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Lopsp-operations are operations on maps that are applied locally and are guaranteed to preserve all the orientation-preserving

symmetries of maps. Well-known examples of such operations are dual, ambo, truncation, and leapfrog. They are described by

plane 3-coloured triangulations with specific properties. We developed and implemented a program that can generate all lopsp-

operations of a given size by reducing the problem of generating lopsp-operations to generating all plane quadrangulations that are

not necessarily simple. We extended the program plantri to generate these quadrangulations.
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1 Introduction

Symmetry-preserving operations on polyhedra have been studied for centuries. The operations dual and truncation

are probably the most well known, but there are many others, such as ambo, chamfer and leapfrog. These operations

are often very intuitive, but they were each described in their own way. For example, truncation can be described as

cutting off every vertex of a polyhedron, so that every vertex is replaced by a face. Ambo is similar, but there the cut

goes further, so that the new faces share vertices but no edges. Chamfer works differently. It keeps the vertices, but

replaces the edges by hexagons.

Local orientation-preserving symmetry-preserving operations, or lopsp-operations, were first introduced in the sup-

plementary material of Brinkmann et al. (2017) and were further studied in Brinkmann and Van den Camp (2023);

Goetschalckx (2020); Goetschalckx et al. (2021); Van den Camp (2023). Lopsp-operations describe a class of opera-

tions on maps – i.e. embedded graphs – that preserve all the orientation-preserving symmetries of that map, and they

are applied locally. The well-known operations such as dual and truncation can all be described as lopsp-operations.

The advantages of this general definition are that it makes it possible to describe every operation in the same way, and

that results can be proved for all lopsp-operations instead of only considering some well-known operations separately.

We have developed and implemented an algorithm to generate all lopsp-operations of a given size. The first step in

generating lopsp-operations is generating plane quadrangulations, allowing parallel edges. We wrote this generator for

plane quadrangulations as an extension of the program plantri (Brinkmann and McKay, 2007)). Plantri was already

able to generate all simple plane quadrangulations, as described in Brinkmann et al. (2005). Our algorithm uses the

same approach as the one for simple plane quadrangulations, but with an extra extension operation.

There is a nice correspondence between plane quadrangulations and general plane maps that can be described by the

lopsp-operation join. This can be used to generate all plane maps of a given size, allowing loops and parallel edges.

Starting from quadrangulations, it is quite straightforward to generate all lopsp-operations. However, not all lopsp-

operations are equally interesting. With every lopsp-operation one can associate a tiling of the plane in a natural

way. A lopsp-operation is ck if its associated tiling is k-connected and every face has size at least k. The most

interesting lopsp-operations are the c3 lopsp-operations. In fact, these were the only operations included in the original

definition from Brinkmann et al. (2017). Therefore we have added an option to our program to generate only c2 or

c3 operations. To check the connectivity of a lopsp-operation we use Theorem 3 and Theorem 4 to recognise them

based on their associated quadrangulation. We also added some filters sooner in the generation process, so that not all

quadrangulations have to be generated if only c2 or c3 lopsp-operations are required.
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Figure 1: A face of an embedded graph G and the corresponding part of BG.

Some lopsp-operations do not only preserve all orientation-preserving symmetries of a map but also all orientation-

reversing symmetries. These operations, that preserve all symmetries of a map, can be described in a different way

that requires less information: They can be described as local symmetry-preserving or lsp-operations. Just like lopsp-

operations, they were first defined in Brinkmann et al. (2017). We will show how we can recognise if a lopsp-operation

can be written as an lsp-operation by looking at its automorphism group. A generator for lsp-operations already exists,

see Goetschalckx et al. (2020), which we used to test our generator of lopsp-operations.

This text will be structured as follows: In Section 2 we define some important terms such as lopsp-operation and

predecoration. Then in Section 3 we discuss the algorithm for generating quadrangulations, how we tested it, and

the connection to the generation of plane maps. In Section 4, it is explained how to generate lopsp-operations from

quadrangulations. We also describe how to recognise if a lopsp-operation is c2 or c3 and if it is also an lsp-operation.

Finally, we give our obtained counts of the number of lopsp-operations of different sizes and with different properties.

2 Definitions

A map, also known as embedded graph or 2-cell embedding, is an embedding of a (multi)graph G into an orientable

surface Σ such that Σ \ G is the union of a set of open discs, which are the faces of the map. It is possible to define

maps on surfaces that are not orientable, but in this text, we will always assume that Σ is orientable. Combinatorially,

a map can be described as a multigraph G together with a function σ that maps oriented edges to oriented edges with

the same start, such that for each vertex σ imposes a cyclic order on the oriented edges starting in that vertex. For a

map M , let VM and EM denote the sets of vertices and edges of M respectively. Let E′
M denote the set of directed

edges. We consider two directed edges for each edge of the map, even for loops, i.e. edges whose two endpoints are

the same vertex. This implies that |E′
M | = 2 · |EM |. Let θ be the involution mapping a directed edge to its inverse.

The orbit of a directed edge under θσ is a face. The number of directed edges in a face is the size of the face. This

definition of a face corresponds to the topological notion of face, which is a component of Σ \ G. Every face is a

closed walk that is exactly the walk around one of those components. Let FM denote the set of faces of a map. The

genus of M is the genus of the orientable surface Σ and is equal to
2−|VM |+|EM |−|FM |

2 . A map is plane if it has genus

0, i.e. it is embedded on a sphere. A map is a triangulation if every face has size 3 and a quadrangulation if every face

has size 4. A map M ′ is a submap of a map M if its vertices and edges are all in M , and its embedding is induced by

the embedding of M .

To avoid all confusion about what is meant by an automorphism of maps in this text, we give formal definitions of

the different types of automorphisms.

Definition 1. An orientation-preserving automorphism of a mapM is a bijection φ : E′
M → E′

M such that θ◦φ = φ◦θ
and σ ◦ φ = φ ◦ σ.

An orientation-reversing automorphism of a map M is a bijection φ : E′
M → E′

M such that θ ◦ φ = φ ◦ θ and

σ−1 ◦ φ = φ ◦ σ.

An automorphism is a bijection that is either an orientation-preserving or an orientation-reversing automorphism.

The automorphism group Aut(M) or symmetry group of a map M is the group consisting of all automorphisms of

M with composition as the operation.

The orientation-preserving automorphism groupAutOP (M) of a map M is the group consisting of all orientation-

preserving automorphisms with composition as the operation.

The barycentric subdivisionBM of a map M is a map with vertex set VM ∪EM ∪FM . The vertices corresponding

to elements of VM ,EM and FM are coloured with colours 0, 1 and 2 respectively. There are no edges between vertices
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Figure 2: On the left, the lopsp-operation gyro is shown. The thicker edges are the edges of a cut-path P . On the right, OP is

drawn. The two copies of P in OP are drawn thicker.

of the same colour, and two vertices of BM are adjacent if the corresponding vertices, edges or faces are incident in

M . The embedding is as shown in Figure 1. In all figures in this text, colours 0, 1 and 2 are represented by red, green

and black respectively. The mapBM is a properly 3-coloured triangulation and it has the same genus as M . The faces

of BM have one vertex of each colour, and are referred to as chambers or flags.

We use the definition of lopsp-operations from Brinkmann and Van den Camp (2023). It is slightly different from

those in Brinkmann et al. (2017) and Goetschalckx et al. (2021), but it is more general.

Definition 2. Let O be a plane map, together with a colouring c : VO → {0, 1, 2} and three special vertices marked

as v0, v1, and v2. We say that a vertex has colour i if c(v) = i. This map O is a local orientation-preserving

symmetry-preserving operation, lopsp-operation for short, if the following properties hold:

(1) O is a triangulation.

(2) There are no edges between vertices of the same colour.

(3) We have

c(v0), c(v2) 6= 1

c(v1) = 1 ⇒ deg(v1) = 2

and for each vertex v different from v0, v1, and v2:

c(v) = 1 ⇒ deg(v) = 4

An example of a lopsp-operation is shown in Figure 2. We say that an edge is of colour i if it is not incident to a

vertex of colour i. This is well-defined because of (2). Edges of colours 0 and 1 are respectively dotted and dashed in

figures. Note that the edges incident with a vertex are of two different colours, and as every face is a triangle, these

colours appear in alternating order in the cyclic order of edges around the vertex. This implies that every vertex has

an even degree. It follows easily from the definition that O is a 2-connected map. Every face has exactly one vertex

and one edge of each colour. We will also call these faces chambers. The number of chambers in a lopsp-operation

divided by two is the inflation factor of the operation.

To apply a lopsp-operationO to a mapM , choose a path P inO from v1 to v0 to v2. This path is called the cut-path.

Cut O along this path to create a new map OP that has a new face, the outer face, that has more than three edges and

consists of two copies of P . An example of OP is shown for gyro in Figure 2. The two copies of v0 are marked

v0,L and v0,R. Now take the barycentric subdivision BM of M , remove the edges of colour 0, and glue a copy of

OP into every face, such that every copy of vi is glued to a vertex of colour i. The edges of BM are replaced by

copies of Pv0,v1 and Pv0,v2 . This process is shown in Figure 3. The result is the barycentric subdivision of a map

O(M) (Brinkmann and Van den Camp (2023)), which is the result of applyingM toO. It is proved in Brinkmann and

Van den Camp (2023) that O(M) is independent of the chosen cut-path. Note that the number of chambers in BO(M)

is the inflation factor times the number of chambers in BM . This shows that the inflation factor is a measure of how

much the operation increases the size of the map.

We can now see how O preserves the orientation-preserving symmetries. It is not only true that AutOP (M) ≤
AutOP (O(M)), every automorphism ofM induces an automorphism ofO(M) in a natural way: Consider the submap

X of BO(M) that consists of all the edges that are copies of edges of P . As O(M) is constructed by gluing copies of
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Figure 3: On the left, the barycentric subdivision of a hexagonal face is shown. On the right, the lopsp-operation gyro is applied to

it. The blue shaded area shows one double chamber.

OP into BM without the edges of colour 0, the map X is isomorphic to BM without the edges of colour 0 and with

the other edges subdivided as many times as necessary. Every orientation-preserving automorphism of M induces an

orientation-preserving automorphism of X , and therefore also of BO(M) and O(M). Such an automorphism maps

each copy of OP to another copy of OP .

Definition 3. Let O be a lopsp-operation. If c(v1) 6= 1, then the predecorationQ(O) is the submap of O consisting of

all vertices of colours 0 and 2 and all edges of colour 1. If c(v1) = 1, then Q(O) is also that map, but together with

v1 and the edge of colour 2 incident with v1.

It follows from the degree restrictions in Definition 2 that every predecoration is a plane quadrangulation.

3 Generating quadrangulations

Generating lopsp-operations will be done by first generating all predecorations, which are all plane quadrangulations.

In this section we describe our algorithm for generating quadrangulations, and how our implementation was tested.

We also show how this generator can be used to generate all plane maps.

3.1 Generation

Let Q be the class of all plane quadrangulations, parallel edges allowed, and let Qn be the class of all plane quad-

rangulations with n vertices. Note that loops cannot occur as all plane quadrangulations are bipartite. The algorithm

works in the following way: Start with the smallest possible quadrangulation(s). Then recursively apply extensions

that increase the number of vertices, until the required number of vertices is reached. Every extension must turn a

plane quadrangulation into another plane quadrangulation. We say that a set of extensions generates a class of maps

from a set of base maps if every map in the class can be obtained by repeatedly applying extensions from the set to

one of the base maps.

To ensure that no isomorphic maps are generated, the canonical construction path method, described in McKay

(1998) is used. The basic idea of this method is that for every intermediate map that is constructed, a canonical

ancestor is determined. If the map was not generated from that ancestor, it is rejected. Otherwise it is accepted and

extensions may be applied to it. In this way, each map can only be generated once. This algorithm is the same as the

one used to generate simple quadrangulations in Brinkmann et al. (2005), but we use one extension more. All other

generators in plantri also use this method (Brinkmann and McKay, 2007)). Theorem 1 proves that the extensions in

Figure 4 are sufficient to generate all plane quadrangulations. For the generation of simple plane quadrangulations

only extensions P0 and P1 were used. The inverse of an extension is called a reduction.

Theorem 1. Extensions D1, P0, and P1 generate Q from the path graph with 3 vertices.

Proof: Let Q be any quadrangulation different from the path graph with 3 vertices. All three extensions increase the

number of vertices by one, so by induction it suffices to prove thatQ can be constructed from a smaller quadrangulation

with extension D1, P0, or P1.

Assume first that Q has a vertex v of degree 1. The vertex adjacent to v cannot have degree 1 for then Q would be

the path-graph with 2 vertices, which is not a quadrangulation. If it has degree 2 then as every face has size four, Q is

the path graph with 3 vertices which we assumed is not the case. If it has degree 3 or higher then v is in a face of size

four on which reductionD1 can be applied.

Now assume that every vertex of Q has degree at least 2. We will construct a submapQ′ of Q that is a simple plane

quadrangulation. If Q has no cycles of length 2, let Q′ be Q. Otherwise, let c be an innermost 2-cycle in Q, i.e. a



Generating Quadrangulations and Operations on Maps 5

D1−−→

P0−−→

P1−−→

Figure 4: Three different extensions that can be used to generate all plane quadrangulations. Every vertex and edge in each of the

drawings is distinct. A triangle indicates that there may be an arbitrary number of edges incident to the vertex in that place.

cycle that has no other 2-cycles on one of its sides, which we will call the inside. Both vertices of c have a neighbour

on the inside. Otherwise, as every face has size 4, there would either be a vertex of degree 1 on the inside, or there

would be two edges between a vertex on the inside and a vertex of c and c would not be innermost. Let Q′ be the map

consisting of all vertices and edges on the inside of c, together with one edge of c. As each vertex of c has a neighbour

on the inside, Q′ has no vertices of degree 1. This map Q′ is a simple plane quadrangulation, and each of its faces has

a corresponding face in Q. With the Euler formula it follows that |EQ′ | = 2|VQ′ | − 4, and therefore

∑

v∈VQ′

deg(v) = 2|EQ′ | = 4|VQ′ | − 8.

This implies that there are at least 4 vertices of degree at most 3. It follows that there is a vertex of degree at most 3

that is not a vertex of c and therefore it also has degree 2 or 3 in Q. We can apply reduction P0 or P1 on a face of Q

containing that vertex. Such a face is simple because Q′ is simple.

3.2 Testing

We implemented this algorithm as an extension of plantri and with it we calculated the number of non-isomorphic

plane quadrangulations up to 20 vertices, as shown in Table 1. To check the program, different tests were used. The

counts we obtained were compared with existing counts of quadrangulations. In the literature we only found counts

for n ≤ 12 in the most general case, see Cantarella et al. (2016); Kápolnai et al. (2012), so this check could not be done

for higher numbers of vertices. There are however theoretical formulas for the number of quadrangulations with n

vertices up to orientation-preserving automorphism, see Liskovets (2000), and the number of rooted quadrangulations,

see Sloane (2014). As the program can also generate these, our counts were checked against these theoretical values.

For n ≤ 17 it was checked that our program does not output quadrangulations that are isomorphic to each other.

Another check was done for n ≤ 15. This check is based on the rotations shown in Figure 5. These are local changes

that can be made to quadrangulations to get other quadrangulations with the same number of vertices. We applied all

possible rotations of typeA andC to every generated quadrangulation and checked if we had also generated the result.

With Theorem 2 this check proves that all quadrangulations were generated.

Theorem 2. Let n ∈ N. Any two plane quadrangulationsQ1 ∈ Qn andQ2 ∈ Qn can be transformed into each other

by a number of applications of A and C.

Proof: Operation B can be replaced by applying A, then C and then A again as shown in Figure 6. This implies that

we can also use operation B in our arguments.



6 Heidi Van den Camp, Brendan D. McKay

|V | |E| |F | |Q|V ||
3 2 1 1

4 4 2 3

5 6 3 7

6 8 4 30

7 10 5 124

8 12 6 733

9 14 7 4 586

10 16 8 33 373

11 18 9 259 434

12 20 10 2 152 298

13 22 11 18 615 182

14 24 12 166 544 071

15 26 13 1 528 659 536

16 28 14 14 328 433 429

17 30 15 136 649 176 084

18 32 16 1 322 594 487 342

19 34 17 12 965 736 092 988

20 36 18 128 543 259 338 048

Table 1: This table shows the number of non-isomorphic plane quadrangulations with a given number of vertices, edges, or faces.

A
−−→

B
−−→

C
−−→

Figure 5: Three different rotations that can be applied to quadrangulations. The vertices drawn are not necessarily distinct.
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B
−−→









y

A

x









A

C
−−→

Figure 6: Rotation B can be replaced by applications of A, C, and A again.

v2

v1 v0

v0
v1

v2

Figure 7: The operation join as an lsp-operation and as a lopsp-operation.

It is proved in Nakamoto (1996); Nakamoto and Suzuki (2010) that any two simple, plane quadrangulations can

be transformed into each other by applying A and C. Therefore it suffices to prove that every quadrangulation with

multiple edges can be transformed into a simple quadrangulation using rotations A and C. We will prove that if a

quadrangulation has parallel edges, then by applying a number of operations A and C we can get a quadrangulation

with strictly fewer parallel edges.

Let Q be a quadrangulation with parallel edges e1 and e2 that are incident to vertices x and y such that the cycle c

with edges e1 and e2 is an innermost 2-cycle. On the outside of c there is at least one vertex that is not x or y, but it is

adjacent to at least one of them. Assume w.l.o.g. that there is a vertex on the outside of c that is adjacent to x. If y has

no neighbour on the inside of c, then there can be only one vertex on the inside of c and it has degree one. In any other

case, there would be parallel edges on the inside of c, which is impossible as c is innermost. It follows that either y

has a neighbour on the inside of c, or we can apply C so that y has a neighbour on the inside of c.

Assume w.l.o.g. that the edges incident with x on the outside of c appear after e2 and before e1 in the cyclic order

around x. Now we can applyA to e1 such that it is replaced by an edge from a vertex v adjacent to x on the outside of

c and a vertex w adjacent to y on the inside of c. This is not a parallel edge, as v and w are on different sides of c so

they cannot be adjacent in Q. It follows that the number of parallel edges has decreased by possibly applying C and

then applyingA.
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3.3 Generating plane maps

In this short section we use the lopsp-operation join. This operation is given in Figure 7 as an lsp-operation (Defi-

nition 5) and as a lopsp-operation. For any map M , join(M) can be described as the barycentric subdivision of M

without the vertices of colour 1 and ignoring the colours. It is also known as the radial graph of M .

We can apply the lopsp-operation join to any plane map to get a plane quadrangulation. Given a quadrangulation,

we can also determine to which map(s) join can be applied to get that quadrangulation. This connection between maps

and quadrangulations is formalised in Lemma 1.

Lemma 1. There is a bijection between the set of all plane maps and the set of all plane quadrangulations with a fixed

bipartition class.

Proof: Let φ be the mapping that maps a map M to the quadrangulation join(M) with the bipartition class consisting

of the original vertices of M . Let ψ be the mapping that maps a quadrangulationQ with a bipartition class X to the

map that has the vertices of X as its vertices, and for each face of Q the map ψ(Q) has an edge between the two

vertices of X in that face. The mappings φ and ψ are inverses, so they are bijections.

With this bijection we can easily generate all plane maps with a given number n of edges. First, generate all plane

quadrangulations with n + 2 vertices. These are exactly the quadrangulations with n faces. Then check if the two

colour classes are isomorphic, and use the bijection from Lemma 1 to output one or two maps, depending on the

number of non-isomorphic colour classes.

We used our program for generating quadrangulations to generate plane maps in this way, and compared the result-

ing counts to existing counts of plane maps. We used the general counts, counts of maps up to orientation-preserving

automorphism and rooted counts found in Carrell and Chapuy (2015); Walsh (1983); Wormald (1981).

4 Lopsp-operations

4.1 From quadrangulations to lopsp-operations

The predecoration of any lopsp-operation is an element of Q. To generate all lopsp-operations of a given inflation

factor k, we can therefore start by generating quadrangulations. Lemma 2 describes which quadrangulations must be

generated.

Lemma 2. Let O be a lopsp-operation with inflation factor k.

• If k is even, then v1 is not of colour 1 and the predecorationQ(O) is a quadrangulation with k+4
2 vertices.

• If k is odd, then v1 is of colour 1 and the predecorationQ(O) is a quadrangulation with k+5
2 vertices.

Proof: If v1 is not of colour 1, then every vertex of colour 1 in O has degree 4. As every face of O has exactly one

vertex of colour 1, it follows that 2 · k = |FO| = 4|FQ(O)| and therefore k is even. If v1 is of colour 1, then all vertices

of colour 1 except v1 have degree 4 and v1 has degree 2. It follows that 2 · k = |FO| = 4(|FQ(O)| − 1) + 2 and

therefore k is odd.

As Q(O) is a quadrangulation, 4|FQ(O)| = 2|EQ(O)|. It now follows from the Euler formula for O(Q) that:

|VQ(O)| = |EQ(O)| − |FQ(O)|+ 2 = |FQ(O)|+ 2 =

{

k
2 + 2 = k+4

2 if k is even
k−1
2 + 1 + 2 = k+5

2 if k is odd
.

Every quadrangulation is the predecoration of more than one lopsp-operation. To determine all the lopsp-operations

that have a quadrangulationQ as their predecoration we choose vertices v0, v1, and v2 in Q in every non-isomorphic

way. In our program we have the automorphism group of Q, so that it is not difficult to determine which vertices

are in different orbits under the automorphism group. If k is odd, then it follows from Lemma 2 and the definition

of a predecoration that v1 must have degree 1 and its neighbour has colour 0. As Q is bipartite, this determines the

colours of all other vertices, so there is exactly one lopsp-operation for every choice of the vi, considering that v1
must have degree 1. If k is even, then the colours are not determined yet. For each of the choices of v0, v1, and v2
we then choose the colour of one vertex of the quadrangulation. It can be either 0 or 2, and both choices give rise to

valid lopsp-operations that are different. The colours of every other vertex follow from this choice. This gives us all

possible lopsp-operations with a certain inflation factor.
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4.2 Connectivity

A lopsp-operation is ck if its ‘associated tiling’ is k-connected and all faces have size at least k. We will not discuss

the connection between lopsp-operations and tilings here. More details can be found in Brinkmann and Van den Camp

(2023). The definition of c2 and c3 operations we give in Definition 4 is equivalent to the one in Brinkmann and

Van den Camp (2023). The equivalence follows from results in that paper.

Definition 4. • A lopsp-operationO is c2 if for every cut-path P of minimal length, there is no 2-cycle in OP .

• A 4-cycle is non-trivial if it has a vertex of colour 0 on each side. A lopsp-operation O is c3 if it is c2 and for

every cut-path P of minimal length, there is no non-trivial 4-cycle in a patch of two copies ofOP sharing a copy

of Pv0,v2 or two copies of Pv0,v1 .

This definition cannot be checked immediately from the internal representation of a lopsp-operation in our program,

as it relies on choosing cut-paths and cutting and gluing the lopsp-operation. Theorem 3 and Theorem 4 give charac-

terisations of being c2 and c3 that can be checked knowing only the predecoration, v0, v1, and v2, and whether v1 is

of colour 1.

In the following theorems we will use the concept of the ‘interior’ of a face. Let M ′ be a submap of a plane map

M . Every vertex and edge of M that is not in M ′ is inside exactly one face of M ′. The interior of this face consists

of all the vertices and edges of M that are not in M ′ that are inside the face.

Theorem 3. A lopsp-operationO is c2 if and only if every 2-cycle in Q(O) has one of the vi on each side.

Proof: Assume first that there is a 2-cycle in the predecoration that does not have any of the vi on one side. Choose

a cut-path P in O. If the path passes through the interior of the 2-cycle, replace that part of P by one of the edges of

the 2-cycle. Let P ′ be the resulting cut-path. The 2-cycle in O now induces a 2-cycle in OP ′ , so that O is not c2 by

Definition 4.

Now assume that O is not c2, and that every 2-cycle in the predecoration has one of the vi on each side. There is a

2-cycle c in OP for some cut-path P . This cycle induces a 2-cycle cO in O that has none of the vi on one side, which

we will call the inside. The other side is the outside. If cO is of colour 1, then it is also in the predecoration and we

are done. Assume that cO is not of colour 1. Then one of its vertices, say x, is of colour 1. Let y be the other vertex

of cO . As v0 and v2 are not of colour 1, x is not one of those vertices. If x would be v1 then it would have degree 2

and it would therefore have two different neighbours of different colours, which is also not the case. Therefore x is

not one of the vi. On every side of cO there is a neighbour of x. Let v be the neighbour on the inside and let w be the

neighbour on the outside. As O is a triangulation, v and w must be adjacent to y. If one of them, say v, has only one

edge to y, then v is the only vertex on that side of cO and it has degree 2. If that is the case for both v and w, then

O has only four vertices. At most two of them can be vi as x and v are not, a contradiction. It follows that v, y is a

2-cycle on the inside of cO or w, y is a 2-cycle on the outside. In either case there is a 2-cycle of colour 1 that has none

of the vi on one side, as neither x nor any vertex on the inside of cO is one of the vi, a contradiction.

Theorem 4. A lopsp-operationO is c3 if and only if for every submap H of Q(O) the following holds:

• Every face of H of size 2 has either v0 or v2 in its interior, or v1 is of colour 1 and it is the only vertex in the

interior of that face.

• Every non-empty face of H of size 4 has v0, v1 or v2 in its interior.

Proof: Assume that there is a submap H of Q(O) for which the condition described in the theorem does not hold.

There are two cases:

• H has a face f of size 2 that does not contain v0 or v2 in its interior and if it contains v1 then there is at least one

other vertex in the interior of f . It follows immediately that if the interior of f contains none of the vi — which

is not possible if H is just two vertices and one edge —, then by Theorem 3, O is not c2 and therefore not c3.

We can therefore assume that the interior of f contains v1 and at least one other vertex. Let P be a cut-path of

O. The face f of size 2 induces a cycle of length 4 in two copies of OP sharing v1, as shown in Figure 8. As

there is a vertex in f that is not of colour 1, there is also such a vertex in the interior of the cycle in two copies

of OP . It follows that O is not c3.
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v0 v1

v2

Figure 8: On the left, a schematic representation of a lopsp-operation is shown. The black lines represent a cut-path. A 2-cycle is

shown in red. On the right, two double chambers sharing their copy of v1 are shown for the lopsp-operation on the left with the

given cut-path. The 2-cycle in the lopsp-operation induces a 4-cycle in the two double chambers.

• H has a non-empty face f of size 4 that contains none of the vi. Let P be a cut-path of O. If there are no

edges of P in the interior of f , then there is either a 2-cycle in OP or a non-trivial 4-cycle. In both cases O is

not c3. Assume that there is an edge e of P in the interior of f . As v1 and v2 are not in the interior of f , the

path P must cross over the boundary of f at least twice. Let Pe be the subpath of P that contains e such that

only the endpoints x and y of Pe are in the boundary of f . Every other vertex of Pe is in the interior of f and

is therefore different from v0, v1, and v2. If x and y are adjacent in H , we can replace Pe in P by that edge.

The resulting path is still a cut-path and contains fewer edges in the interior of f than P . If every edge in the

interior of f can be removed in this way, we find a new cut-path that has no edges in the interior of f and by

the previous argument that implies that O is not c3. We can now assume that x and y are not adjacent in H .

By the planarity of O and the fact that f has only length 4, it follows that there are no edges of P \ Pe in the

interior of f . Note that as v0 is not in the interior of f , the path Pe is either completely contained in Pv0,v1 or

in Pv0,v2 . Let X be two copies of OP glued together such that the subpath containing Pe is on the glued side.

As there can be no 2-cycles in OP , f induces a 4-cycle in X whose interior is isomorphic to that of f . The two

vertices corresponding to x and y are on the glued side. The other two vertices are adjacent to both x and y and

are therefore each in one of the copies of OP . It follows that O is not c3.

Conversely, assume that O is not c3. Let X be the patch of two copies of OP that contains a non-trivial 4-cycle

for a cut-path P of minimal length. Let W be the facial walk of the non-empty face of the 4-cycle in X . We say

that the boundary of the only face in X that is not a triangle is the boundary of X , also written as ∂X . Assume that

there is a vertex x of colour 1 in W . Its neighbours in W have the same colour, as otherwise there would be an edge

between its neighbours and the inside of W would be two chambers sharing an edge so W would be trivial. Assume

that x is in ∂X . As x has degree 4 and both neighbours of x in W have the same colour and are in X , at least one

of them is in ∂X . If the other neighbour of x in ∂X is not in W , then P would not be of minimal length. The part

of P corresponding to the path of length 2 in ∂X between the two neighbours of x could be replaced by one edge. It

follows that the neighbours of x in W are in ∂X as well. As W only has length 4, it is in only one copy of OP . We

can let X be the patch consisting of both copies of OP that contain x. The walk W is contained in that patch and x is

not on the boundary.

This proves that we can assume that x is not in ∂X . Then all neighbours of x are in the patch, also the neighbour of

x that is on the outside of W . Replace x in W by this neighbour. This new walk also has length 4, is non-trivial, and

it has one fewer vertex of colour 1. If there is another vertex of colour 1 in W , repeat this argument to get a walk W1

of colour 1.

The walk W1 induces a closed walk WO of colour 1 in O. If v1 is not on the inside of W1, then WO is a non-trivial

plane walk that has none of the vi on the inside. This is a contradiction with (ii). It follows that v1 is on the inside of

W1, and as W1 is non-trivial, it is either not of colour 1, or it is not the only vertex on the inside. As X consists of

two copies of OP sharing their copy of v1, X is point symmetric with respect to v1. We can therefore consider the

walk W ′
1 in X that is the ‘reflection’ of W1. The walks W1 and W ′

1 are either the same walk or they intersect in two

vertices, as shown in Figure 9. If they are not the same walk, then we can choose a different walk consisting of edges

of W1 and W ′
1 that has v1 on the inside, is non-trivial, and is the same walk as its reflection. We can therefore assume

that W1 and W ′
1 are the same walk. This walk induces a closed walk of length 2 in O that has v1 on the inside and
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Figure 9: This figure shows the three possibilities for a 4-cycle around v1 in two copies of a double chamber patch. The pink cycle

shows the ‘reflection’ of the red cycle. In the third case, the cycle is its own reflection.

either v1 is not of colour 1 or there is at least one other vertex inside the walk. This is a contradiction with (i) as the

walk is of colour 1 and therefore it is in the predecoration.

4.3 Lsp-operations

Some lopsp-operations do not only preserve the orientation-preserving symmetries of maps, but also the orientation-

reversing symmetries. These operations can be described as local symmetry-preserving operations (Definition 5).

Many well-known operations on polyhedra, such as truncation, ambo, and dual are lsp-operations.

Definition 5. Let O be a 2-connected plane map with vertex set V , together with a colouring c : V → {0, 1, 2}. One

of the faces is called the outer face. This face contains three special vertices marked as v0, v1, and v2. We say that a

vertex v has colour i if c(v) = i. This 3-coloured map O is a local symmetry preserving operation, lsp-operation for

short, if the following properties hold:

1. Every inner face — i.e. every face that is not the outer face — is a triangle.

2. There are no edges between vertices of the same colour.

3. For each vertex that is not in the outer face:

c(v) = 1 ⇒ deg(v) = 4

For each vertex v in the outer face, different from v0, v1, and v2:

c(v) = 1 ⇒ deg(v) = 3

and

c(v0), c(v2) 6= 1

c(v1) = 1 ⇒ deg(v1) = 2

An lsp-operation is applied similarly to a lopsp-operation, except that there is no need to choose a cut-path, and

instead of gluing copies into BM with the edges of colour 0 removed, copies of O or the mirror image of O are glued

into BM . To get the lopsp-operation corresponding to an lsp-operation, a mirrored copy of the lsp-operation is glued

into the outer face, as proved in Brinkmann and Van den Camp (2023). A lopsp-operationO can therefore be written

as an lsp-operation if and only if there is a cycle in O that contains v0, v1, and v2 and one side of the cycle is the mirror

image of the other side. In Theorem 5 we prove another equivalence that is often easier to check. There are results on

the fixpoints of orientation-reversing automorphisms of simple triangulations in the literature (see Kang and Sprüssel

(2018); Tutte (1980)), but as lopsp-operations may have parallel edges we could not use these directly. We did use

those proofs as an inspiration for the proof of Theorem 5.



12 Heidi Van den Camp, Brendan D. McKay

Theorem 5. A lopsp-operation can be written as an lsp-operation if and only if it has an orientation-reversing auto-

morphism that fixes v0, v1, and v2.

Proof: Assume that a lopsp-operation can be written as an lsp-operation O. The lopsp-operation can be obtained

from the lsp-operation by gluing a mirror copy of O into the outer face of O. There is clearly an orientation-reversing

automorphism that fixes the boundary of the outer face of the lsp-operation and switches the sides of that cycle.

Conversely, assume that a lopsp-operationO has an orientation-reversing automorphism φ that fixes v0, v1, and v2.

This automorphism can be extended in a unique way to an automorphism of the barycentric subdivision BO of O. It

follows from the fact that O is 2-connected and has no loops that BO is a simple graph. Let H be the submap of BO

consisting of all vertices and edges of BO that are fixed by φ.

Let x be any vertex in H . Its degree in O is even, and the colours of its neighbours alternate. Let e be any edge

incident with x. As x is a fixpoint of φ, the edge φ(e) is also incident with x. Let e = e0, e1, . . . , ek−1, φ(e) =
ek, ek+1, . . . , en be the cyclic order of edges around x. As the colours of the edges incident with a vertex alternate,

and the colours of e and φ(e) are the same, k is even. As φ is orientation-reversing, e k
2

and en+k+1

2

and no other

incident edges of x are fixed by φ. It follows that every vertex inH has degree 2, so H consists of a number of disjoint

cycles. The two incident edges that are fixed are always exactly opposite each other in the rotational order.

Let c be the cycle in H that contains v0, and let x be a vertex of BO that is not in this cycle. The graph BO is

connected, so there is a path P without vertices in c from x to a vertex y that is adjacent to a vertex in c. As φ is

orientation reversing, φ(y) is on the other side of c than y and x. The path φ(P ) goes from the vertex φ(x) to the

vertex φ(y) and does not contain vertices in c, so by the Jordan curve theorem φ(x) is on the other side of c than x. A

consequence of this is that the vertices of c are the only vertices ofBO that are fixed by φ, and therefore v0, v1, and v2
are in c.

Assume that there is a vertex of colour 2 (in BO) in c. This vertex corresponds to a chamber, so it has degree 6 in

BO. The two edges of c incident to it must have different colours, as they are opposite each other. That implies that φ

fixes one vertex of the chamber, and switches the other two. This is impossible as φ maps vertices of O to vertices of

the same colour. It follows that as vertices of BO, there are no vertices of colour 2 in c. This implies that c induces a

cycle cO inO. The vertices in this cycle, as vertices ofO, can have colour 2. It follows from our previous observations

that this cycle together with the interior of one of its sides is an lsp-operation that represents the same operation as

O.

4.4 Computational results

Table 2 contains the numbers of lopsp-operations with different properties we have obtained with the new program,

which can be found at https://github.com/hvdncamp/lopsp_tools. It is interesting to see that there are

relatively few c3 operations. For inflation factors 1 and 2 all lopsp-operations are c3, but the higher the inflation factor,

the fewer lopsp-operations are c3. For inflation factor 20 only 0.0018% of all lopsp-operations is c3. For this reason

some optimisations have been added to the program that are used when only c2 or c3 operations are required. With

these optimisations we were able to obtain counts of c2 and c3 operations for higher inflation factors.

An important optimisation that has been added is that if an intermediary quadrangulation in the generation process

has 4 vertices of degree 1, then it is not extended further. This is because the generation process ensures that once a

quadrangulation has 3 vertices of degree 1, its number of vertices of degree 1 cannot decrease by applying canonical

extensions. The predecoration of a c2 operation has at most 3 vertices of degree 1, so quadrangulations with more than

three vertices of degree 1 cannot lead to valid c2 or c3 operations and therefore they are not extended further.

Once a quadrangulation is generated, we first do some quick checks to exclude quadrangulations that clearly cannot

be the predecoration of c2 or c3 lopsp-operations. For example, if a quadrangulation has four edges between the

same two vertices, it is rejected. In that case there are four 2-cycles whose interiors are disjoint, so by Theorem 3

that quadrangulation is not the predecoration of any c2 lopsp-operation. In this way we can drastically reduce the

number of times we have to check if a lopsp-operation is c2 or c3, which is an expensive check. For example, we

let the program generate all c3 lopsp-operations of inflation factor 20. Because of the pruning during the generation

of quadrangulations, only 598 628 of the 2 152 298 quadrangulations are generated. Then after filtering out the

obvious cases, only 17 940 quadrangulations are left that are candidates to be predecorations. Out of these 17 940

quadrangulations, 9 867 are predecorations of c3 lopsp-operations.

Note that the difference between the number of lopsp-operations of inflation factor k and k − 1 is larger when k

is even than when k is odd. This is most obvious for lsp-operations. The number of those operations often decreases

https://github.com/hvdncamp/lopsp_tools
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inflation all c2 c3
factor all lsp all lsp all lsp

1 2 2 2 2 2 2

2 6 6 6 6 2 2

3 12 12 8 8 4 4

4 54 54 30 30 6 6

5 86 64 38 34 8 4

6 466 392 154 140 20 20

7 730 380 194 148 30 20

8 4 182 2 694 810 630 62 54

9 6 828 2 316 1 034 638 102 64

10 39 624 18 012 4 386 2 766 198 144

11 68 402 14 332 5 732 2 728 318 132

12 395 976 118 356 24 528 11 928 664 404

13 718 116 89 040 32 908 11 552 1 122 396

14 4 137 048 768 312 141 642 50 724 2 272 1 112

15 7 782 846 554 124 194 800 48 512 3 982 1 100

16 44 691 306 4 942 542 842 118 213 294 7 914 2 958

17 86 164 178 3 448 216 1 182 654 202 158 14 254 2 768

18 494 280 434 31 573 408 5 131 120 888 590 28 296 7 972

19 967 710 288 21 445 656 7 325 268 836 736 52 400 7 560

20 5 555 113 656 200 570 268 31 881 474 3 672 918 103 028 21 300

21 10 976 285 688 133 257 288 46 073 266 3 442 202 194 794 20 076

22 63 116 746 584 1 268 330 664 201 076 524 15 079 608 380 864 56 296

23 125 378 761 834 827 198 660 293 139 672 14 083 824 731 622 52 380

24 1 282 452 080 61 548 760 1 426 556 148 956

25 2 773 348 138 384

Table 2: This table shows the number of lopsp-operations that our program counted for inflation factor up to 25. Note that

operations that are c3 are also c2, so they are also included in those counts.



14 Heidi Van den Camp, Brendan D. McKay

when the inflation factor is increased by one. Recall that by Lemma 2, lopsp-operations of inflation factors k and k+1
are generated from the same set of quadrangulations if k is odd. As the choice of v1 is much more restricted if the

inflation factor is odd, there are much fewer operations of inflation factor k than of k + 1, if k is odd.

Remark 1. With

ntot = Number of lopsp-operations

nop = Number of lopsp-operations up to orientation-preserving automorphisms

nchir = Number of lopsp-operations without orientation-reversing automorphisms

nlsp = Number of lopsp-operations that can be written as lsp-operations

we have the following identity, which also hold when restricted to lopsp-operations of a certain inflation factor or

connectivity:

ntot = nlsp + nchir.

It follows that

nop = nlsp + 2 · nchir = 2 · ntot − nlsp.

This proves that nop can be calculated from ntot and nlsp. Therefore we do not list it in Table 2.

As these are the first published counts of lopsp-operations, it was not possible to compare them to existing counts.

We did however compare the counts of c3 lsp-operations to those from Goetschalckx et al. (2020). The general and

c2 lsp-counts from that paper cannot be compared, as they use a slightly different definition of lsp-operations. We

also wrote a program that generates all lopsp-operations by generating all triangulations with plantri (Brinkmann and

McKay), filtering them, and choosing v0, v1, and v2 in all possible ways. We checked that these programs give the

same results up to inflation factor 12. To check that our program determines whether an operation is c2 or c3 correctly,

we wrote a slower but simpler program that determines whether an operation is c2 or c3 and we compared the results

up to inflation factor 15.

5 Future work

For the generation of c2 and c3 operations, our program is not optimal. Filters during the generation process improve

the performance in these cases, but too many quadrangulations are still generated and it needs to be checked whether

operations are c3 or not. Developing a faster program for c2 or c3 operations should be possible, but it would require

a different approach.

An interesting application of this program could be the generation of symmetric maps. As lopsp-operations preserve

symmetry, maps with certain symmetry goups can be generated by applying lopsp-operations to a base map with that

symmetry group. To find out whether our program can be used to generate all maps with a certain symmetry group,

two things must be proved. The first is the existence of a map with that symmetry group such that every other map

with the same symmetry can be generated by applying a lopsp-operation to the base map. The second is that one

map cannot be obtained by applying different lopsp-operations to a base map. For example: The tetrahedron can be

obtained by either applying the identity or the dual to the tetrahedron. The problem here is that the tetrahedron is

self-dual. Could something similar happen for other symmetry groups or can it only happen for self-dual base maps?
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