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Let G be a connected graph and L(G) the set of all integers k such that G contains a spanning tree with exactly k

leaves. We show that for a connected graph G, the set L(G) is contiguous. It follows from work of Chen, Ren, and
Shan that every connected and locally connected n-vertex graph – this includes triangulations – has a spanning tree
with at least n/2 + 1 leaves, so by a classic theorem of Whitney and our result, in any plane 4-connected n-vertex
triangulation one can find for any integer k which is at least 2 and at most n/2 + 1 a spanning tree with exactly k

leaves (and each of these trees can be constructed in polynomial time). We also prove that there exist infinitely many
n such that there is a plane 4-connected n-vertex triangulation containing a spanning tree with 2n/3 leaves, but no
spanning tree with more than 2n/3 leaves.
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1 Introduction
At the 2023 Montreal Graph Theory Workshop, Kenta Ozeki raised several questions regarding the num-
ber of leaves in spanning trees of planar 4-connected graphs, and in particular in plane 4-connected trian-
gulations. One such problem was to determine, for a given plane 4-connected triangulation G, all integers
k for which there exists a spanning tree of G with exactly k leaves. In this note we give a partial answer
to this question.

Let G be a connected graph and L(G) the set of all integers k such that G contains a spanning tree
with exactly k leaves. We first prove that in any connected graph G, the set L(G) is contiguous. We were
surprised to not be able to find this result in the literature. On the one hand, the proof is not difficult, but
on the other hand, we believe this result is of independent interest.

By this result, the problem of determining L(G) for a given graph G is equivalent to determining the
minimum leaf number and maximum leaf number of G, i.e. the number of leaves in a spanning tree of G
with the fewest (resp. the most) leaves among all spanning trees of G.
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The decision problems associated to both aforementioned problems are NP-hard for arbitrary graphs G.
Thus, determining L(G) is NP-hard. Solis-Oba gave a 2-approximation algorithm for the maximum leaf
number problem [22]. It was proven by Lu and Ravi [16] that, unless P = NP, there is no constant factor
approximation for minimising the number of leaves of a spanning tree. From an optimisation standpoint,
minimising the number of leaves is equivalent to maximising the number of non-leaves; perhaps counter-
intuitively, for the latter problem there does exist a (linear-time) 2-approximation algorithm based on
depth first search, as shown by Salamon and Wiener [21].

We now focus on Ozeki’s problem asking for L(G) =: L when G is a plane 4-connected triangulation.
Since planar 4-connected graphs are hamiltonian [24], minL = 2. It remains to determine maxL which
seems to be a challenging problem. Let f(n) be the largest integer ℓ such that every plane 4-connected
triangulation on n vertices contains a spanning tree with at least ℓ leaves.

In a given graph G, a homeomorphically irreducible spanning tree (HIST) of G is a spanning tree of G
with no vertices of degree 2. Chen, Ren, and Shan [7] showed the following results which will be useful
to us. Here, a graph G is locally connected if for every vertex v ∈ V (G), the subgraph induced by the
neighbourhood N(v) is connected.

Theorem A (Theorem 1.1. from [7]). Every connected and locally connected graph with order at least
four contains a HIST.

Corollary B (Corollary 1.2. from [7]). Let Π be a surface (orientable or non-orientable). Then every
triangulation of Π with at least four vertices contains a HIST.

It easily follows from Corollary B that every n-vertex triangulation of any surface (not necessarily 4-
connected) has a spanning tree with at least n

2 + 1 leaves for all n ≥ 4. So f(n) ≥ n
2 + 1 for n ≥ 4;

we note that this bound can also be inferred from an earlier result of Albertson et al. [1]. Next to our
(aforementioned) main theorem, we prove that f(n) ≤ 2n

3 for infinitely many n.
Regarding the problem of determining bounds for f(n), on the one hand, there are some results

concerning minimum degree conditions. Let gk(n) be the largest integer ℓ such that every n-vertex
graph with minimum degree k contains a spanning tree with at least ℓ leaves. Linial [11] conjectured
gk(n) =

(k−2)n
(k+1) + ck for some constant ck. For k = 3, the tight value g3(n) =

n
4 + 2 is shown in [15],

while for k = 4, the tight value g4(n) = 2n
5 + 8

5 is shown in [12, 15]. (See also the extension of Kleitman
and West’s result [15] by Karpov [14]; g4(n) = 2n

5 + 2 holds except for three graphs.) For k = 5, the
tight value g5(n) = n

2 + 2 is shown in [12]. For k ≥ 6, the problem is still open. On the other hand,
as far as we know, there are few results (or even problems) regarding global or topological conditions,
e.g. connectedness.

We briefly discuss the link between our problem and domination. For a spanning tree of a connected
graph G, its stem vertices (i.e. non-leaves) correspond to a connected dominating set in G, and our prob-
lem is to minimise the size of a connected dominating set, see for instance [6]. For a triangulation G on
any surface, the domination number γ(G) is at most n

3 , see [5] (cf. [10]) and it is conjectured that the
tight lower bound is n

4 for sufficiently large n, see [17, 20]. This gap suggests that it is also difficult to
improve the upper bound of the size of a connected domination set. (However, the upper bound of the
domination number for plane triangulations has improved; see [9, 18, 19, 23].) See also Remark 2 in the
last paragraph in Section 2.
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2 Results
For a given tree T , let ℓ(T ) denote the number of leaves in T . In our proof, we transform one spanning tree
into another via edge exchanges. This technique has been used in the so-called reconfiguration problem;
see for example [3, 13] for related problems.

Theorem. For any connected graph G, the set L(G) is contiguous.

Proof: The statement is clearly true for trees, so henceforth we assume G to not be a tree. Let T and
T ′ be arbitrary but fixed spanning trees of G. Let E(T ′) \ E(T ) = {e0, . . . , ep−1} with p positive. Put
T0 := T and Ti+1 := Ti + ei − e′i for i ∈ {0, . . . , p − 1}, where e′i ∈ E(Ci) \ E(T ′), where Ci is the
(unique) cycle in Ti + ei. We need the following two claims.

Claim 1. |ℓ(Ti)− ℓ(Ti+1)| =: ℓi ≤ 2.
Comparing the degrees of vertices in Ti and Ti+1, changes can only occur in the end-vertices of ei =

uivi and e′i = u′
iv

′
i. We have

dTi+1
(ui) ∈ {dTi

(ui), dTi
(ui) + 1},

dTi+1
(vi) ∈ {dTi

(vi), dTi
(vi) + 1},

dTi+1
(u′

i) ∈ {dTi
(u′

i), dTi
(u′

i)− 1}, and
dTi+1

(v′i) ∈ {dTi
(v′i), dTi

(v′i)− 1}.

Thus, letting ε1, ε2 ∈ {−1, 0} and ε3, ε4 ∈ {0, 1}, by the above argument we have

ℓ(Ti+1) = ℓ(Ti) +

4∑
i=1

εi = ℓ(Ti) + ε

for ε ∈ {−2,−1, 0, 1, 2}.
Note that if ei and e′i share a common vertex, say vi = v′i, we can make a stronger statement:

ℓ(Ti+1) = ℓ(Ti) + ε1 + ε3 = ℓ(Ti) + ε′

for ε′ ∈ {−1, 0, 1}. Thus, Claim 1 is proven. 2

Claim 2. If, in Claim 1, we have ℓi = 2, then there exists a spanning tree Si of G such that ℓ(Ti) <
ℓ(Si) < ℓ(Ti+1) when ℓ(Ti) < ℓ(Ti+1), and ℓ(Ti+1) < ℓ(Si) < ℓ(Ti) when ℓ(Ti) > ℓ(Ti+1).

In Ci, i.e. the cycle in Ti + ei, consider a sequence of edges ei = e0i , e
1
i , . . . , e

t−1
i , eti = e′i (recall that

e′i ∈ E(Ci) \E(T ′)) such that consecutive edges share a vertex. Put Ti0 := Ti and Tix := Ti0 + e0i − exi
for x ∈ {1, . . . , t}. (Here notice that Tit = Ti+1.) Then |ℓ(Tix−1

)− ℓ(Tix)| ≤ 1, which follows from the
last remark in the proof of Claim 1. This completes the proof of Claim 2. 2

We can now finish the proof of the theorem. Let T and T ′ be spanning trees of G with the minimum
number and the maximum number of leaves, respectively. By Claims 1 and 2, there exists a sequence
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of spanning trees T = R0, R1, . . . , Rq−1, Rq = T ′ in G such that |ℓ(Ri) − ℓ(Ri+1)| ≤ 1 for all i ∈
{0, . . . , q − 1}. This implies the theorem’s statement. 2

One might wonder, when ℓ(T ) < ℓ(T ′), whether there exists a “monotone” sequence of spanning trees
T = T0, T1, . . . , Tk = T ′, that is, |E(Ti)\E(Ti+1)| = 1 and ℓ(Ti) ≤ ℓ(Ti+1) for all i ∈ {0, . . . , k − 1}.
In general, there are counterexamples, e.g. the following, where we define a graph G and two spanning
trees T and T ′ in G:

V (G) = {v1, . . . , v8},
E(G) = {v1v2, v1v3, v1v4, v1v5, v1v6, v2v7, v3v7, v4v8, v5v8, v6v7, v6v8},
E(T ) = {v1v6, v2v7, v3v7, v4v8, v5v8, v6v7, v6v8}, and
E(T ′) = {v1v2, v1v3, v1v4, v1v5, v1v6, v6v7, v6v8}.

Now T ′ attains the maximum leaf number of G and ℓ(T ) = 5 < 6 = ℓ(T ′) but every edge exchange
applied to T decreases the number of leaves. However, we could not answer the following question.

Problem. Consider a connected graph G. Let T and T ′ be spanning trees of G with the minimum
number and the maximum number of leaves, respectively. Is it then true that there exists a sequence of
spanning trees T = T0, T1, . . . , Tk = T ′ such that |E(Ti)\E(Ti+1)| = 1 and ℓ(Ti) ≤ ℓ(Ti+1) for all
i ∈ {0, . . . , k − 1}?

We now mention some consequences of our theorem. Recall that planar 4-connected graphs are hamil-
tonian [24], so they contain a hamiltonian path, i.e. a spanning tree with exactly two leaves (we call graphs
containing a hamiltonian path traceable).

Corollary. Let G be a traceable graph. Then G contains a spanning tree with exactly k leaves for all
k ∈ {2, . . . ,maxL(G)}. In particular, this holds for planar 4-connected graphs.

We also remark that if one can find in a connected and locally connected graph G on n vertices a
spanning tree with p < n

2 +1 leaves, then one can find a spanning tree of G with r leaves for every integer
r ∈ {p, . . . ,

⌈
n
2

⌉
+1} in polynomial time, and, similarly, if there are integers p and q with p ≤ q such that

one can find spanning trees of a connected graph G′ with p and q leaves, respectively, then one can find a
spanning tree of G′ with r leaves for every integer r ∈ {p, . . . , q} in polynomial time. We now sketch a
proof and leave the details to the reader.

As mentioned in the introduction, one can infer from Theorem A [7] that every connected and locally
connected n-vertex graph G has a spanning tree with at least n

2 + 1 leaves; it follows from their proof, in
particular their Lemmas 2.3 and 2.4, that this can be done in polynomial time (one first builds a spanning
weak 2-tree in G and then a HIST based on the weak 2-tree). The above statements now follow from our
theorem and its proof as follows. In Claim 1, we need to perform at most n − 1 edge exchanges, and in
Claim 2, we need to do at most n

2 edge exchanges to find a spanning tree Si. So we need to perform at
most

⌊
n
2

⌋
· (n− 1) edge exchanges in total.

For planar 4-connected graphs, we remark that a hamiltonian cycle in such graphs can be found in linear
time as proven by Chiba and Nishizeki [8]. So in any planar 4-connected graph G, for any integer k with
2 ≤ k ≤

⌈
|V (G)|

2

⌉
+ 1 we can find a spanning tree of G with exactly k leaves in polynomial time.
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We have already discussed a lower bound for f(n). We now present an upper bound.

Proposition. There exist infinitely many n such that there is a plane 4-connected n-vertex triangulation
containing a spanning tree with 2n

3 leaves, but no spanning tree with more than 2n
3 leaves.

Proof: The following construction is illustrated in Fig. 1. Let C4 be the cycle on 4 vertices and Pk the
path on k vertices, where k ≥ 6 shall be a multiple of 3. Consider the cartesian product of C4 and Pk.
This graph contains k pairwise disjoint 4-cycles C1, . . . , Ck, where Ci = vi0v

i
1v

i
2v

i
3v

i
0 for i ∈ {1, . . . , k},

such that vij is adjacent to vi+1
j for every pair of i ∈ {1, . . . , k−1} and j ∈ {0, 1, 2, 3}. We add, for every

i ∈ {1, . . . , k − 1}, the edge vijv
i+1
j+1 to this graph, for every j ∈ {0, 1, 2, 3}, indices taken modulo 4, and

also add the edges v11v
1
3 and vk1v

k
3 . Denote the resulting graph, which is a plane 4-connected triangulation

of order 4k =: n, by Gk.
Consider, for i ∈ {1, . . . , k − 2}, the subgraph of Gk induced by V (Ci) ∪ V (Ci+1) ∪ V (Ci+2) and

denote it by Hi. We see Ci, Ci+1, Ci+2 as subgraphs of Hi. For a tree T , we call stem vertices the
vertices in T that are not leaves of T . Let T be a spanning tree of Gk and S the subtree of T formed
by T ’s stem vertices. Since S is connected and also by the structure of Gk, S ∩Hi must contain a path
P with at least one vertex in Ci and at least one vertex in Ci+2 for all i ∈ {2, . . . , k − 3}. Thus P has
at least three vertices. Assume it has exactly three and put P = uvw. There is a vertex v′ in Ci+1 at
distance 2 from v in Gk. It can be easily seen that no matter the position of u and w in Hi, they will
never be adjacent to v′. We call this argument (†). Since T is a spanning tree of Gk, by (†) we must have
|V (S) ∩ V (Hi)| ≥ 4 for all i ∈ {2, . . . , k − 3}.

If V (S) ∩ V (C1) ̸= ∅, by (†) we have |V (S) ∩ V (H1)| ≥ 4. Assume henceforth V (S) ∩ V (C1) = ∅.
Since the vertices v11 and v13 lie in V (T ) \ V (S), each of them must be adjacent to a vertex in S. By the
structure of Gk, this cannot be the same vertex, so |V (S) ∩ V (C2)| ≥ 2. If |V (S) ∩ V (C2)| = 2 and the
two vertices in V (S) ∩ V (C2) are adjacent, again by the structure of Gk it is clear that not all vertices of
C1 are adjacent to some vertex in S, a contradiction. So in this case necessarily |V (S) ∩ V (C2)| ≥ 3,
and as k ≥ 6 and by the connectedness of S we obtain |V (S) ∩ V (H1)| ≥ 4. If the two vertices are
non-adjacent, as S is connected and by the structure of Gk, we have |V (S) ∩ V (C3)| ≥ 2. So once
more |V (S) ∩ V (H1)| ≥ 4. Analogously one proves that |V (S) ∩ V (Hk−2)| ≥ 4. We have proven that
|V (S) ∩ V (Hi)| ≥ 4 for all i ∈ {1, . . . , k − 2}.

Since |V (S) ∩ V (Hi)| ≥ 4 for all i ∈ {3j + 1 | j ∈ {0, . . . , k
3 − 1}} and V (Gk) is partitioned into

V (H1) ∪ V (H4) ∪ · · · ∪ V (Hk−2), we can conclude that every spanning tree in Gk has at least n
3 stem

vertices, and thus has at most 2n
3 leaves. In Fig. 1, a path Q on n

3 vertices in Gk is shown by bold lines.
As k is a multiple of 3, every vertex in Gk either lies in Q or is adjacent to a vertex in Q. We therefore
obtain from Q a spanning tree of Gk with 2n

3 leaves. 2

Remark 1. The upper bound 2n
3 (perhaps plus some constant) can be seen as stemming from 6-regularity.

For a 6-regular triangulation G (of the torus or the Klein bottle), every subtree of G with k stems has at
most 2k + 4 leaves as shown below. Thus, for any spanning tree of G, the number of leaves is at most
(2k+4)n
3k+4 .
Let T be a subtree of G with k stem vertices and S be the set of all its stem vertices. Take an arbitrary

sequence of connected subgraphs S = Sk ⊇ Sk−1 ⊇ · · · ⊇ S1 =: {v1} where Si consists of exactly i
vertices. We show by induction that for every 1 ≤ i ≤ k, every subtree of G in which the set of stem
vertices is Si has at most 2i+ 4 leaves.



6 Kenta Noguchi and Carol T. Zamfirescu

v10

v13

v12

v11

v10

v20

v23

v22
v21

v20

vk0

vk3

vk2

vk1

vk0

Fig. 1: A plane 4-connected triangulation Gk obtained by identifying the top and bottom paths using the given
orientation. The stem vertices of a spanning tree are emphasised.

For i = 1, it is trivial. Suppose that the statement is true for i − 1. Fix a subtree Ti−1 with the stem
vertices Si−1 such that the number of leaves is maximum. Let Ti be a subtree of G with the stem vertices
Si. Now vi := V (Si)\V (Si−1) should be a leaf in Ti−1 since vi has a neighbour vj in Si−1 for some
j < i. Note that vi and vj have two common neighbours, say x and y, both of which are in Ti−1 (as
leaves or stem vertices). Then, V (Ti)\V (Ti−1) ⊆ NG(vi)\{vj , x, y} and |V (Ti)\V (Ti−1)| ≤ 3. Thus,
the number of leaves in Ti is at most (2(i− 1) + 4) + (3− 1) = 2i+ 4.

Our lower and upper bounds on f(n) lie far apart, and we do not know how to close this gap. We only
have limited evidence, but we suspect that the upper bound 2n

3 is tight, which was also raised as a question
by Bradshaw et al. [4, Question 4.3] recently.

Remark 2. Very recently, Bose et al. [2] announced that they showed the lower bound 11n
21 for plane

(not necessarily 4-connected) n-vertex triangulations. This yields an improvement of the lower bound for
f(n). Still, the gap between it and the upper bound given here remains large.
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