. The ps-tree of a P4-sparse graph was introduced by Jamison and Olariu in [15], where they

proved that such representation can be computed in linear time. It follows from the results in [15] that the

ps-tree of any P4-sparse graph or order n has O(n) nodes. Particularly, it implies that we can compute the

lists of children for each node of a ps-tree T in linear time and provide each node with such list preserving

the linear space representation for T . Additionally, having the lists of children dor each node of a ps-tree,

we can compute in O(n) time the number of unlabeled children that each node has. This will be helpful

later. In what follow, we assume that if T is the ps-tree of G, and x is a node of T , then c1x, c2x, . . .
denote the children of x. We will use Gx to represent the subgraph of G induced by the leaf descendants

of x in T .

The following proposition implies that, given a ps-tree, we can decide in linear time whether the graphs

associated to its nodes labeled 2 are thin spiders or thick spiders.

Proposition 35. Let G = G1 G2 be a spider, and let T be its ps-tree. Let w be the only child of G with

label 1 in T . If w has two or more unlabeled children, then G is a thick spider. Otherwise, G is a thin

spider.

Proof: Let v be the only leg of G in G2. Observe that a vertex of G2 is a universal vertex if and only if

it is adjacent to v. Additionally, a vertex of G2 is universal if and only if it is an unlabeled child of w.

Hence, if w has two or more unlabeled children, the degree of v in G is at least two, so G is a thick spider.

Otherwise, if w has precisely one unlabeled child, dG(v) = 1 so that G is a thin spider.

Some of the algorithms we give in this section require us to be able to recognize the spider partition

of any spider from its associated ps-tree. Nevertheless, this is not always possible, for instance, if we

consider any thin spider whose head complement is disconnected, there will be vertices for which it is

impossible to decide from the associated ps-tree if they belong to the body or the head of the spider (see

Figure 12).

2

s1
1

k0
0

s0
1

k1 r1

0

r0
r2

Fig. 12: The ps-tree associated to the thin spider with 2 legs whose head is isomorphic to P3. The solid vertices are

indistinguishable, but one of them belong to the body of the spider, and the other one belongs to its head.

However, it is clear that, given a ps-tree T , there is a unique P4-sparse graph (up to isomorphism)

associated with T , and it results that if we fix a spider partition for any node labeled 2 in T , the graph is

completely determined. Next, we explain how to fix the spider partition for such nodes, and how to save

this data maintaining the linear space needed for storing T .

Let G = G1 G2 be a thin spider, and let T be its associated ps-tree. Let V1, V2,K,R, and s0 be like

in the definition of G1 G2, and assume that NG2
(s0) = {k0}. Clearly, the root r of T is labeled 2, and
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it has precisely two children in T , namely a child v labeled 1 such that Gv
∼= G2, and a child u, which

is unlabeled if |V1| = 1, or it is labeled 0 otherwise; we call v the 1-child of r. In addition, since G is a

thin spider, G2 can be obtained from G[R ∪ (K \ {k0})] by adding first an isolated vertex s0 and then a

universal vertex k0. Thus, v has precisely two children, namely an unlabeled child (k0) and a 0-labeled

child w, which we will call the 0-child of v. Finally, if |K| > 2 or R 6= ∅, w has exactly two children,

one unlabeled (s0) and one child x labeled 1 (G[R ∪ (K \ {k0})]) called the 1-child of w. Otherwise, if

|K| = 2 and R = ∅ (in which case G ∼= P4), w has exactly two unlabeled children, namely s0 and the

only vertex x in the singleton K \ {k0} (see Figure 13).

2 r

G1

u 1 v

k0
0 w

s0 G2[R ∪ (K \ {k0})]
x

Fig. 13: General structure of the ps-tree of a thin spider.

As we mentioned before, if |K| = 2 and R = ∅, then w has precisely two children, s0 and x, both

of them unlabeled. Notice that in G, precisely one child of w is adjacent to the 0-child of r, but we are

not able to distinguish from the ps-tree which child of w is such vertex, so we must choose arbitrarily

some of them to fix a spider partition (which will completely determine a graph G′ isomorphic to G, but

possibly different from it, whose ps-tree is T and has the fixed spider partition). Now, if R induces either

a disconnected graph or a spider, then x has precisely |K| − 1 unlabeled children, all of them elements of

K . Nevertheless, if the complement of R is disconnected, then there are potentially more than |K| − 1
unlabeled children of x, and they will be indistinguishable, so we must choose arbitrarily |K| − 1 of them

to fix a spider partition.

Now, let G = G1 G2 be a thick spider which is not a thin spider, and let T be its associated ps-tree.

Let V1, V2,K,R, and s0 be like in the definition of G1 G2, and assume that NG2
(s0) = K \ {k0}. As

before, the root r of T is labeled 2, and it has a child v labeled 1, and a child u labeled 0. Since G is a

thick spider, Gv is the join of G[K]− k0 with the disjoint union of the graph obtained from G[R ∪ {k0}]
by adding an isolated vertex s0. Thus, v has precisely |K| children, |K| − 1 unlabeled children and a

0-labeled child w. Finally, since |K| ≥ 3 (because G is not a thin spider), w has exactly two children, one

unlabeled (s0) and one child x labeled 1 (G[R∪{k0}]). Similarly to the case of thin spiders, if R induces

either a disconnected graph or a spider, then x has precisely one unlabeled child, k0. Nevertheless, if the

complement of R is disconnected, then there are potentially more than one unlabeled children of x, and

they will be indistinguishable, so we must chose arbitrarily one unlabeled child to fix a spider partition.

As we have seen, to fix the spider partition of a node labeled 2 it is enough to select some unlabeled

descendants of such node which will completely determine the body of the associated spider, as well as

the entire spider partition. Moreover, we can simply mark the selected vertices for the body of any node

labeled 2 and, since these marked vertices are considered only for the spider partition of their great great
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grandfather (or great grandfather) in the ps-tree, we can save and process the vertices of the bodies of each

node labeled 2 in O(n) space and time, in such a way that any time we need a spider partition of such

nodes we use the same fixed partition. It is worth noticing that we could simultaneously mark the vertices

of the spider bodies while constructing the ps-tree of a P4-sparse graph, avoiding the extra processing

time and ensuring that we can recover with precision the original graph from the ps-tree.

The following proposition is to thin spiders as Proposition 32 is to disconnected graphs. In it, we

characterize maximum subgraphs of thin spiders with some properties related to polarity.

Proposition 36. Let G = (S,K,R) be a thin spider and let f : S → K be the bijection such that

N(s) = {f(s)} for each s ∈ S. Let H be the subgraph of G induced by R. The following statements

hold for any subset W of VG.

1. W is a maximum clique of G if and only if W is a witness of maxs∈S{|{s, f(s)}|, |K ∪MC(H)|}.

2. W is a maximum independent set in G if and only if W is a witness of maxs∈S{|{f(s)} ∪ (S \
{s})|, |S ∪MI(H)|}.

3. W induces a maximum bipartite subgraph of G if and only if W is a witness of

max
k1,k2∈K

{|S ∪ {k1, k2}|, |MI(H) ∪ S ∪ {k1}|, |MB(H) ∪ S|}.

4. W induces a maximum co-bipartite subgraph of G if and only if W is a witness of

max
s1,s2∈S

{|{s1, s2, f(s1), f(s2)}|, |MC(H) ∪K ∪ {s1}|, |McB(H) ∪K|}.

5. W induces a maximum split subgraph of G if and only if W is a witness of max{|S∪K∪MS(H)|}.

6. W induces a maximum cluster in G if and only if W is a witness of

max
k∈K
W ′∈X

{|S ∪ {k}|, |S ∪MUC(H)|, |MC(H) ∪W ′|},

where X is the family of all |S|-subsets W ′ of S ∪K such that {s, f(s)} 6⊆ W ′ for any s ∈ S.

7. W induces a maximum complete multipartite subgraph of G if and only W is a witness of

max
s1,s2∈S

{|{s1, f(s1), f(s2)}|, |{f(s1)} ∪ (S \ {s1})|, |{s1, f(s1)} ∪MI(H)|,

|S ∪MI(H)|, |K ∪MJI(H)|}.

8. W induces a maximum monopolar subgraph of G if and only W is a witness of

max
k∈K

{|S ∪K ∪MS(H)|, |S ∪ {k} ∪MUC(H)|, |S ∪MM(H)|}.

9. W induces a maximum co-monopolar subgraph of G if and only W is a witness of

max
s∈S

{|S ∪K ∪MS(H)|, |K ∪ {s} ∪MJI(H)|, |K ∪McM(H)|}.
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10. W induces a maximum polar subgraph of G if and only if W is a witness of max{|S∪K∪MP(H)|}.

11. W induces a maximum unipolar subgraph of G if and only if W is a witness of max{|S ∪ K ∪
MU(H)|}.

12. W induces a maximum co-unipolar subgraph of G if and only if W is a witness of max{|S ∪K ∪
McU(H)|}.

Proof: This proof is similar in flavor to the proof of Proposition 32. Moreover, we consider that property

7 is a good example of the general arguments used for proving the entire statement.

1. Let W be a maximum clique of G. If s ∈ W ∩ S, then W ∩ S = {s}, W ∩ K ⊆ {f(s)}, and

W ∩ R = ∅, so in this case W = {s, f(s)}. Otherwise, W ∩ S = ∅, and since the union of any

clique of H with K is a clique, we have that W is the union of K with a maximum clique of H .

2. Let W be a maximum stable set in G. If f(s) ∈ W ∩K for some s ∈ S, then W ∩K = {f(s)},

s /∈ W ∩ S, and W ∩R = ∅, so in this case W = {f(s)} ∪ (S \ {s}). Otherwise, W ∩K = ∅,

and since the union of any independent set in H with S is an independent set, we have that W is

the union of S with a maximum independent set of H .

3. Let W be a set inducing a maximum bipartite subgraph of G. If W ∩R is a nonempty independent

set, then |W ∩K| ≤ 1. Furthermore, since the union of an independent subset of R with S ∪ {k}
induces a bipartite graph for any k ∈ K , in this case we have that W is the union of S ∪ {k} with a

maximum independent set of H . If W ∩R induces a nonempty bipartite graph, then W ∩K = ∅

and W clearly is the union of S with a maximum subset of R inducing a bipartite graph. Otherwise,

W ∩ R = ∅. Since W induces a bipartite graph and K is a clique, we have that |W ∩ K| ≤ 2.

Moreover, since the union of S with any 2-subset of K induces a bipartite graph, in this case W is

the union of S with a 2-subset of K .

4. Let W be a set inducing a maximum co-bipartite subgraph of G. If W ∩ R is a nonempty clique,

|W ∩ S| ≤ 1. Furthermore, since the union of a clique in H with K ∪ {s} induces co-bipartite

graph for any s ∈ S, in this case we have that W is the union of K ∪ {s} with a maximum clique

of H . If W ∩ R induces a co-bipartite graph which is not a clique, then W ∩ S = ∅ and W
clearly is the union of K with the vertex set of a maximum co-bipartite subgraph of H . Else,

W ∩ R = ∅. Since W induces a co-bipartite graph and S is an independent set, we have that

|W ∩ S| ≤ 2. If W ∩ S = {s1, s2}, then W ∩ K ⊆ {f(s1), f(s2)}and it easily follows that

W = {s1, s2, f(s1), f(s2)}. Notice that W ∩ S 6= ∅, because otherwise W ⊆ K , but K ∪ {s}
induces a co-bipartite graph for any s ∈ S, contradicting the election of W . Thus, W ∩ S = {s1}.

In this case R = ∅ or, for any r ∈ R, W ∪ {r} would be a subset of VG inducing a co-bipartite

graph, which is impossible by the election of W . Since K ∪ {s1} induces a co-bipartite graph and

R = ∅, it follows that W is the union of a maximum clique of R (which is the empty set) with

K ∪ {s1}.

5. For any subset W ′ of R inducing a graph with split partition (A,B), the graph G[S ∪K ∪W ′] has

(A ∪ S,K ∪ B) as a split partition. Thus, if W is a set inducing a maximum split subgraph of G,

W ∩R is a maximum split subgraph of H , W \R = S ∪K , and the result follows.
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6. Let W be a set inducing a maximum cluster of G. First, assume that W ∩ R = ∅. Since S ∪ {k}
induces a cluster of G for any k ∈ K , we have that |W | ≥ |S| + 1, so {s, f(s)} ⊆ W for some

s ∈ S. Moreover, since clusters are P3-free graphs, if {s1, f(s1)} ⊆ W , W ∩K = {f(s1)}. Thus,

in this case W = S∪{k} for some k ∈ K . Otherwise, if W ∩R 6= ∅, W ∩R induces a cluster and

{s, f(s)} 6⊆ W for every s ∈ S, so |W \R| ≤ |S|. It follows that, if W ∩R is a clique, then W \R
is an |S|-subset of K ∪ S such that {s, f(s)} 6⊆ W \ R for any s ∈ S, and W ∩ R is a maximum

clique of H . Otherwise, if W ∩ R has at least two connected components, then W ∩ K = ∅,

W \R = S, and W ∩R induces a maximum cluster in H .

7. Let W be a set inducing a maximum complete multipartite subgraph of G. Notice that, for any

subset R′ of R inducing a complete multipartite graph, G[K ∪R′] is a complete multipartite graph.

In consequence, if W ∩ S = ∅, then W is the union of K with a maximum subset of R inducing

a complete multipartite graph. Also observe that, since complete multipartite graphs are P3-free

graphs, either W ∩ S = ∅ or W ∩R is an independent set.

If |W ∩K| ≥ 3, then W ∩ S = ∅, so we are done. Now, suppose that W ∩K = {f(s1), f(s2)}
for some s1, s2 ∈ S. Observe that in this case W ∩ S must be contained in either {s1} or {s2}. In

addition, some of W ∩S or W ∩R must be an empty set. As in the former case, if W ∩S = ∅, W
is the union of K with a maximum subset of R inducing a complete multipartite graph. Otherwise,

if W ∩R = ∅, thus W = {s1, f(s1), f(s2)} for some s1, s2 ∈ S.

Now, suppose that W∩K = {f(s1)} for some s1 ∈ S. Notice that either s1 /∈ W or W∩S ⊆ {s1}.

Also, W ∩ S 6= ∅, otherwise K would be a subset of W , but |K| ≥ 2 and we are assuming

|W ∩K| = 1. Thus, if W ∩S ⊆ {s1}, then W ∩S = {s1} and W ∩R is a maximum independent

subset of R. Else, if W ∩ S 6⊆ {s1}, then s1 /∈ W and there is a vertex s2 ∈ W ∩ (S \ {s1}).
Hence, W ∩R = ∅ and W ∩ S = S \ {s1}.

Finally, if W ∩K = ∅, then W ∩ S 6= ∅, and W is the union of S with a maximum independent

subset of R.

8. Let W be a set inducing a maximum monopolar subgraph of G, and let W ′ = W ∩ R. If W ′

induces a graph with split partition (A,B), then G[S∪K∪W ′] is a graph with monopolar partition

(A ∪ S,B ∪ K). Thus, if W ′ induces a split graph, W is the union of S ∪ K with a maximum

subset of R inducing a split graph.

Otherwise, if W ′ induces a cluster which is not a split graph, then W ′ has a subset inducing a 2K2;

from here, since K2 ⊕ 2K2 is not a monopolar graph, we have that |W ∩K| ≤ 1, and it follows

that W = W ′ ∪ S ∪ {k} for some k ∈ K .

Finally, if W ′ induces a monopolar graph which is neither a cluster or a split graph, then any

monopolar partition (A,B) of G[W ′] is such that A 6= ∅ and B has at least one pair of nonadjacent

vertices; it follows that W ∩K = ∅, so W is the union of S with a maximum monopolar subgraph

of H .

9. Let W be a set inducing a maximum co-monopolar subgraph of G, and let W ′ = W ∩ R. If W ′

induces a graph with split partition (A,B), then G[S ∪ K ∪ W ′] is a graph with co-monopolar

partition (B ∪ K,A ∪ S). Thus, if W ′ induces a split graph, W is the union of S ∪ K with a

maximum subset of R inducing a split graph.
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Otherwise, if W ′ induces a complete multipartite graph which is not a split graph, then W ′ has

a subset inducing a C4; from here, since 2K1 + C4 is not a co-monopolar graph, we have that

|W ∩ S| ≤ 1, and it follows that W = W ′ ∪K ∪ {s} for some s ∈ S.

Finally, if W ′ induces a co-monopolar graph which is neither a complete multipartite graph or a

split graph, then any monopolar partition (A,B) of G[W ′] is such that A 6= ∅ and B has at least

one pair adjacent vertices; it follows that W ∩ S = ∅, so W is the union of K with a maximum

co-monopolar subgraph of H .

10. Let W be a set inducing a maximum polar subgraph of G. Notice that the union of S ∪K with any

subset of R inducing a graph with polar partition (A,B), is a graph with polar partition (A∪S,B∪
K). Hence, W is the union of S ∪K with a maximum polar subgraph of H .

11. For any subset R′ of R inducing a graph with unipolar partition (A,B), the graph G[S ∪K ∪ R′]
has unipolar partition (A ∪K,B ∪ S). Thus, if W is a set inducing a maximum unipolar subgraph

of G, W = S ∪K ∪R′, for some subset R′ of R inducing a maximum unipolar graph.

12. For any subset R′ of R inducing a graph with co-unipolar partition (A,B), the graph G[S∪K∪R′]
has co-unipolar partition (A ∪ S,B ∪ K). Thus, if W is a set inducing a maximum co-unipolar

subgraph of G, W = S∪K ∪R′, for some subset R′ of R inducing a maximum co-unipolar graph.

In the following propositions we strongly use the fact that a thin spider is the complement of a thick

spider and vice versa. Notice that by a simple complementary argument, analogous results can be given

for computing MI(Gx), McB(Gx), MJI(Gx), McM(Gx), and McU(Gx).

Proposition 37. Let G be a P4-sparse graph, and let T be its ps-tree. For any node x of T the following

assertions hold true.

1. MC(Gx) can be found in linear time.

2. MB(Gx) can be found in linear time.

3. MS(Gx) can be found in linear time.

4. MUC(Gx) can be found in linear time.

5. MM(Gx) can be found in linear time.

6. MP(Gx) can be found in linear time.

7. MU(Gx) can be found in linear time.

Proof: The proofs of all items are similar, and we suggest to read 4 as a reference of the general arguments

used in the demonstration. We include the proof of all items for the sake of completeness.

1. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have by part 1 from

Proposition 32 that MC(Gx) is a set realizing maxi{MC(Gcix)}. If x has type 1, we have by part

1 from Proposition 33 that MC(Gx) =
⋃

iMC(Gcix). Finally, let us assume that x has type 2,

and let (S,K,R) be the spider partition of Gx. If Gx is a thin spider, we have from item 1 of

Proposition 36 that MC(Gx) is a witness of maxs∈S{|{s, f(s)}|, |K ∪MC(G[R])|}, where f(s) is

the only neighbor of s in K for each s ∈ S. Otherwise, if Gx is a thick spider, we have from item 2

of Proposition 36 that MC(Gx) is a witness of maxs∈S{|{s} ∪ (K \ {f(s)})|, |K ∪MC(G[R])|},
where, for each s ∈ S, f(s) is the only vertex in K which is not a neighbor of s. The result follows

since Gx has O(n) descendants.
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2. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have by part 3 from Propo-

sition 32 that MB(Gx) =
⋃

iMB(Gcix). If x has type 1, we have by part 3 from Proposition 33

that MB(Gx) is a set realizing maxi,j{MB(Gcix),MI(Gcix) ∪MI(Gcjx)}. Finally, let us assume

that x has type 2, and let (S,K,R) be the spider partition of Gx. If Gx is a thin spider, we have

from item 3 of Proposition 36 that MB(Gx) is a witness of maxk1,k2∈K{|S ∪ {k1, k2}|, |MI(H) ∪
S ∪ {k1}|, |MB(G[R]) ∪ S|}. Otherwise, if Gx is a thick spider, we have from item 4 of Proposi-

tion 36 that MB(Gx) is a witness ofmaxs1,s2∈S{|{f(s1), f(s2), s1, s2}|, |MI(G[R])∪S∪{f(s1)}|,
|MB(G[R]) ∪ S|}, where f is the bijection from S to K such that N(s) = K \ {f(s)} for each

s ∈ S. The result follows since Gx has O(n) descendants.

3. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have by part 5 from

Proposition 32 that MS(Gx) is a set realizing maxi{MS(Gcix) ∪
⋃

j 6=i MI(Gcjx)}. If x has

type 1, we have by part 5 from Proposition 33 that MS(Gx) is a set realizing maxi{MS(Gcix) ∪⋃
j 6=i MC(Gcjx)}. If x has type 2, we have from item 5 of Proposition 36 that MS(Gx) is the

union of a maximum subset of R inducing a split graph with S ∪K . The result follows since Gx

has O(n) descendants.

4. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have by part 6 of Propo-

sition 32 that MUC(Gx) is a set realizing
⋃

i MUC(Gcix). If x has type 1, we have by part 6 of

Proposition 33 that MUC(Gx) is a set realizing maxi{MC(Gx),MUC(Gcix)}. Finally, let us as-

sume that x has type 2, and let (S,K,R) be the spider partition of Gx. If Gx is a thin spider, we

have from item 6 of Proposition 36 that MUC(Gx) is a witness of

max
k∈K
X∈X

{|S ∪ {k}|, |S ∪MUC(G[R])|, |MC(G[R]) ∪X |},

where X is the family of all |S|-subsets X of S ∪K such that {s, f(s)} 6⊆ X for any s ∈ S, being

f as usual. Notice that, when computing the maximum described above, we do not need to check

each member of X , because all of them have the same number of vertices. In addition, if such

maximum is attained by |MC(G[R])∪X | for an X ∈ X , then any X ∈ X can be used to construct

a maximum cluster of Gx, particularly, |MC(G[R]) ∪K| is a maximum cluster of Gx.

Finally, if Gx is a thick spider, we have from item 7 of Proposition 36 that MUC(Gx) is a witness

of

max
s1,s2∈S

{|{f(s1), s1, s2}|, |{s1} ∪ (K \ {f(s1)})|, |{s1, f(s1)} ∪MC(G[R])|,

|K ∪MC(G[R])|, |S ∪MUC(G[R])|},

where f is the bijection from S to K such that N(s) = K \ {f(s)} for each s ∈ S. The result

follows since Gx has O(n) descendants.

5. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have by part 8 of Propo-

sition 32 that MM(Gx) is a set realizing
⋃

i MM(Gcix). If x has type 1, we have by part 8 from

Proposition 33 that MM(Gx) is a set realizing maxi,j{MM(Gcix),MS(Gcix) ∪
⋃

j 6=i MC(Gcjx),
MI(Gcix) ∪

⋃
j 6=i MUC(Gcjx)}. Finally, let us assume that x has type 2, and let (S,K,R) be the
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spider partition of Gx. No matter if Gx is a thin or a thick spider, we have from items 8 and 9 of

Proposition 36 that MM(Gx) is a witness of

max
k∈K

{|S ∪K ∪MS(G[R])|, |S ∪ {k} ∪MUC(G[R])|, |S ∪MM(G[R])|}.

The result follows since Gx has O(n) descendants.

6. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have by part 10 from Propo-

sition 32 that MP(Gx) is a set realizing maxi{MM(Gx),MP(Gcix)∪
⋃

j 6=i MUC(Gcjx)}. If x has

type 1, we have by part 10 from Proposition 33 that MP(Gx) is a set realizing maxi{McM(Gx),
MP(Gcix) ∪

⋃
j 6=i MJI(Gcjx)}. Finally, let us assume that x has type 2, and let (S,K,R) be the

spider partition of Gx. No matter if Gx is a thin or a thick spider, we have from item 10 of Propo-

sition 36 that MP(Gx) is the union of S ∪K with a maximum subset of R inducing a polar graph.

The result follows since Gx has O(n) descendants.

7. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have by part 11 from Propo-

sition 32 that MU(Gx) is a set realizing maxi{MU(Gcix)∪
⋃

j 6=i MUC(Gcjx)}. If x has type 1, we

have by part 11 from Proposition 33 that MU(Gx) is a set realizing maxi{McB(Gx),MU(Gcix) ∪⋃
j 6=i MC(Gcjx)}. Finally, let us assume that x has type 2, and let (S,K,R) be the spider partition

of Gx. No matter if Gx is a thin or a thick spider, we have from items 11 and 12 of Proposition 36

that MU(Gx) is the union of S ∪K with a maximum subset of R inducing a unipolar graph. The

result follows since Gx has O(n) descendants.The result follows since Gx has O(n) descendants.

We obtain the main result of this section as a direct consequence of the proposition above.

Theorem 38. For any P4-sparse graph G, maximum order subgraphs of G with the properties of being

monopolar, unipolar, or polar, can be found in linear time. In consequence, the problems of deciding

whether a P4-sparse graph is either a monopolar graph, a unipolar graph, or a polar graph are linear-

time solvable.

Proof: From Proposition 37, MM(Gx),MU(Gx) and MP(Gx) can be found in linear time for any node

x of the ps-tree associated to a P4-sparse graph. Particularly, it can be done for the root of the ps-tree, so

the result follows.

4.2 Largest polar subgraph in P4-extendible graphs

Based on Theorem 4, it is possible to represent each P4-extendible graph G by means of a labeled tree

T with root G, which can be constructed in the following way. Let H be a node of T . If H is a trivial

graph, it is an unlabeled node of T with no children. If H is a disconnected graph, it is labeled 0 and

its children are its connected components. If H is disconnected, then H is labeled 1 and its children are

the components of H . If H is an extension graph, it is a node labeled 2 with as many children as the

order of H which has additional information encoding the graph induced by its children. Finally, if H
is an X-spider with nonempty head whose spider partition is (S,K,R), H is a node labeled 3 and has

exactly two children: its left child, H [S ∪K], and its right child, H [R]. We will call the tree constructed

in this way the parse tree of G. Hochstättler and Schindler [12] showed that the problems of recognizing
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P4-extendible graphs and computing the parse tree of a P4-extendible graph can be solved in linear time.(i)

From the results by Hochstättler and Schindler in [12], it follows that the parse tree of a P4-extendible

graph of order n has O(n) nodes. It implies that it takes linear time to compute the lists of children for

all nodes of the parse tree. Since such lists can be considered additional information for each node, this

preserves the condition that the parse tree uses only linear space

It is really easy to provide characterizations for maximal substructures associated to polarity in exten-

sion graphs but, for the sake of brevity, we only notice that, since there is a finite number of extension

graphs, it is possible to compute the aforementioned maximal substructures in constant time.

We continue with propositions characterizing maximal substructures associated to polarity in both P -

spiders and F -spiders. As the reader can notice, the proofs are very similar in nature to those of Propo-

sition 36. Notice that P4-spiders are special cases of thin (and thick) spiders, so a Lemma analogous to

Lemmas 39 and 40, for P4-spiders, is simply a particular case of Proposition 36.

Lemma 39. Let G = (S,K,R) be a P -spider, where S = {a, a′, d}, K = {b, c} and {a, a′, b} induces

C3. Let W be a subset of VG, and let H = G[R]. The following statements hold.

1. W is a maximum clique of G if and only it is a witness of max{|{a, a′, b}|, |MC(H) ∪K|}.

2. W is a maximum independent set of G if and only if it is a witness of

max{|{a, c}|, |{a, d}|, |{a′, c}|, |{a′, d}|, |{b, d}|, |MI(H) ∪ {a, d}|, |MI(H) ∪ {a′, d}|}.

3. W induces a maximum bipartite graph if and only if W is a witness of

max{|(S ∪K) \ {a}|, |(S ∪K) \ {a′}|, |MI(H) ∪ S ∪ (K \ {b})|, |MB(H) ∪ S|}.

4. W induces a maximum co-bipartite graph if and only if W is a witness of

max{|S ∪K|, |MC(H) ∪ S ∪ (K \ {d})|, |McB(H) ∪ {c, b}|}.

5. W induces a maximum split graph in G if and only it is a witness of

max{|{a, a′, b, d}|, |{a, a′, b, c}|, |{a′, b, c, d}|, |{a, b, c, d}|, |MI(H) ∪ {a, a′, b, d}|,

|MS(H) ∪ {a′, b, c, d}|, |MS(H) ∪ {a, b, c, d}|}.

6. W induces a maximum cluster in G if and only if it is a witness of

max{|{a, a′, b, d}|, |{a, a′, c, d}|, |MC(H) ∪ {a, a′, c}|, |MC(H) ∪ S|, |MUC(H) ∪ S|}.

7. W induces a maximum complete multipartite graph in G if and only if it is a witness of

max{|{a, a′, b}|, |{a, b, c}|, |{a′, b, c}|, |{b, c, d}|, |MI(H) ∪ {a, b}|, |MI(H) ∪ {a′, b}|,

|MI(H) ∪ {c, d}|, |MI(H) ∪ {a, d}|, |MI(H) ∪ {a′, d}|, |MJI(H) ∪K|}.
(i) Actually, the parse tree defined in [12] is slightly different than the one we introduce, due to the fact that they assume by convention

that the father of a node labeled 2 is always a node labeled 3, that the root is always a node labeled 1, and that nodes labeled 1 and

3 may have only one child. Nevertheless, with some minor changes, the algorithm in [12] can be adapted to construct our version

of the parse tree.
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8. W induces a maximum monopolar graph in G if and only if it is a witness of

max{|MC(H) ∪ S ∪K|, |MUC(H) ∪ {a, a′, c, d}|, |MUC(H) ∪ {a, a′, b, d}|,

|MS(H) ∪ {a, b, c, d}|, |MS(H) ∪ {a′, b, c, d}|, |MS(H) ∪ {a, a′, c, d}|, |MM(H) ∪ S|}.

9. W induces a maximum co-monopolar graph in G if and only if it is a witness of

max{|MI(H) ∪ S ∪K|, |MS(H) ∪ {a, b, c, d}|, |MS(H) ∪ {a′, b, c, d}|,

|MJI(H) ∪ {a, a′, b, c}|, |McM(H) ∪K|}.

10. W induces a maximum polar graph in G if and only if W is the union of a maximum subset of R
inducing a polar graph with S ∪K .

11. W induces a maximum unipolar graph in G if and only if W is the union of a maximum subset of

R inducing a unipolar graph with S ∪K .

12. W induces a maximum co-unipolar graph in G if and only if and only if W is a witness of

max{|MI(H) ∪ S ∪K|, |MB(H) ∪ S ∪ {b}|, |McU(H) ∪K ∪ {a, d}|, |McU(H) ∪K ∪ {a′, d}|}.

Proof: Since the nature of the proofs is very similar, we consider that reading 8 is enough to get an idea

of the general arguments used throughout the entire proof. Nonetheless, for the sake of completeness, we

include the entire argument.

1. Let W be a maximum clique of G. If W ∩R = ∅, then W = {a, a′, b}. Otherwise, if W ∩R 6= ∅,

then W ∩ S = ∅ and W is the union of K with a maximum clique in H .

2. Let W be a maximum independent set of G. If W ∩ R = ∅, then W is a maximum independent

subset of S ∪K , i.e., W ∈ {{a, c}, {a, d}, {a′, c}, {a′, d}, {b, d}}. Otherwise, if W ∩R 6= ∅, then

W ∩K = ∅, and W is the union of a maximum independent set in H with a maximum independent

subset of S.

3. Let W be a set inducing a maximum bipartite subgraph of G. Notice that, since {a, a′, b} induces a

triangle, |W ∩ {a, a′, b}| ≤ 2. It follows from the previous observation that, if W ∩ R = ∅, W is

some of (S∪K)\{a}, (S∪K)\{a′}, or (S∪K)\{b}. Else, if W ∩R is a nonempty independent

set, |W ∩K| ≤ 1. Moreover, it is a simple observation that the union of any independent subset of

R with S ∪ (K \ {b}) induces a bipartite graph, but the union of an independent subset of R with

any other 4-subset of S ∪K does not induce a bipartite graph. Thus, when W ∩ R is a nonempty

independent set, W is the union of a maximum independent subset of R with S ∪ (K \ {b}).
Finally, if W ∩R induces a nonempty bipartite graph, then W ∩K = ∅ and we trivially have that

W \R = S.

4. Let W be a set inducing a maximum co-bipartite subgraph of G. Since P admits a partition in two

cliques, if W ∩ R = ∅, W = S ∪K . Else, if W ∩ R induces a nonempty clique, neither {a, d}
or {a′, d} is a subset of W . Moreover, the union of a clique contained in R with (S ∪ K) \ {d}
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induces a co-bipartite graph, and the union of a nonempty subset of R with any other 4-subset of

S ∪K does not induce a co-bipartite graph. Thus, if W ∩ R induces a nonempty clique, W is the

union of a maximum clique in H with (S ∪ K) \ {d}. Otherwise, W ∩ R is a co-bipartite graph

which is not a clique, and then W ∩ S = ∅, so clearly W \R = K; the result follows.

5. Let W be a set inducing a split subgraph of G. If W ∩ R = ∅, W is a maximum subset of

S ∪K inducing a split graph, so W is one of {a, a′, b, d}, {a, a′, b, c}, {a′, b, c, d}, or {a, b, c, d}.

Now, assume that W ∩ R 6= ∅. Notice that in this case {a, a′, c} 6⊆ W , otherwise {a, a′, c, r}
would induce 2K2 for any r ∈ W ∩ R. Thus, if W ∩ R is an independent set, W \ R is any of

{a, b, c, d}, {a′, b, c, d}, or {a, a′, b, d}. Else, if W ∩ R induces a split graph which is not empty,

{a, a′} could not be a subset of W , because {a, a′, r, r′} would induce 2K2 for any adjacent vertices

r, r′ ∈ W ∩ R. Thus, if W ∩ R is not an independent set, W \ R must be one of {a, b, c, d}, or

{a′, b, c, d}, and the result follows.

6. Let W be a set inducing a maximum cluster of G. If W ∩ R = ∅, W is a maximum subset of

S ∪ K inducing a cluster, i.e., W ∈ {{a, a′, b, d}, {a, a′, c, d}}. Now, assume that W ∩ R 6= ∅.

If W ∩ R is a clique, then W cannot have simultaneously c and d, or b and any of a or a′. Thus,

in this case W is the union of a maximum subset of R inducing a clique with one of {a, a′, c} or

{a, a′, d}. Otherwise, if W ∩R induces a cluster which is not a complete graph, then W ∩K = ∅,

and W is the union of S with a maximum subset of R inducing a cluster.

7. Let W be a set inducing a maximum complete multipartite subgraph of G. If W ∩ R = ∅,

W is a maximum subset of S ∪ K inducing a complete multipartite graph, i.e., W is one of

{a, a′, b}, {a, b, c}, {a′, b, c}, or {b, c, d}. Now, assume that W ∩ R 6= ∅. Notice that in this case,

W ∩ S is completely adjacent to W ∩ K . In addition, W cannot have both, a and a′. It follows

that, if W ∩R is an independent set, then W \R is one of {a, b}, {a′, b}, {c, d}, {a, d}, {a′, d}, or

K . Otherwise, if W ∩R induces a maximum complete multipartite graph of R which is not empty,

W ∩ S = ∅ and W \R = K , so the result follows.

8. LetW be a set inducing a maximum monopolar subgraph ofG. IfW∩R is a clique, then {a, a′, c}∪
(W ∩ R) induces a cluster and, since {b, d} is an independent set, we have that W \ R = S ∪K ,

so W is the union of a maximum clique of H with S ∪K .

When W ∩ R induces a noncomplete graph which is simultaneously a split graph and a cluster,

since W ∩R is not a clique, {a, a′, b, c} could not be a subset of W or, for any nonadjacent vertices

r, r′ ∈ W ∩ R, {a, a′, b, c, r, r′} would induce K1 ⊕ (K2 + P3), which is not a monopolar graph.

Moreover, some simple verifications show that W \R is any of {a, b, c, d}, {a′, b, c, d}, {a, a′, c, d},

or {a, a′, b, d}.

Else, if W ∩R induces a cluster which is not a split graph, then it has a subset U inducing 2K2, so

{b, c} 6⊆ W , or G[{b, c} ∪ U ] ∼= K2 ⊕ 2K2, which is not a monopolar graph. From here, it is easy

to verify that W \R is any of {a, a′, b, d}, or {a, a′, c, d}.

Now, assume that W ∩R induces a split graph which is not a cluster. Since K1 ⊕ (K2 + P3) is not

a monopolar graph and W ∩R has a subset W ′ inducing P3, we have that {a, a′, b} is not a subset

of W . From here, we can easily check that W \R is any of {a, b, c, d}, {a′, b, c, d}, or {a, a′, c, d}.
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Finally, suppose that W ∩R induces a monopolar graph which is neither a cluster or a split graph.

Suppose that there exists k ∈ K ∩W , and let (A,B) be a monopolar partition of G[W ]. If k ∈ A,

then W ∩ R ⊆ B, implying that W ∩ R induce a cluster, which is not the case. Then, it must be

that k ∈ B, but then W ∩ R ∩ B would be a clique and, since (W ∩ R) \ B ⊆ A, we have that

W ∩ R would induce a split graph, but we are assuming it does not. Therefore, K ∩W = ∅, and

it follows that W is the union of S with a maximum subset of R inducing a monopolar graph.

9. Let W be a set inducing a maximum co-monopolar subgraph of G. If W ∩R is an independent set,

then ({a, a′, b}, {c, d} ∪ (W ∩R)) is a co-monopolar partition of G[(W ∩R) ∪ S ∪K]. Hence, if

W ∩R is an independent set, W \R = S ∪K .

Notice that, if W ∩ R is not an independent set, then S 6⊆ W , otherwise W would have a subset

inducing K1 + 2K2, which is not a co-monopolar graph. In addition, if W ∩ R induces a graph

with split partition (A,B) and W \R is any of {a, b, c, d}, or {a′, b, c, d}, then W induces a graph

with co-monopolar partition (A ∪ {a, d}, B ∪ {b, c}) or (A ∪ {a′, d}, B ∪ {b, c}). Also, if W ∩R
induces a complete multipartite graph and W \R = {a, a′, b, c}, then G[W ] has the co-monopolar

partition ({a, a′}, (W ∩R) ∪ {b, c}).

If W ∩ R induces a split graph which is not a complete multipartite graph, then {a, a′} 6⊆ W or,

for any subset {r1, r2, r3} of W inducing P3, {a, a′, r1, r2, r3} would induce K1 + 2K2, which is

not a co-monopolar graph. In addition, since W ∩ R is a split graph, {a, b, c, d} ∪ (W ∩ R) and

{a′, b, c, d} ∪ (W ∩ R) induce split graphs, and hence co-monopolar graphs, so in this case W is

the union of a maximum subset of R inducing a split graph with one of {a, b, c, d} or {a′, b, c, d}.

Else, if W ∩ R induces a complete multipartite graph which is not a split graph, then W has a

subset W ′ inducing C4. Therefore, neither {a, d} ⊆ W or {a′, d} ⊆ W , otherwise W would have

a subset inducing C4+2K1, which is not a co-monopolar graph. Moreover, the union of any subset

of R inducing a complete multipartite graph with {a, a′, b, c} induces a co-monopolar graph, so in

this case W is precisely the union of a maximal subset of R inducing a complete multipartite graph

with {a, a′, b, c}.

Finally, assume that W ∩ R induces a co-monopolar graph which is neither a split graph or a

complete multipartite graph. Suppose for a contradiction that there exist a vertex s ∈ S ∩W , and

let (A,B) be a co-monopolar partition of G[W ]. If s ∈ A, then W ∩ R ⊆ B, which is impossible

since G[W ∩R] is not a complete multipartite graph. Then, s ∈ B, but in such a case B∩W ∩R is

an independent set, and (W ∩R)\B ⊆ A, implying that W ∩R induces a split graph, contradicting

our initial assumption. Hence S ∩W = ∅. Additionally, for any subset W ′ of R inducing a co-

monopolar graph, W ′ ∪K is also a co-monopolar graph, so in this case W is the union of K with

a maximum subset of R inducing a co-monopolar graph.

10. Let W be a set inducing a maximum polar subgraph of G. If (A,B) is a polar partition of G[W∩R],
then (A ∪K,B ∪ S) is a polar partition of G[W ].

11. Let W be a set inducing a maximum unipolar subgraph of G. If (A,B) is a unipolar partition of

G[W ∩R], then (A ∪K,B ∪ S) is a polar partition of G[W ].

12. Let W be a set inducing a maximum co-unipolar subgraph of G. Notice that, for any independent

subset R′ of R, ({a, d} ∪ R′, {a′} ∪ K) is a co-unipolar partition of G[S ∪ K ∪ R′]. Therefore,
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if W ∩ R is an independent subset of R, we have that W is the union of a maximum independent

subset of R with S ∪K .

Observe that K2+K3 is not a co-unipolar graph. Hence, if W ∩R is not an independent set, either

{a, a′} 6⊆ W or c /∈ W . It easily follows from the previous observation that, if W ∩ R induces a

nonempty graph with bipartition (A,B), then W is the union of a maximum subset of R inducing

a bipartite graph with some of K ∪ {a, d}, K ∪ {a′, d}, or S ∪ {b}.

Now, assume that W ∩R induces co-unipolar graph which is a nonempty bipartite graph. We claim

that, in such case, {a, a′} 6⊆ W , and we prove it by means of contradiction. Suppose that a, a′ ∈
W , and let (A,B) be a co-unipolar partition of G[W ]. Since G[W ∩ R] is not an empty graph,

W ∩B 6= ∅, and thus, either a ∈ A and a′ ∈ B, or vice versa. However, due to B ∩ {a, a′} 6= ∅

we have that W ∩R ∩B is an independent set, but then W ∩R induces a bipartite graph, reaching

a contradiction. From here, it is easy to conclude that, in this case, W is the union of a maximum

subset of R inducing a co-unipolar graph with some of K ∪ {a, d} or K ∪ {a′, d}.

Lemma 40. Let G = (S,K,R) be an F -spider, where S = {a, a′, d}, K = {b, c} and {a, a′, b} induces

P3. Let W be a subset of VG, and let H = G[R]. The following statements hold true.

1. W is a maximum clique of G if and only if W is a witness of

max{|{a, b}|, |{a′, b}|, |{b, c}|, |{c, d}|, |MC(H) ∪K|}.

2. W is a maximum independent set of G if and only if W is a witness of

max{|{a, a′, c}|, |MI(H) ∪ S|}.

3. W is a set inducing a maximum bipartite subgraph of G if and only if W is a witness of

max{|S ∪K|, |MI(H) ∪ S ∪ (K \ {b})|, |MI(H) ∪ S ∪ (K \ {c})|, |MB(H) ∪ S|}.

4. W is a set inducing a maximum co-bipartite subgraph of G if and only if W is a witness of

max{|(S ∪K) \ {a}|, |(S ∪K) \ {a′}|, |MC(H) ∪K ∪ {a}|, |MC(H) ∪K ∪ {a′}|,

|MC(H) ∪K ∪ {d}|, |McB(H) ∪K|}.

5. W induces a maximum split graph in G if and only if W is the union of a maximum subset of R
inducing a split graph with S ∪K .

6. W induces a maximum cluster of G if and only if W is a witness of

max{|{a, a′, c, d}|, |MC(H) ∪ {a, a′, c}|, |MUC(H) ∪ S|}.

7. W induces a maximum complete multipartite graph in G if and only if W is a witness of

max{|{a, a′, b, c}|, |MI(H) ∪ S|, |MI(H) ∪ {a, a′, b}|, |MIJ(H) ∪K|}.
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8. W induces a maximum monopolar graph in G if and only if W is a witness of

max{|MS(H) ∪ S ∪K|, |MUC(H) ∪ {a, a′, b, d}|, |MUC(H) ∪ {a, a′, c, d}|, |MM(H) ∪ S|}.

9. W induces a maximum co-monopolar graph in G if and only if W is a witness of

max{|MS(H) ∪ S ∪K|, |MJI(H) ∪ {a, b, c}|, |MJI(H) ∪ {a′, b, c}|,

|MJI(H) ∪ {b, c, d}|, |McM(H) ∪K|}.

10. W induces a maximum polar graph in G if and only if W is the union of a maximum subset of R
inducing a polar graph with S ∪K .

11. W induces a maximum unipolar graph in G if and only if W is the union of a maximum subset of

R inducing a unipolar graph with S ∪K .

12. W induces a maximum co-unipolar graph in G if and only if W is the union of a maximum subset

of R inducing a co-unipolar graph with S ∪K .

Proof: Again, due to the similarities in the proofs, we consider that reading 4 is enough to have a general

idea of the arguments used throughout the whole proof.

1. Let W be a maximum clique of G. If R = ∅, W clearly is one of {a, b}, {a′, b}, {b, c}, or {c, d}.

Otherwise, if R 6= ∅, R′ ∪K is a clique, for any clique R′ contained in R, so in this case W ∩ R
is a nonempty clique. It follows that W ∩ S = ∅ and W is the union of K a maximum clique

contained in R.

2. Let W be a maximum independent set of G. If R = ∅, W evidently is one of {a, a′, c} or S.

Otherwise, if R 6= ∅, R′ ∪ S is an independent set, for any independent subset R′ of R. Thus, if

R 6= ∅, W ∩R is a nonempty independent subset of R, so W ∩K = ∅. Hence, in this case W is

the union of S with a maximum independent subset of R.

3. Let W be a set inducing a maximum bipartite subgraph of G. If W ∩ R = ∅, then clearly W =
S ∪ K . Else, if W ∩ R is a nonempty independent set, then |W ∩ K| ≤ 1. In addition, for any

independent subset R′ of R, both R′ ∪ S ∪ {b} and R′ ∪ S ∪ {c} induce bipartite graphs, so in this

case W is the union of a maximum independent set of R with either S ∪{b} or S ∪{c}. Otherwise,

W ∩R induces a nonempty bipartite graph and W ∩K = ∅, where it easily follows that W is the

union of S with a maximum bipartite subgraph of H .

4. Let W be a set inducing a maximum co-bipartite subgraph of G. It is an easy observation that the

only subsets of S∪K inducing a maximum co-bipartite graph are (S∪K)\{a} and (S∪K)\{a′};

hence, if W ∩R = ∅, W must be one of these sets. Notice that if W ∩R 6= ∅ then |W ∩ S| ≤ 1.

From here, it is easy to observe that if W ∩R is a nonempty clique, then W \R is one of K ∪ {a},

K ∪ {a′}, or K ∪ {d}, so in this case W is the union of one of these sets with a maximum clique

of H . Finally, if W ∩ R induces a co-bipartite graph which is not a clique, then W ∩ S = ∅ and

W clearly is the union of K with a maximum set inducing a co-bipartite subgraph of H .
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5. Let W be a set inducing a maximum split subgraph of G. Just notice that, for any subset R′ of R
inducing a graph with split partition (A,B), (A ∪ S,B ∪K) is a split partition of G[S ∪K ∪R′].

6. Let W be a set inducing a maximum cluster of G. If R = ∅, then W = {a, a′, c, d}. Otherwise,

the union of S with any subset of R inducing a cluster is also a cluster. Thus, we may assume that

|W \R| ≥ 3. Moreover, if W 6= {a, a′, c, d}, then W ∩R 6= ∅ and then, none of {a, b}, {a′, b}, or

{c, d}, is a subset of W , or W would have a subset inducing P3. From here, it is a easy to conclude

that, if W ∩ R is a clique, then W \ R ∈ {S, {a, a′, c}}, while, if W ∩ R induces a cluster which

is not complete graph, then W \R = S.

7. Let W be a set inducing a maximum complete multipartite subgraph of G. If W ∩ R = ∅, then

W is a maximum subset of S ∪ K inducing a complete multipartite graph, so W = {a, a′, b, c}.

Otherwise, W ∩ R 6= ∅, and since G[W ] is P3-free, none of {c, a}, {c, a′}, or {b, d}, could be a

subset of W . It follows that, in this case, |W \R| ≤ 3. Notice that the union S with any independent

subset of R is an independent set, so it induces a complete multipartite graph. Hence, if W ∩ R is

an independent set, |W \ R| = 3 and a simple verification yields that W \ R can be any of S or

{a, a′, b}. Finally, if W ∩ R induces a complete multipartite graph which is not an empty graph,

then W ∩ S = ∅, and W \R = K .

8. Let W be a set inducing a maximum monopolar subgraph of G. If W ∩ R induces a graph with

split partition (A,B), then (A ∪ S,B ∪ K) is a split partition of G[S ∪ K ∪ (W ∩ R)]. Else, if

W ∩ R induces a cluster which is not a split graph, then W ∩ R has a subset inducing 2K2, so

K 6⊆ W , because K2 ⊕ 2K2 is not a monopolar graph. In addition, it is easy to corroborate that

for any subset R′ of R inducing a cluster, R ∪ {a, a′, b, d} and R′ ∪ {a, a′, c, d} induce monopolar

graphs. Finally, assume that W ∩ R induces a monopolar graph which is neither a split graph or

a cluster. Suppose for a contradiction that there exists a vertex k ∈ K ∩ W , and let (A,B) be a

monopolar partition of G[W ]. If k ∈ A, then W ∩R ⊆ B, so W ∩R induces a cluster, but we are

assuming this is not the case. Thus, k ∈ B, but then, B∩W ∩R is a clique, and (W ∩R)\B ⊆ A,

so W ∩ R induces a split graph, which is impossible. Therefore, K ∩W = ∅. Moreover, if R′ is

a subset of R inducing a graph with monopolar partition (A,B), then (A ∪ S,B) is a monopolar

partition of G[R′ ∪ S], where the result follows.

9. Let W be a set inducing a maximum co-monopolar subgraph of G. If a subset R′ of R induces a

graph with split partition (A,B), then (B∪K,A∪S) is a co-monopolar partition of G[R′∪S∪K].
Thus, if W ∩R induces a split graph, then W \R = S ∪K .

Now, if W ∩ R induces a complete multipartite graph which is not a split graph, there exists a

subset W ′ of W ∩ R inducing a 4-cycle. Hence, since C4 + 2K1 is not a co-monopolar graph,

|W ∩ S| ≤ 1. Moreover, for any subset R′ of R inducing a complete multipartite graph and any

s ∈ S, ({s}, R′ ∪ K) is a co-monopolar partition of G[R′ ∪ K ∪ {s}]. Thus, if W ∩ R induces

a complete multipartite graph which is not a split graph, then W \ R is one of {a, b, c}, {a′, b, c},

{b, c, d}.

Finally, assume that W ∩R induces a co-monopolar graph which is neither a complete multipartite

graph or a split graph. Suppose for a contradiction that there exists a vertex s ∈ S ∩ W , and let

(A,B) be a co-monopolar partition of G[W ]. If s ∈ A, then W ∩ R ∩ A = ∅, so W ∩ R must

induce a complete multipartite graph, which is not the case. Thus, s ∈ B, so B ∩ W ∩ R is an
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independent set, because complete multipartite graphs are P3-free graphs. But then, W ∩R induces

a split graph, which is impossible. Therefore W ∩ S = ∅. In addition, if R′ is any subset of R
inducing a graph with co-monopolar partition (A,B), then (A ∪K,B) is a co-monopolar partition

of G[R′ ∪K]. Hence, if W ∩ R induces a co-monopolar graph which is neither a split graph or a

complete multipartite graph, then W \R = K .

10. Let W be a set inducing a maximum polar subgraph of G. The result follows since, for any subset

R′ of R inducing a graph with polar partition (A,B), (A ∪ K,B ∪ S) is a polar partition of

G[S ∪K ∪R′].

11. Let W be a set inducing a maximum unipolar subgraph of G. It is enough to notice that, for any

subset R′ of R inducing a graph with unipolar partition (A,B), (A ∪ K,B ∪ S) is a unipolar

partition of G[S ∪K ∪R′].

12. Let W be a set inducing a maximum co-unipolar subgraph of G. The result follows since, for any

subset R′ of R inducing a graph with co-unipolar partition (A,B), we have that (A ∪ S,B ∪K) is

a co-unipolar partition of G[S ∪K ∪R′].

For the proof of the next proposition we strongly use, without explicit mention, that the complements

of P -spiders and the complements of F -spiders are, respectively, P -spiders and F -spiders. Notice that

by a simple complementary argument, analogous results can be given for computing MI(Gx), McB(Gx),
MJI(Gx), McM(Gx), and McU(Gx).

Proposition 41. Let G be a P4-extendible graph, and let T be its associated parse tree. For any node x
of T the followings assertions are satisfied.

1. MC(Gx) can be computed in linear time.

2. MB(Gx) can be computed in linear time.

3. MS(Gx) can be computed in linear time.

4. MUC(Gx) can be computed in linear time.

5. MM(Gx) can be computed in linear time.

6. MP(Gx) can be computed in linear time.

7. MU(Gx) can be computed in linear time.

Proof: The assertions trivially hold whenever x is a leaf of T . Also, if x is a node labeled 0 or 1, the proof

follows exactly as in Proposition 37. Thus, we will assume for the rest of the proof that x has label either

2 or 3. Even in these cases the proof is similar in flavor to Proposition 37, but we use Lemmas 39 and 40

besides Proposition 36. Hence, we only write the proof for item 6.

If x is a node labeled 2, it is not hard to verify that MP(Gx) = Gx. Otherwise, x is a node labeled 3,

so Gx is an X-spider. By Proposition 36 and Lemmas 39 and 40, if Gx is a graph with X-spider partition

(S,K,R), then MP(Gx) is the union of S ∪K with a maximum subset of R inducing a polar graph. The

result follows since Gx has O(n) descendants.

The main results of this section are summarized in the next theorem, which is a direct consequence of

the proposition above.
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Theorem 42. For anyP4-extendible graphG, maximum order subgraphs ofG with the properties of being

monopolar, unipolar, or polar, can be found in linear time. In consequence, the problems of deciding

whether a P4-extendible graph is either a monopolar graph, a unipolar graph, or a polar graph are

linear-time solvable.

Proof: From Proposition 41, MM(Gx),MU(Gx) and MP(Gx) can be found in linear time for any node x
of the parse tree associated to a P4-extendible graph. Particularly, it can be done for the root of the parse

tree, so the result follows.

5 Conclusions

This work must be considered a sequel and a complement of [3], where, among other things, some prop-

erties related to polarity on P4-sparse and P4-extendible graphs were characterized by finite families of

forbidden induced subgraphs. Specifically, the families of minimal (s, 1)-polar obstructions for any non-

negative integer s, as well as the families of minimal monopolar, unipolar, and polar obstructions, when

restricted to the mentioned graph classes, were exhibited in the aforementioned paper. It is worth noticing

that, from such characterizations, it directly follows that there exist brute force algorithms of polynomial-

time complexity for deciding whether a P4-sparse or a P4-extendible graph is monopolar, unipolar, or

polar.

The results in this work are divided in two parts. First, we adapt the techniques used in [11] to generalize

the characterization of cograph minimal 2-polar obstructions given in that paper, by explicitly exhibiting

complete lists of minimal 2-polar obstructions when restricted to either P4-sparse or P4-extendible graphs.

The following proposition summarize our main result on this topic.

Theorem 43. Let G be any subfamily of either P4-sparse or P4-extendible graphs which is both, heredi-

tary and closed under complements. Let F be the family of graphs depicted in Figure 14. A graph G in

G is a minimal 2-polar obstruction if and only G can be obtained from some graph in G ∩ F by a finite

sequence of partial complementations.

F1 F6 F13 F21

F26 F27 F32 F37

Fig. 14: Some minimal 2-polar obstructions.
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For the second part, based on unique tree representations for P4-sparse and P4-reducible graphs, we

present linear time algorithms for finding largest subgraphs with properties related to polarity in any graph

of such families (see Theorems 38 and 42). These results generalize the one given by Ekim, Mahadev and

de Werra [6] for finding the largest polar subgraph in cographs based on their cotree.

Our algorithms can be easily adapted to give back yes-certificates, so we wonder whether it can be

adapted, preserving its time-complexity, to also return no-certificates.

Problem 1. Can we adapt our algorithms to make them linear-time certifying algorithms?

We also think it is possible to use an approach similar to the one used for proving Theorems 38 and 42,

to extend such results to wider classes of graphs having a simple enough tree representation. Specifically,

we pose the next problem.

Problem 2. Can we give a linear time algorithm to find maximum monopolar, maximum unipolar, and

maximum polar subgraphs on P4-tidy or extended P4-laden graphs?

In the context of matrix partitions, it was shown by Feder, Hell and Xie in [8] that, for any pair of

fixed nonnegative integers, s and k, there is only a finite number of minimal (s, k)-polar obstructions,

so that theoretically there is a polynomial-time brute force algorithm to decide whether a given graph is

an (s, k)-polar graph. Moreover, Feder, Hell, Klein and Motwani present in [7] an explicit polynomial-

time algorithm for solving the problem of deciding whether an input graph admits a fixed sparse-dense

partition. Particularly, since both, complete s-partite graphs and k-clusters can be recognized in quadratic

time, we have that (s, k)-polar graphs can be recognized in O(|V |4+2max{s,k})-time. The aforementioned

results make us wonder if it is possible to improve the time complexity of such algorithms by restricting

the input graph to some of the graph classes with relatively few induced paths on four vertices.

Problem 3. Given arbitrary fixed nonnegative integers s and k, can we a give linear-time algorithm for

finding a maximum order (s, k)-polar subgraph of a cograph G?

We also propose to solve the next natural problem which is closely related to the previous question.

Problem 4. Give an efficient algorithm for computing the minimum value of z = s+ k such that an input

cograph G is an (s, k)-polar graph.

Finally, we think that an approach similar to the one used here can be helpful to find the complete

family of minimal 2-polar obstructions for general graphs, so we pose such problem as a future line of

work.
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