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Bouc (1992) first studied the topological properties of Mn, the matching complex of the complete graph of order n,

in connection with Brown complexes and Quillen complexes. Björner et al. (1994) showed that Mn is homotopically

(νn − 1)-connected, where νn = ⌊n+1
3

⌋ − 1, and conjectured that this connectivity bound is sharp. Shareshian

and Wachs (2007) settled the conjecture by inductively showing that the νn-dimensional homology group of Mn is

nontrivial, with Bouc’s calculation of H1(M7) serving as the pivotal base step. In general, the topology of Mn is

not very well-understood, even for a small n. In the present article, we look into the topology of Mn, and M7 in

particular, in the light of discrete Morse theory as developed by Forman (1998). We first construct a gradient vector

field on Mn (for n ≥ 5) that doesn’t admit any critical simplices of dimension up to νn − 1, except one unavoidable

0-simplex, which also leads to the aforementioned (νn − 1)-connectedness of Mn in a purely combinatorial way.

However, for an efficient homology computation by discrete Morse theoretic techniques, we are required to work

with a gradient vector field that admits a low number of critical simplices, and also allows an efficient enumeration

of gradient paths. An optimal gradient vector field is one with the least number of critical simplices, but the problem

of finding an optimal gradient vector field, in general, is an NP-hard problem (even for 2-dimensional complexes).

We improve the gradient vector field constructed on M7 in particular to a much more efficient (near-optimal) one,

and then with the help of this improved gradient vector field, compute the homology groups of M7 in an efficient and

algorithmic manner. We also augment this near-optimal gradient vector field to one that we conjecture to be optimal.

Keywords: discrete Morse theory, complete graph, matching, abstract simplicial complex, gradient vector field,

Morse homology

1 Introduction

The collection of all matchings or independent edge sets (i.e., sets of edges without common endvertices)

in a graph constitutes an abstract simplicial complex, called the matching complex of the graph. The

matching complex of a graphG may also be realized as the independence complex of the line graph ofG.

In particular, we denote the matching complex of the complete graph of order n (see Björner et al. (1994);
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Bouc (1992); Shareshian and Wachs (2007); Wachs (2003)) by Mn. Topological properties of Mn were

first studied by Bouc (1992), in connection with Brown complexes (Brown (1974, 1975)) and Quillen

complexes (Quillen (1978)). Björner et al. (1994) proved the following result regarding the homotopical

connectivity of Mn.

Theorem 1.1. For all n, the matching complex Mn is homotopically (νn − 1)-connected, where νn =
⌊n+1

3 ⌋ − 1.

They also conjectured that the connectivity bounds of Theorem 1.1 are sharp. Shareshian and Wachs

(2007) settled the conjecture by inductively showing that the νn-dimensional homology group of Mn

is nontrivial (see also Wachs (2003)). The crucial base step was Bouc’s “hand” calculation of the first

homology group of M7. Here we remark that the topology of Mn is not very well-understood even for

a small n. For example, the first nontrivial reduced homology group of M14 is not known, but Jonsson

(2009) showed that, rather surprisingly,M14 is the only matching complex of a complete graph, for which

the νn-dimensional homology group has torsion other than 3-torsion (see also Shareshian and Wachs

(2007)). Also, very little is known about the higher dimensional homology groups of Mn in general.

Forman (1998) developed discrete Morse theory as a combinatorial analogue of (smooth) Morse theory

(see also Chari (2000); Forman (2002); Knudson (2015); Kozlov (2020); Scoville (2019)). Over the years,

the theory has turned out to be immensely useful in diverse fields of theoretical and applied mathematics,

and also in computer science. The central notion of this theory is that of a discrete Morse function defined

on a finite (abstract) simplicial complex (or a (regular) CW complex). It helps us understand the topology

of the complex through an efficient cell decomposition (i.e., one with fewer cells than in the original

decomposition) of the complex. In practice, however, instead of such functions, we usually consider an

equivalent and more useful notion of (discrete) gradient vector fields on the complex. The homotopy type

of the complex is determined by only the simplices (or cells) that are critical with respect to an assigned

gradient vector field. Discrete Morse theoretic techniques also help us compute the homology groups,

Betti numbers, etc. of a complex in a computationally efficient way, provided one manages to construct a

sufficiently “good” gradient vector field on it, in the first place.

In Section 3 of this article, we first prove the following by explicitly constructing a gradient vector field

on Mn.

Theorem 1.2. There is a gradient vector field on Mn (for n ≥ 5) with respect to which there are no

critical simplices of dimension up to νn − 1, except one 0-simplex.

Theorem 1.1 follows as a natural consequence of the above. Existence of a gradient vector field with the

same property was previously shown by Shareshian and Wachs (2007) (Section 9), with the help of the fact

that the νn-skeleton of Mn is vertex decomposable, as established by Athanasiadis (2004). However, the

task of homology computation via discrete Morse theory relies on an efficient enumeration of all critical

simplices and all possible gradient paths of a specific type. Thus, in order to compute the homology

groups efficiently, we are required to work with a gradient vector field that admits a low number of critical

simplices of each dimension to begin with. An optimal gradient vector field is one with the least number

of critical simplices, but the problem of finding an optimal gradient vector field, in general, is an NP-
hard problem (even for 2-dimensional complexes) (Eǧecioǧlu and Gonzalez (1996); Joswig and Pfetsch

(2006); Lewiner et al. (2003a,b)). In this context, we mention that Adiprasito et al. (2017), Benedetti and

Lutz (2014), Benedetti et al. (2023) described a scheme for searching optimal discrete gradient vector

fields with a random heuristic, which turned out to be successful, even in some cases with a large input

size.
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An efficient gradient vector field reduces the task of computing homology to the computation of (dis-

crete) Morse homology groups, which are homology groups of a relatively simpler chain complex. Bouc’s

computation of the first homology group of M7, which, as mentioned before, is the pivotal base step to

determine the connectivity of Mn in general, relies on some ingenious, but somewhat ad hoc tricks. In

Section 4, we present an efficient and algorithmic computation of the homology groups ofM7. We extend

our previously constructed gradient vector field on M7 to a near-optimal one, and use it to compute the

Morse homology groups of M7 in Subsection 4.2, and obtain the following.

Theorem 1.3. The nontrivial discrete Morse homology groups of M7 are the following:

H0(M7) = Z, H1(M7) = Z3, and H2(M7) = Z20.

In Subsection 4.3, we augment the near-optimal gradient vector field on M7 even further and get the

following.

Theorem 1.4. There is a gradient vector field on M7 with respect to which there are 22 critical 2-

simplices, two critical 1-simplices, and one critical 0-simplex.

It follows from Theorem 1.3 that with respect to any gradient vector field on M7, there is at least

one critical 0-simplex, and there is at least one critical 1-simplex. Also, there are at least 21 critical

2-simplices (as H1(M7) has a torsion). This naturally raises the question whether these lower bounds

are sharp. However, we believe these bounds are not attainable, and thus a gradient vector field on M7

that satisfies the requirements of Theorem 1.4 is indeed an optimal one. We pose this as a conjecture

(Conjecture 5.1) in the Conclusion section.

2 Preliminaries

2.1 Basics of combinatorics and graph theory

An abstract simplicial complex (or simply, a complex) is a (finite, nonempty) collection, say K, of finite

sets with the property that if σ ∈ K and τ ⊆ σ, then τ ∈ K. We note that the empty set is always in K.

If σ ∈ K, then σ is called a simplex or a face of K. If the simplex σ is a set of cardinality d + 1, then

the dimension of σ is d, and we call σ a d-dimensional simplex (or simply, a d-simplex). We denote a d-

simplex σ by σ(d) whenever necessary. The dimension of a complexK, denoted by dim(K), is the largest

dimension of its faces. The vertex set of a complex K is defined as V (K) = ∪σ∈Kσ (i.e., the collection

of all elements in all the faces of K). The elements of V (K) are called the vertices of the complex K.

Any complex has a unique (up to a homeomorphism) geometric realization. However, we don’t dif-

ferentiate between a complex and its geometric realization while discussing its topological properties; it

should be understood from the context.

The f -vector of a complex K is the integer sequence (f0, . . . , fdim(K)), where fi is the number of

i-dimensional faces of K. The Euler characteristic of K, denoted by χ(K), is given by

χ(K) =

dim(K)∑

i=0

(−1)ifi.

A (simple, finite, undirected) graph G is an ordered pair of (disjoint) finite sets (V (G), E(G)), where

E(G) ⊆ {e ⊆ V (G) : |e| = 2}. The sets V (G) and E(G) are called the vertex set and the edge set of the
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graphG, respectively. We call an element of V (G) a vertex ofG and an element ofE(G) an edge in G. If

e = {x, y} is an edge, then x and y are endvertices of the edge e. Also, we denote the edge e = {x, y} by

xy (or, yx) for the sake of brevity. We note that a graph can be viewed as an abstract simplicial complex

of dimension 1 or less (with the vertices and the edges being considered as 0-simplices and 1-simplices,

respectively), and vice versa.

A complete graph with n (≥ 1) vertices is a graph G with |V (G)| = n and E(G) = {e ⊆ V (G) :
|e| = 2}. This graph is unique (up to a graph isomorphism), and we denote it by Kn.

A matching α in a graph G is a set of edges with the property that if the edges e1 and e2 are in α,

then e1 ∩ e2 = ∅ (i.e., e1 and e2 don’t share an endvertex). If the vertex x is an endvertex of an edge

in a matching α, then we say α covers or matches x, and otherwise, x is uncovered or unmatched by

α. Moreover, we say the matching α matches x with another vertex y if the edge xy is in α. A perfect

matching is one that covers all the vertices of the graph.

We note that the collection of all matchings in a graph G is an abstract simplicial complex, and we call

it the matching complex of G. In particular, for all n, we denote the matching complex of Kn by Mn. We

may verify that for all n, dim(Mn) = ⌊
n
2 ⌋ − 1, and if (f0, . . . , f⌊n

2 ⌋−1) is the f -vector of Mn, then for

all i ∈ {0, . . . , ⌊n2 ⌋ − 1},

fi =
(i+ 1)!

2i+1

(
n

2(i+ 1)

)(
2(i+ 1)

i+ 1

)
. (2.1)

Example 2.1. Let V (Kn) = {1, . . . , n}. We describe (the topology of) Mn, for all n up to 8.

1. M1 = {∅}.

2. M2 = {∅, {12}}, which is a single point.

3. M3 = {∅, {12}, {13}, {23}}, which is the space with three distinct points.

4. The maximal simplices of M4 are {12, 34}, {13, 24}, and {14, 23}. Thus, M4 is a space with three

mutually disjoint 1-simplices, which is homotopy equivalent to the space with three distinct points.

5. As dim(M5) = 1, the complex M5 can be viewed as a (connected) graph with the vertex set

{ij : i, j ∈ [5], i < j} and the edge set {{ij, kℓ} : i, j, k, ℓ ∈ [5], i < j, k < ℓ, {i, j}∩ {k, ℓ} = ∅}.
This is the well-known Petersen graph as shown in Fig. 1.

Any connected graph G is homotopy equivalent to a wedge of k circles, where k is the cyclomatic

number (also known as the circuit rank or cycle rank) of the graph, which is the number |E(G)| −
|V (G)|+ 1. Thus, M5 is homotopy equivalent to the wedge of 15− 10 + 1 = 6 circles.

Here we also recall that the cyclomatic number of a connected graph is the same as the first Betti

number of the graph when considered as a simplicial complex.

6. Although dim(M6) = 2, we observe that each 1-simplex in M6 is contained in exactly one 2-

simplex. By the notion of (elementary) collapses in topology (Cohen, 1973, Chapter 1), the complex

M6 deformation-retracts to a complex of dimension 1. Thus, M6 is also homotopy equivalent to a

(connected) graph, and subsequently, to a wedge of k circles. Here we determine k from the Euler

characteristic (which is a homotopy invariant) of M6. If (f0, f1, f2) is the f -vector of M6, then

from Equation (2.1), f0 = 15, f1 = 45, f2 = 15, and thus 1− k = χ(M6) = f0− f1 + f2 = −15.

Therefore,M6 is homotopy equivalent to the wedge of 16 circles.
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Fig. 1: The matching complex M5 is the Petersen graph.

7. M7 is a 2-dimensional complex, whose first homology group is not torsion-free (Bouc (1992)). The

zeroth, first, and second homology groups of M7 are Z, Z3, and Z20, respectively (see Subsec-

tion 4.2).

8. M8 is homotopy equivalent to the wedge of 132 spheres of dimension 2 (follows from Björner et al.

(1994); see Example 3.3 below for a discrete Morse theoretic approach).

2.2 Simplicial homology

First, we need to introduce the notion of an orientation of a simplex. An orientation of a simplex is given

by an ordering of its vertices, with two orderings defining the same orientation if and only if they differ

by an even permutation. We denote an oriented k-simplex consisting of the vertices x0, x1, . . . , xk , with

the orientation given by the increasing ordering of the indices, by [x0, x1, . . . , xk]. We usually choose

and fix an ordering of the vertices of the complex to begin with, and assign each simplex the orientation

corresponding to the induced ordering of its vertices. In other words, if σ = {x0, x1, . . . , xk} is a k-

simplex of a complex K, and x0 < x1 < · · · < xk with respect to the chosen order on V (K), then in

order to avoid notational complicacy, we denote the oriented k-simplex [x0, x1, . . . , xk] by σ as well.

A k-chain in a complexK is a finite formal sum
∑
ciσi, where each ci ∈ Z and each σi is an oriented k-

simplex, with the notion that an oriented simplex is equal to the negative of the simplex with the opposite

orientation (e.g., [x0, x1, x2, . . . , xk] = −[x1, x0, x2, . . . , xk]).

We denote the free abelian group generated by all k-simplices of a complex K, i.e., the group of k-

chains, by Ck(K). We now define a homomorphism ∂k : Ck(K) → Ck−1(K) called the boundary

operator. If σ = [x0, x1, . . . , xk], considered as a basis element of Ck(K), then

∂k(σ) :=

k∑

i=0

(−1)i[x0, . . . , x̂i, . . . , xk],

where [x0, . . . , x̂i, . . . , xk] is the oriented (k− 1)-simplex obtained from σ after deleting xi (and with the

induced orientation). We then extend ∂k linearly to all k-chains. We also define ∂0 to be the zero map.
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In Ck(K), the elements of the subgroup ker(∂k) are called cycles (more specifically, k-cycles), and the

elements of the subgroup im(∂k+1) are called boundaries (more specifically, k-boundaries).

We may verify that for all k ≥ 1, and for any k-chain τ , we have ∂k−1 ◦ ∂k(τ) = 0. In other words,

(C∗(K), ∂∗) is a chain complex. The k-th homology group of K, denoted by Hk(K), is given by

Hk(K) := ker(∂k)/im(∂k+1).

The k-th Betti number of K is the free rank (i.e., rank of the torsion-free part) of Hk(K).

We refer to the book Elements of Algebraic Topology by Munkres (1996) for background on algebraic

and combinatorial topology, and the book Graph Theory by Diestel (2010) for background on graph

theory.

2.3 Basics of discrete Morse theory

First, we introduce the notion of a discrete vector field and a (discrete) gradient vector field on an abstract

simplicial complex following Forman (1998, 2002).

Definition 2.2 (Discrete vector field). A discrete vector field V on an abstract simplicial complex K is a

collection of ordered pairs of simplices of the form (α, β) such that

(i) α ( β,

(ii) dimension of the simplex β is 1 more than that of α,

(iii) each face of K is in at most one pair of V.

If the simplex α(p) is paired off with the simplex β(p+1) in a discrete vector field (i.e., the pair of

simplices (α(p), β(p+1)) is an element of the discrete vector field), then we denote it by α ֌ β (or

β ֋ α).

Given a discrete vector field V on a simplicial complexK, a V-path is a sequence of simplices

α
(d)
0 , β

(d+1)
0 , α

(d)
1 , β

(d+1)
1 , . . . , α

(d)
k , β

(d+1)
k , α

(d)
k+1

such that for each i ∈ {0, . . . , k}, (αi, βi) ∈ V and βi ) αi+1 6= αi. We represent such a path diagram-

matically as below

α0 β0 α1 β1 · · · αk βk αk+1

(in the diagram above, β(d+1) → α(d) implies β ) α). We say such a path is a nontrivial closed path if

k ≥ 0 and αk+1 = α0.

Definition 2.3 (Gradient vector field). A gradient vector field on a simplicial complex K is a discrete

vector field V on K which does not admit nontrivial closed V-paths.

For a gradient vector field V, when it is clear from the context, we sometimes call a V-path a gradient

path.

Let V be a gradient vector field on a simplicial complex K. We call a nonempty simplex α a critical

simplex (with respect to V) if one of the following holds:
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(i) α does not appear in any pair of V, or

(ii) α is a 0-simplex and (∅, α) ∈ V.

We recall that a CW complex is a topological space built recursively by gluing cells (which are homeo-

morphic copies of balls) of increasing dimension. The fundamental theorem of discrete Morse theory is

as below.

Theorem 2.4 (Forman (1998, 2002)). If K is a simplicial complex and V is a gradient vector field on K,

then K is homotopy equivalent to a CW complex with exactly one cell of dimension p for each critical

simplex (with respect to V) of dimension p.

The following is an important corollary of Theorem 2.4.

Theorem 2.5 (Forman (2002)). If K is a simplicial complex and V is a gradient vector field on K such

that the only critical simplices are one 0-simplex and k simplices of dimension d, then K is homotopy

equivalent to the wedge of k spheres of dimension d.

Theorem 2.4 implies that the topological information pertaining to K would be concise and easier to

compute if the number of critical simplices of each dimension, with respect to V, is as low as possible. If

mi is the number of i-dimensional critical simplices of K, and bi is the i-th Betti number of K, then we

have the following inequalities.

Theorem 2.6 (Morse inequalities, Forman (1998, 2002)).

The weak Morse inequalities: If d is the dimension of K, then

(i) for each i ∈ {0, 1, . . . , d}, mi ≥ bi,

(ii) m0 −m1 + · · ·+ (−1)dmd = b0 − b1 + · · ·+ (−1)dbd.

The strong Morse inequalities: For each i ≥ 0,

mi −mi−1 + · · ·+ (−1)im0 ≥ bi − bi−1 + · · ·+ (−1)ib0.

We call a gradient vector field a perfect gradient vector field ifmi = bi for all i. Since bi is the free rank

of the i-th homology group of K, it follows that no perfect gradient vector field exists on K if a homology

group ofK has torsion. Moreover, a perfect gradient vector field on a complex may not exist even when all

the homology groups are torsion-free, e.g., the dunce hat (Ayala et al. (2012); Whitehead (1939); Zeeman

(1963)). This motivates us to call a gradient vector field an optimal gradient vector field if the number

of critical simplices is the least possible (in comparison with all other gradient vector fields on the same

complex). Here we note that the problem of finding an optimal gradient vector field (equivalently, finding

a gradient vector field of the highest cardinality) on a given complex is not a computationally easy problem

in general; in fact it was shown to be an NP-hard problem (Joswig and Pfetsch (2006); Lewiner et al.

(2003a)), even for 2-dimensional complexes (Eǧecioǧlu and Gonzalez (1996); Lewiner et al. (2003b)). A

linear algorithm to find optimal gradient vector fields on (discrete) 2-manifolds was provided by Lewiner

et al. (2003b). Although this algorithm can be extended to CW complexes of dimension (up to) two

without the manifold property (an example of such a complex, in relation to this article, is the matching

complexM7), the resulting gradient vector field may be arbitrarily far from the optimum.

The following is a useful result to augment a given gradient vector field on a complex (i.e., to reduce

the number of critical simplices) by “cancelling” a pair of critical simplices.
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Theorem 2.7 (Cancellation of a critical pair, Forman (1998, 2002)). Suppose V is a gradient vector field

on a complex K such that α(d) and β(d+1) are critical. If there is a unique V-path from a d-simplex

contained in β, say α
(d)
0 , to α, then there is a gradient vector field V′ on K such that the critical simplices

with respect to V
′ remain the same, except that α and β are no longer critical. Moreover, V′ is same as V

except along the unique V-path from α0 to α.

A sketch of a proof is as follows. Let the unique V-path from α0 to α be

α
(d)
0 , β

(d+1)
0 , α

(d)
1 , β

(d+1)
1 , . . . , α

(d)
k , β

(d+1)
k , α

(d)
k+1 = α.

Thus, we have the following diagram.

β α0 β0 α1 β1 · · · αk βk αk+1 = α

We get V′ from V by reversing the arrows (with → becoming ֋ and ֌ becoming←) in the diagram

above.

β α0 β0 α1 β1 · · · αk βk αk+1 = α

In other words,

V
′ = (V \ {(αi, βi) : i ∈ {0, 1, . . . , k}}) ⊔ {(αi+1, βi) : i ∈ {0, 1, . . . , k}} ⊔ {(α0, β)}

(⊔ denotes the union of disjoint sets). The uniqueness of the V-path from α0 to α guarantees that V′ is

also a gradient vector field on K. Moreover, it implies that α and β are not critical with respect to V′,

while the criticality of all other simplices remains unchanged.

The following allows us to apply the technique above to cancel several pairs of critical simplices simul-

taneously.

Theorem 2.8 (Hersh (2005)). Let V be a gradient vector field on a complexK such that for i ∈ {1, . . . , r}
there is a unique V-path γi from a (di − 1)-simplex contained in the critical di-simplex βi to the critical

(di − 1)-simplex αi. If there is no non-identity permutation π of r elements such that there is a V-path

from a (di − 1)-simplex contained in βi to απ(i) for all i ∈ {1, . . . , r}, then reversing all the V-paths γi
(to cancel the critical pair αi and βi) would still produce a gradient vector field on K.

2.4 Discrete Morse homology

LetK be an abstract simplicial complex and V be a given gradient vector field onK. Let us fix an ordering

on V (K), which induces an orientation on the simplices.

First, we need to introduce the notion of the incidence number between two oriented simplices of

consecutive dimensions. Let β = [x0, x1, . . . , xk] be a k-simplex. If α = [x0, . . . , x̂i, . . . , xk] is a

(k − 1)-simplex (contained in β), then the incidence number between β and α is (−1)i, and we denote it

by 〈β, α〉. Otherwise, if α is a (k − 1)-simplex such that α * β, then we define 〈β, α〉 to be 0.

Now, let

γ : α
(d)
0 , β

(d+1)
0 , α

(d)
1 , β

(d+1)
1 , . . . , α

(d)
k−1, β

(d+1)
k−1 , α

(d)
k

be a V-path. The multiplicity of γ (Forman (1998); Gallais (2010)), denoted by m(γ), is given by

m(γ) :=

k−1∏

i=0

(−1)〈βi, αi〉〈βi, αi+1〉 = (−1)k
k−1∏

i=0

〈βi, αi〉〈βi, αi+1〉. (2.2)
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We observe that, for all i, both 〈βi, αi〉, 〈βi, αi+1〉 ∈ {−1,+1}, and thus m(γ) ∈ {−1,+1}.
Let Γ(σ′, σ) be the set of V-paths starting at σ′ and ending at σ. Let us denote the free abelian group

generated by all critical (with respect to V) k-simplices ofK by C̃k(K). For a (oriented) critical k-simplex

τ , first we define a boundary operator ∂̃k on τ as below, and then extend it linearly to ∂̃k : C̃k(K) →
C̃k−1(K).

∂̃k(τ) :=
∑

σ: critical

n(τ (k), σ(k−1)) · σ(k−1), (2.3)

where

n(τ, σ) :=
∑

σ′(τ

〈τ (k), σ′(k−1)〉
∑

γ∈Γ(σ′,σ)

m(γ). (2.4)

It follows that, for all k ≥ 0, we have ∂̃k ◦ ∂̃k+1 = 0 (Forman (1998); Gallais (2010)). Thus, (C̃∗(K), ∂̃∗)
is a chain complex, and we call the homology of this chain complex the (discrete) Morse homology of K
(with respect to the chosen gradient vector field V).

Theorem 2.9 (Forman (1998)). With respect to any given gradient vector field V onK, the chain complex

(C̃∗(K), ∂̃∗) is homotopy equivalent to the simplicial chain complex (C∗(K), ∂∗). Consequently, the

discrete Morse homology, which is independent of the chosen gradient vector field, is isomorphic to the

simplicial homology, i.e.,

Hk(C̃∗(K), ∂̃∗) = Hk(K), for all k ≥ 0.

3 Construction of a gradient vector field on Mn

In this section, we construct a gradient vector field on Mn for n ≥ 5, which doesn’t admit any critical

simplices of dimension up to (and including) νn − 1, except one unavoidable critical 0-simplex. For the

rest of the article, we implicitly assume n ≥ 5 whenever we talk about Mn in general.

For a positive integer k, we denote the set {1, . . . , k} by [k]. We partition the vertex set V (Kn) into

⌈n3 ⌉ sets, and label the vertices of Kn depending on the part they belong to as below.

1. For n = 3m, V (Kn) = V1 ⊔ . . . ⊔ Vm, where Vi = {v
(i)
1 , v

(i)
2 , v

(i)
3 } for all i ∈ [m].

2. For n = 3m + 1, V (Kn) = V1 ⊔ . . . ⊔ Vm+1, where Vi = {v
(i)
1 , v

(i)
2 , v

(i)
3 } for all i ∈ [m], and

Vm+1 = {v
(m+1)
1 }.

3. For n = 3m + 2, V (Kn) = V1 ⊔ . . . ⊔ Vm+1, where Vi = {v
(i)
1 , v

(i)
2 , v

(i)
3 } for all i ∈ [m], and

Vm+1 = {v
(m+1)
1 , v

(m+1)
2 }.

We call an edge e an i-level edge (or simply, a levelled-edge) if both of its endvertices are in the same

Vi for some i. Otherwise, if endvertices of e are in Vi and Vj with i 6= j, then e is called a cross-edge

(between Vi and Vj) (see Fig. 2).

First, we define the following discrete vector fields on Mn:

M′
1 =

{(
α, α ⊔ {v

(1)
j v

(1)
k }

)
: α ∈Mn, α covers only v

(1)
i of V1, {i, j, k} = [3]

}
,

M′′
1 =

{(
α, α ⊔ {v

(1)
2 v

(1)
3 }

)
: α ∈Mn, α leaves entire V1 uncovered

}
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V1 v
(1)
1 v

(1)
2 v

(1)
3

...

Vi−1 v
(i−1)
1 v

(i−1)
2 v

(i−1)
3

Vi v
(i)
1 v

(i)
2 v

(i)
3

Vi+1 v
(i+1)
1 v

(i+1)
2 v

(i+1)
3

...

Vm+1 v
(m+1)
1 v

(m+1)
2

Fig. 2: The partition of V (K3m+2) into m + 1 levels. Here, v
(i)
2 v

(i)
3 is an i-level edge and v

(i−1)
2 v

(i+1)
1 is a cross-

edge between Vi−1 and Vi+1.

(see Fig. 3 and Fig. 4).

α

V1 v
(1)
1 v

(1)
2 v

(1)
3

...

v

α ⊔ {v
(1)
1 v

(1)
3 }

V1 v
(1)
1 v

(1)
2 v

(1)
3

...

v

Fig. 3: The matching α covers only v
(1)
2 of V1. Thus, α is paired off with α ⊔ {v

(1)
1 v

(1)
3 } in M′

1.

α

V1 v
(1)
1 v

(1)
2 v

(1)
3

...

α ⊔ {v
(1)
2 v

(1)
3 }

V1 v
(1)
1 v

(1)
2 v

(1)
3

...

Fig. 4: The matching α leaves entire V1 uncovered. Thus, α is paired off with α ⊔ {v
(1)
2 v

(1)
3 } in M′′

1 .

LetM1 =M′
1 ⊔M

′′
1 . We note thatM1 is also a discrete vector field onMn. Let U1 denote the set of

all matchings in Kn that are not paired off inM1, i.e., U1 = {α ∈Mn : α does not appear in any pair of

M1}. We observe that α ∈ U1 if and only if one of the following holds:
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(i) at least two vertices of V1 are matched by α with vertices outside V1,

(ii) α contains the edge v
(1)
1 v

(1)
i , where i ∈ {2, 3} and α doesn’t cover the vertex v ∈ V1 \ {v

(1)
1 , v

(1)
i }

(see Fig. 5).

α1

V1 v
(1)
1 v

(1)
2 v

(1)
3

...

v

w

α2

V1 v
(1)
1 v

(1)
2 v

(1)
3

...

Fig. 5: The matching α1 matches v
(1)
2 and v

(1)
3 of V1 with vertices outside V1, whereas α2 contains the edge v

(1)
1 v

(1)
3 ,

but leaves v
(1)
2 uncovered. Thus, both α1, α2 ∈ U1.

Next, following the same scheme as before, we define the following discrete vector fields on Mn:

M′
2 =

{(
α, α ⊔ {v

(2)
j v

(2)
k }

)
: α ∈ U1, α covers only v

(2)
i of V2, {i, j, k} = [3]

}
,

M′′
2 =

{(
α, α ⊔ {v

(2)
2 v

(2)
3 }

)
: α ∈ U1, α leaves entire V2 uncovered

}
.

LetM2 = M′
2 ⊔M

′′
2 (which is also a discrete vector field on Mn) and U2 = {α ∈ Mn : α does not

appear in any pair ofM1 ⊔M2}. Suppose α ∈ U1. Then α ∈ U2 if and only if one of the following

holds:

(i) at least two vertices of V2 are matched by α with vertices outside V2,

(ii) α contains the edge v
(2)
1 v

(2)
i , where i ∈ {2, 3} and α doesn’t cover the vertex v ∈ V2 \ {v

(2)
1 , v

(2)
i }.

In general, following the same scheme as above, we get a sequence of discrete vector fieldsM1, . . . ,Mm

on Mn and a family of subsets U1 ⊇ U2 ⊇ . . . ⊇ Um of Mn such that Uk = {α ∈ Mn : α does not

appear in any pair ofM1 ⊔ . . .⊔Mk}, for all k ∈ [m]. We note that for any k ∈ {2, . . . ,m}, the discrete

vector fieldMk may contain only pairs of matchings of the form (α, α ⊔ {e}) where both α and α ⊔ {e}
are in Uk−1.

If n = 3m+ 2, we define another discrete vector field on Mn, viz.,

Mm+1 =
{(
α, α ⊔ {v

(m+1)
1 v

(m+1)
2 }

)
: α ∈ Um, α covers neither v

(m+1)
1 nor v

(m+1)
2

}
.

For n = 3m or 3m+1, letM =M1 ⊔ . . .⊔Mm and for n = 3m+2, letM =M1 ⊔ . . .⊔Mm+1.

We note thatM as defined above is a collection of pairs of matchings in Kn, and thusM also depends

on n. To make the notation less cumbersome, we avoid adding the parameter n toM.

From the construction ofM, we make the following observation.



12 Anupam Mondal, Sajal Mukherjee, Kuldeep Saha

Observation 3.1. For any n, the following hold.

1. M is a discrete vector field on Mn.

2. If (α, α ⊔ {e}) ∈ M, then e is an i-level edge, for some i ∈ [⌈n3 ⌉].

We now prove thatM is a gradient vector field on Mn.

Proposition 3.2. For all n, the discrete vector fieldM is a gradient vector field on Mn.

Proof: Let, if possible, α0, β0, α1, β1, . . . , αr, βr, αr+1 = α0 be a nontrivial closedM-path, and let us

denote it by γ. Let β0 = α0 ⊔ {e0} and α1 = β0 \ {e′0} (with e0 6= e′0).

α0 β0 α1 β1 · · · αr βr αr+1 = α0
⊔{e0} −{e′0}

From Observation 3.1, it follows that e0 is a levelled-edge. Now, if e′0 is a cross-edge, then from the

construction of M, it follows that e′0 /∈ αp, for all p ≥ 1. This contradicts the assumption that γ is a

nontrivial closedM-path as e′0 ∈ α0. Thus, e′0 is also a levelled-edge.

Let e0 and e′0 be an i0-level edge and an i1-level edge for some i0, i1 ∈ [⌈n3 ⌉], respectively. Thus, it

follows that (α0, β0) ∈ Mi0 and both α0, β0 ∈ Uk for all k < i0.

We note that i0 6= i1 as both e0, e
′
0 ∈ β0. Now, if i1 > i0, then we observe that α1 matches the vertices

of V1 ⊔ . . . ⊔ Vi0 in exactly the same manner as β0 does. This implies, just as β0, the matching α1 ∈ Uk

for all k < i0. Since (α0 = β0 \ {e0}, β0) ∈ M, we have (α1 \ {e0}, α1) ∈ M, a contradiction as

(α1, β1) ∈ M. Therefore, we have i1 < i0.

If e′0 = v
(i1)
k v

(i1)
ℓ (where k, ℓ ∈ [3]) and the vertex v

(i1)
m (where m ∈ [3] \ {k, ℓ}) is matched by α0

(with a vertex outside Vi1 ), then from the properties of simplices appearing in Ui1 , we have α0 /∈ Ui1 ,

a contradiction. Similarly, if e′0 = v
(i1)
2 v

(i1)
3 and the vertex v

(i1)
1 is not covered α0, then again we have

α0 /∈ Ui1 , a contradiction.

So suppose e′0 = v
(i1)
1 v

(i1)
k (where k ∈ {2, 3}) and the vertex v

(i1)
ℓ (where ℓ ∈ [3]\{1, k}) is not covered

by α0, and thus not covered by α1 as well. In this case, β1 = α1 ⊔ {v
(i1)
2 v

(i1)
3 } and (α1, β1) ∈ Mi1 (we

note that β1 doesn’t contain e′0, and thus neither does α2). By a similar argument as before, α2 is of the

form β1 \ {e′1} and β2 is of the form α2 ⊔ {e2}, where e′1 and e2 are two i2-level edges (distinct from

each other) with i2 < i1. Thus, e2 6= e′0, and consequently e′0 /∈ β2, α3.

α0 β0 α1 β1 α2 β2 · · · αr+1
⊔{e0}

(i0)

−{e′0=v
(i1)
1 v

(i1)

k
}

(i1)

⊔{v
(i1)
2 v

(i1)
3 }

(i1)

−{e′1}

(i2)

⊔{e2}

(i2)

(with i0 > i1 > i2 > · · · and so on)

By an inductive argument, we conclude that e′0 /∈ αp, βp, for all p ≥ 1. Thus, αr+1 6= α0 as e′0 ∈ α0,

which is a contradiction.

We now show that the constructed gradient vector field satisfies the requirements of Theorem 1.2.

Proof of Theorem 1.2: We claim that the gradient vector fieldM on Mn doesn’t admit critical simplices

of dimension up to νn − 1 for any n, except one 0-simplex. From the construction of M on Mn, we

observe that if α ∈ Mn is not paired off inM, then for each i ∈ ⌈n3 ⌉, the matching α leaves at most one

vertex of Vi uncovered. Therefore, α leaves at most ⌈n3 ⌉ vertices of the graphKn uncovered. This implies

|α| ≥
1

2

(
n−

⌈n
3

⌉)
>

⌊
n+ 1

3

⌋
− 1 = νn,
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i.e., the dimension of α is strictly greater than νn − 1.

Also, the 0-simplex ξ := {v
(1)
2 v

(1)
3 } is paired off with ∅ inM, and thus ξ is the only critical 0-simplex.

Therefore, all simplices ofMn of dimension up to νn−1, except ξ, are not critical with respect toM.

By Theorem 2.4, it follows that Mn is homotopy equivalent to a CW complex with no cells of dimension

up to νn − 1, except one 0-cell. Thus, Theorem 1.1 follows as a corollary of Theorem 1.2. However, we

remark that the existence of such a gradient vector field is in fact a stronger notion. Even when a complex

is homotopically k-connected, it is not guaranteed that there is a gradient vector field on it, with no critical

simplices (except one 0-simplex) of dimension up to k. A well-known example is the dunce hat. It is a

contractible space (and thus simply connected), but no gradient vector field, with a 0-simplex as the only

critical simplex, can be assigned on any triangulation of the dunce hat (Ayala et al. (2012); Whitehead

(1939); Zeeman (1963)).

Example 3.3 (Homotopy type of M8). In order to determine the homotopy type of M8, we consider the

gradient vector fieldM defined on M8, and extend it to a perfect gradient vector field as follows. Let α◦

be a 3-simplex in M8 (i.e., α◦ is a perfect matching in K8), which is critical with respect toM. From

the construction ofM, it follows that all the edges in α◦ are cross-edges. Moreover, for any e ∈ α◦, the

2-simplex α◦ \ {e} is also critical with respect to M. Now, since α◦ is a perfect matching containing

only cross-edges, α◦ matches v
(3)
1 with a vertex outside V3, say v◦. So v◦ is of the form v

(i)
j , for some

i ∈ [2] and j ∈ [3]. We extendM to a discrete vector field M◦ by adding the new pairs of the form

(α◦ \ {v
(3)
1 v◦}, α◦) toM (see Fig. 6), for each 3-simplex α◦ which is critical with respect toM.

α◦

V1 v
(1)
1 v

(1)
2 v

(1)
3

V2 v
(2)
1 v

(2)
2 v

(2)
3 = v◦

V3 v
(3)
1 v

(3)
2

α◦ \ {v
(3)
1 v◦}

V1 v
(1)
1 v

(1)
2 v

(1)
3

V2 v
(2)
1 v

(2)
2 v

(2)
3 = v◦

V3 v
(3)
1 v

(3)
2

Fig. 6: The critical (with respect to M) 3-simplex α◦ is paired off with the critical 2-simplex α◦ \ {v
(3)
1 v◦} in M◦.

AnyM◦-path γ, which is not anM-path, contains a pair (α
(2)
i , β

(3)
i ) ∈ M◦ \M. If αi+1 ( 6= αi) is

any 2-simplex contained in βi, then γ does not extend beyond such an αi+1, as βi is the only 3-simplex

containingαi+1. This impliesM◦ is also a gradient vector field onM8, and moreover, all the 0-simplices,

1-simplices, and 3-simplices ofM8 are paired off inM◦. Thus, only critical simplices ofM8 (with respect

toM◦) are some 2-simplices and exactly one 0-simplex, viz., the matching {v
(1)
2 v

(1)
3 }. The number of

critical 2-simplices may be determined from the Euler characteristic of M8 (or, alternatively, by direct

counting). If (f0, . . . , f3) is the f -vector of M8, then from Equation (2.1), f0 = 28, f1 = 210, f2 = 420,

f3 = 105, and thus χ(M8) = f0 − f1 + f2 − f3 = 133. Therefore, by Theorem 2.5, we conclude that

M8 is homotopy equivalent to a wedge of 132 spheres of dimension 2.
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4 Homology groups of M7

4.1 Construction of a near-optimal gradient vector field on M7

We now consider the matching complex M7 as an example, and determine its homotopy type using tech-

niques developed in this article. Throughout the rest of this article,M stands for the gradient vector field

on M7 in particular, as constructed in Section 3.

We extend the gradient vector fieldM to a more useful one as follows. Let α∗ be a critical (with respect

toM) 1-simplex containing two cross-edges between V1 and V2. Let v∗ be only vertex of V1 that is left

uncovered by α∗. We observe that α∗ ⊔{v
(3)
1 v∗} is a critical 2-simplex with respect toM. Thus, we may

extend the gradient vector fieldM to the discrete vector fieldM∗ by adding the new pairs of the form

(α∗, α∗ ⊔ {v
(3)
1 v∗}) toM (see Fig. 7), for each critical (with respect toM) 1-simplex α∗ containing two

cross-edges between V1 and V2.

V1 v
(1)
1 v

(1)
2 = v∗ v

(1)
3

V2 v
(2)
1 v

(2)
2 v

(2)
3

V3 v
(3)
1

V1 v
(1)
1 v

(1)
2 = v∗ v

(1)
3

V2 v
(2)
1 v

(2)
2 v

(2)
3

V3 v
(3)
1

Fig. 7: The critical (with respect to M) 1-simplex α∗ = {v
(1)
1 v

(2)
1 , v

(1)
3 v

(2)
2 } is paired off with the critical 2-simplex

α∗ ⊔ {v
(3)
1 v

(1)
2 } in M∗.

Proposition 4.1. The discrete vector fieldM∗ is a gradient vector field on M7.

Proof: Let, if possible, α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , . . . , α

(p)
k , β

(p+1)
k , α

(p)
k+1 = α

(p)
0 be a nontrivial closed

M∗-path. If p = 0, then it leads to a contradiction to the fact thatM is a gradient vector field. So let

p = 1.

If (αi, βi) ∈ M for all i ∈ {0, 1, . . . , k}, then again it contradicts the fact thatM is a gradient vector

field. So without loss of generality, let (α0, β0) ∈ M
∗ \M. In this case, α0 consists of two cross-edges

between V1 and V2. Let α1 = β0 \ {e′}, where e′ is an edge in α0. We note that if β = α ⊔ {e} and

(α, β) ∈ M∗, then e is either a levelled-edge or a cross-edge between V1 and V3. This implies, for all

i ∈ [k], e′ /∈ βi, and subsequently e′ /∈ αi+1. In particular, e′ /∈ αk+1. This leads to a contradiction, as

αk+1 = α0.

4.2 Computation of (Morse) homology groups of M7

Throughout this subsection, we always assume the gradient vector fieldM∗ on the matching complexM7

while discussing the nature of a simplex (i.e., criticality and other related notions). Also, hereafter, while

representing a simplex ofM7 (i.e., a matching in K7) diagrammatically, we would not explicitly label the

vertices of K7 and the sets V1, V2, and V3 for the sake of simplicity, and so it should be understood from

the context. For example, we would represent the matching {v
(1)
1 v

(2)
1 , v

(1)
2 v

(3)
1 , v

(1)
3 v

(2)
2 } (see Fig. 7) by
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the following.

Observation 4.2 (Characterization of critical simplices).

1. The only critical 0-simplex is ξ = {v
(1)
2 v

(1)
3 } (thus C̃0(M7) ∼= Z).

2. Critical 1-simplices are σ1 := {v
(1)
1 v

(1)
2 , v

(2)
1 v

(2)
2 }, σ2 := {v

(1)
1 v

(1)
2 , v

(2)
1 v

(2)
3 }, σ3 := {v

(1)
1 v

(1)
3 ,

v
(2)
1 v

(2)
2 }, and σ4 := {v

(1)
1 v

(1)
3 , v

(2)
1 v

(2)
3 }.

3. Critical 2-simplices are of the form {e1, e2, e3} with one of the following.

(a) Each of e1, e2, and e3 is a cross-edge between V1 and V2 (there are 6 such simplices).

(b) Two of e1, e2, and e3 are cross-edges between V1 and V2, and the remaining one is a cross-

edge between V2 and V3 (there are 18 such simplices).

Therefore, there are 24 critical 2-simplices.

First, we assign a unique label ℓ(e) on the edge e = v
(i1)
j1

v
(i2)
j2

as follows.

ℓ(e) =





i1j1i2j2, if i1 < i2

i2j2i1j1, if i2 < i1

i1j1i2j2, if i1 = i2, j1 < j2

i2j2i1j1, if i1 = i2, j2 < j1

Next, we introduce a total order ≤ on the vertex set of the complex M7 (i.e., on E(K7)) by declaring

e1 ≤ e2 if and only if ℓ(e1) ≤ ℓ(e2) in the lexicographic order. We assign each simplex the orientation

induced by this total order on V (M7), i.e., if α = {e0, e1, . . . , ek} is a matching in K7 with e0 < e1 <
· · · < ek, then we denote the oriented k-simplex [e0, e1, . . . , ek] also by α whenever needed.

4.2.1 Kernel and image of ∂̃1

If σ is a critical 1-simplex and α(0) ( σ, then α is one of {v
(1)
1 v

(1)
2 }, {v

(1)
1 v

(1)
3 }, {v

(2)
1 v

(2)
2 }, and

{v
(2)
1 v

(2)
3 }. We note that one of the following two cases holds.

Case 1: α = {v
(1)
1 v

(1)
i }, where i ∈ {2, 3}

The only possibleM∗-path that starts from α, and ends at ξ = {v
(1)
2 v

(1)
3 } is the following.

α {v
(1)
1 v

(1)
i , v

(2)
2 v

(2)
3 } {v

(2)
2 v

(2)
3 } {v

(1)
2 v

(1)
3 , v

(2)
2 v

(2)
3 } ξ

Case 2: α = {v
(2)
1 v

(2)
i }, where i ∈ {2, 3}

The only possibleM∗-path that starts from α, and ends at ξ = {v
(1)
2 v

(1)
3 } is the following.

α {v
(1)
2 v

(1)
3 , v

(2)
1 v

(2)
i } ξ
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Let us consider the critical 1-simplex σ1 = {v
(1)
1 v

(1)
2 , v

(2)
1 v

(2)
2 }. Let γ1 be the uniqueM∗-path that

starts from {v
(1)
1 v

(1)
2 } (( σ1), and ends at ξ = {v

(1)
2 v

(1)
3 } (from Case 1 above), i.e.,

γ1 : α0 = {v
(1)
1 v

(1)
2 } β0 α1 β1 α2 = ξ,

(−1) (+1) (+1) (−1)

where β0 = {v
(1)
1 v

(1)
2 , v

(2)
2 v

(2)
3 }, α1 = {v

(2)
2 v

(2)
3 }, β1 = {v

(1)
2 v

(1)
3 , v

(2)
2 v

(2)
3 }. Here we have also included

〈βi, αj〉, i.e., the incidence number between the oriented simplices βi and αj (with i ≤ j ≤ i+ 1), above

the arrow connecting βi and αj . Consideringα0, β0, α1, β1, and α2 as oriented simplices, the multiplicity

of γ1 (from Equation (2.2)),

m(γ1) = (−〈β0, α0〉〈β0, α1〉)(−〈β1, α1〉〈β1, α2〉)

= (−(−1)(+1))(−(+1)(−1)) = +1.

Let γ2 be the uniqueM∗-path that starts from {v
(2)
1 v

(2)
2 } (( σ1), and ends at ξ = {v

(1)
2 v

(1)
3 } (from Case 2

above), i.e.,

γ2 : α′
0 = {v

(2)
1 v

(2)
2 } β′

0 = {v
(1)
2 v

(1)
3 , v

(2)
1 v

(2)
2 } α′

1 = ξ.
(+1) (−1)

Considering α′
0, β′

0, and α′
1 as oriented simplices, the multiplicity of γ2 (from Equation (2.2)),

m(γ2) = −〈β
′
0, α

′
0〉〈β

′
0, α

′
1〉 = −(+1)(−1) = +1.

Therefore, from Equation (2.3) and Equation (2.4),

∂̃1(σ1) = (〈σ1, α0〉 ·m(γ1) + 〈σ1, α
′
0〉 ·m(γ2)) · ξ

= ((−1)(+1) + (+1)(+1)) · ξ = 0.

Analogous computations yield ∂̃1(σ2) = 0, ∂̃1(σ3) = 0, and ∂̃1(σ4) = 0. Thus,

ker(∂̃1) =
〈
σ1, σ2, σ3, σ4

〉
= C̃1(M7) and im(∂̃1) = 0.

Consequently, the zeroth (Morse) homology group of M7 is Z.

4.2.2 Image of ∂̃2

To begin with, let us consider a critical 2-simplex and compute its image under the boundary operator ∂̃2
in the following example.

Example 4.3. Let us consider the critical 2-simplex η1 := {v
(1)
2 v

(2)
2 , v

(1)
3 v

(2)
3 , v

(2)
1 v

(3)
1 } as shown below.

η1 =
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Let us determine all possibleM∗-paths that start from a 1-simplex contained in η1, and end at a critical

1-simplex. First, a 1-simplex contained in η1 is one of the following three.

ψ11 = ψ12 = ψ13 =

In Fig. 8, we describe all possibleM∗-paths that start from ψ11, and end either at a critical 1-simplex

or at a 1-simplex that is paired off with a 0-simplex inM∗.

ψ11

Fig. 8: All possible (maximal) M∗-paths that start from ψ11. Note that each of them ends at a 1-simplex that is

paired off with a 0-simplex in M∗.

In Fig. 9, we describe all possibleM∗-paths that start from ψ12, and end either at a critical 1-simplex

or at a 1-simplex that is paired off with a 0-simplex inM∗.

ψ12

Fig. 9: All possible (maximal) M∗-paths that start from ψ12. Note that each of them ends at a 1-simplex that is

paired off with a 0-simplex in M∗.

In Fig. 10, we describe all possibleM∗-paths that start from ψ13, and end either at a critical 1-simplex

or at a 1-simplex that is paired off with a 0-simplex inM∗.

We observe that there are exactly twoM∗-paths that start from a 1-simplex contained in η1, and end at

a critical 1-simplex as shown in Fig. 11 (see also Fig. 14 and Fig. 23 in Appendix A).

Let γ1 be the uniqueM∗-path that starts from ψ13, and ends at σ4 (see Fig. 10 and Fig. 11), i.e.,



18 Anupam Mondal, Sajal Mukherjee, Kuldeep Saha

ψ13

= σ4

(critical)

= σ1

(critical)

Fig. 10: All possible (maximal) M∗-paths that start from ψ13. Note that only two of them end at a critical 1-simplex.

γ1 : ψ13 = α0 β0 α1 β1 α2 β2 α3 = σ4,
(+1) (+1) (+1) (+1) (+1) (−1)

where

α0 = [v
(1)
2 v

(2)
2 , v

(1)
3 v

(2)
3 ] = ψ13, β0 = [v

(1)
1 v

(3)
1 , v

(1)
2 v

(2)
2 , v

(1)
3 v

(2)
3 ]

α1 = [v
(1)
1 v

(3)
1 , v

(1)
2 v

(2)
2 ], β1 = [v

(1)
1 v

(3)
1 , v

(1)
2 v

(2)
2 , v

(2)
1 v

(2)
3 ]

α2 = [v
(1)
2 v

(2)
2 , v

(2)
1 v

(2)
3 ], β2 = [v

(1)
1 v

(1)
3 , v

(1)
2 v

(2)
2 , v

(2)
1 v

(2)
3 ]

α3 = [v
(1)
1 v

(1)
3 , v

(2)
1 v

(2)
3 ] = σ4.
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η1

ψ13 σ4

ψ13 σ1

Fig. 11: Only two possible M∗-paths that start from a 1-simplex contained in η1, and end at a critical 1-simplex.

By Equation (2.2), the multiplicity of γ1,

m(γ1) = (−〈β0, α0〉〈β0, α1〉)(−〈β1, α1〉〈β1, α2〉)(−〈β2, α2〉〈β2, α3〉)

= (−(+1)(+1))(−(+1)(+1))(−(+1)(−1)) = +1.

Let γ2 be the uniqueM∗-path that starts from ψ13, and ends at σ1 (see Fig. 10 and Fig. 11), i.e.,

γ2 : ψ13 = α0 β0 α1 β1 α2 β2 α3 = σ1,
(+1) (−1) (+1) (+1) (+1) (−1)

where

α0 = [v
(1)
2 v

(2)
2 , v

(1)
3 v

(2)
3 ] = ψ13, β0 = [v

(1)
1 v

(3)
1 , v

(1)
2 v

(2)
2 , v

(1)
3 v

(2)
3 ]

α1 = [v
(1)
1 v

(3)
1 , v

(1)
3 v

(2)
3 ], β1 = [v

(1)
1 v

(3)
1 , v

(1)
3 v

(2)
3 , v

(2)
1 v

(2)
2 ]

α2 = [v
(1)
3 v

(2)
3 , v

(2)
1 v

(2)
2 ], β2 = [v

(1)
1 v

(1)
2 , v

(1)
3 v

(2)
3 , v

(2)
1 v

(2)
2 ]

α3 = [v
(1)
1 v

(1)
2 , v

(2)
1 v

(2)
2 ] = σ1.

By Equation (2.2), the multiplicity of γ2,

m(γ2) = (−〈β0, α0〉〈β0, α1〉)(−〈β1, α1〉〈β1, α2〉)(−〈β2, α2〉〈β2, α3〉)

= (−(+1)(−1))(−(+1)(+1))(−(+1)(−1)) = −1.

Therefore, from Equation (2.3) and Equation (2.4),

∂̃2(η1) = (〈η1, ψ13〉 ·m(γ1)) · σ4 + (〈η1, ψ13〉 ·m(γ2)) · σ1

= ((+1)(+1))) · σ4 + ((+1)(−1)) · σ1 = −σ1 + σ4.

Considering all possible M∗-paths that start from a 1-simplex contained in a critical 2-simplex, and

end at a critical 1-simplex (refer to Appendix A), we may compute the images of all twenty-four critical

2-simplices under the boundary operator ∂̃2. These are all listed in Tab. 1. We describe an algorithmic

scheme to compute the images of critical 2-simplices under ∂̃2 in Appendix B, and the computation of

boundaries of two more critical 2-simplices following this scheme is also discussed there.
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η ∂̃2(η) η ∂̃2(η) η ∂̃2(η) η ∂̃2(η)

(−σ1+σ1+
σ2 − σ3 +
σ4 − σ4) =
σ2 − σ3

σ1−σ2−σ3 σ1−σ3+σ4 σ2+σ3−σ4

(σ1 − σ2 +
σ2 + σ3 −
σ3 − σ4) =
σ1 − σ4

−σ1+σ2−
σ4

−σ1 + σ4 −σ2 + σ3

(−σ1 +
σ2 + σ3 +
σ4 − σ4) =
−σ1 +σ2+
σ3

−σ1+σ3−
σ4

−σ1+σ2 +
σ3

σ1−σ2+σ4

(−σ1 +
σ1 − σ2 −
σ3 + σ4) =
−σ2−σ3+
σ4

−σ2−σ3 +
σ4

σ2 − σ3 σ1 − σ4

(σ1 − σ2 +
σ3 − σ3 +
σ4) = σ1 −
σ2 + σ4

−σ1 + σ4 −σ1+σ2−
σ4

σ1−σ2−σ3

(−σ1 −
σ2 + σ2 +
σ3 − σ4) =
−σ1 +σ3−
σ4

−σ2 + σ3 σ2+σ3−σ4 σ1−σ3+σ4

Tab. 1: Images of all critical 2-simplices under the boundary operator ∂̃2.
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4.2.3 First and second homology groups of M7

We have ker(∂̃1) = C̃1(M7) =
〈
σ1, σ2, σ3, σ4

〉
, and from Tab. 1, we conclude that im(∂̃2) is generated

by σ1 − σ4, σ2 − σ3, σ1 − σ2 − σ3, σ1 − σ2 + σ4, σ1 − σ3 + σ4, and σ2 + σ3 − σ4. Thus,

H1(M7)
∼= ker(∂̃1)/im(∂̃2)

∼=
〈
σ1, σ2, σ3, σ4

〉/〈
σ1 − σ4, σ2 − σ3, σ1 − σ2 − σ3, σ1 − σ2 + σ4, σ1 − σ3 + σ4, σ2 + σ3 − σ4

〉

∼=
〈
σ1, σ2

〉/〈
σ1 − 2σ2, 2σ1 − σ2

〉

∼=
〈
σ1

〉/〈
3σ1

〉

∼=Z/3Z = Z3.

Finally, from Tab. 1, we may verify that out of images of all 24 generators of C̃2(M7) under the

boundary operator ∂̃2, there are exactly four linearly independent ones. Therefore, rank(ker(∂̃2)) =
24− 4 = 20. Hence, H2(M7) ∼= Z20. This concludes the proof of Theorem 1.3.

Remark 4.4. After computing H1(M7), one may also compute the second homology group of M7 using

the Euler characteristic of M7 as follows. If fi is the number of i-dimensional simplices of M7, then

from Equation (2.1), f0 = 21, f1 = 105, and f2 = 105 (with fi = 0, for all i ≥ 3). Thus, χ(M7) =∑
i≥0(−1)

ifi = 21 − 105 + 105 = 21. If bi is the i-the Betti number of M7, then b0 = 1, b1 = 0,

and bi = 0 for i ≥ 3 (since M7 is a connected 2-dimensional complex with H1(M7) = Z3). Thus,

b2 = χ(M7)− b0 = 20. Since H2(M7) is torsion-free, we get H2(M7) = Z20.

4.3 Further augmentation of the near-optimal gradient vector field

We note thatM∗ is a highly efficient (near-optimal) gradient vector field onM7 as, from Observation 4.2,

it follows that

(i) out of 105 simplices of dimension 2, only 24 are critical (with the second Betti number being 20),

(ii) out of 105 simplices of dimension 1, only four are critical (with the first Betti number being 0),

(iii) out of 21 simplices of dimension 0, only one is critical (with the zeroth Betti number being 1).

However, we may augmentM∗ even further to one that satisfies Theorem 1.4.

Proof of Theorem 1.4: From Fig. 11 and Fig. 25 (Appendix B), we observe that there is

(i) a uniqueM∗-path that starts from a 1-simplex (viz., ψ13) contained in the critical 2-simplex η1, and

ends at the critical 1-simplex σ4,

(ii) a uniqueM∗-path that starts from a 1-simplex (viz., ψ22) contained in the critical 2-simplex η2, and

ends at the critical 1-simplex σ3,

as shown in Fig. 12. Moreover, we also observe that there is

(i) noM∗-path that starts from a 1-simplex contained in η1, and ends at σ3,
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η1 ψ13 σ4

η2 ψ22 σ3

Fig. 12: Unique M∗-paths starting from a 1-simplex contained in η1 and η2, and ending at σ4 and σ3, respectively.

(ii) noM∗-path that starts from a 1-simplex contained in η2, and ends at σ4.

Thus, the requirements of Theorem 2.8 are satisfied. This allows us to apply the technique of cancellation

of a critical pair by reversing paths (Theorem 2.7) twice, and end up with a gradient vector field M∗∗

fromM∗ such that η1, σ4, and η2, σ3 are not critical with respect toM∗∗, while the criticality of all other

simplices remains unchanged. Thus, with respect toM∗∗, there are 24− 2 = 22 critical 2-simplices, two

critical 1-simplices (viz., σ1 and σ2), and one critical 0-simplex (viz., ξ).

By Theorem 2.4, it follows that M7 is homotopy equivalent to a CW complex with one 0-cell, two

1-cells, and twenty-two 2-cells.

5 Conclusion

As H1(M7) is nontrivial, with respect to any gradient vector field on M7, there is at least one critical

1-simplex. As a consequence, from the Morse inequalities (Theorem 2.6), it follows that with respect to

any gradient vector field on M7, there are at least 21 critical 2-simplices.

We note that (from Appendix A) there is an M∗-path from a face of a critical (with respect to M∗)

2-simplex, say η, to the critical 1-simplex σ1 if and only if there is anM∗-path from a face of η to σ4.

Suppose we first cancel the critical pair η(2), σ
(1)
i , where i ∈ {1, 4}, by reversing the unique gradient

path γ from a face of η to σi (by Theorem 2.7). Then in addition to an M∗-path (if one exists) from

a face of another critical 2-simplex η′ to σ5−i, there is also a new gradient path (with respect to the

augmented gradient vector field) from a face of η′ to σ5−i that passes through reversed γ. Thus, the

uniqueness of possible gradient paths (with respect to the augmented gradient vector field) from a face

of any remaining critical 2-simplex to σ5−i, is no longer viable. So, out of σ1 and σ4, at most one can

be cancelled. Likewise, at most one of σ2 and σ3 can be cancelled. Therefore, starting with M∗, the

technique of cancellation of critical pairs can be applied at most twice. This motivates us to conjecture

that the augmented gradient vector fieldM∗∗, which is obtained after applying the cancellation theorem

twice, is indeed an optimal one.

Conjecture 5.1. A gradient vector field on M7 with respect to which there are 22 critical 2-simplices,

two critical 1-simplices, and one critical 0-simplex, is an optimal one.

As mentioned before, in order to compute the (discrete) Morse homology groups of M7 in an efficient

manner, we constructed and worked with the near-optimal gradient vector fieldM∗ that not only admits
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a low number of critical simplices of each dimension, but also, more importantly, allows an efficient

(and human-comprehensible) enumeration of all possible gradient paths of interest. It would be another

problem of interest to determine how “far from random” the constructed gradient vector fields are.

Problem 5.2. Compare the efficacy of the gradient vector fieldM∗ (and the augmented one,M∗∗) with

those found by random methods as described by Adiprasito et al. (2017), Benedetti and Lutz (2014),

Benedetti et al. (2023).

We also expect the techniques developed in this article to be useful for taking up problems of explor-

ing the topology of higher dimensional matching complexes. As discussed in this article, one potential

approach consists of the following two steps in order.

1. Extend the initial gradient vector field constructed in Section 3, which is optimal up to dimension

νn − 1, to a sufficiently good (optimal or near-optimal) one. Some augmentation tricks used in this

article may be adapted for higher dimensions. For example, the augmentation used in Example 3.3

is applicable to any M2n, and the augmentation used in Subsection 4.1 may be applied to any

M3n+1.

2. Using the efficient extended gradient vector field, (perhaps with the aid of computer implementa-

tions) compute the homology groups.

Appendix A M∗-paths ending at a critical 1-simplex

Let us consider the critical 1-simplex σ1 = {v
(1)
1 v

(1)
2 , v

(2)
1 v

(2)
2 } as shown below.

If α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k , α

(1)
k+1 is anM∗-path ending at σ1 (i.e., αk+1 = σ1), then βk is

one of the following three 2-simplices.

τ11 = τ12 = τ13 =

In Fig. 13, we describe all possible (following the diagram from right to left would make it clear)

M∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ11, α

(1)
k+1 = σ1,

where α0 is contained in a critical 2-simplex η (possible choices of η(2) are also included in the leftmost

column of the figure).

Similarly, in Fig. 14, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ12, α

(1)
k+1 = σ1,

and in Fig. 15, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ13, α

(1)
k+1 = σ1,

where α0 is contained in a critical 2-simplex η.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 )

σ1τ11

Fig. 13: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ11, α
(1)
k+1 = σ1, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ1τ12

Fig. 14: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ12, α
(1)
k+1 = σ1, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ1τ13

Fig. 15: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ13, α
(1)
k+1 = σ1, with α0 ( η,

where η is a critical 2-simplex.
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Now, let us consider the critical 1-simplex σ2 = {v
(1)
1 v

(1)
2 , v

(2)
1 v

(2)
3 } as shown below.

If α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k , α

(1)
k+1 is anM∗-path ending at σ2 (i.e., αk+1 = σ2), then βk is

one of the following three 2-simplices.

τ21 = τ22 = τ23 =

In Fig. 16, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ21, α

(1)
k+1 = σ2

in Fig. 17, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ22, α

(1)
k+1 = σ2

and in Fig. 18, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ23, α

(1)
k+1 = σ2,

where α0 is contained in a critical 2-simplex η.

(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 )

σ2τ21

Fig. 16: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ21, α
(1)
k+1 = σ2, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ2τ22

Fig. 17: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ22, α
(1)
k+1 = σ2, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ2τ23

Fig. 18: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ23, α
(1)
k+1 = σ2, with α0 ( η,

where η is a critical 2-simplex.
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Next, let us consider the critical 1-simplex σ3 = {v
(1)
1 v

(1)
3 , v

(2)
1 v

(2)
2 } as shown below.

If α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k , α

(1)
k+1 is anM∗-path ending at σ3 (i.e., αk+1 = σ3), then βk is

one of the following three 2-simplices.

τ31 = τ32 = τ33 =

In Fig. 19, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ31, α

(1)
k+1 = σ3,

in Fig. 20, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ32, α

(1)
k+1 = σ3,

and in Fig. 21, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ33, α

(1)
k+1 = σ3,

where α0 is contained in a critical 2-simplex η.

(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 )

σ3τ31

Fig. 19: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ31, α
(1)
k+1 = σ3, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ3τ32

Fig. 20: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ32, α
(1)
k+1 = σ3, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ3τ33

Fig. 21: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ33, α
(1)
k+1 = σ3, with α0 ( η,

where η is a critical 2-simplex.
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Finally, let us consider the critical 1-simplex σ4 = {v
(1)
1 v

(1)
3 , v

(2)
1 v

(2)
3 } as shown below.

If α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k , α

(1)
k+1 is anM∗-path ending at σ4 (i.e., αk+1 = σ4), then βk is

one of the following three 2-simplices.

τ41 = τ42 = τ43 =

In Fig. 22, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ41, α

(1)
k+1 = σ4,

in Fig. 23, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ42, α

(1)
k+1 = σ4,

and in Fig. 24, we describe all possibleM∗-paths of the form

α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . . , α

(1)
k , β

(2)
k = τ43, α

(1)
k+1 = σ4,

where α0 is contained in a critical 2-simplex η.

(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 )

σ4τ41

Fig. 22: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ41, α
(1)
k+1 = σ4, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ4τ42

Fig. 23: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ42, α
(1)
k+1 = σ4, with α0 ( η,

where η is a critical 2-simplex.
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(η(2)) (α
(1)
0 ) (β

(2)
0 ) (α

(1)
1 ) (β

(2)
1 ) (α

(1)
2 ) (β

(2)
2 ) (α

(1)
3 )

σ4τ43

Fig. 24: All possible M∗-paths of the form α
(1)
0 , β

(2)
0 , α

(1)
1 , β

(2)
1 , . . ., α

(1)
k

, β
(2)
k

= τ43, α
(1)
k+1 = σ4, with α0 ( η,

where η is a critical 2-simplex.

Appendix B A scheme to compute the boundaries of critical 2-

simplices

First, in each figure in Appendix A, above each arrow connecting β
(2)
i and α

(1)
j (with 0 ≤ i ≤ j ≤ i+1),

we write the incidence number 〈βi, αj〉. Also, above each arrow from the critical 2-simplex η (leftmost
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column) to the 1-simplex α0, we write the incidence number 〈η, α0〉, as shown below.

η α0 β0 α1 β1 · · · αk βk αk+1
〈η,α0〉 〈β0,α0〉 〈β0,α1〉 〈β1,α1〉 〈β1,α2〉 〈βk−1,αk〉 〈βk,αk〉 〈βk,αk+1〉

Next, let us choose a particular critical 2-simplex η0. We describe a sequence of algorithmic steps to

compute ∂̃2(η0) below.

Step 1: Pick a path from η0 to a critical 1-simplex, say σi, in a figure of Appendix A.

Step 2: Count the number of −1’s appearing above the arrows in the path. Let the count be r.

Step 3: Count the number of non-critical 2-simplices in the path (i.e., the number of β
(2)
i s). Let the count

be s. The contribution of this specific path to ∂̃2(η0) is (−1)r+sσi.

Step 4: Compute the contribution of each possible path from η0 to a critical 1-simplex in all the figures

of Appendix A.

Step 5: Sum of the contributions of all possible paths, from η0 to a critical 1-simplex, is ∂̃2(η0).

Let us consider a couple of critical 2-simplices and compute their images under the boundary operator

∂̃2 following the scheme above in the examples below.

Example B.1. Let us consider the critical 2-simplex η2 := {v
(1)
1 v

(2)
2 , v

(1)
2 v

(2)
1 , v

(2)
3 v

(3)
1 } as shown below.

η2 =

We observe that there are exactly twoM∗-paths that start from a 1-simplex contained in η2, and end

at a critical 1-simplex (Fig. 18 and Fig. 19 in Appendix A) as shown in Fig. 25 (along with the incidence

numbers).

η2

+1

ψ21

+1 −1 +1 +1 +1 −1

σ2

+1

ψ22

+1 −1 −1 +1

σ3

Fig. 25: Only two possible M∗-paths that start from a 1-simplex contained in η2, and end at a critical 1-simplex.

• Let P1 be the path from η2 to σ2 via ψ21 in Fig. 25. There are two −1’s appearing in P1 and there

are three non-critical 2-simplices in P1. Thus, P1 contributes (−1)2+3σ2 = −σ2 to ∂̃2(η2).
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• Let P2 be the path from η2 to σ3 via ψ22 in Fig. 25. There are two −1’s appearing in P2 and there

are two non-critical 2-simplices in P2. Thus, P2 contributes (−1)2+2σ3 = σ3 to ∂̃2(η2).

Therefore, ∂̃2(η2) = −σ2 + σ3.

Example B.2. Let us consider the critical 2-simplex η3 := {v
(1)
1 v

(2)
3 , v

(1)
2 v

(2)
2 , v

(1)
3 v

(2)
1 } as shown below.

η3 =

We observe that there are five M∗-paths that start from a 1-simplex contained in η3, and end at a

critical 1-simplex (Fig. 15, Fig. 18, Fig. 21, and Fig. 23 in Appendix A) as shown in Fig. 26 (along with

the incidence numbers).

η3

+1

ψ31

+1 −1 +1 +1 +1 −1

σ1

+1 ψ31

+1 +1 +1 +1 +1 −1

σ2

−1

ψ32

−1 +1 +1 +1 +1 −1

σ3
+1

ψ33

+1 +1 +1 +1 +1 −1

σ4+1

ψ31

+1 +1 +1 −1 +1 −1

σ4

Fig. 26: All five M∗-paths that start from a 1-simplex contained in η3, and end at a critical 1-simplex.

• Let P1 be the path from η3 to σ1 via ψ31 in Fig. 26. There are two −1’s appearing in P1 and there

are three non-critical 2-simplices in P1. Thus, P1 contributes (−1)2+3σ1 = −σ1 to ∂̃2(η3).

• Let P2 be the path from η3 to σ2 via ψ31 in Fig. 26. There is only one−1 appearing in P2 and there

are three non-critical 2-simplices in P2. Thus, P2 contributes (−1)1+3σ2 = σ2 to ∂̃2(η3).
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• Let P3 be the path from η3 to σ3 via ψ32 in Fig. 26. There are three−1’s appearing in P3 and there

are three non-critical 2-simplices in P3. Thus, P3 contributes (−1)3+3σ3 = σ3 to ∂̃2(η3).

• Let P4 be the path from η3 to σ4 via ψ33 in Fig. 26. There is only one−1 appearing in P4 and there

are three non-critical 2-simplices in P4. Thus, P4 contributes (−1)1+3σ4 = σ4 to ∂̃2(η3).

• Let P5 be the path from η3 to σ4 via ψ31 in Fig. 26. There are two −1’s appearing in P5 and there

are three non-critical 2-simplices in P5. Thus, P5 contributes (−1)2+3σ4 = −σ4 to ∂̃2(η3).

Therefore, ∂̃2(η3) = −σ1 + σ2 + σ3 + σ4 − σ4 = −σ1 + σ2 + σ3.
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