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Bouc (1992) first studied the topological properties of M, the matching complex of the complete graph of order n,
in connection with Brown complexes and Quillen complexes. Bjorner et al. (1994) showed that M,, is homotopically
(vn — 1)-connected, where v, = [ ] — 1, and conjectured that this connectivity bound is sharp. Shareshian
and Wachs (2007) settled the conjecture by inductively showing that the v,-dimensional homology group of M, is
nontrivial, with Bouc’s calculation of H;(M7) serving as the pivotal base step. In general, the topology of M, is
not very well-understood, even for a small n. In the present article, we look into the topology of M,,, and M7 in
particular, in the light of discrete Morse theory as developed by Forman (1998). We first construct a gradient vector
field on M,, (for n > 5) that doesn’t admit any critical simplices of dimension up to v, — 1, except one unavoidable
0-simplex, which also leads to the aforementioned (v, — 1)-connectedness of M,, in a purely combinatorial way.
However, for an efficient homology computation by discrete Morse theoretic techniques, we are required to work
with a gradient vector field that admits a low number of critical simplices, and also allows an efficient enumeration
of gradient paths. An optimal gradient vector field is one with the least number of critical simplices, but the problem
of finding an optimal gradient vector field, in general, is an NP-hard problem (even for 2-dimensional complexes).
We improve the gradient vector field constructed on M7 in particular to a much more efficient (near-optimal) one,
and then with the help of this improved gradient vector field, compute the homology groups of M7~ in an efficient and
algorithmic manner. We also augment this near-optimal gradient vector field to one that we conjecture to be optimal.

Keywords: discrete Morse theory, complete graph, matching, abstract simplicial complex, gradient vector field,
Morse homology

1 Introduction

The collection of all matchings or independent edge sets (i.e., sets of edges without common endvertices)
in a graph constitutes an abstract simplicial complex, called the matching complex of the graph. The
matching complex of a graph G may also be realized as the independence complex of the line graph of G.

In particular, we denote the matching complex of the complete graph of order n (see Bjorner et al. @99:4-1),
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first studred_lzy_ Bouo (.1992) _11_1 _cor_n}e_ctron wrth Brown complexes (Browmr (1974, '1975)) and Quzllen
complexes (Qurllerl Q978p) :Blo_rrler_e_t _al. (ll9_9_41) proved the following result regarding the homotopical
connectivity of M,,.

Theorem 1.1. For all n, the matching complex M,, is homotopically (v, — 1)-connected, where v,, =
Ln_JrlJ —

is nontrivial (see also Wachs (2003)). The crucial base step was Bouc’s “hand” calculation of the ﬁrst
homology group of Mr. Here we remark that the topology of M, is not very well-understood even for

the theory has turned out to be 1mmensely useful in drverse fields of theoretrcal and apphed mathematrcs
and also in computer science. The central notion of this theory is that of a discrete Morse function defined
on a finite (abstract) simplicial complex (or a (regular) CW complex). It helps us understand the topology
of the complex through an efficient cell decomposition (i.e., one with fewer cells than in the original
decomposition) of the complex. In practice, however, instead of such functions, we usually consider an
equivalent and more useful notion of (discrete) gradient vector fields on the complex. The homotopy type
of the complex is determined by only the simplices (or cells) that are critical with respect to an assigned
gradient vector field. Discrete Morse theoretic techniques also help us compute the homology groups,
Betti numbers, etc. of a complex in a computationally efficient way, provided one manages to construct a
sufficiently “good” gradient vector field on it, in the first place.

In Section 3 of this article, we first prove the following by explicitly constructing a gradient vector field
on M,,.

Theorem 1.2. There is a gradient vector field on M, (for n > b) with respect to which there are no
critical simplices of dimension up to v, — 1, except one 0-simplex.

Theorem 'l- l' follows as a natural consequence of the above. Exrstence of a gradrent vector field with the

task of homology computatron via discrete Morse theory relies on an efficient enumeration of all crrtrcal
simplices and all possible gradient paths of a specific type. Thus, in order to compute the homology
groups efficiently, we are required to work with a gradient vector field that admits a low number of critical
simplices of each dimension to begin with. An optimal gradient vector field is one with the least number
of critical simplices, but the problem of finding an optimal gradient vector field, in general is an NP-

fields Wlth a random heurrstrc Whrch turned out to be successful, even in some cases with a large input
size.
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An efficient gradient vector field reduces the task of computing homology to the computation of (dis-
crete) Morse homology groups, which are homology groups of a relatively simpler chain complex. Bouc’s
computation of the first homology group of M7, which, as mentioned before, is the pivotal base step to
determine the connectivity of M,, in general, relies on some ingenious, but somewhat ad hoc tricks. In
Section '4, we present an efficient and algorithmic computation of the homology groups of M. We extend
our previously constructed gradient vector field on M7 to a near-optimal one, and use it to compute the
Morse homology groups of M7 in Subsection :f:._z, and obtain the following.

Theorem 1.3. The nontrivial discrete Morse homology groups of M7 are the following:
Ho(M7) = Z, Hi(M7) = Z3, and Ho(My7) = Z*°.

In Subsection 'é._g:, we augment the near-optimal gradient vector field on M~ even further and get the
following.

Theorem 1.4. There is a gradient vector field on M7 with respect to which there are 22 critical 2-
simplices, two critical 1-simplices, and one critical 0-simplex.

It follows from Theorem :_1-_3: that with respect to any gradient vector field on M, there is at least
one critical 0-simplex, and there is at least one critical 1-simplex. Also, there are at least 21 critical
2-simplices (as Hi(M7) has a torsion). This naturally raises the question whether these lower bounds
are sharp. However, we believe these bounc_is_ are not attainable, and thus a gradient vector field on M
that satisfies the requirements of Theorem 1.4 is indeed an optimal one. We pose this as a conjecture
(Conjecture 5:].') in the Conclusion section.

2 Preliminaries
2.1 Basics of combinatorics and graph theory

An abstract simplicial complex (or simply, a complex) is a (finite, nonempty) collection, say /C, of finite
sets with the property that if o € K and 7 C o, then 7 € K. We note that the empty set is always in /C.
If o € K, then o is called a simplex or a face of K. If the simplex o is a set of cardinality d + 1, then
the dimension of ¢ is d, and we call ¢ a d-dimensional simplex (or simply, a d-simplex). We denote a d-
simplex o by 0(¥) whenever necessary. The dimension of a complex /C, denoted by dim(K), is the largest
dimension of its faces. The vertex set of a complex K is defined as V(K) = Uyexo (i.e., the collection
of all elements in all the faces of ). The elements of V' (K) are called the vertices of the complex K.

Any complex has a unique (up to a homeomorphism) geometric realization. However, we don’t dif-
ferentiate between a complex and its geometric realization while discussing its topological properties; it
should be understood from the context.

The f-vector of a complex K is the integer sequence (fo, ..., faim(x)), Where f; is the number of
i-dimensional faces of KC. The Euler characteristic of K, denoted by x(K), is given by

A (simple, finite, undirected) graph G is an ordered pair of (disjoint) finite sets (V(G), E(G)), where
E(G) C{e CV(G) : le| = 2}. The sets V(G) and E(G) are called the vertex set and the edge set of the
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graph G, respectively. We call an element of V' (G) a vertex of G and an element of E(G) an edge in G. If
e = {x,y} is an edge, then z and y are endvertices of the edge e. Also, we denote the edge e = {z, y} by
xy (or, yx) for the sake of brevity. We note that a graph can be viewed as an abstract simplicial complex
of dimension 1 or less (with the vertices and the edges being considered as O-simplices and 1-simplices,
respectively), and vice versa.

A complete graph with n (> 1) vertices is a graph G with |[V(G)| = n and E(G) = {e C V(G) :
|e|] = 2}. This graph is unique (up to a graph isomorphism), and we denote it by K.

A matching « in a graph G is a set of edges with the property that if the edges e; and eq are in «,
then e; Nes = B (i.e., e; and es don’t share an endvertex). If the vertex z is an endvertex of an edge
in a matching o, then we say a covers or matches x, and otherwise, x is uncovered or unmatched by
a. Moreover, we say the matching « matches = with another vertex y if the edge xy is in a. A perfect
matching is one that covers all the vertices of the graph.

We note that the collection of all matchings in a graph G is an abstract simplicial complex, and we call
it the matching complex of G. In particular, for all n, we denote the matching complex of K, by M,,. We
may verify that for all n, dim(M,) = | 3] — 1, and if (fo,..., f{»|_1) is the f-vector of M,, then for

alli € {0,...,|%] — 1}, o ) oo
fi:W(2(i+1))(i+1 ) .1

Example 2.1. Let V(K,) = {1,...,n}. We describe (the topology of) M,,, for all n up to 8.
1. M, = {0}.
2. My = {0,{12}}, which is a single point.
3. M3 = {0, {12}, {13}, {23} }, which is the space with three distinct points.

4. The maximal simplices of My are {12, 34}, {13, 24}, and {14, 23}. Thus, My is a space with three
mutually disjoint 1-simplices, which is homotopy equivalent to the space with three distinct points.

5. As dim(M5) = 1, the complex M5 can be viewed as a (connected) graph with the vertex set
{ij :4,5 € [5],7 < j} and the edge set {{ij, kl} : i,5,k, ¢ € [5],i < 4,k < €,{i,j} N {k, ¢} = 0}.
This is the well-known Petersen graph as shown in Fig. :1:

Any connected graph G is homotopy equivalent to a wedge of & circles, where k is the cyclomatic
number (also known as the circuit rank or cycle rank) of the graph, which is the number |E(G)| —
|V (G)| + 1. Thus, M35 is homotopy equivalent to the wedge of 15 — 10 + 1 = 6 circles.

Here we also recall that the cyclomatic number of a connected graph is the same as the first Betti
number of the graph when considered as a simplicial complex.

6. Although dim(Mg) = 2, we observe that each 1-simplex in Mj is contained in exactly one 2-
simplex. By the notion of (elementary) collapses in topology (?911%_&{197:32, Chapter 1), the complex
Mg deformation-retracts to a complex of dimension 1. Thus, Mg is also homotopy equivalent to a
(connected) graph, and subsequently, to a wedge of k circles. Here we determine %k from the Euler
characteristic (which is a homotopy invariant) of Mg. If (fo, f1, f2) is the f-vector of Mg, then
from Equation (:_2-._1'), fo=15, f1 =45, fo = 15, and thus 1 — k = x(Ms) = fo — f1 + fo = —15.

Therefore, Mg is homotopy equivalent to the wedge of 16 circles.
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Fig. 1: The matching complex M5 is the Petersen graph.

zeroth, first, and second homology groups of My are Z, Z3, and Z?°, respectively (see Subsec-
tion :é_f_i:)

8. My is homotopy equivalent to the wedge of 132 spheres of dimension 2 (follows from Bjorner et al:

(1994); see Example 3.3 below for a discrete Morse theoretic approach).

2.2 Simplicial homology

First, we need to introduce the notion of an orientation of a simplex. An orientation of a simplex is given
by an ordering of its vertices, with two orderings defining the same orientation if and only if they differ
by an even permutation. We denote an oriented k-simplex consisting of the vertices zg, x1, . . ., Tk, With
the orientation given by the increasing ordering of the indices, by [z, 21, ..., 2;]. We usually choose
and fix an ordering of the vertices of the complex to begin with, and assign each simplex the orientation
corresponding to the induced ordering of its vertices. In other words, if o = {xzo,21,..., 2} is a k-
simplex of a complex K, and zp < 21 < --- < xj with respect to the chosen order on V (K), then in
order to avoid notational complicacy, we denote the oriented k-simplex [zg, 21, ..., x| by o as well.

A k-chain in a complex K is a finite formal sum 3 ¢;0;, where each ¢; € Z and each o; is an oriented k-
simplex, with the notion that an oriented simplex is equal to the negative of the simplex with the opposite
orientation (e.g., [z, Z1, T2, . .., x| = —[T1, Zg, T2, . .., T]).

We denote the free abelian group generated by all k-simplices of a complex KC, i.e., the group of k-
chains, by C%(K). We now define a homomorphism 0y, : Ci(K) — Ci_1(K) called the boundary

operator. If o = [xg, x1, ..., x1], considered as a basis element of C(K), then
k
On(0) =D (=1)'[wo,. .., T, .., wx],
=0
where [xq,...,Z;, ..., x| is the oriented (k — 1)-simplex obtained from o after deleting x; (and with the

induced orientation). We then extend 0y, linearly to all k-chains. We also define Jy to be the zero map.
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In Cj(K), the elements of the subgroup ker(9y) are called cycles (more specifically, k-cycles), and the
elements of the subgroup im(d1) are called boundaries (more specifically, k-boundaries).

We may verify that for all k& > 1, and for any k-chain 7, we have 0x_1 o 9x(7) = 0. In other words,
(C«(K), 0x) is a chain complex. The k-th homology group of X, denoted by H,(K), is given by

H; (IC) = kcr(ak)/im(8k+1).

The k-th Betti number of K is the free rank (i.e., rank of the torsion-free part) of Hy,(KC).

We refer to the book Elements of Algebraic Topology by I_M_u_n.kEe.d_ 1996) for background on algebraic
and combinatorial topology, and the book Graph Theory by Diestel ?@(_)1_(}) for background on graph
theory.

2.3 Basics of discrete Morse theory

First, we introduce the notion of a discrete vector field and a (discrete) gradient vector field on an abstract

Definition 2.2 (Discrete vector field). A discrete vector field V on an abstract simplicial complex K is a
collection of ordered pairs of simplices of the form («, 8) such that

) aC B,
(ii) dimension of the simplex [ is 1 more than that of «,
(iii) each face of K is in at most one pair of V.

If the simplex oP) is paired off with the simplex S(+1) in a discrete vector field (i.e., the pair of
simplices (a(p),ﬂ(p“)) is an element of the discrete vector field), then we denote it by o — [ (or
b — a).

Given a discrete vector field V on a simplicial complex /C, a V-path is a sequence of simplices

d) (d+1 d) H(d+1 d) pd+1 d
ag” . 85, ad® B g B ol
such that for each ¢ € {0, ...k}, («;, 8;) € Vand 8; 2 «;41 # «;. We represent such a path diagram-
matically as below

ag Bo (o%] B1 e o Bk Okt 1

(in the diagram above, (41 — o(®) implies 3 D «). We say such a path is a nontrivial closed path if
k> 0and agy1 = ap.

Definition 2.3 (Gradient vector field). A gradient vector field on a simplicial complex /C is a discrete
vector field V on K which does not admit nontrivial closed V-paths.

For a gradient vector field 'V, when it is clear from the context, we sometimes call a V-path a gradient
path.

Let V be a gradient vector field on a simplicial complex C. We call a nonempty simplex « a critical
simplex (with respect to V) if one of the following holds:
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(i) « does not appear in any pair of V, or
(i) «is a0-simplex and (), ) € V.

We recall that a CW complex is a topological space built recursively by gluing cells (which are homeo-
morphic copies of balls) of increasing dimension. The fundamental theorem of discrete Morse theory is
as below.

Theorem 2.4 (Formarn (4-9-9_23, :_2-(_)622)) If K is a simplicial complex and 'V is a gradient vector field on K,
then K is homotopy equivalent to a CW complex with exactly one cell of dimension p for each critical
simplex (with respect to V) of dimension p.

The following is an important corollary of Theorem 2:4

that the only critical simplices are one 0-simplex and k simplices of dimension d, then K is homotopy
equivalent to the wedge of k spheres of dimension d.

Theorem :_2-_21: implies that the topological information pertaining to K would be concise and easier to
compute if the number of critical simplices of each dimension, with respect to V, is as low as possible. If
m,; is the number of i-dimensional critical simplices of X, and b; is the i-th Betti number of /C, then we
have the following inequalities.

The weak Morse inequalities: [f d is the dimension of K, then

(i) foreachi € {0,1,...,d}, m; > b,

(ii) mo —my+ -+ (=1)%mg = by — by + -+ + (=1)b,.
The strong Morse inequalities: For each i > 0,

mi —mi—1+ -+ (=1)'mg > by — bi—1 + -+ + (—1)"bo.

We call a gradient vector field a perfect gradient vector field if m; = b; for all i. Since b; is the free rank
of the i-th homology group of /C, it follows that no perfect gradient vector field exists on K if a homology
group of K has torsion. Moreover, a perfect gradient vector field on a complex may not exist even when all

of critical simplices is the least possible (in comparison with all other gradient vector fields on the same
complex). Here we note that the problem of finding an optimal gradient vector field (equivalently, finding
a gradient vector field of the highest cardinality) on a given complex is not a computationally easy problem

linear algorithm to find optimal gradient vector fields on (discrete) 2-manifolds was provided by Lewiner
et al. (2003H). Although this algorithm can be extended to CW complexes of dimension (up to) two
without the manifold property (an example of such a complex, in relation to this article, is the matching
complex Mr), the resulting gradient vector field may be arbitrarily far from the optimum.

The following is a useful result to augment a given gradient vector field on a complex (i.e., to reduce
the number of critical simplices) by “cancelling” a pair of critical simplices.
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contained in (3, say a((Jd), to «, then there is a gradient vector field V' on K such that the critical simplices

with respect to V' remain the same, except that o and 3 are no longer critical. Moreover, V' is same as V
except along the unique V-path from «q to a.

A sketch of a proof is as follows. Let the unique V-path from o to « be

d) (d+1)  (d) p(d+1 d) H(d+1) (d
al?, s ol gD al® B ol = a
Thus, we have the following diagram.
B o Bo 3} B ag Br Q1 =«

We get V' from V by reversing the arrows (with — becoming +~ and ~— becoming <) in the diagram
above.

B ag Bo aq B1 a oy, Br Qg1 =

In other words,

V= (V\ {(O‘nﬁz) S {Oalv"'vk}}) U {(aiJrl,ﬂi) S {0715"'ak}}|—| {(O‘Oaﬂ)}

(U denotes the union of disjoint sets). The uniqueness of the V-path from ag to « guarantees that V' is
also a gradient vector field on . Moreover, it implies that « and 3 are not critical with respect to V',
while the criticality of all other simplices remains unchanged.

The following allows us to apply the technique above to cancel several pairs of critical simplices simul-
taneously.

there is a unique V-path ~; from a (d; — 1)-simplex contained in the critical d;-simplex f3; to the critical
(d; — 1)-simplex ;. If there is no non-identity permutation w of r elements such that there is a V-path
from a (d; — 1)-simplex contained in f3; to o,y for all i € {1,...,r}, then reversing all the V-paths ;
(to cancel the critical pair o; and [3;) would still produce a gradient vector field on K.

2.4 Discrete Morse homology

Let K be an abstract simplicial complex and V be a given gradient vector field on K. Let us fix an ordering
on V' (K), which induces an orientation on the simplices.

First, we need to introduce the notion of the incidence number between two oriented simplices of
consecutive dimensions. Let § = [zg,21,...,x)] be a k-simplex. If & = [xg,...,Z;,..., 2] is a
(k — 1)-simplex (contained in /3), then the incidence number between 3 and «v is (—1)%, and we denote it
by (3, ). Otherwise, if « is a (k — 1)-simplex such that o« ¢ 3, then we define (5, a) to be 0.

Now, let d) od d) o(d d d d

o AP ol G ol gD o0

k—1 k—1

m(y) = [T (=D)(Bi i) (Bi airr) = (=1)F [ [ (i, i) (Bi, i) 2.2)

i=0 =0
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We observe that, for all 4, both (8;, o), (5;, ai+1> € {—1,+1}, and thus m(y) € {-1,+1}.

Let T'(¢’, o) be the set of V-paths starting at o’ and ending at o. Let us denote the free abelian group
generated by all critical (with respect to V) k-simplices of K by Cr (K). For a (oriented) critical k-simplex
T, first we define a boundary operator Dk on T as below, and then extend it linearly to O : C’k(IC) —

Croor(K).

5k(7) — Z n(T(k)vg(kfl)) . U(kfl), 2.3)
o critical
where
n(r,0) = Z(T(k),ol(k_1)> Z m(7y). 2.4
o'CT vyel'(e’,0)

is a chain complex, and we call the homology of this chain complex the (dlscrete) Morse homology of
(with respect to the chosen gradient vector field V).

(C.(K), 8*) is homotopy equzvalent to the simplicial chain complex (C,.(K), 0x). Consequently, the
discrete Morse homology, which is independent of the chosen gradient vector field, is isomorphic to the
simplicial homology, i.e.,

Hyp(C.(K),8.) = Hi(K), forall k > 0.

3 Construction of a gradient vector field on M,,

In this section, we construct a gradient vector field on M,, for n > 5, which doesn’t admit any critical
simplices of dimension up to (and including) v,, — 1, except one unavoidable critical 0-simplex. For the
rest of the article, we implicitly assume n > 5 whenever we talk about M, in general.

For a positive integer k, we denote the set {1, ..., k} by [k]. We partition the vertex set V(K,,) into
[ %] sets, and label the vertices of /,, depending on the part they belong to as below.

1. Forn = 3m, V(K,) = Vi U...UVy, where V; = {v{” o{" ("} forall i € [m).

2. Forn = 3m+1, V(K,) = Vi U...U Vi1, where V; = {0\, 0{" 0{"} forall i € [m], and
Vg1 = {o{™ "V},
3. Forn = 3m+2, V(K,) = Vi U... U Vipy1, where V; = {0\, 0{" 0{"} forall i € [m], and
(m+1) (m+1)
Vm+1 { » Ug }

We call an edge e an i-level edge (or simply, a levelled-edge) if both of its endvertices are in the same
Vi for some . Otherwise, if endvertices of e are in V; and V; with ¢ # j, then e is called a cross-edge
(between V; and Vj) (see Fig. :2:).

First, we define the following discrete vector fields on M, :

= {(a, all {v;l)v,il)}) :a € M, o covers only v\ of Vi, {i, j, k} = [3]} :

= {(a, al {vél)vél)}) : « € M, o leaves entire V; uncovered}
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Viir E. e véerl)J

|4 [. vil) [ ) vél) [ ] vgl)J

Fig. 2: The partition of V (K3my2) into m + 1 levels. Here, véi)vy) is an i-level edge and fuéiil)v;iﬂ) is a cross-
edge between V;_1 and V4.

(see Fig. 3 and Fig. Ei).

v [

Vi [. e » e o vél)J Vl[ oV » s . vgl)}

) a U {ofo{V}

Fig. 3: The matching « covers only fuél) of V1. Thus, « is paired off with o« LU {fuil)vél)} in M.

Vi [. e ® o vél)J Vi [. oV ) ¢——e vgl)}

@ aU {vyes}
Fig. 4: The matching o leaves entire V1 uncovered. Thus, « is paired off with o LI {vél)vél)} in MY
Let M; = M/ U MY. We note that M, is also a discrete vector field on M,,. Let U; denote the set of

all matchings in K, that are not paired off in My, i.e., Uy = {« € M,, : « does not appear in any pair of
M }. We observe that « € Uy if and only if one of the following holds:



Matching complexes via discrete Morse theory 11

(1) atleast two vertices of V; are matched by « with vertices outside V7,

v(l)}

g

(if) o contains the edge vf)vgl), where ¢ € {2,3} and « doesn’t cover the vertex v € V7 \ {vil)

(see Fig. i'_S:).

Vi [. oV » w§V » vgl):‘ Vi [.\vgl) ® " . vél)]

(63}
Q2

Fig. 5: The matching o1 matches vél) and v_gl)

(1)
2

of V1 with vertices outside V1, whereas a2 contains the edge vgl)vél),

but leaves v, uncovered. Thus, both a1, a2 € Us.

Next, following the same scheme as before, we define the following discrete vector fields on M, :
h= {(a, all {vj(?)v,(f)}) : o € Uyq, o covers only ”52) of Vo, {i,j, k} = [3]} ,
b= { (a, al {vf)véz)}) : o € Uy, a leaves entire V5 uncovered} .

Let My = M/}, LU MY (which is also a discrete vector field on M,,) and Uz = {« € M,, : o does not
appear in any pair of M; LI Ms}. Suppose o € U;. Then a € Uy if and only if one of the following
holds:

(i) atleast two vertices of V> are matched by v with vertices outside V5,

(ii) « contains the edge v§2)v§2), where i € {2,3} and o doesn’t cover the vertex v € V2 \ {1)52) v@)}.

(2

In general, following the same scheme as above, we get a sequence of discrete vector fields My, ..., M,
on M,, and a family of subsets U; 2 Uz D ... D U, of M, such that Uy = {« € M,, : « does not
appear in any pair of My LI. ..UMy}, forall k € [m]. We note that for any k € {2, ..., m}, the discrete
vector field M, may contain only pairs of matchings of the form (v, & LI {e}) where both & and oLl {e}
are in Up_q.

If n = 3m + 2, we define another discrete vector field on M,,, viz.,

M1 = {(a, al {U§m+1)v§m+l)}) . & € Uy, o covers neither v{™ ™) nor Uéerl)} .

Forn=3mor3m+1,let M = My U...UM,, andforn =3m+2,let M = My U...UMp41.
We note that M as defined above is a collection of pairs of matchings in K,,, and thus M also depends
on n. To make the notation less cumbersome, we avoid adding the parameter n to M.

From the construction of M, we make the following observation.
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Observation 3.1. For any n, the following hold.
1. M is a discrete vector field on M,,.
2. If (U {e}) € M, then e is an i-level edge, for some i € [[5]].
We now prove that M is a gradient vector field on M,,.

Proposition 3.2. For all n, the discrete vector field M is a gradient vector field on M,,.

Proof: Let, if possible, ag, By, a1, B1, - - -, Qr, Br, arp1 = g be a nontrivial closed M-path, and let us
denote it by . Let 8y = ap U {ep} and an = fo \ {e}} (with eg # ep).

a0 L{eo} 8o —{eo} o

1 B1 e o Br Qry1 = Qg

From Observation E-._I:, it follows that e is a levelled-edge. Now, if e is a cross-edge, then from the
construction of M, it follows that e}, ¢ oy, for all p > 1. This contradicts the assumption that v is a
nontrivial closed M-path as ef, € a. Thus, ¢, is also a levelled-edge.

Let eg and ef, be an io-level edge and an 7;-level edge for some 4g,i1 € [[%]], respectively. Thus, it
follows that (ayg, 5p) € M, and both ay, By € Uy, for all k& < ig.

We note that i # 41 as both eg, e, € 5. Now, if i1 > 7o, then we observe that a;; matches the vertices
of V1 U ... UV, in exactly the same manner as [y does. This implies, just as 3y, the matching a; € Uy,
for all k& < ig. Since (ag = Bo \ {eo}, Bo) € M, we have (aq \ {ep},a1) € M, a contradiction as
(a1, B1) € M. Therefore, we have i1 < ig.

If ¢, = v\ 0" (where k, ¢ € [3]) and the vertex v{") (where m € [3] \ {k,€}) is matched by o
(with a vertex outside V;,), then from the properties of simplices appearing in U;,, we have ag ¢ U;,,
a contradiction. Similarly, if ¢/ = v{"v{"") and the vertex v is not covered ay, then again we have
ag ¢ U;,, a contradiction.

So suppose e, = vgn)v,(;l) (where k € {2,3}) and the vertex vyl) (where ¢ € [3]\{1, k})is not covered
by «, and thus not covered by a; as well. In this case, 5, = a1 U {véll)vém} and (a1, 81) € M;, (we
note that 5; doesn’t contain 66, and thus neither does «2). By a similar argument as before, o is of the
form 1 \ {€}} and B is of the form ay U {ex}, where e} and e are two is-level edges (distinct from
each other) with i2 < 1. Thus, ea # e, and consequently ef, & 32, 3.

U{eo} —{e,=0{1)pl1)y L{$1)p{)} —{e} U{ez}

) o (1) o (1) P 22 )

(with 79 > 71 > 12 > --- and so on)

Qg B2 e Oyl

By an inductive argument, we conclude that e, ¢ ap, Bp, for all p > 1. Thus, o, 41 # g as ey € ap,
which is a contradiction. O

We now show that the constructed gradient vector field satisfies the requirements of Theorem i:Z

Proof of Theorem E-._Z: We claim that the gradient vector field M on M,, doesn’t admit critical simplices
of dimension up to v, — 1 for any n, except one O-simplex. From the construction of M on M,,, we
observe that if & € M,, is not paired off in M, then for each ¢ € (%1 , the matching « leaves at most one
vertex of V; uncovered. Therefore, o leaves at most [ 5 | vertices of the graph K, uncovered. This implies

o> o [21) > 25 1o
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i.e., the dimension of « is strictly greater than v,, — 1.

Also, the 0-simplex £ = {vél)vél)} is paired off with () in M, and thus ¢ is the only critical O-simplex.
Therefore, all simplices of M,, of dimension up to v, — 1, except £, are not critical with respectto M. [

By Theorem 2}:, it follows that M, is homotopy equivalent to a CW complex with no cells of dimension
up to v, — 1, except one 0-cell. Thus, Theorem :f._ T: follows as a corollary of Theorem :I:Z However, we
remark that the existence of such a gradient vector field is in fact a stronger notion. Even when a complex
is homotopically k-connected, it is not guaranteed that there is a gradient vector field on it, with no critical
simplices (except one 0-simplex) of dimension up to k. A well-known example is the dunce hat. It is a
contractible space (and thus simply connected), but no gradient vector field, with a 0-simplex as the only

Example 3.3 (Homotopy type of Mg). In order to determine the homotopy type of Mg, we consider the
gradient vector field M defined on Mg, and extend it to a perfect gradient vector field as follows. Let a.°
be a 3-simplex in Mg (i.e., a° is a perfect matching in Kg), which is critical with respect to M. From
the construction of M, it follows that all the edges in a° are cross-edges. Moreover, for any e € a°, the
2-simplex «° \ {e} is also critical with respect to M. Now, since a° is a perfect matching containing
only cross-edges, a® matches vgg) with a vertex outside V3, say v°. So v° is of the form v§i), for some
i € [2] and j € [3]. We extend M to a discrete vector field M° by adding the new pairs of the form

(a®\ {vgg)vo}, a°) to M (see Fig. 6), for each 3-simplex a® which is critical with respect to M.

V3 [1)%3) vég)] V3 [ vgg) .. » Uég):‘
/-
e Ly T o] nlfe Py ey
v [vﬁ” & Uém e —e v;gl)] Vi [v§1) v Uél) e e v:(;)]
a® a®\ {o}”0°}

Fig. 6: The critical (with respect to M) 3-simplex a° is paired off with the critical 2-simplex a.° \ {vgg)vo} in M°.

Any M°-path ~y, which is not an M-path, contains a pair (0%('2)7 ﬁi(g)) € M\ M. If a;q1 (F ) is
any 2-simplex contained in 3;, then v does not extend beyond such an o1, as j3; is the only 3-simplex
containing cv; 1. This implies M is also a gradient vector field on Mg, and moreover, all the O-simplices,
1-simplices, and 3-simplices of Mg are paired off in M°. Thus, only critical simplices of Mg (with respect
to M?°) are some 2-simplices and exactly one O-simplex, viz., the matching {vél)vél)}. The number of
critical 2-simplices may be determined from the Euler characteristic of Mg (or, alternatively, by direct
counting). If (fo, ..., f3) is the f-vector of Mg, then from Equation (2.:],'), fo =28, f1 = 210, fo = 420,
f3 = 105, and thus x(Ms) = fo — f1 + f2 — f3 = 133. Therefore, by Theorem 2.5, we conclude that
Ms3 is homotopy equivalent to a wedge of 132 spheres of dimension 2.
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4 Homology groups of M,

4.1 Construction of a near-optimal gradient vector field on M-

We now consider the matching complex M as an example, and determine its homotopy type using tech-
niques developed in this article. Throughout the rest of this article, M stands for the gradient vector field
on M7 in particular, as constructed in Section 3

We extend the gradient vector field M to a more useful one as follows. Let o* be a critical (with respect
to M) 1-simplex containing two cross-edges between V7 and V5. Let v* be only vertex of V7 that is left
uncovered by a*. We observe that a* L {vig)v*} is a critical 2-simplex with respect to M. Thus, we may
extend the gradient vector field M to the discrete vector field M* by adding the new pairs of the form
(a*, o U {v§3)v*}) to M (see Fig. %), for each critical (with respect to M) 1-simplex a* containing two
cross-edges between V; and Vs.

‘/3{1153).] ‘/3{@53)5]

AP o e —— Ve N\ e e
L
ARTRE) o) = o) AR Mool = e Y|

Fig. 7: The critical (with respect to M) 1-simplex o™ = {vgl)vf), vél)vf)} is paired off with the critical 2-simplex

o U {v{® vV} in M*

Proposition 4.1. The discrete vector field M* is a gradient vector field on Mx.

Proof: Let, if possible, agp), (SPH), a§p>,5§p”>, ... ,a,(f), ,(CPH), al(szl = agp) be a nontrivial closed

M*-path. If p = 0, then it leads to a contradiction to the fact that M is a gradient vector field. So let
p=1

If (o, 3;) € M foralli € {0,1,...,k}, then again it contradicts the fact that M is a gradient vector
field. So without loss of generality, let («g, Bo) € M* \ M. In this case, a consists of two cross-edges
between V7 and V. Let ap = By \ {€’}, where €’ is an edge in ay. We note that if 5 = o U {e} and
(o, B) € M*, then e is either a levelled-edge or a cross-edge between V; and V3. This implies, for all
i € [k], ¢ ¢ B, and subsequently ¢’ ¢ a;41. In particular, ¢’ ¢ ay41. This leads to a contradiction, as
A1 = Q. O

4.2 Computation of (Morse) homology groups of M-

Throughout this subsection, we always assume the gradient vector field M™* on the matching complex M~
while discussing the nature of a simplex (i.e., criticality and other related notions). Also, hereafter, while
representing a simplex of M7 (i.e., a matching in K7) diagrammatically, we would not explicitly label the
vertices of K7 and the sets V7, V5, and V3 for the sake of simplicity, and so it should be understood from

the context. For example, we would represent the matching {vgl)vgz), vél)vgg), vél)véz)} (see Fig. :_7.) by
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N

Observation 4.2 (Characterization of critical simplices).

the following.

1. The only critical 0-simplex is & = {v(l)v(l)} (thus Co(M7) =2 7).

2. Crmcal 1- szmpllces are o1 = {v vél), ’Ulz)’U§2 }, oo = {v(l v2 , ’Ul 1132)} o3 = {U1 v3 ,

} and o4 == {v; 1)1)3 ), (2 32)}.
3. Critical 2-simplices are of the form {e1, ea, es} with one of the following.

(a) Each of e1, ea, and es is a cross-edge between Vi and V5 (there are 6 such simplices).

(b) Two of e1, es, and es are cross-edges between Vi and Vs, and the remaining one is a cross-
edge between Vo and V3 (there are 18 such simplices).

Therefore, there are 24 critical 2-simplices.

(i1) (2)

First, we assign a unique label ¢(e) on the edge e = vj, as follows.

iljligjg, lf’Ll < iQ
1972117 ifig <1

0e) = .2]'2'13.17 iy <y |
11J1i272, ifi1 = 12,51 < j2
19J2t1J1, 1ifi1 =2, j2 < j1

Next, we introduce a total order < on the vertex set of the complex M7 (i.e., on E(K7)) by declaring

e1 < ey if and only if £(e;) < £(e2) in the lexicographic order. We assign each simplex the orientation

induced by this total order on V (M7), i.e., if « = {eg,e1,...,er} is a matching in K7 with ey < e; <
- < ey, then we denote the oriented k-simplex [eq, €1, . . . , €] also by a whenever needed.

4.2.1 Kernel and image of d,
If o is a critical 1-simplex and a(®) C o, then o is one of {v{”v{V}, (VMoV}, {1P0{?}, and
{v§2)v§2) }. We note that one of the following two cases holds.

Casel: o = {v§1)v§1)}, where i € {2, 3}
The only possible M*-path that starts from «, and ends at £ = {vél)vél)} is the following.

N (oMM, o@Dy} (@ (oDu{D | oy ¢

Case2: a = {v?)vl@)}, where i € {2,3}
The only possible M *-path that starts from «, and ends at £ = {vél)vél)} is the following.

@ (P oy — ¢



16 Anupam Mondal, Sajal Mukherjee, Kuldeep Saha

Let us consider the critical 1-simplex o1 = {vl vél), vlz)v§2 }. Let y; be the unique M*-path that

starts from {vgl)vé )} (C 01),and ends at £ = {v21)031)} (from Case 1 above), i.e.,

1 (+1) (+1)

- -1
M1 Qo = {v%”vén} ( Bo aq b1 "

042:fa

where 8y = {v(l vél), vé 032)} g = {v2 v } b= {v2 v3 ,vé 032)} Here we have also included
(Bi, aj), i.e., the incidence number between the oriented simplices 3; and «; (with ¢ < j <7+ 1), above
the arrow connecting 3; and ;. Considering o, B9, a1, 51, and a as oriented simplices, the multiplicity
of v; (from Equation @.:Z)),

m(y1) = (= (Bo, o) {Bo, a1))(—(B1, 1) (b1, az))
(=(=DEHED(=EHD(=1)) = +1.

Let 7y, be the unique M *-path that starts from {v?)vém} (C 01),andends at§ = {vél)vél)} (from Case 2
above), i.e.,

(+1)
12+ 0 = {0l s g = fuof oy L af = ¢,
Considering o, ), and o/} as oriented simplices, the multiplicity of 7o (from Equation (2.2)),
m(72) = _<667a6><ﬁ67a/1> = _(+1)(_1) =+1

Therefore, from Equation (2._-3) and Equation (2.:4),

d1(o1) = ({o1, ) - m(1) + (01, 00) - m(72)) - §
(=1)(+1) + (+1)(+1)) - € = 0.

Analogous computations yield o (02) =0, 51(03) =0, and &, (04) = 0. Thus,
ker(él) = <0’1,0’2,0’3,U4> = él(M7) and 1m((§1) =

Consequently, the zeroth (Morse) homology group of M7 is Z.
4.2.2 Image of 0,

To begin with, let us consider a critical 2-simplex and compute its image under the boundary operator Do
in the following example.

Example 4.3. Let us consider the critical 2-simplex 1, := {021)05 ), vé )vg ), (2 )v§3)} as shown below.

7“IH
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Let us determine all possible M*-paths that start from a 1-simplex contained in 7, and end at a critical
1-simplex. First, a 1-simplex contained in 7; is one of the following three.

ol I yia = | IRERTENE

In Fig. :_8, we describe all possible M*-paths that start from )1, and end either at a critical 1-simplex
or at a 1-simplex that is paired off with a 0-simplex in M*.

' ' | ..

| .. o
/ / /
%:IHL: IHL :HL%:H¥ :H.H¥ D
Y11

Fig. 8: All possible (maximal) M*-paths that start from 1)11. Note that each of them ends at a 1-simplex that is
paired off with a O-simplex in M™.

In Fig. :9, we describe all possible M *-paths that start from )12, and end either at a critical 1-simplex
or at a 1-simplex that is paired off with a 0-simplex in M*.

L - | ..
I . -
vl

I.—.H..—.

|

N O

Y12

Fig. 9: All possible (maximal) M™-paths that start from t12. Note that each of them ends at a 1-simplex that is
paired off with a 0-simplex in M™.

In Fig. :_1-(_5, we describe all possible M*-paths that start from 113, and end either at a critical 1-simplex
or at a 1-simplex that is paired off with a 0-simplex in M*.

We observe that there are exactly two M*-paths that start from a 1-simplex contained in 71, and end at
a critical 1-simplex as shown in Fig. i i (see also Fig. {4 and Fig. 23 in Appendix A).
Let v, be the unique M*-path that starts from 13, and ends at o4 (see Fig. :_1-(_)l and Fig. :1-1_:), ie.,
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L
( ATl Tl
: . T D

11611 < |
o TS PRt

Fig. 10: All possible (maximal) M *-paths that start from ¢/13. Note that only two of them end at a critical 1-simplex.

+1 +1 +1 +1 +1 -1
M P13 = o Sa Bo i o i B1 i) Qo i) B2 - ag = 04, where
a0 = [v508 u§u{P) = yus, Bo = [P0l ol iVl
on = [Pl v i), B = ol vl oD )]
Qs [vél)vf), v§2)v§2)], Bo = [vil)vgl),vél)vf), v§2)v§2)]
o3 = [vgl)vél), v§2)v§2)] = 04.
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P A0 S el a b iia bil e binbeb

I P13 !

Fig. 11: Only two possible M *-paths that start from a 1-simplex contained in 7, and end at a critical 1-simplex.
By Equation @.-_Z), the multiplicity of 71,

m(y1) = (=(Bo, @0){Bo, 1)) (= (B1, 1) (B1, a2) ) (— (B2, a2) (B2, a3))
= (—(+FD)H)(=FD)(FD))(=(F1)(=1)) = +1.

Let v, be the unique M *-path that starts from 113, and ends at o; (see Fig. :l-(_i and Fig. :1-1_:), ie.,

Yo 1 P13 = o Sy Bo = fa%] i B1 i) Qo S B2 =D ag = o1, where
=[50, 0§05 = s, Bo = oot of Vo, v g
- B0 A By — 0 0, )
= iV 03 2 oDy, PR AONCINONONONO!
[( ’U2 ,v§2)U§2)]=01.

By Equation (2.-_2), the multiplicity of 7o,

m(y2) = (—(Bo, @0){Bo, 1)) (= (B1, 1) (B1, a2) ) (— (B2, a2) (B2, a3))
= (D)) (=HD(FD))(=(F1)(-1)) = ~1.

Therefore, from Equation (2.:3) and Equation (2.:4),

O2(m) = ({1, ¥13) - m(m1)) - 04 + ((m1,¢13) - m(72)) - &
= ((+1)(+1))) - o4 + ((+1)(=1)) - 01 = =01 + 04.

Considering all possible M *-paths that start from a 1-simplex contained in a critical 2-simplex, and
end at a critical 1-simplex (refer to Appendix -A) we may compute the i images of all twenty-four critical
2-simplices under the boundary operator J2. These are all listed in Tab. -l. We describe an algorithmic
scheme to compute the images of critical 2-simplices under Dy in Appendlx E and the computation of
boundaries of two more critical 2-simplices following this scheme is also discussed there.
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52 ()

52(77)

3

52(77)

52 (n)

(—0'1+Gl+
02 — 03 +
04 — 04) =
02 — 03

01—09—03

X/

0'1—0'3+O'4

*r——o
/ )
[}

0'2—|—0'3—0'4

(o1 — o2 +
o9 + 03 —
03 —04) =
01 — 04

BN

—01+ 09 —
04

K/

—01 + 04

—02 + 03

(o1 +
g9 + g3 +
04 — 04) =
—01+02+
03

=

—01+ 03—
04

e

—01+ 02+
03

/2

/.

01—02+04

E

(o1 +
o1 — 02 —
g3 +0’4) =
—02 — 03+
04

-

—02— 03+
04

02 — 03

01— 04

T

(01 — 02 +
03 — 03 +
0'4)20'1—
o9 + 04

) e

e

—01+ 04

—01 409 —
04

01—02—03

a

(o1 —
g9 + g9 +
03 —04) =
—01+ 03—
04

—092 + 03

'></ Z/ ></

o9+03—04

2|

01—03+04

Tab. 1: Images of all critical 2-simplices under the boundary operator .
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4.2.3 First and second homology groups of M-
We have ker(él) = C’l(M7) = <01 ,02,03, a4>, and from Tab. -1:, we conclude that im(ég) is generated

by 01 — 04,02 — 03, 01 — 09 — 03, 01 — 02 + 04, 01 — 03 + 04, and o3 + 03 — 04. Thus,

Hy(M7)
=~ kcr(él )/im(52)

[l

<01702,03,U4>/<01 — 04,02 — 03,01 — 03 — 03,01 — 02 + 04,01 — 03 + 04,02 + 03 — 04>

<01,ag>/<01 — 209,20, — 02>
(on)/(3o)

22/32 = Zg.

[l

12

Finally, from Tab. -'_L', we may verify that out of images of all 24 generators of C'Q(M7) under the
boundary operator s, there are exactly four linearly independent ones. Therefore, rank(ker(dz)) =
24 — 4 = 20. Hence, Ha(M7) = Z?°. This concludes the proof of Theorem ]1.3.

Remark 4.4. After computing H; (M~7), one may also compute the second homology group of M7 using
the Euler characteristic of M7 as follows. If f; is the number of i-dimensional simplices of M7, then
from Equation (2.1), fo = 21, fi = 105, and fo = 105 (with f; = 0, for all i > 3). Thus, x(M;) =
Zi>0(—1)ifi = 21 — 105 + 105 = 21. If b; is the i-the Betti number of M, then by = 1, by = 0,
and b; = 0 for i > 3 (since My is a connected 2-dimensional complex with H; (M7) = Z3). Thus,
by = x(Mz7) — by = 20. Since Ha (M) is torsion-free, we get Ho(M7) = Z2°.

4.3 Further augmentation of the near-optimal gradient vector field

We note that M* is a highly efficient (near-optimal) gradient vector field on M7 as, from Observation :3‘:._2,
it follows that

(i) out of 105 simplices of dimension 2, only 24 are critical (with the second Betti number being 20),
(i) out of 105 simplices of dimension 1, only four are critical (with the first Betti number being 0),
(iii) out of 21 simplices of dimension 0, only one is critical (with the zeroth Betti number being 1).

However, we may augment M™* even further to one that satisfies Theorem iZ‘:

Proof of Theorem 1.4: From Fig. [ 1 and Fig. 25 (Appendix |B), we observe that there is

(i) aunique M *-path that starts from a 1-simplex (viz., 1)13) contained in the critical 2-simplex 7, and
ends at the critical 1-simplex oy,

(ii) a unique M *-path that starts from a 1-simplex (viz., 1)22) contained in the critical 2-simplex 72, and
ends at the critical 1-simplex o3,

as shown in Fig. :1-2_: Moreover, we also observe that there is

(i) no M*-path that starts from a 1-simplex contained in 7;, and ends at o33,
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%HHE I IH< | IH< I IH</I\IH./?H/T\HK\

~° ~
m Y13 o
>< ° x ° &/’ ~_° ~_° ~_°
2 ) g3

Fig. 12: Unique M ™-paths starting from a 1-simplex contained in 71 and 72, and ending at o4 and o3, respectively.

(ii) no M*-path that starts from a 1-simplex contained in 72, and ends at 4.

Thus, the requirements of Theorem Q S are satisfied. This allows us to apply the technique of cancellation
of a critical pair by reversing paths (Theorem 2 7") twice, and end up with a gradient vector field M**
from M* such that 71, 04, and 72, o3 are not critical with respect to M**, while the criticality of all other
simplices remains unchanged. Thus, with respect to M**, there are 24 — 2 = 22 critical 2-simplices, two
critical 1-simplices (viz., o1 and o02), and one critical 0-simplex (viz., £). O

By Theorem 2-._4-1:, it follows that M~ is homotopy equivalent to a CW complex with one 0-cell, two
1-cells, and twenty-two 2-cells.

5 Conclusion

As Hy(M7) is nontrivial, with respect to any gradient vector field on M7, there is at least one critical
1-simplex. As a consequence, from the Morse inequalities (Theorem 2.:6), it follows that with respect to
any gradient vector field on My, there are at least 21 critical 2-simplices.

We note that (from Appendix L_&:) there is an M*-path from a face of a critical (with respect to M*)
2-simplex, say 7, to the critical 1-simplex o if and only if there is an M*-path from a face of 7 to oy4.
Suppose we first cancel the critical pair 77(2)_, ggl), where i € {1,4}, by reversing the unique gradient
path  from a face of 7 to o; (by Theorem 2.7). Then in addition to an M*-path (if one exists) from
a face of another critical 2-simplex 7’ to o5_;, there is also a new gradient path (with respect to the
augmented gradient vector field) from a face of 7’ to o5_; that passes through reversed . Thus, the
uniqueness of possible gradient paths (with respect to the augmented gradient vector field) from a face
of any remaining critical 2-simplex to o5_;, is no longer viable. So, out of o1 and o4, at most one can
be cancelled. Likewise, at most one of o2 and o3 can be cancelled. Therefore, starting with M*, the
technique of cancellation of critical pairs can be applied at most twice. This motivates us to conjecture
that the augmented gradient vector field M**, which is obtained after applying the cancellation theorem
twice, is indeed an optimal one.

Conjecture 5.1. A gradient vector field on My with respect to which there are 22 critical 2-simplices,
two critical 1-simplices, and one critical 0-simplex, is an optimal one.

As mentioned before, in order to compute the (discrete) Morse homology groups of M7 in an efficient
manner, we constructed and worked with the near-optimal gradient vector field M* that not only admits
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a low number of critical simplices of each dimension, but also, more importantly, allows an efficient
(and human-comprehensible) enumeration of all possible gradient paths of interest. It would be another
problem of interest to determine how “far from random” the constructed gradient vector fields are.

Problem 5.2. Compare the efficacy of the gradient vector field M* (and the augmented one, M**) with

We also expect the techniques developed in this article to be useful for taking up problems of explor-
ing the topology of higher dimensional matching complexes. As discussed in this article, one potential
approach consists of the following two steps in order.

1. Extend the initial gradient vector field constructed in Section 3, which is optimal up to dimension
vy, — 1, to a sufficiently good (optimal or near-optimal) one. Some augmentation tricks used in this
article may be adapted for higher dimensions. For example, the augmentation used in Example :_)’-_ﬁ:
is applicable to any M5, and the augmentation used in Subsection '(_f_i: may be applied to any
M3 y1.

2. Using the efficient extended gradient vector field, (perhaps with the aid of computer implementa-
tions) compute the homology groups.

Appendix A M*-paths ending at a critical 1-simplex

Let us consider the critical 1-simplex o1 = {v%l)vél) , v§2)v§2)} as shown below.

)
—e .

—e .

If aél), 62), agl), £2), ey a,(cl), 122)7 a,(clll is an M*-path ending at o7 (i.e., ax4+1 = 01), then [y, is

one of the following three 2-simplices.

L]
M1 = k T2 = eo— T13 = x
*r——e ° *—e I *—e

In Fig. -'_1-3:, we describe all possible (following the diagram from right to left would make it clear)
M*-paths of the form

a(()l)7 (()2)70451), §2),...,a§€1), ](62) _ Tll?al(iZI — oy,

where « is contained in a critical 2-simplex 7 (possible choices of 7(?) are also included in the leftmost
column of the figure).
Similarly, in Fig. :141:, we describe all possible M *-paths of the form

1) 5@ oD g | o) O ()

@y 5 Py y Qg :7—12705194_1 =01,
and in Fig. :_1-5, we describe all possible M*-paths of the form

a(()l)7 éz),agl), %2)7 3 '70[;1), 122) _ 7-13,04;;21 -0,

where o is contained in a critical 2-simplex 7).



24 Anupam Mondal, Sajal Mukherjee, Kuldeep Saha

(n®) ) 85 @) B @)

4
/

/ :\‘ — k — —e °
> N S
. / A
\ \
\ / . )
Fig. 13: All possible M ™-paths of the form oz(()l), (()2), agl), Bf), R a,il), ﬂliz) = 71, a&)l = o1, withao C 7,

where 7 is a critical 2-simplex.
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(n®) (@) (652 @) B?) (as") (85 @)
X ]

N

NN

PRETT S

a .. -

T NI N S
1 RN

Fig. 14: All possible M ™-paths of the form a(()l), 652), agl), 652), e a,(cl), /3122) = T2, al(izl = o1, withag T 7,
where 7) is a critical 2-simplex.
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(n?) @) B @My 8 (@s") (857 @)

%

Fig. 15: All possible M ™-paths of the form a(()l), 652), agl), 652), R a,(cl), ,8122) = 713, a](izl = o1, withag T 7,
where 7) is a critical 2-simplex.
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Now, let us consider the critical 1-simplex oo = {v11)021), vi v32)} as shown below.

« o e

——e .

If aél), 62), (1), £ ), a,(cl), ,EQ), a,(clll is an M*-path ending at o2 (i.e., ax41 = 02), then [y, is

one of the following three 2- s1mp11ces

L]
To1 = >Y\- Tog = /_Q Tog = %
*r——e ° *—e *—e

In Fig. :fé, we describe all possible M *-paths of the form

(1)7 0 7 7ﬁ12)7"'7 ()7 ](62):T217a](€1<21:0'2

in Fig. :1-7_:, we describe all possible M *-paths of the form

(1)7 0 7 7ﬁ12)7"'7 ()7 ](62):T227a](€1<21:0'2

and in Fig. :IS, we describe all possible M*-paths of the form
1) 2 1 2 1) a2 1
of,8,a0, 87, afY B = oY)

= T23, ak+1 = 02,

where « is contained in a critical 2-simplex 7.

(@) @§ i) @) B (@3

>\ D
I\ N T e

Fig. 16: All possible M™-paths of the form a(()l), (()2), agl), B2, .., ag), ﬂ](f) = To1, a&)l = o2, withap C 7,
where 7 is a critical 2-simplex.
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Fig. 17: All possible M ™-paths of the form a(()l), 652), agl), 652), R a,(cl), ,8122) = To9, a](izl = o2, withag C 7,
where 7) is a critical 2-simplex.



Matching complexes via discrete Morse theory 29

(n®) @) B @My (B8 (@) (852 (@)

Fig. 18: All possible M ™-paths of the form a(()l), 652), agl), 652), R a,(cl), ,8122) = To3, a](izl = o2, withag C 7,
where 7) is a critical 2-simplex.
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Next, let us consider the critical 1-simplex o3 = {vf)vgl), viz)véz)} as shown below.

w

If aél), 62), agl), £2), ey a,(cl), ,EQ), a,(clll is an M*-path ending at o3 (i.e., ax4+1 = 03), then [y, is

one of the following three 2-simplices.

731 — k T3 — o—o/ 733 — lx .
~ ~ ~_>

In Fig. {9, we describe all possible M*-paths of the form
a(()l)7 (()2)’ agl), §2)7 o O[1(61), Igz) = 731, 0‘19421 — 03,
in Fig. Z-Q:, we describe all possible M *-paths of the form
04(()1)7 B(()2)a o‘gl) ; ﬂ§2)7 R O[;gl)a ](€2) = T32, O‘;;:;Zl = 03,
and in Fig. 2-1:, we describe all possible M*-paths of the form
04(()1)7 B(()2)a o‘gl) 3 ﬂ§2)7 R O[;gl)a ](€2) = 733, a;g];‘zl = 03,

where o is contained in a critical 2-simplex 7).

n®) @i B8 @M B ()

N
I .
SJ\XH&H'H

I 31 g3
\'\%'\/
o0

A

Fig. 19: All possible M ™-paths of the form a(()l), (()2), agl), Bf), e a,(:), ﬂf) = T31, a&)l = o3, withag T 7,
where 7 is a critical 2-simplex.
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(n®) @) B @My (B8 (@) (852 (@)

%

Fig. 20: All possible M ™-paths of the form a(()l), 652), agl), 652), R a,(cl), ,8122) = T332, a](izl = o3, withag C 7,
where 7) is a critical 2-simplex.
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(n?) @) B @My 8 (@s") (857 @)

RS S TS & R

Fig. 21: All possible M ™-paths of the form a(()l), 652), agl), 652), e a,(cl), /3122) = T33, al(izl = o3, withag C 7,
where 7) is a critical 2-simplex.
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Finally, let us consider the critical 1-simplex o4 = {vil)vgl), u§2>u§2>} as shown below.
e e
L
If aél), 562), agl), 552), ey oz,(cl), 122), oz;glll is an M*-path ending at o4 (i.e., ag+1 = 04), then G is

one of the following three 2-simplices.

T4l = >Y\. Ta2 = ./T\.
w

T4z = %\
~_°* ~r
In Fig. 2-2_;, we describe all possible M *-paths of the form

agl)v 62)5 o‘gl)aﬂ§2)7 R O[;gl)a ](62) = T41, O‘;;:;Zl = 04,

in Fig. 2-?1:, we describe all possible M *-paths of the form

a(()l)7 (()2)70451), §2),...,a§€1), Igz) _ 74270‘121421 — 04,

and in Fig. 2-4, we describe all possible M *-paths of the form

oW 3@ 1) 53 1) 52

_ 1) _
0 Py Q1 ", Py 7"'7ak y ML _T437ak+1_047

where « is contained in a critical 2-simplex 7.

0 @5 G50) @) GI) (@4

NG
N
SUSN L e
N e

SN

LV

')</ Z/ S )</

Fig. 22: All possible M ™-paths of the form a(()l), 62), agl), Biz), ..
where 7 is a critical 2-simplex.

2 1
Lol ,312 ) = 7, a;(H)l =

o4, With g C 1,
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(n®) @) B @My (8 (@s") (857 @)

° ° ~ ~
% T42 g4
]

Fig. 23: All possible M *-paths of the form oz(()l), 552), agl), Bf), cen a,(:), ﬂliz) = T4o, a&)l = 04, with g € 1,
where 7 is a critical 2-simplex.
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n®) ) (652 @My (8 (@) (852 (@)

7K
kﬁ

7

X

Fig. 24: All possible M*-paths of the form o, 557, a{", 87, ..., alV, B = 7us, o), = ou, with ao C 7,
where 7 is a critical 2-simplex.

Appendix B A scheme to compute the boundaries of critical 2-
simplices

First, in each figure in Appendix :A, above each arrow connecting ﬁi(z) and a§1) (with0<i<j<i+1),
we write the incidence number (53;, ;). Also, above each arrow from the critical 2-simplex 7 (leftmost
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column) to the 1-simplex oy, we write the incidence number (7, ap), as shown below.

(m,a0) (Bo,o) (Bo,a1) (B1,a1) (B1,a2) (Br—1,0K) (B, o) (Brt+1)
n ap Bo aq b1 a Qg B g1

Next, let us choose a particular critical 2-simplex 79. We describe a sequence of algorithmic steps to
compute d2(1)9) below.

Step 1: Pick a path from ng to a critical 1-simplex, say o;, in a figure of Appendix ,'A'
Step 2: Count the number of —1’s appearing above the arrows in the path. Let the count be 7.

Step 3: Count the number of non-critical 2-simplices in the path (i.e., the number of ﬁi(z)s). Let the count
be s. The contribution of this specific path to d2(1) is (—1)" 50

Step 4: Compute the contribution of each possible path from 7 to a critical 1-simplex in all the figures
of Appendix Al

Step 5: Sum of the contributions of all possible paths, from 7 to a critical 1-simplex, is Dy (o).

_ Let us consider a couple of critical 2-simplices and compute their images under the boundary operator
0o following the scheme above in the examples below.

Example B.1. Let us consider the critical 2-simplex 7, == {v 052), vél)v?), (2)053)} as shown below.

"

We observe that there are exactly two_M*-paths that start from a 1-simplex contained in 7, and end
at a critical 1-simplex (Fig. .18 and Fig. :19 in Appendix A.) as shown in Fig. 25: (along with the incidence
numbers).

RN R Ay
><\ ¥ o
772.+1\ +1 1 41
NI
Y22 o3

[L

Fig. 25: Only two possible M ™-paths that start from a 1-simplex contained in 72, and end at a critical 1-simplex.

* Let P, be the path from 73 to o2 via ¥ in Fig. :_2-5 There are two —1’s appearing in P; and there
are three non-critical 2-simplices in P;. Thus, P; contributes (—1)%"309 = —03 to d2(12).
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* Let P be the path from 72 to o3 via 122 in Fig. :_2-§: There are two —1’s appearing in P, and there
are two non-critical 2-simplices in P,. Thus, P, contributes (—1)2+203 = 03 to O2(12).

Therefore, 52(172) = —09 + 03.

Example B.2. Let us consider the critical 2-simplex 73 = {051)05)2)’ vél)vf), vg

TSk

We observe that there are five M*-paths that start from a 1-simplex contained in 73, and end at a
critical 1-simplex (Fig. 5, Fig. I8, Fig. 21, and Fig. 23 in Appendix A) as shown in Fig. 26 (along with
the incidence numbers).

1)1)52)} as shown below.

e R B
P31 o1

! %ﬂ}ﬂxﬁﬁﬂ%ﬂ%gm

/1 - . . s

S e P A T A AL A

; 1¢;2 . B S e
+1, . . .

\ .H .H. .H./\.H./\.H/\._l./.\.

\\x&@xﬁlﬁh.ing,xy

+1 )33 04

I ;1><:1. g%g/\gmgm

1 ] ] R D

P31 o

Fig. 26: All five M™-paths that start from a 1-simplex contained in 13, and end at a critical 1-simplex.

* Let P, be the path from 13 to o; via ¥3; in Fig. :_2-§: There are two —1’s appearing in P; and there
are three non-critical 2-simplices in P;. Thus, P; contributes (—1)2+301 = —01 to Oa(n3).

* Let P, be the path from 73 to o2 via 131 in Fig. Z-é There is only one —1 appearing in P and there
are three non-critical 2-simplices in P,. Thus, P, contributes (—1)'* 30y = a5 to 02(n3).
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* Let P; be the path from 73 to o3 via ¢33 in Fig. 2-6 There are three —1’s appearing~ in P and there
are three non-critical 2-simplices in Ps. Thus, Ps contributes (—1)3+303 = 03 to O2(n3).

* Let P, be the path from 73 to o4 via 133 in Fig. 2-6 There is only one —1 appearing~ in P, and there
are three non-critical 2-simplices in P. Thus, Py contributes (—1)1+3a4 = 04 to O2(n3).

* Let P; be the path from 73 to o4 via 13; in Fig. :_2-6 There are two —1’s appearing ig Ps and there

are three non-critical 2-simplices in Ps. Thus, Ps contributes (—1)2+3a4 = —0y4to Oa(n3).
Therefore, 52(773) = —01+09+03+04—04 =—01+ 02+ 03.
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