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For a graph G and an integer k ≥ 2, a χ′
k-coloring of G is an edge coloring of G such that the subgraph induced

by the edges of each color has all degrees congruent to 1 (mod k), and χ′
k(G) is the minimum number of colors in

a χ′
k-coloring of G. In [“The mod k chromatic index of graphs is O(k)”, J. Graph Theory. 2023; 102: 197-200],

Botler, Colucci and Kohayakawa proved that χ′
k(G) ≤ 198k − 101 for every graph G. In this paper, we show that

χ′
k(G) ≤ 177k − 93.
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1 Introduction

All graphs considered here are simple. Let G = (V,E) be a graph, and v(G) := |V (G)| and e(G) :=
|E(G)|. If X ⊆ V (G), then G[X ] is the subgraph of G induced by X . For an integer k ≥ 2, a χ′

k-

coloring of G is a coloring of the edges of G such that the subgraph induced by the edges of each color

has all degrees congruent to 1 (mod k), and the mod k chromatic index of graph G, denoted by χ′
k(G),

is the minimum number of colors in a χ′
k-coloring of G. Pyber (1992) proved that χ′

2(G) ≤ 4 for every

graph G and asked whether χ′
k(G) is bounded by some function of k only. Scott (1997) proved that

χ′
k(G) ≤ 5k2 log k for any graph G, and in turn asked if χ′

k(G) is in fact bounded by a linear function of

k. Botler et al. (2023) answers Scott’s question affirmatively by proving the following theorem.

Theorem 1.1 (Botler et al. (2023)) For every graph G we have χ′
k(G) ≤ 198k − 101.

Also in Botler et al. (2023), Botler, Colucci, and Kohayakawa proposed the following conjecture:

Conjecture 1.2 (Botler et al. (2023)) There is a constant C s.t. χ′
k(G) ≤ k + C for every graph G.

In this paper, we improve the upper bound of the mod k chromatic index of graphs by proving the

following theorem.

Theorem 1.3 For every graph G we have χ′
k(G) ≤ 177k − 93.

In the proof of Theorem 1.1, Botler et al. (2023) applies the following two lemmas.
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Lemma 1.4 (Mader (1972)) If k ≥ 1, G is a graph with e(G) ≥ 2kv(G), then G contains a k-connected

subgraph.

Lemma 1.5 (Thomassen (2014)) If k ≥ 1 and G is a (12k−7)-edge-connected graph with an even num-

ber of vertices, then G has a spanning subgraph in which each vertex has degree congruent to k (mod 2k).

A graph G is k-divisible if k divides the degree of each vertex of the graph G. By applying Lemma 1.4

and Lemma 1.5, Botler et al. (2023) proved the following lemma.

Lemma 1.6 (Botler et al. (2023)) If graph G does not contain a nonempty k-divisible subgraph, then

e(G) < 2(12k − 6)v(G).

For a graph G, let NG(v) denote the neighbors of v, EG(v) denote the edges that are incident to v,

and let dG(v) be the degree of v, i.e., dG(v) = |EG(v)|. Let ~G = (V, ~E) be an orientation of G, for

v ∈ V , let N+
~G
(x) denote the out-neighbor(s) of x, i.e., N+

~G
(x) = {y : x → y}, let d+~G

(x) be the out-

degree of x, i.e., d+~G
(x) = |N+

~G
(x)|; if y is an out-neighbor of x, then we say edge −→xy an out-edge of

x. Let N−
~G
(x) denote the in-neighbor(s) of x, i.e., N−

~G
(x) = {y : x ← y}, let d−~G

(x) be the in-degree

of x, i.e., d−~G
(x) = |N−

~G
(x)|; if y is an in-neighbor of x, then we say edge ←−xy an in-edge of x. Let

∆+
(

~G
)

= maxv∈V d+~G
(v), ∆−

(

~G
)

= maxv∈V d−~G
(v). We drop the subscripts G or ~G in the above

notations when G or ~G is clear from the context.

The maximum average degree of a graph G, denoted by mad(G), is defined as

mad(G) = max
H⊆G

2e(H)

v(H)
,

which places a bound on the average vertex degree in all subgraphs. It has already attracted a lot of

attention and has a lot of applications. The following theorem is well-known (cf. Hakimi (1965), Theorem

4), we use it in our proof of Theorem 1.3.

Theorem 1.7 Let G be a graph. Then G has an orientation ~G such that ∆+(~G) ≤ d if and only if

mad(G) ≤ 2d.

2 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. The proof uses the following lemma, which was available in Yang

(2009). For the completeness of this paper, we present its short proof here.

Lemma 2.1 ((Yang, 2009, Lemma 1.7), adapted) Let d ≥ 0 be an integer. If an oriented graph ~G has

∆+(~G) ≤ d, then there exists a linear order σ of V (~G), such that for any vertex u ∈ V (~G), the number

of vertices that are the in-neighbors of u, and precede u in σ is at most d.

Proof: We recursively construct a linear ordering σ = v1v2 . . . vn of V = V (~G) as follows. Suppose

that we have constructed the final sequence vi+1 . . . vn of L. (If i = n then this sequence is empty.)

Let M = {vi+1, . . . , vn} be the set of vertices that have already been ordered and U = V −M be the

set of vertices that have not yet been ordered. Let ~GU ⊆ ~G be the subgraph of ~G induced by U . If

we have not yet finished constructing σ, we choose vi ∈ U so that d−~GU

(vi) is minimal in ~GU . Since
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∑

v∈U d−~GU

(v) =
∑

v∈U d+~GU

(v), and ∆+
(

~GU

)

≤ ∆+
(

~G
)

≤ d, we have d−~GU

(vi) ≤ d. This proves

the lemma. ✷

Combining Lemma 2.1 and the techniques used in Botler et al. (2023), we prove the following lemma,

which is the key to the proof of Theorem 1.3.

Lemma 2.2 Let d ≥ 1 be an integer. If a graph G has an orientation ~G such that ∆+(~G) ≤ d, then

χ′
k(G) ≤ 7d+ 2k − 3.

Proof: If a graph G has an orientation ~G such that ∆+(~G) ≤ d, by applying Lemma 2.1, we can suppose

linear ordering σ := v1v2 . . . vn of V (G) satisfying that for any vertex u ∈ V (~G), the number of vertices

that are the in-neighbors of u, and precede u in σ is at most d.

Following the above linear ordering σ, we give a χ′
k-coloring of G by coloring the edges incident with

vi for each vi ∈ {v1, . . . , vn−1} in turn. At step vi, we name this procedure as processing vertex vi,

which means that we color all the edges incident with vi that are not colored yet at this time. After we

have finished processing vertex vi, we shall maintain that we have a χ′
k-coloring of the graph spanned by

the edges incident with v1, . . . , vi, we call this a good partial χ′
k-coloring after step vi.

To define the coloring method, we partition all the colors into two sets C1 andC2 such that |C1| = 3d−1
and |C2| = 4d+2k− 2, note that |C1|+ |C2| = 7d+2k− 3. For each 1 ≤ i ≤ n− 1, we use the colors

in C1 to color the uncolored out-edges of vi and use the colors in C2 to color the uncolored in-edges of vi.

Equivalently, for any directed edge uv (u → v in ~G), if u is processed before v, then edge uv is colored

with a color in C1; if v is processed before u, then edge uv is colored with a color in C2.

By induction on i, we give a good partial χ′
k-coloring of G after processing vi. For the induction

hypothesis, suppose when we begin to process vertex vi, all the edges that are incident with a vertex v that

precedes vi in σ have already been colored.

For each 1 ≤ i ≤ n − 1, when vi is processed, let U+(vi) denote the unprocessed out-neighbor(s)

of vi, i.e., U+(vi) = N+
~G
(vi) ∩ {vi+1, . . . , vn}; let U−(vi) denote the unprocessed in-neighbor(s) of

vi, i.e., U−(vi) = N−
~G
(vi) ∩ {vi+1, . . . , vn}. When we process vi, we color the uncolored out-edges

{vivj : vj ∈ U+(vi)} such that all out-edges of vi are colored with distinct colors; to color the uncolored

in-edges {vjvi : vj ∈ U−(vi)}, we use colors in C2 that are different than having been used in the

out-edges of vi (refer X(vi) in the following paragraph); and we do the coloring in this order.

For the induction step, suppose we process vertex vi, where i ∈ {1, 2, . . . , n− 1}. Suppose N+
~G
(vi) ∩

{v1, . . . , vi−1} = {x1, . . . , xℓ} = X(vi). Since ∆+(~G) ≤ d, |X(vi)| ≤ d. Suppose N−
~G
(vi) ∩

{v1, . . . , vi−1} = {y1, . . . , yr} = Y (vi), then by Lemma 2.1, |Y (vi)| ≤ d. For the induction hypothesis,

we suppose each edge yjvi, where yj ∈ Y (vi), is colored with a color in C1; and each edge vixj , where

xj ∈ X(vi), is colored with a color in C2. Now we process vertex vi, i.e., color the remaining uncolored

edges incident with vi, we do this in two steps.

In the first step, we use the colors in C1 to color the uncolored out-edges {vivj : vj ∈ U+(vi)}, such

that all the out-edges of vi have distinct colors. We show that we can do this for any edge vivj with

vj ∈ U+(vi). For vertex vj , since vj ∈ U+(vi), vj has not been processed yet. Therefore, by Lemma 2.1

and the induction hypothesis, the in-edges of vj that have been colored with colors in C1 is at most d− 1
(note that in the counting we removed the in-edge vivj of vj). For vertex vi, when we begin to process

vertex vi, by the induction hypothesis, the edges incident with vi and colored with colors in C1 are yjvi,
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where yj ∈ Y (vi). During processing vertex vi, for the edge vivj with vj ∈ U+(vi), at most |U+(vi)|−1
edges incident with vi are colored with colors in C1. Note that,

|C1| − |Y (vi)| − (|U+(vi)| − 1)− (d− 1) ≥ (3d− 1)− d− (d− 1)− (d− 1) ≥ 1.

This proves that there is a color left in C1 for vivj with vj ∈ U+(vi).
In the second step, we color the uncolored in-edges R(vi) = {vjvi : vj ∈ U−(vi)} of vi. Note that vi

has at most |X(vi)| ≤ d processed out-neighbors before vi is processed. Observe that for any edge xixℓ′

with xℓ′ ∈ X(vi), xixℓ′ is an in-edge of xℓ′ . By the induction hypothesis, xixℓ′ is colored when xℓ′ is

processed, and is colored with a color in C2. After removing the colors that used by edges xixℓ′ with

xℓ′ ∈ X(vi), there are at least |C2| − |X(vi)| ≥ 4d+2k− 2− d = 3d+2k− 2 colors left in C2 that can

be used to color edges in R(vi).
We partition these left colors in C2 arbitrarily into sets A(vi) and B(vi) so that |A(vi)| = d + k and

|B(vi)| ≥ 2d + k − 2. For each vj ∈ U−(vi) is an unprocessed in-neighbor of vi, we say that a color

c is forbidden at vj if there is out-edge of vj is colored with c, and we call the colors in A(vi) that are

not forbidden at vj available at vj . Note that at most d − 1 out-edges of vj are colored (removing the

out-edge vjvi of vj in the counting). This implies that at least k + 1 colors in A(vi) are available at vj .

Let R∗(vi) be the maximal subset of R(vi) that can be colored with colors in A(vi) in a way such that:

(a) each in-edge vjvi ∈ R∗(vi) of vi is colored with a color available at vj ;

(b) the number of edges in R∗(vi) colored with any color is congruent to 1 (mod k).

Let R̄(vi) = R(vi) \R
∗(vi) be the set of the remaining edges in R(vi). We claim that |R̄(vi)| < |A(vi)|.

Assume otherwise that |R̄(vi)| ≥ |A(vi)|, and suppose A(vi) = {ai : 1 ≤ i ≤ d+ k}, R̄(vi) = {ej =
wjvi : wj ∈ U+(vi), 1 ≤ j ≤ t, and t ≥ d+ k}. We define an auxiliary bipartite graph T with vertices

bipartition A(vi) and R̄(vi), edges E(T ) = {aiej : where ej = wjvi, ai is available at wj}.
Since, for each wj ∈ U+(vi), there are at least k+1 colors in A(vi) available at wj , we have dT (ej) ≥

k + 1 for every ej ∈ R̄(vi). Therefore,

∑

ai∈A(vi)

dT (ai) = |E(T )| =
∑

ej∈R̄(vi)

dT (ej) ≥ (k + 1)t ≥ (k + 1)(d+ k).

Since |A(vi)| = d+ k, we concluded that there exists a color ai in A(vi), dT (ai) ≥ k + 1, which means

that color ai is available on at least k + 1 edges in R̄(vi).
If some edge in R∗(vi) is already colored with ai, then we color k edges in R̄(vi) with color ai. If no

edge in R∗(vi) is colored with ai, then we color k + 1 edges in R̄(vi) with color ai. Both of these cases

contradict with the maximality of R∗(vi). This proves that |R̄(vi)| < |A(vi)| = d+ k.

Finally we show that we can color all the edges in R̄(vi) with distinct colors in B(vi). For this, it

suffices to note that, for each wjvi ∈ R̄(vi), there are at most d− 1+ |R̄(vi)|− 1 ≤ 2d+k− 3 < |B(vi)|
colors of B(vi) that are either forbidden at wj , or were used on previous edges of R̄(vi). ✷

We prove our main result by using Lemma 1.6, Theorem 1.7, Lemma 2.1, and Lemma 2.2. The proof is

similar to Theorem 5 in Botler et al. (2023), the differences are applications of Theorem 1.7 and Lemma

2.1 here, and Lemma 2.2 is stronger than the corresponding one in Botler et al. (2023).

Theorem 1.3. For every graph G we have χ′
k(G) ≤ 177k − 93.
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Proof: Let H be a maximal subgraph of G such that dH(v) ≡ 1 (mod k) for every v ∈ V (H), and let

G′ = G\E(H). Then V (G) \ V (H) is independent. Since otherwise, there exists an edge e with both

ends in V (G) \ V (H); then H ′ = H + e would be a graph for which dH′ (v) ≡ 1 (mod k); but this

contradicts the maximality of H .

Similarly, by the maximality of H , G′[V (H)] has no nonempty k-divisible subgraph. By Lemma 1.6,

for every nonempty J ⊆ G′[V (H)], we have e(J) < 2(12k − 6)v(J). Thus,

mad(G′[V (H)]) = max
J⊆G′[V (H)]

2e(J)

v(J)
< max

J⊆G′[V (H)]

2(24k − 12)v(J)

v(J)
= 2(24k − 12).

By Theorem 1.7, G′[V (H)] has an orientation
−−−−−−→
G′[V (H)] such that ∆+(

−−−−−−→
G′[V (H)]) ≤ 24k − 12.

For every vertex u ∈ V (H), by the maximality of H , u has at most k − 1 neighbors in V (G) \ V (H).
For every edge e = uv in G′ with u ∈ V (H) and v ∈ V (G) \ V (H), we orient e from u to v.

Thus there exists an orientation ~G′ of G′, such that ∆+( ~G′) ≤ 25k− 13. By Lemma 2.2, there exists a

χ′
k-coloring of G′ using at most 177k− 94 colors. Then color all E(H) with a new color, this proves the

theorem. ✷

Remark. In the above proof of Theorem 1.3, for all the edges e = uv in G′ with u ∈ V (H) and

v ∈ V (G) \ V (H), we can orient e from u to v. Then define a linear ordering σ′ beginning with vertices

in V (G)\V (H), and concatenating a linear ordering of vertices in G′[V (H)] that has been proved existing

by Lemma 2.1, but use ∆+(
−−−−−−→
G′[V (H)]) ≤ 24k − 12 here (instead of using of ∆+( ~G′) ≤ 25k − 13 as

the proof of Theorem 1.3). By using this σ′, and the above orientation, following the methodology of

Lemma 2.2, we can first color all the edges incident with V (G) \V (H), and then the edges in G′[V (H)],
by processing the vertices one by one following linear ordering σ′. This coloring process can be used to

prove that χ′
k(G) ≤ 171k − 87. The proof for this comes from tweaking the proofs of Lemma 2.2. As

the authors in Botler et al. (2023) have mentioned, we think we would be far from the truth still (refer

Conjecture 1.2), we skip the details of this small improvement here for the readability of this paper.
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